Degree of symmetry of a certain product manifold

By
Tsuyoshi Watabe

(Received October 31, 1974)

Introduction

The degree of symmetry $N(M)$ of a compact connected differentiable manifold M is the maximum of the dimensions of the compact connected Lie groups which can act almost effectively and differentiably on M.

In this note we shall prove the following theorems.
Theorem 1. $N\left(S^{k} \times C P_{n}\right)=N\left(S^{k}\right)+N\left(C P_{n}\right)=\frac{k(k+1)}{2}+n^{2}+2 n$.
Theorem 2. $\quad N\left(C P_{n} \times C P_{k}\right)=N\left(C P_{n}\right)+N\left(C P_{k}\right)=n^{2}+2 n+k^{2}+2 k$.
Here S^{k} denotes k-dimensional sphere and $C P_{n} n$-dimensional complex projective space. In the following all actions are assumed to be differentiable.

1. Statement of results

We shall write $X \sim Y$ if X and Y have isomorphic Q-cohomology ring, where Q denotes Q the field of rational numbers.

Let X be an orientable closed $(2 n+k)-$ manifold such that $X \underset{Q}{\sim} C P_{n} \times S^{k}$. Assume that $N(X) \geqq \operatorname{dim} S U(n+1)+\operatorname{dim} S O(k+1)$ and X has no 2 torsion.

We shall prove the following proposition in section 5.
Proposition A Let X be as above. If k is 1 or 2 , then X is diffeomorphic to $C P_{n} \times S^{k}$ and $N(X)=N\left(C P_{n}\right)+N\left(S^{k}\right)$.

We consider the case in which k is greater than 2. It is easily seen that $N(X)>\frac{1}{8}$ ($\operatorname{dim} \mathrm{X}+7$) $\operatorname{dim} X$. Let G be a compact connected Lie group of $\operatorname{dim} G=N(X)$ which acts almost effectively on X. We may assume that $G=\operatorname{Tr} \times G_{1} \times \cdots \times G_{s}$, where T^{r} is r-dimensional torus and G_{i} is a simple Lie group. By a result in [3], there is a normal subgroup of G, say G_{1}, with the following properties
(1) $\operatorname{dim} G_{1}+\operatorname{dim} N\left(H_{1}, G_{1}\right) / H_{1}>\frac{1}{8}(\operatorname{dim} X+7) \operatorname{dim} G_{1} / H_{1}$
and
(2) $\operatorname{dim} H_{1}>\frac{\operatorname{dim} X-9}{\operatorname{dim} X-1} \operatorname{dim} G_{1}$
where $H_{1}=\left(H_{\cap} G_{1}\right)^{0} \quad$ (H : a principal isotropy subgroup of G) and $N\left(H_{1}, G_{1}\right)$ is the normalizer of H_{1} in G_{1}.

We shall consider the cace in which $2 n+k \leqq 25$ and prove the same result as proposition A for this case in section 6. Assume $2 n+k \geq 26$. By the same arguments as in [5], the possible pair (G_{1}, H_{1}) is one of the followings: $(S p(l), S p(l-1) \times(S p(1))(2 l>k / 2+n)$, $(S U(l) . \quad N(S U(l-1), S U(l)))\left(2 l-2 \geq \frac{k}{2}+n\right),(S U(l), S U(l-1))(2 l-2>k / 2+n)$ and (So(l), $\mathrm{So}(l-1))(2 l-3>k / 2+\mathrm{n})$.

Case 1. $\left(G_{1}, H_{1}\right)=(S p(l), S p(l-1) \times S p(1))$.
It follows from the Vietoris-Begle theorem that the orbit map $\pi: X \longrightarrow X / G_{1}$ induces an isomorphism $\pi^{*}: H^{i}\left(X / G_{1}: Q\right) \longrightarrow H^{i}(X: Q)$ for $i \leqq 3$. Hence the generator a of $H^{2}(X: Q)$ is in image of π^{*}. Since $\operatorname{dim} X / G_{1}=k+2 n-4 l+4<2 n$, we have a contradiction.

Case 2. $\left(G_{1}, H_{1}\right)=(S U(l-1), N(S U(l-1), S U(l))$
Since $N(S U(l-1), S U(l))$ is maximal, we have $X=C P_{l_{-1}} \times X^{*}$, where X^{*} is the orbit space. Let a be a generator of $H^{2}(X: Q)$ and p the projection $X \longrightarrow C P_{l-1}$. Then $a=p^{*}(b)$, where b is a generator of $H^{2}\left(C P_{l-1}: Q\right)$. It is not difficult to see that $l=n+1$. Let $G=$ $G_{1} \times K$. From the following observation (see [3]) it follows that K acts on X^{*} almost effectively.

Observation Let (G, M) be a smooth action with H as a principal isotropy subgroup. Suppose K is an equivariant differentiable transformation group on M and the $G \times K$ action on M is almost effective, and K_{0} is the ineffective kernel of the induced K-action on $M(H)$ $/ G$. Then K_{0} is locally isomorphic to subgroup of $N(H, G) / H$.

From the fact that $\operatorname{dim} K \geq \operatorname{dim} S O(k+1)$ and the fact that $\operatorname{dim} X^{*}=k$ it follows that $K=S O(k+1)$ and $X^{*}=S^{k}$. Thus we have $X=C P_{n} \times S^{k}$ and $N(X)=\operatorname{dim} S U(n+1)+\operatorname{dim}$ $S O(k+1)$. Moreover we have proved that G acts transitively on X.

Case 3. $\left(G_{1}, H_{1}\right)=(S U(l), S U(l-1))$.
Subcase 1. There is no fixed point of $S U(l)$-action.
Put $N=N(S U(l-1), S U(l))$. Consider the case in which $X_{(N)} \neq \phi$. By the same arguments as in [1], there is continuous map $f: X \longrightarrow C P_{l_{-1}}$ such that $f^{*}: H^{*}\left(C P_{l-1}: Q\right) \longrightarrow$ $H^{*}(X: Q)$ is injective. It follows that $l=n+1$. Let $Y=X(H) / S U(l)$, where H denotes a
principal isotropy subgroup of $S U(l)$-action. Then Y is a ($k-1$)-dimensional manifold on which $K=G / G_{1}$ acts with ineffective kernel N of dimension $\leqq 1$. It follows that $\operatorname{dim} K / N$ $\leqq \frac{k(k-1)}{2}$. Since $\operatorname{dim} K \geq \operatorname{dim} S O(k+1)$, we have $\operatorname{dim} K / N \geq \operatorname{dim} S O(k+1)-1$, which is a contradiction.

Next we consider the case in which $X_{(N)}=\phi . \quad$ Put $P=F(S U(l-1), X) . \quad$ It is known that $X=S^{2 l-1} \times P$, and $X^{*}=P / S^{1}$ (see [5]).
S^{1}
Suppose that the fibre bundle $\xi: S^{1} \longrightarrow S^{2 l-1} \times P \longrightarrow X$ is trivial. We may asssume that $k \geqq 2 l-1$. In fact, if $\mathrm{k}<2 l-1$, then $\operatorname{dim} X^{*}<2 n$. By the same arguments as in case 1, we can show a contradiction. Moreover we can prove that $k=2 l-1$.

Suppose $k>2 l-1$. Since $H^{*}\left(S^{2 l-1} \times P: Q\right) \simeq H^{*}\left(X \times S^{1}: Q\right)$, we have $H^{i}(P: Q) \simeq H^{i}(X$ $\left.\times S^{1}: Q\right)$ for $i<2 l-1$. From the assumption $k>2 l-1$, it follows that $k>2 l-1>k / 2+\mathrm{n}+1$ and hence $k>2 n+4$. Hence we have $H^{i}\left(X \times S^{1}: Q\right)=0$ for $2 n+1<i<k$. It follows that $H^{2 n+k-2 l+2}(P: Q)=0$, which is a contradiction because P is an orientable closed ($2 n+k-2 l$ $+2)$-manifold. Put $G=K \times G_{1}$. Then $\operatorname{dim} S O(k+1)+\operatorname{dim} S U(n+1)-\operatorname{dim} S U\left(\frac{k-1}{2}\right)$ $>2 n^{2}+6 n+4$, which is seen to be a contradiction by the same arguments as above. Thus we have shown the fibre bundle ξ is not trivial. Consider the following commutative diagram:

where f is induced by $p r: S^{2 l-1} \times P \longrightarrow S^{2 l-1}$. Let $e \in H^{2}(X: Q)$ be the rational Euler class of the bundle ξ. We may assume e is a generator of $H^{2}(X: Q)$ (Note $e^{n} \neq 0, e^{n+1}=0$). Then we have $f^{*}(b)=e$, where b is a generator of $H^{2}\left(C P_{-1}: Q\right)$. It is not difficult to see that $l=n+1$ and hence $\operatorname{dim} G / G_{1} \geqq \operatorname{dim} S O(k+1)$. Since $\operatorname{dim} X^{*}=k-3$, we can show a contradiction.

Subcase 2. There is at least one fixed point.
Let U be a closed invariant tubular nbhd. of $F=F(S U(l), X)$. It is known that X $=\partial\left(D^{2 l} \times P\right) / S^{1}$ and $X^{*}=P / S^{1} \cup \partial P / S^{1} \times[0,1], \partial P / S^{1}=\mathrm{F}$, where $P=F(S U(l-1), X-$ int $U)$. Note that U can be chosen to be invariant under $K=G / G_{1}$ and hence P is also invariant under K. Then $G=G_{1} \times K$ acts on $\partial\left(D^{2 l} \times P\right) / S^{1}$ by $(g, h)[v, x]=[g v, h x]$, where $(g, h) \varepsilon$ $G_{1} \times K$ and $v \varepsilon D^{2 l}, x \varepsilon P$. This implies that K-action on P is almost effective and hence K acts on ∂P almost effectively.

In section 2, we shall prove the following

Proposition 1. $\quad \partial P / S^{1} \underset{Q}{\sim} C P_{n} \times S^{k-2 l}, \quad S^{2 n+1} \times C P_{\frac{k-2 l-1}{2}}(k \geqq 2 n+1, k-2 l<2 n+1), \quad S^{k}$ $\times C P_{n-l} C P_{\frac{k-1}{2}} \times S^{2 k-2 l+1}$ or $\frac{C P_{2 n+k-2 l}}{2}(k=2 n+2-2 l)$. Moreover $\partial P / S^{1}$ has no 2 -torsion.

Since the situations for four cases are parallel, we consider only the case $\partial P / S^{1} \sim S^{2 n+1}$ $\times C P_{\frac{k-2 l-1}{2}}(k>2 n, k-2 l<2 n+1)$. Let N be the ineffective kernel of K-action on $\partial P / S^{1}$. Then N is a group of bundle automorphisms of the bundle $S^{1} \longrightarrow \partial P \longrightarrow \partial P / \mathrm{S}^{1}$. Since the action of N on ∂P is almost effective, we have $\operatorname{dim} N \leqq 1$. Since $\operatorname{dim} K \geqq \operatorname{dim} S O(k+1)$ $+\operatorname{dim} S U(n+1)-(\operatorname{dim} S U(l), k>2 n$ and $4 l>4 n+4$, we have $\operatorname{dim} K / N>\operatorname{dim} S O(2 n+2)$ $+\operatorname{dim} S U\left(\frac{k-2 l+1}{2}\right)$. By induction, it follows that $\operatorname{dim} K / N=\operatorname{dim} S O(2 n+2)+\operatorname{dim}$ $S U\left(\frac{k-2 l+1}{2}\right)$, which is clearly impossible.

Case 4. $\left(G_{1}, H_{1}\right)=(S O(l), S O(l-1))$.
We may assume that $k>l-1$.
Subcase 1. There is no fixed point of $S O(l)$-action.
It follows from the fact $H^{1}\left(X: Z_{2}\right)=0$ that the $S O(l)$-action has a unique conjugacy class ($\mathrm{SO}\left(l-1\right.$)) of isotropy subgroups, and hence the orbit map $X \longrightarrow X^{*}$ is an S^{l-1} bundle with Z_{2} as structural group. It is not difficult to see that $H^{1}\left(X^{*}: Z_{2}\right)=0$ and hence the fibre bundle is trivial, i,e. $X \approx S^{l-1} \times X^{*}$.

Suppose that $l-1<k$. Then $h=\operatorname{dim} X^{*}=2 n+k-(l-1)>2 n$. If $h<k$, then $H^{h}\left(X^{*}\right.$ $\left.\times S^{l-1}: Q\right) \neq 0$ (Note that X^{*} is an orientable closed h-dimensional manifold). On the other hand $H^{h}\left(S^{k} \times C P n: Q\right)=0$, because $2 n<h<k$. This is a contradiction. Thus we have shown that $h \geq k$, and hence $l-1 \leqq 2 n$. Comparing the dimension of $H^{l-1}\left(S^{l-1} \times X^{*}: Q\right)$ and $H^{l-1}\left(S^{k} \times C P_{n}: Q\right)$, we can show a contradiction. Thus we have shown that $l-1=k$, In other words, $G \sim S O(k+1), X=S^{k} \times X^{*}$ and hence $H^{*}\left(X^{*}: Q\right)=H^{*}\left(C P_{n}: Q\right)$ (as rings). Now $K=G / G_{1}$ acts almost effectively on X^{*} and $\operatorname{dim} K \geqq \operatorname{dim} \operatorname{SU}(n+1)$.

It is known that $K \sim S U(n+1)$ and $M^{*}=C P_{n}$ (see [3], [5]).
Thus we have proved that $\operatorname{dim} G=\operatorname{dim} S O(k+1)+\operatorname{dim} S U(n+1)$ and $X=C P_{n} \times S^{k}$.
Subcase 2. There is at least one fixed point.
Let U be an invariant closed tubular nbhd of $F=F(S O(l), X)$. Since $H^{1}(X$-int $\left.U: Z_{2}\right)=0, X$-int U is an S^{l-1} bundle over $X^{*}-F \times(0,1) \approx X^{*}$ with Z_{2} as structure group. Since $H^{1}\left(X^{*}: Z_{2}\right)=0$, this fibre bundle is triual, i,e. X-int $U \approx S^{l-1} \times X^{*}$ and hence $X=\partial$ ($D^{l} \times X^{*}$).

In section 3, we shall prove the following.

Proposition 2. $\partial X^{*} \sim C P_{n} \times S^{k-l-1}$ and ∂X^{*} has no 2 -torsion.
Since $K=G / G_{1}$ acts almost effectively ∂X^{*} and $\operatorname{dim} K \geq \operatorname{dim} S O(k+1)+\operatorname{dim} S U(n+1)$ $-\operatorname{dim} S O(l) \geq \operatorname{dim} S U(n+1)+\operatorname{dim} S O(k-l+1)$, the induction argument shows that dim $K=\operatorname{dim} S U(n+1)+\operatorname{dim} S O(k-l)$, which is easily seen to be a contradiction.

Thus we have proved the following.
Proposition B Let X be an orientable closed $(2 n+k)$-manifold $(k>2)$ such that $X \sim$ $C P_{n} \times S^{k}$, with no 2 -torsion. Assume $N(X) \geqq \operatorname{dim} S U(n+1)+\operatorname{dim} S O(k+1)$. Then X is diffeomorphic to $C P_{n} \times S^{k}$ and $N(X)=\operatorname{dim} S U(n+1)+\operatorname{dim} S O(k+1)$.

Theorem 1 in the Introduction follows immeadiately from this proposition B.
Next we shall prove the following proposition modulo some lemmas.
Proposition C. Let X be an orientable closed $(2 n+2 k)-m a n i f o l d$ such that $X \underset{Q}{\sim} C P_{n}$ $\times C P_{k}(k \geq n)$. Assume that $N(X) \geqq \operatorname{dim} S U(n+1)+\operatorname{dim} S U(k+1)$. Then X is diffeomorphic to $C P_{n} \times C P_{k}$ and $N(X)=\operatorname{dim} S U(n+1)+\operatorname{dim} S U(k+1)$.

We shall prove proposition C for the case $n+k \leqq 12$ in section 6 .
Assume $n+k \geqq 13$. Consider a compact connected Lie group G with $\operatorname{dim} G=N(X)$ which acts almost effectively on X. Then there exists a simple normal subgroup G_{1} of G such that
(i) $\operatorname{dim} G_{1}+\operatorname{dim} N\left(H_{1}: G_{1}\right) / H_{1}>\frac{1}{8}(2 n+2 k+7) \operatorname{dim} G_{1} / H_{1}$,
and
(ii) $\operatorname{dim} H_{1}>\frac{2 n+2 k-9}{2 n+2 k-1} \operatorname{dim} G$,
where $H_{1}=\left(H \cap G_{1}\right)^{0}\left(H=\right.$ a principal isotropy subgroup of G-action. Possible pairs $\left(\mathrm{G}_{1}, H_{1}\right)$ are proved to be the followings: $(S O(l),(S O(l-1))(2 l>n+k),(S p(l), S p(l-1) \times S p(1))$ $(2 l>n+k)(S U(l), N(S U(l-1))(2 l-2 \geq n+k)$ and $(S U(l), S U(l-1))(2 l-2>n+k)$. It is not difficult to see that cases of $(S O(l), S O(l-1))$ and $(S p(l), S p(l-1) \times S p(1))$ are imposible.

Consider the case of $\left(S U(l), N(S U(l-1))\right.$. It is known that $X \approx C P_{l-1} \times X^{*}$. Let f be the projection $X \longrightarrow C P_{l-1}, a_{1}, a_{2}$ generators of $H^{2}(X: Q)$ such that $H^{*}(X: Q)=Q\left[a_{1}\right]$ $/\left(a_{1}^{n+1}\right) \otimes Q\left[a_{2}\right] /\left(a_{2}^{k+1}\right)$ and b generator of $H^{2}\left(C P_{l-1}: Q\right)$. Put $f^{*}(b)=\alpha a_{1}+\beta a_{2}$.

Assume that $\alpha \neq 0$ and $\beta \neq 0$. Then $\left(\alpha a_{1}+\beta a_{2}\right)^{n+k} \neq 0$ and hence $b^{n+k} \neq 0$. This is clearly a contradiction From the assumption that $k \geqq n$, it follows that $\beta \neq 0, \alpha=0$ and $l=k+1$, and hence $X=C P_{k} \times X^{*}$. It is clear that $X^{*} \underset{Q}{\sim} C P_{n}$. Since $K=G / G_{1}$ acts on X^{*} almost effectively and $\operatorname{dim} K \geqq \operatorname{dim} S U(n+1), X^{*}=C P_{n}$ and $K \sim S U(n+1)$.

Next consider the case of $(S U(l), S U(l-1))$. Put $N=N(S U(l-1))$. If $X_{(N)}=\phi$, we can easily show a contradiction. Asssume that $X_{(N)} \neq \phi$ and $F=F(S U(l), X)=\phi$. Then it is known that $X=\left(S^{2 l-1} \times P\right) / S^{1}$, where $P=F(S U(l-1), X)$. In section 4, it is shown
that $P \underset{Q}{\sim} C P_{n}$. Since $K=G / G_{1}$ acts on P almost effectively and $\operatorname{dim} K \geqq \operatorname{dim} \operatorname{SU}(n+1)$, we have $K \sim S U(n+1)$ and $P=C P_{n}$. Then a principal isotropy subgroup H of G-action contains $S U(k) \times N(S U(n-1))$, which is proved to be a contradiction by dimensional arguments.

Thus we may assume that there exists at least one fixed point. Let F be the fixed point set, U an invariant closed tubular nbhd. of F and $P=F(S U(l-1), X-$ int $U)$. In section 3, we shall prove that $\partial P / S^{1} \sim C P_{k-l} \times C P_{n}$. Now $K=G / G_{1}$ acts almost effectively
on $\partial P / S^{1}$ and $\operatorname{dim} K \geqq \operatorname{dim} S U(n+1)+\operatorname{dim} S U(k+1)-\operatorname{dim} S U(l)>\operatorname{dim} S U(n+1)+\operatorname{dim}$ $S U(k-l+1)$. By induction K is locally isomorphic to $S U(n+1) \times S U(k-l+1)$, which is clearly a contradiction.

In the following sections, unless it is stated to the contrary, the field Q of rational numbers is used as coeffiients of homology and cohomology.

2. An $\boldsymbol{S U}(\boldsymbol{l})$-action on $\boldsymbol{X} \underset{Q}{\boldsymbol{C}} \boldsymbol{P}_{\boldsymbol{n}} \times \boldsymbol{S}^{\boldsymbol{k}}$

In this section let X be an orientable closed ($2 n+k$)-manifold such that $X \underset{Q}{\sim} C P_{n} \times S^{k}$ $(k \geq 3)$ on which $S U(l)\left(2 l-2>n+\frac{k}{2}\right)$ acts with $S U(l-1)$ as a principal isotropy subgroup at least one fixed point and non-empty $X_{(N)}(N=N(S U(l-1), S U(l))$. Let U be a closed invariant tubular nbhd of the fixed point set $F=F(S U(l), X)$, and P the submanifold $F(S U(l-1), X$-int $U)$. We may assume that the restricted action of $S U(l)$ on U has just two types of orbits; principal arbit and fixed point. It is known that $X=\partial\left[D^{2 l} \times P\right] / \mathrm{S}^{1}$, $X^{*}=P / S^{1} \cup \partial P / S^{1} \times[0,1]$ attached along $\partial P / S^{1}$ and $P / S^{1} \times\{0\}$ and $\partial P / S^{1} \approx F$. Put $Y=D^{2 l}$ $\times P$.

We shall first consider the case in which the fibre bundle $\xi: S \longrightarrow \partial Y \longrightarrow X$ is trivial. Then we have $\partial Y=S^{1} \times X \widetilde{Q} S^{1} \times C P_{n} \times S^{k}$. Consider the Q-cohomology exact sequence of the pair $(Y, \partial Y)$

where p^{*} is induced by the projection $p: Y \longrightarrow P$ and f^{*} is induced by the composition $f^{*}: \partial Y \xrightarrow{(i} Y \xrightarrow{p} P$

Since f has a cross section $P \xrightarrow{j} \partial Y \longrightarrow Y \longrightarrow P, i^{*}$ injective. Hence we have the following short exact sequence;

Let $i_{1}: \partial P \longrightarrow P$ be inclusion, \tilde{c} a generator of $H^{1}(\partial Y)$ and \tilde{a} generator of $H^{2}(\partial Y)$. Since $\operatorname{dim} P=2 n+k-2 l+2<2 l-1$ and $H^{2 n+k-2 l+2}(P)=0$, it follows from (2.1) that $2 n$ $+1<2 n+k-2 l+2<k$, and hence $P \widetilde{Q} S^{1} \times C P_{n}$. Thus we have $f^{*}(\tilde{c})=c \epsilon H^{1}(P)$ is non-zero. It follows that $c_{1}=\mathrm{i}_{1}{ }^{*}(c) \neq 0$. Suppose that $i_{1}{ }^{*}\left(f^{*}(a)\right)=a_{1}=0$. Since $H^{*}(P)$ is generated by c and $a=f^{*}(\tilde{a}), i_{1}^{*}: H^{h}(P) \longrightarrow H^{h}(\partial P)$ is zero for $h \geqq 2$.

Hence we have the following exact sequence:
(2.2) $0 \longrightarrow H^{h}(\partial P) \longrightarrow H^{h+1}(P, \partial P) \longrightarrow H^{h+1}(P) \longrightarrow 0 \quad(h \geq 2)$.

Since $H^{3}(P) \neq 0$, we have $H_{2 n+k-2 l-1}(P) \approx H^{3}(P, \partial P) \neq 0$ and hence $2 n+k-2 l-1 \leq 2 n$ +1 , which implies that $k-2 l \leqq 2$. It is not difficult to see that the cases of $k-2 l$ and of $k-2 l=2$ are impossible. When $k-2 l=1$, it is shown that $\partial P \sim S^{1} \times S^{2 n+1}$. Since the fibre bundle $S^{1} \longrightarrow \partial P \longrightarrow \partial P / S^{1}$ is also trivial, we have $\partial P \approx S^{1} \times \partial P / S^{1}$. It is clear that $\partial P / S^{1}$ $\sim S^{2 n+1}$.
Q
Suppose next that $i_{1} *\left(f^{*}(a)\right)=a_{1} \neq 0$. Let m be the largest integer such that $a_{1}{ }^{m} \neq 0$. It is not difficult to see that $m=n$. Hence we have $\partial P \widetilde{Q} S^{1} \times C P_{n} \times S^{k-2 l}$ or $S^{1} \times C P_{\frac{k-2 l-1}{2}}$ $\times S^{2 n+1}$ which implies $\partial P / S^{1} \sim C P_{n} \times S^{k-2 l}$, or $C \frac{P_{k-1 l-1}}{2} \times S^{2 n+1}$.

Next we shall consider the case in which the fibre bundle ξ is not trivial. Let $e \epsilon H^{2}(H$: Q) be the rational Euler class. Since $k>2$, we have $e^{n} \neq 0$ and $e^{n+1}=0$. From the Gysin sequence of ξ, it follows that Q -cohomelogy groups of ∂Y are:

$$
H^{0}=H^{2 n+k+1}=H^{2 n+1}=H^{k}=Q
$$

$$
H^{i}=0 \quad \text { otherwise }
$$

As before, we have the following exact sequence:

If $k>2 n$, then $2 l-2>\frac{k}{2}+n>2 n$ and hence we have $\operatorname{dim} P=2 n+k-2 l+2<k$. Since $H^{2 n+1}(\partial Y)=0, \operatorname{dim} P$ must be greater than or equal to $2 n+1$. This implies that $P \sim \widetilde{Q}^{2 n+1}$. δ
From the cohomolgy exact sequence of rair $(P, \partial P)$, it follows that $H^{i}(\partial P) \approx H^{i+1}(P, \partial P)$ $\approx H_{2 n+k-2 l+1-i}(P)$ for $0<i<2 n$ and hence we have

$$
\begin{array}{ll}
H^{0}(\partial P)=H^{k-2 l}(\partial P)=H^{2 n+1}(\partial P)=H^{2 n+1+2 l}(\partial P)=Q & \\
H^{i}(\partial P)=0 \quad \text { for } i ; \text { otherwise. }
\end{array}
$$

Let a be a generator of $H^{2 n+1}(\partial P)$ and b a generator of $H^{k-2 l}(\partial P)$. Denote \tilde{a} be the element of $H^{2 n+1}(P)$ such that $i^{*}(\tilde{a})=a(i: \partial P \longrightarrow P$ inclusion $)$ and $a \epsilon H_{2 n+1}(P)$ the dual of \tilde{a}.

Then we may assume $\delta b=D^{-1} \alpha$ where $D: H^{k-2 l+1}(P, \partial P) \longrightarrow H_{2 n+1}(P)$ is Poincare duality. It can be shown that $b \cup a \neq 0$. In fact we have
$<[P, \partial P], \tilde{a} \cup D^{-1} \alpha>=<[P, \partial P] \cap D^{-1} \alpha, \tilde{a}>=<\alpha, \tilde{a}>\neq 0$, and hence we have $D \delta(a \cup b)$ $=D \delta(b \cup i *(\tilde{a}))=D\left(D^{-1} \alpha \cup \tilde{a}\right)=<[P, \partial P], D^{-1} \alpha \tilde{a}>\neq 0$, which implies $a \cup b \neq 0$. These arguments imply that $\partial P \widetilde{Q}^{S^{k-2 l} \times S^{2 n+1}}$ or $S^{2^{n+k-2 l+1}(k=2 n-2 l+1)}$. By similar arguments we can show that when $k \leq 2 n, \partial P \widetilde{Q}^{S^{k}} \times S^{2 n-2 l+1}$ or $S^{2 n+k-2 l+1}(k=2 n-2 l+2)$. It follows from the following proposition that $\partial P / S^{1} \underset{Q}{\sim} C P_{n} \times S^{k-2 l}, C P_{\frac{k-2 l-1}{2}} \times S^{2 n+1}, C P_{n-l} \times S^{k}$ $C P_{\frac{k-1}{2}} \times S^{2 n-2 l+1}$, or $C P_{2 n+k-2 l}(k=2 n-2 l+2)$.

Proposition (2.3) Let X be an orientable closed ($m+n$)-manifold such that $X \sim S^{m}$ $\times S^{n}(m, n \geqq 2)$, where at least one of m and n is odd. If a circle group S^{1} acts on X on freely, then the orbit space X^{*} has the Q-cohomology ring of one of the followings;

$$
C P_{\frac{m-1}{2}} \times S^{n} \text {, or } C P_{\frac{n-1}{2}} \times S^{m} .
$$

PROOF. Let $e_{\varepsilon} H^{2}\left(X^{*}: Q\right)$ be the Euler class. We shall consider only the case in which $m=2 m^{\prime}, n=2 n^{\prime}+1$. From the Gysin sequence;

$$
\longrightarrow H^{i}(X) \longrightarrow H^{i-1}\left(X^{*}\right) \longrightarrow H^{U_{e}+1}\left(X^{*}\right) \longrightarrow H^{i+1}(X) \longrightarrow,
$$

it follows that $H^{i-1}\left(X^{*}\right) \approx H^{i+1}\left(X^{*}\right)$ for $i<2 m^{\prime}-1$, for $2 n^{\prime}+1<i<2 n^{\prime}+2 m^{\prime}$ and for $2 m^{\prime}$ $<i<2 n^{\prime}$. Let h be the largest integer such that $e^{h} \neq 0$. It is easy to see that $\operatorname{dim} H^{2 m^{\prime}}\left(X^{*}\right)$ $=2$ and hence $\operatorname{dim} H^{2 n^{\prime}}\left(X^{*}\right)=2$. This implies that $X^{*} \sim S^{2 m} \times C P_{n}$. Q.E.D.

Now we shall prove the last part of proposition 1. Consider the case in which the fibre bundle $S^{1} \longrightarrow \partial\left(D^{2 l} \times P\right) \longrightarrow X$ is trivial and hence the bundle $S^{1} \longrightarrow S^{2 l-1} \times P \longrightarrow X$ -int U is also trivial. Note that when the fixed point set F is empty, the argument is varid. Then int U has no 2 -torsion. Since $H^{i}(X-$ int $U: Z)=H_{2 n+k-i}(X, U,: Z), U$ has no 2-torsion.

By similar argumets, it is proved that $\partial P / S^{1}$ has no when the bundle is not trivial.
Thus we have completed the proof of Proposition 1.

3. An SO (L)-action on $\underset{Q}{\mathbf{X}} \mathbf{C P}_{n} \times \mathbf{S}^{k}$

In this section we shall consider an $S O(l)$-action on an orientable $(2 n+k)$-mainfold $X\left(2 l>\frac{k}{2}+n+3\right)$ such that $X \underset{Q}{\sim^{k}} \times C P_{n}(k \geq 3)$ with no 2 -torsion, with $S O(l-1)$ as a princial isotropy subgroup and non-empty fixed point set F. We have proved that $X=\partial\left(D^{l}\right.$ $\times X^{*}$) and $X^{*} \underset{Q}{\sim} C P_{n}$. We shall prove that $\partial X^{*} \widetilde{Q}_{Q}^{C P} P_{n} \times S^{k-l}$ if $k-l \geq 1$. We may assume that $k>l-1$.

Case 1. $k=l$.
From the exact sequence of the pair $\left(X^{*}, \partial X^{*}\right)$, it follows that $H^{2 i}\left(\partial X^{*}: Q\right) \cong H^{2 i}\left(X^{*}\right.$, $Q)+H^{2 i+1}\left(X^{*}, \partial X^{*}: Q\right)$ for $0 \leqq i \leqq n$.

Let $a_{\epsilon} H^{2}\left(X^{*}: Q\right)$ be a generator of $H^{*}\left(X^{*}: Q\right)$ and $b \in H^{1}\left(X^{*}, \partial X^{*}: Q\right)$ the element such that $D b$ is the dual of a^{n}, where $D: H^{1}\left(X^{*}, \partial X_{*}\right) \longrightarrow H_{2 n}\left(X^{*}\right)$ is Poincare duality.

Let $a_{2}=i^{*}(a)$ and $b_{0} \in H^{0}\left(X^{*}: Q\right)$ the element such that $\delta b_{0}=b$.
Lemma (3.1) $\quad \delta\left(\mathrm{b}_{0} \cup a_{2} h\right) \neq 0 \quad i \leq h \leq n$
Proof Since $\left.<\left[X^{*}, \partial X^{*}\right] \cap\left(\delta\left(b_{0} \cup a_{2} h\right)\right), a^{n-h}>=<\left[X^{*}, \partial X^{*}\right] \cap\left(\delta b_{0} \cup a^{h}\right), a^{n-h}\right\rangle$ $=<\left(\left[X^{*}, \partial X^{*}\right] \cap \delta b_{0}\right) \cap a^{h}, a^{n-h}>=<\left[X^{*}, \partial X^{*}\right] \cap \delta b_{0}, a^{n}>\neq 0$, we have $\delta b_{0} \cup a^{h} \neq 0$, where [$\left.X^{*}, \partial X^{*}\right]$ is the fundametal class of X^{*}.
Q.E.D.

Case 2. $k-l \geq 1$.
For this case, it is not difficult to show that $\partial X^{*} \underset{Q}{\sim} C P_{n} \times S^{k-l}$ and with no 2-torsion.

4. An SU(L) -action on $\underset{\mathbf{Q}}{\mathrm{X}} \mathrm{CP}_{n} \times \mathrm{CP}_{\boldsymbol{k}}$

In this section, we shall consider an $S U(l)$-action on an orientable ($2 n+2 k$)-mainfold $X(2 l-2>n+k)$ such tca $X \underset{Q}{\sim} C P_{n} \times C P_{k}((k \geq n)$ with $S U(l-1)$ as a principal isotorpy subgroup, non-empty $X_{(N)}(N=N(S U(l-1), S U(l))$ and non-empty fixed point set F. It known that $X=\partial\left(D^{2 l} \times P\right) / S^{1}$ where $P=F(S U(l-1), X$-int $U)$. It is not difficult to see that $H^{i}(P: Q) \approx H^{i}(\partial Y: Q)$ for $i<2 l-1$. Note that $k \geq l$. Suppose the fibre bundle $S^{1} \longrightarrow \partial Y \longrightarrow X$ is trivial. Then we have $\partial Y=X \times S^{1}$, and hence we have
$H^{2 n+2 k-2 l+2}(\partial Y: Q) \neq 0$. Since $2 n+2 k-2 l+2<2 l-1$, we have $H^{2 n+2 k-2 l+2}(P: Q) \neq 0$, which is a contradiction because P is a manifold with non empty boundary. Thus the fibre bundle $S^{1} \longrightarrow \partial Y \longrightarrow X$ is not trivial. Let $e \epsilon H^{2}(X: Q)$ be its Eular class. From the Gysin sequence it follows that there exists the following exact sequence:
(4. 1) $0 \longrightarrow H^{2 i+1}(\partial Y) \longrightarrow H^{2 i}(X) \longrightarrow H^{2 i+2} \longrightarrow H^{2 i+2} \longrightarrow(\partial Y) \longrightarrow 0$.

Let α and β generators of $H^{*}(X: Q)$ i,e. $H^{*}(X: Q)=Q[\alpha] /\left(\alpha^{n+1}\right) \otimes Q[\beta] /\left(\beta^{k+1}\right)$. We may assume that $e=A \alpha+B \beta$, where A, B is 0 or 1 . Suppose $e=\alpha+\beta$. Then put $c=P^{*}(\boldsymbol{\alpha}-\boldsymbol{\beta})$ where $P: \partial Y \longrightarrow X$ is projection. It follows from (4.1) that cohomology groups of ∂Y are:

$$
\begin{array}{ll}
\left.H^{*}(\partial Y): Q\right) \text { is generated by } & c \text { for dimension } \leqq 2 n \\
H^{2 i+1}(\partial Y: Q) \approx 0 & \text { for } k \geq i \geq 1 \\
H^{2 i}(\partial Y: Q)=0 & \text { for } 2 k<2 i<2 n+2 k+1
\end{array}
$$

Thus we have proved that $P \underset{Q}{\sim} C P_{n}$. For the cases of $e=\alpha$ and $e=\beta$, it can be shown that $P \underset{Q}{\sim} C P_{n}$. We shall calculate cohomology ring of ∂P.

Case 1. $k=l$.
Consider the following exact sequence:

Suppose $H^{1}(\partial P)=0$. Then we have $i^{*}(a)=0$ where a is a generater of $H^{2}(P)$. Thus we have $H^{i}(\partial P)=0$ for $i \leqq 2 n$, and hence $\partial P \sim S^{2 n+1}$.
Suppose $H^{1}(\partial P) \neq 0$. It is not difficult to see that $\partial P \sim S^{1} \times C P_{n}$.
Case 2. $k>l$.
It is not difficult to see that $\partial P \sim S^{2 n-2 l+1} \times C P_{n}$. It this case we can prove that $H^{1}\left(\partial P: Z_{2}\right)=0$. In fact since $H^{1}\left(X: Z_{2}\right)=0$, it follows from Z_{2}-Gysin sequence of the bundle $S^{1} \longrightarrow \partial Y \longrightarrow X$ that $H^{1}\left(\partial Y: Z_{2}\right)=0$, which implies that $H^{1}\left(P: Z^{2}\right)=0$. It follows immeadiately that $H^{1}\left(\partial P: Z_{2}\right)=0$.

5. The proof of Proposition \mathbf{A}

In this section we shall prove Proposition A. Since situations of the cases of $k=1$ and $k=2$ are almost parallel, we shall consider only the case of $k=1$. Then we have $N(X)$ $>\frac{1}{4}(2 n+1)(2 n+3)$. Assume $n \geq 6$. The arguments which are completely analogous to that of section 1 show that it is sufficient to consider an action of $S U(l)$ with $N=N(S U$ $(l-1)$) as principal isotrogy subgroup ($2 l+2>2 n+3$) and action of $S U(l)$ with $S U(l-1$ as principal isotrogy subgroup, non-empty $X_{(N)}$ and non-empty fixed point set $F(2 l+2)$ $>2 n+3)$. For the first action, it is not dificult to show that $X=C P_{n} \times S^{1}$ and $N(X)=\operatorname{dim}$ $S U(n+1)+1$. For the second action, dimensional considerations show a contradiction. Consider the cases in which $n \leqq 5$. Let $G=\operatorname{Tr} \times G_{1} \times G_{1} \times \cdots \times G_{s}\left(T^{r}: r\right.$-dim torus, $G_{i}:$ simple) be a compact connected Lie group with $\operatorname{dim} G=N(X)$ which acts on X almost effectively

Case 1. $n=5$

Since $N(X) \geqq 36>3 \operatorname{dim} X$, there exists a simple normal subgroup, say G_{1}, of G such that $\operatorname{dim} G_{1}+\operatorname{dim} N\left(H_{1}, G_{1}\right) / H_{1}>3 \operatorname{dim} G_{1} / H_{1} . \quad$ All pairs (G_{1}, H_{1}) except ($S U(6)$, $N(S U(5), S U(6)))$ are proved to be impossible. For the case of ($S U(6), N(S U(5), S U(6))$ it is not difficult to show that $G=S U(6) \times S O(2)$ and $X=C P_{6} \times S^{1}$.

Case 2 n=4
Case $3 \mathrm{n}=3$

We shall omit the proof since the proof is similar to case 1 ,
Case4 $n=2$
Since $9 \leqq N(X) \leqq 15, G_{i}$ is one of G_{2} (exceptional Lie group of rank 2) $S O(6), S O(5), S U(4), S U(3)$, or $S U(2)$. If some G_{i} is G_{2}, $\operatorname{dim} H_{1} \geq 14-5 \geq 9$ which is impossible. The same argument shows that no G_{i} is $S O(6)$. Suppose some G_{i} is $S U(4)$. Then $\operatorname{dim} H_{1} \geq 10$, and hence $H_{1} \sim S p(2)$, which implies that $X=S U(4) / S p(2)$. This is a contradiction because $\pi_{i}(S U(4) / S p(2))=0$ for $0 \leq i \leq 2$. If some G_{i} is $S O(5)$, then dim $H_{1} \geq 5$, which implies that $H_{1} \sim S O(4)$. For this case by Vietoris-Begle theorem we can show a contradiction. If some G_{i} is $S U(3)$ then $\operatorname{dim} H_{1} \geq 3, H_{1} \sim \operatorname{Sp}(2)$ or $N(S U(2)$, $S U(3))$. In this case it is shown that $X=S^{5}$ or $C P_{2} \times S^{1}$ and $N(X)=9$. Thus we have shown that to complete our arguments it is sufficient to consider only following cases: $G=T^{6} \times S U(2), T^{3} \times S U(2) \times S U(2)$, and $S U(2) \times S U(2)$. For the first and second cases, we can easily deduce a contradiction. Consider the case in which $G=S U(2) \times S U(2)$ $\times S U(2)$ acts on X. Then $\operatorname{dim} H \geq 4$. Let $p_{i}: G \longrightarrow S U(2)$ be the projection onto the i-th factor. Put $G=G_{1} \times G_{2} \times G_{3}$.

Case a $\operatorname{dim} \mathbf{H}=4$

In this case $X=G / H$.
Subcase $1 \operatorname{dim} \mathbf{p}_{3}(\mathbf{H})=\mathbf{0}$. Then $G_{3} / p_{3}(H) \underset{Q}{\sim} S^{3}$.
Since $\operatorname{dim} H \cap\left(G_{1} \times G_{2}\right)=4, G_{1} \times G_{2} / H \cap\left(G_{1} \times G_{2}\right) \widetilde{Q}^{S^{2}}$ or pt. This contradicts to the structure of cohomology ring of X because X is a fibre space over $G_{3} / p_{3}(H)$ with $G_{1} \times G_{2}$ $/ H_{\cap}\left(G_{1} \times G_{2}\right)$ as fibre.

Subcase $2 \operatorname{dim} p_{3}(H)=1$.
We have $\operatorname{dim} H_{\cap}\left(G_{1} \times G_{2}\right)=3$ and hence $X^{*}=X / G_{1} \times G_{2}$ is a 2-dimensional manifold. Put $H_{1}=H_{\cap}\left(G_{1} \times G_{2}\right)$. Suppose there is a 4 -dimensional isotropy subgroup K. Since p_{2} $(K) \approx K / K_{\cap} G_{1}$ and $\operatorname{dim} K_{\cap} G_{1}=0$ or 3 , we have $K=G_{1} \times K_{2}$ or $K_{1} \times G_{2}$. Suppose $K=G_{1} \times K_{2}$. Since $H_{1} \leq K$, we have $p_{2}\left(H_{1} \leq p_{2}(K)=K_{2}\right.$ and hence $\operatorname{dim} p_{2}\left(H_{1}\right)=0$ or 1. If $\operatorname{dim} p_{2}\left(H^{1}\right)$ $=0$, then $H_{1 \cap} G_{1}=G$ which contradicts to the almost effectivity. It is clearly impossible that $\operatorname{dim} p_{2}\left(H_{1}\right)=1$. Similary we can show that $K \neq K_{1} \times G_{2}$. Thus we have shown that there is no 4 -dimensional isotropy subgroup. Hence possible isotropy subgroup of $G_{1} \times G_{2}$-action are principal isotropy subgroup, exceptional isotropy subgroup and $G_{1} \times G_{2}$. Therefore the Vietoris Begle mapping theorem shows that the orbit map $\pi: X \longrightarrow X^{*}$ induces isomorphisms $\pi^{*}: H^{i}\left(X^{*}\right) \longrightarrow H^{i}(X)$ for $i \leq 2$, which leads a contradiction.

Subcase $3 \operatorname{dim} \mathbf{p}_{3}(H)=3$.

Since $\operatorname{dim} H_{1}=1, X=G_{1} \times G_{2} / H_{1}$. Put $\widetilde{X}=G_{1} \times G_{2} / T$. Then we have $H^{*}(\widetilde{X}: Q)$ $=H^{*}(X: Q)$. From the Gysin sequence of $T \longrightarrow G_{1} \times G_{2} \longrightarrow \widetilde{X}$, it follows a contradiction.

Case b $\operatorname{dim} \mathbf{H} \geqq 5$,

It is not difficult to show that this is impossible.
Case 5 n=1
It is easy to show that $N(X)=4$.

6. Low dimensional cases

In this section we shall consider an orientable closed manifold X of dimension $m \leq 25$ such that $X \sim C P_{n} \times S^{k}(k \geq 3)$ or $C P_{n} \times C P_{k}(k \geq n)$ and $H^{1}\left(X: Z_{2}\right)=0$. Assume $N(X) \geq$ $\operatorname{dim} S U(n+1)+\operatorname{dim} S O(n+1)$ or $\operatorname{dim} S U(n+1)+\operatorname{dim} S U(k+1)$. Since the situations of two cases are almost parallel, we shall consider only the case of $X \underset{Q}{\sim} C P_{n} \times S^{k}$.

It is easy to see that $N(X) \geqq 3 \operatorname{dim} \mathrm{X}$ if $13 \leqq \operatorname{dim} X \leqq 25$ or $\operatorname{dim} X=12$ and $k \geqq 5$.
Let $C=\operatorname{Tr} \times G_{1} \times \cdots \times G_{s}$ be a compact connected Lie group of $\operatorname{dim} G=N(X)$ which acts almost effectively on X. There exists a simple factor, say G_{1}, with the following properties:
(6. 1) $\operatorname{dim} G_{1}+\operatorname{dim} N\left(H_{1}, G_{1}\right) / H_{1} \geq 3 \operatorname{dim} G_{1} / H_{1}$
(6. 2) $\operatorname{dim} H_{1} \geq \frac{1}{2} \operatorname{dim} G_{1}$
and
(6. 3) $\operatorname{dim} H_{1} \geq \operatorname{dim} G_{1}-25$,
where H_{1} denotes the identity component of a principal isotropy subgroup of G_{1}-action. i, e. $H_{1}=\left(H_{\cap} G_{1}\right)^{0}$ ($H=$ a principal isotropy subgroup of G-action).

By dimensional considerations, it is shown that G_{1} is not E_{8}, E_{7}, E_{6} or G_{2}. If $G_{1}=F_{4}, H_{1}$ must be Spin (9). Since $\operatorname{dim} X / G_{1}=2 n+k-16$, the Vietoris Begle theorem shows a contradiction when $k<16$. When $k \geq 16$, we have $N(X) \geq 4 \operatorname{dim} X$ and hence (6.1) is replaced by
(6. 1) $\operatorname{dim} G_{1}+\operatorname{dim} N\left(H_{1}, G_{1}\right) / H_{1} \geq 4 \operatorname{dim} G_{1} / H_{1}$

This inequality does not hold for ($F_{4}, \operatorname{Spin}(9)$). Thus we have shown that G_{1} must be classical.

Case $1 \quad G_{1}=\mathbf{S U}(\mathbf{L})$

If $l \geq 9$, then $\operatorname{dim} G_{1} / H_{1} \leq 25 \leq \frac{1}{2}(l-1)^{2}$, and hence we have $\left(G, H_{1}\right)=(S U(l), S U(l$
$-1)$) or $(S U(l), N(S U(l-1), S U(l)))$. Considering subgroups of low dimensional $S U(l)$, we can also show that possible pair $\left(G_{1}, H_{1}\right)$ is as above.

Case $2 \mathbf{G}_{1}=\mathbf{S O}(\mathbf{L}) \quad$ Note that $l \geq 5$)
In this case, we can also prove that possible pair $\left(G_{1}, H_{1}\right)$ is ($S O(l), S O(l-1)$) but one exception of $\left(\mathrm{SO}(7), G_{2}\right)$. Consider the exceptional case. It is sufficient to consider only the case of $C P_{4} \times S^{5}$ or $C P_{3} \times S^{6}$. Since G_{2} is maximal in $S O(7)$, possible orbits are rational cohomology 7 -sphere. Hence the orbit map $\pi: X \longrightarrow X / S O$ (7) induces isomorphisims $\pi^{*}: H^{i}(X / S O(7): Q) \longrightarrow H^{i}(X: Q)$ for $i \leq 6$. Then the generator a of $H^{2}(X: Q)$ is in the image of π^{*}. Since $\operatorname{dim} X^{*}=6$, or 5 , we have $a^{4}=0$ or $a^{3}=0$, which is a contradiction.

Case $3 \quad \mathbf{G}_{1}=\mathbf{S}_{p}(\mathbf{L}) \quad(l \geq 3)$
It is not difficult to see that this case is impossible. The same arguments as in section 2,3 , and 4 show that $X=C P_{n} \times S^{k}$ and $N(X)=\operatorname{dim} S U(n+1)+\operatorname{dim} S O(k+1)$. The details are omitted since they are tedioas.

There remains the following cases: $C P_{4} \times S^{4}, \operatorname{dim} X=11,10,9,8$ and 7.

Case $\quad \mathbf{C P}_{4} \times \mathbf{S}^{4}$

We have $78 \geq N(X) \geq 34>2.8 \times 12$. There exists a simple normal subgroup G, of G with properties
(6. 4) $\operatorname{dim} G_{1}+\operatorname{dim} N\left(H_{1}, G_{1}\right) / H_{1}>2.8 \operatorname{dim} G_{1} / H_{1}$
(6. 5) $\operatorname{dim} H_{1}>\frac{4}{9} \operatorname{dim} G_{1}$
and
(6. 6) $\quad \operatorname{dim} H_{1} \geqq \operatorname{dim} G_{1}-12$.

It is easy to show that G_{1} is not exceptional.
Subcase $1 \quad G_{1}=\mathbf{S U}(\mathbf{1})$.
Since $\operatorname{dim} G_{1} \leq 78$, we have $l \leqq 8$. It follows from (6.6) that $H_{1} \sim S U(l-1)$, or $N(S U$ ($l-1$), $S U(l)$). Moreover from (6.4) and the tfact that $2 l-1 \leq 12$ it follows that possible pair (G_{1}, H_{1}) is ($\left.S U(5), N(S U(4), S U(5))\right)$ or (SU(6), N(SU(5),SU(6))). Then it is easy to see that $X=C P_{n} \times S^{4}$ and $N(X)=\operatorname{dim} S U(5)+\operatorname{dim} S O$ (5).

Subcase $2 \quad \mathbf{G}_{1}=\mathbf{S}_{p}(\mathbf{L})$, or $\mathbf{G}_{1}=\mathbf{S O}(\mathbf{L})$
It is not difficult to see that this case is impossible. We shall omit the other cases since they are not difficult but tedious.

Niigata Univercity

References

[1] Borel, A.: Seminar on Transformation groups. Ann. of Math. Studies 46. Princeton Unive. Press 1960.
[2] Hsiang, W. C. and Hsiang, W. Y.: Differentable action of compact connected classical groups I. Amer. J. Math. 83 (1966) 705-786.
[3] Hisang, W. Y.: On the degree of symmetry and the structure of highly symmetric manifolds. Tamkamg J. of Math. 2 (1971) 1-22.
[4] Ku, H. T., Mann, L. N., Sick, J. L. and Su, J. C.: Degree of Symmetry of a homotopy real projective space. Trans. Amer. Math. Soc. 161 (1971) Nov. 51-61.
[5] Watabe, T.: On the degree of symmetry of complex quadric and homotopy complex projective space. Sci. Rep. Niigata Univ. Ser. A, No. 11. April, 1974, pp. 85-94.

