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1. Introduction

In this paper we shall give a sequential procedure with finite memory for the follow-
ing statistical problem, so that the limiting probability of making the incorrect choice is
made zero: find a normal population with the same mean as N (4, :2)(8 and 442 are un-
known to us) from m normal populations N(6i, 052)(8: and g,2 are unknown to us for i =1,
--.,m). Here, it is assumed that there exists only one normal population with the same
mean as N(6, d12). Statistical problems like this, for example, problems of testing hypo-
theses with finite memory, were investigated by T. M. Cover [1] and [2]. Let N(6, 0:2)
be denoted by 7 and N(6;, 6,2)by II;(i=1,---, m). After the preceding experiment let it
be assumed that I7; is decided to have the same mean as /7. Then we draw independently
a sample X from II and X; from II; and make |X—X;|. Comparing |X—X;i| with a
preassigned positive number /, we decide whether or not /I; has the same mean as 1. If
IT; is decided not to have the same mean, we draw independently m—1 samples X from
II and a sample X; from each II; except II;, respectively and make | X—X;| (=1, ---, m,
7= 9. By comparing them with /, decide which population has the same mean as 7. If
II; is decided to have the same mean, we proceed with the next experiment. Now we
shall state finite memory. Here, there are m specified memories T:(: =1, ---, m). Accord-
ing to comparison described above, one of m memories is used. If memory T: is used, I7;
is decided to have the same mean. That is, “memory T is used” is equal to “II; is decided
to have the same mean.” Hence at each experiment memory is changed.

Next, we shall describe a process of the experiments. The nth stage of the experi-
ments consists of the d, experiments described above, where d, tends to infinity as n—>
. We call “Il; is favorable at the nth stage” if after the d» experiments memory T; is
used. Therefore in this statistical problem we use only m memories. Let Pi(dn) denote
the probability of memory T; at the nth stage, that is, the probability of I7; being decided
to have the same mean after the d» experiments. We denote by Pi(x#) the stationary
probability that /7; is favorable at the nth stage by using a Markov chain M(#») described



42 K. Tanaka, E. Isogai and S. Iwase

in the next section. When I7; has truly the same mean as 77, according to the sequential
procedure stated in the next section, it can be shown that 3} P1(dn) = o and )M Pi(dn)
n=1 n=1

<oo for =2, --, m. Therefore by the Borel zero-one law it is found that with probabil-
ity one memory T is used an infinite number of times and memory T: (i = 2, ---, m) are
used only a finite number of times, that is, /7; is decided to have the same mean an infinite
number of times and I7; (i=2, ---, m) are decided to have the same mean only a finite
number of times. This shows that the limiting probability of making the incorrect choice
is made zero.

This paper consists of three sections. In Section 2 we shall describe the procedure
with finite memory. In Section 3 we shall prove several lemmas, and then by using them
a theorem will be established.

2. The procedure with finite memory

First we shall state the experiments. As described in Section 1, we make the d» ex-
periments at the nth stage. After the experiments at the nth stage we go on to the
(n+1)th stage and successively continue these stages. Now we shall describe the nth stage
in detail. It is assumed that I7; is decided to have the same mean at the rth experiment
on the nth stage. Then at the (#+1)th experiment we draw independently a sample X,
and X, from IT and IT;, respectively. If | Xn—Xin| <In, II; is favorable. If |Xp—Xin| >In,
we draw (m—1) independent samples X, from /T and a sample X, from each IT; except
IT;, respectively. Thus random variables {Xk»} are mutually independent for all values of
kandn, k=1,---,mand n =1, 2, --.. If there exist jj, ---, 7 such that |X»—Xjx| <Il» for
t=1, ---, h and | Xn—Xkn| >In for k==j;, --- jn, where I, is a positive real number such

that f‘, 1/l2 < oo, e.8. In=mn, Il;, (t=1, ---, h) are favorable with equal probability 1/4,
n=1

that is, 7, (¢=1, ---, h) are decided to have the same mean with equal probability 1/4.
Otherwise II; is favorable. We set Ai(n) = Pr(| Xu—Xin| >Ix). A random variable X,
is normally distributed with mean ¢ and variance ¢,2, and a random variable Xi» is nor-
mally distributed with mean 8; and variance 6,2, so a random variable X,,—X;» is normally
distributed with mean ¢ — #; and variance o:2+0,2. The following figure shows a state
transition of the memories from the rth experiment to the (41)th experiment at the
nth stage.
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Tj, 7 H A—Aj;(n)) H Ar(n) and
t=1 *j
. = | Xn—Xjen | < In
T i { (=1, k)
~ L and
Ty 7 tl;[ (A—-A4;(n)) H Ar(n) | Xn—Xn| > In
k" ' \ (k =\= jlz °* jh) i)
Ti— T3, otherwise

Fig. A state transition

We note that at the first experiment on each stage the experiment will be done, 77 assum-
ing to be used. This precaution yields independence of each stage. Now let the transition
probability matrix of the Markov chain at the »#th stage be denoted by M(»n)=(P:j(n)),
where Pij(n) is a transition probability from memory T: to memory T; being used for i,
j=1,---, m. Therefore the experiments at the »th stage turn out that the experiment is
done d, times by using this matrix M(»#). Let T be denoted by 2(k=1, ---, m). From
the figure we get

m-l
Pij(n) = Z Z} II A—A4;n)) II Ar(n)
h=1 Rp3»i t=1 kxj
Ryp>3j k=i
for j % i, where Rr = (Jy, -+, jn), 5t €{1, -, m} (¢ =1, --, k) and 3! means the sum-
RpPi
R:3]
mation of all combinations of Rx such that jir=j for some #(¢=1, ---, ) and jr==i for all
i(t=1, .-, b), and I means the multiplication of all values of % such that % == j: for all
k#it
k=i

t(¢=1, -, k) and k =i. Let Pi(ds) and Pi(n) denote the same notations as in Section 1.
For sufficiently large dn, P:i(d») is nearly equal to Pi(n), so Pi(d») is nearly equal to
P;(n) for sufficiently large »n because of dn— o0 as n—oo. Thus for sufficiently large »
we may regard the probability of memory 7; being used at the nth stage as P;(#). Hence
when 7, has truly the same mean as /7, to show that faj Pi(dn)=o00 and :V;‘, Pi(dn)< o for

i=2,---, m, it suffices to show that >} P1 (n)=co and }] Pi(n)<oo for z_2 -eym. In

Section 3 we shall assume that 77; has truly the same mean as /7. The properties of the
stationary probabilities P; (#) will be stated in the next section.

3. Proof of lemmas and a theorem

Without loss of generality we may assume that

= 10— 01| < |0 — O3] <-oeeee < |0 — O]
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From the preservation of probabilities at each stage, we obtain

Py(n) =1— ﬁz Pi(n) forn=1,2, -

If ilPi(n) < o fori =2, -, m, then }ﬁlplcn) — oo. Thus by the Borel zero-one law it
n= n=

follows that with probability one I7; is decided to have the same mean as I an infinite
number of times and I7; (G =2, ---, m) are decided to have the same mean as I7 only a
finite number of times. This shows that the limiting probability of making the incorrect
choice is made zero.

THEOREM. We assume that
0=]0—01|<|0—-02|< """ <|0—0ml.

Then we obtain

N Pi(n)< oo for =2, m
n=1
and
i Pi(n)=oo.
n=1

The proof of this theorem will be given afterward.
First, we mention without proof the lemmas 1 and 2 given by K. TaANAKA and E.

Isocarl [5].
LemMma 1.
Pi(n) = ——m‘—"—f(”) for i=1,, m—1,
23 ap(n)
k=1
where
— (—1)";‘:_‘.lﬁnj(n)Dij(n) for i=1,-..... , m—1
o; (n)= j=1
det (P(n)) for i=m

and P(n)=(Pij(n)),
—(Pa(m)+---+Pji.y(n) +Pij () + -+ Pim(n)) for i=j

Pij(n) =
7 {Pij(n) Sfor iZj

)

_ J _
Py(n)-eeeee . *Prm-11(n) ;

dij(n) = 7,

Palm_1(n)'""“I_:)—m-lm—l(n>
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a symbol “/\” denotes an exception of the row or column of the corresponding number
and Dij(n)=(—1)i+iA;j(n).

LemMA 2. For every i, j (i, j=1,---, m—1), we have

D7 (n)>0 and det (P™(n))<{0 if m is even,
and
D7 (m)<<0 and det (P™(n))>0 if m is odd,
where D7;(n) denotes the dependence of Dij(n) on m.
Next, we shall prove the following lemma.
LemMma 3. We assume that
0=0—0,|<|0—05| <+ < |0—Om].

Let A; (i=1,-.-, m) be the same notations as in Section 2. Then, there exists a positive integer
Ny such that for every n>= N,

A1 ()<A ()< oo <Am(n).

Proor. A random variable X,— Xi» is normally distributed with mean # — 6; and
variance ¢42-+a52, SO

A;(n)=Pr(| Xn—Xjn| >ln)

= [ @o ™ Getary Fexp {- (v—(0—6)2}dx

2(012+a' 2)

+ S::‘ @) ¥ (o2 o) exp{ mcx o— 0,))2}dx

1, —(8-6;) o
It -3 -}x° ‘ 012+02
= (@ e | e ety
s -} ix -3 -3+
Sln— 6-6; sz) dx+g Tt (9—@)(2”) ¢ @
Vg, Yeo12+a,?
S (2@ dx+S O
Bj
where C;j = 0—0j, Cj = 0;—0, B} = Vo top and

E"n 6;+ln
77 Vet
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By the assumption of the lemma, we get
|Ci|=1C;j| and 0=|C;|<|Cz| <+ <|Cnml.

We put B;‘:.Eﬂil_”_ and B" = —|Cjl+in

Vo205 Y P
Then we obtain

@G 1 Ai(n) = S @} dx—l—S e e g,
B, Bj

Since ﬁ 1/lx2< 0, In—> 00 as n—> ©.  Therefore, there exists a positive integer N,
n=1

such that for every >N, —|Cm|+I»>0. From this, we get easily that
@ 2 0< By, < By <ooevee <B;<B}=B}<Bj;<Bj<-<B},

for every n> N,.
Now we shall show that A;,;(n) > A;(n).

Aja(m)—A;i(n)

B} 2 E}’n 2
=§ T ey et dx—g @) e ¥ ax (from (3. 1)
Bl B}

=0 for j=2,.-., m—1
{ >0 for j=1 (by (3. 2)).
This shows the proof of the lemma.
(Q.E.D.)
LemMma 4. We assume that
=10—61|<|0—O] <---- <|60—0m|.
Then for every n=N,, where Ny is the same as in Lemma 3, we obtain
Py(n)>Pip(n)=----- 2P 1{(n)>2 P a(n)=------ = Pim(n)
Jor 1<i<m.
Proor. For simplicity, we denote P;j(#) and Ai(n) by P:; andA;, respectively.
For j==i,

m-1

Pij = % > I A— 4id 11 Ak
h=1 RpPit=1

Rp>j k =i
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We set (E) = 2 II(l Ajp) 1'[ Akr.

Rpdi t=1 kxj;
Rp3j k=i

Ed=_ 2 H(l An)IIAk

Rp®i,j+1¢=1 kg
Rp3j k=i

+ X H(l AJ:)HAk
Rpbi t=1

Ri>j,j+ k=i

Let us consider the first part of the right hand side in the above equation.

H A—Aj) II Ak

Rpdi, j+1¢=1
Rp3j k=i

=A-A)D X H (A—A4;) l'I Ar
Rp®i, j+1, jt=1 k¥4
k=i

>A—-A4jn) 2 H (A-Aj) II Ak
Rpbi, j+1,j¢t=1
k"i

= 2 H (l—A]t) H Ak’
Rpbi,j i=1

Rpoj+1 k-z
because of 1 '—Aj+1 <1-—-A;.
Hence

(B)= X H(l Aj) 11 Ar

Rpdi,j t=1 k%j;
Rp3 j+1 k=t

+ E H (1 AJ:) H Ak

Rp®i
Rp2j,5+1 k=i

= 2 H(l AJ!)HAk

Rppi t=1 k*j;
Rpoj+1 k=i
Therefore we obtain
m-—1 1
Pij =z 2>+ X H A—A4j) H Ar="Pij.

h=1 Rh$i t=1 k¥xj;
Rp5ji+1 k=i

47
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For j =1, we can replace “>" by “>”, because of A; < A.,.
This proves Lemma 4.

(QED)

Now, we shall consider the evaluation of Pi (i=1,---, m),
By putting a;=(—1)""1a;,

Pi= % (by Lemma 1)

(—1)"1g
(—1)" 13,
k=1

=%,  1<i<m.
20 ag
k=1

For 1<i<m—1,
;= (— l)m_l Zi,-
-1
=(~1"1(=D'E PmiD} (by Lemma 1)
pe

=% Pri(—1)"D7;
- ]-1 my i]'

From Lemma 2, we have (—1)”D{;>0.

Thus we get a; >0 for 1<i<m—1. By Lemma 2, we have
@y =(—1)""1 det (P™)>0.

Therefore, we obtain

Pi=_% __ and a>0 for i=1,, m.

2 ag

k=1

LEMMA 5. It is assumed that
0=[0—6,|<|0—03| <---+-- <|0—6m]|.
Then for every n> Ny, where Ny is the same as in Lemma 3, we obtain
a;i(1) 2 KnP1o(n) Py () -+ Pi-11(n) P 11(0) -+ Py ()
for i=1,--, m, and
ay(n) = Py (1) Py (1) - Ppn (1),

where Km is a constant depending on m.
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Proor. We shall show the outline of the lemma. For simplicity, we omit ». First
we shall show the first part of the lemma.
0<(—1)™D;;
< Er | Pecoy| -+ | Peci-vyiz1l | Pecisnristl -+ | Pecm-vdm-1ls

where r is a permutation on a set {1, 2,---, i—1, {+1, -.-, m—1} and the sum is taken over
all permutations on the set. According to Lemma 4, we obtain
. ((m=DPujn for 2<z(j)<m—1
[ Peini| < _
(m—1)P;  for z(j)=1.
Hence, we get

(—D"Dii<3 (m—1)""2 PPy --Pi_11 Piy11* P11

Setting K1 =X1(m—1)™-2, we have

0<(—D"Dii< K} P1aPa-Pi11Pisn1-Pm-1

for 1<igm—1.
Since in the case i<(j, we can prove

(—1m Dij< KL P1pPp+-P;_11Pi11+-Pm-11

in the same way as in the case j<{i, we assume that j<i (2<i<m—1).
0<(—=1)"Dij
<@ [Pecon |+ [Peci-vi-1l | Pecidisn] -+ | Pecionri| | Pecivnien| -+ | Prcm—1Im-1]

A set {z(1), :--, z(i—1), z(i+1), --+, z(m—1)} coincides with a set {1, 2, ---, i—1, i1, ---,
m—1}. According to Lemma 4, we have

(m—1)Peryy  for (k=1
(m—].)P]_g for T(k>=1

for every el -, i—1, 541, -, m—1).
Hence, we obtain

(=1)"Dij
<2(m—1)""2P1,Poy++-P;_11P; 11+ P11

| Pecioye’ | < {

. =K} PyyPy---Pi_11Pisy1+Prn1.
Thus

0 (=1"Dij
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| < K}, PyoPor--Pi_11Pivii Py

for 1<i, j<m.
Therefore for 1<i <m—1,

-1

M§

a; <

K% P1oPp+-Pi_11Piy11---Pm.

J

I
uy

-1
Putting K%, = mEl K1,, we obtain
F=

a; < K% PioPy -+ Pi_11Piyi1--Pm

for i=1,.-., m—1.
From the definition of «,,,

a,=(—1)""1det (P)

< 2 Peanl | Pecm-vIm-1l
T

< 2(m—1)"1 Py Pn-Ppy_1y .
Setting K% =>(m—1)"-1, we obtain

am < Kg"P13Ps1++ P11
Therefore putting K»= max(K%, K3,), we have
;<K P12Pp -+ Pi_11 P11+ P

for i=1,-.., m.
This proves the first part in the lemma.

Next, we shall show the remaining part in the lemma.
Since (—1)"D,; >0 for 2<j<m—1, we get

m-1
o = '21 Pmj (—1)"D1j > Pypy(—1)"Dy1.
=
m-1 __
(—=1)"Dyp=(—1)"3] sgn(z) a Prcpr

m-1 . o
=(=D"sgn(ee) T Procin-+(~1)" 31 sgn () TL Prcorn

‘r*t‘o

==L (—pu) + (~D" T sgn ("L Prown

g

m-1 m-1 __
=TI Bre— 23 I1 | Prcorls
k=2 £, k=2

TH¥ T R™
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where 7, is an identical permutation.

-1
We denote by G; and G, collections of all terms ‘obtained by expanding ’:1'[ Bre and >3
=2

T 70

mﬁ | P-ck>r |, respectively. Then we can show that all terms in G, are mutually different

=2

and each term in G, belongs to G;. Furthermore we can also prove that a term P, Py ---
P,,_11 belongs to Gy, but not to G;. So, we have

m-1 m-1
IT Brk— N 1’[2 | Predr] = P1aPa+ P11

k=2 t¥x7y k=

Therefore, we get a;> Py Pyi++-Py1.  Thus the proof of the lemma is completed.

(Q.ED.

Since Pi(n) = %-QQ—— for i=1,.-., m, by Lemma 5 we have

3. 3) < Ko L1200 =2, m)

for every n>=N,.
Now we shall consider the stationary probabilities P;(n) (i = 2, -+, m). Since the
probabilities P;(#n)(i=2, ---, m) are stationary, they have the properties in the lemmas

from Lemma 1 to Lemma 5.
LeMMmA 6. It is assumed that
0=[0—0:]<|0—05] <--+-- < |[0—0m|.
Then, fori=2, ---, m,

Pyy(n) _ Ai(n)
Py(n) Ai(n)”’

where “~ denotes asymptotic equality.

Proor. Since X,—Xj» is normally distributed with mean #—6; and variance ¢,2+052,
and /,—> 0 as n—> oo, it is easily found that

3. A;()=Pr(| Xn—Xjn| >ln)—>0 as n—>co.

For j==i, we have

Pii(n) = A;() [ T (1—Ax(m)
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+3L 5 1a-4i00) 1 Ao]

Rppit
Rr3j

Let us denote the inside of the above brackets by Wij(n).

By (3. 4), we have Wi;(m)—> —1— as n—r .
Hence

Pij(ﬂ)——»—;z—l_—lAi(n) as n—>oco,

Therefore we obtain

Pp(n) _ Ai(m) | W(n) | Ay(n)
Pa(n) — A;(n) " Wa(m) ~ A

which concludes the proof of Lemma 6.

(QED.)

LeMMA 7. We assume that
=|0—0,|<|0—0| <+ < |0—0Om].
Fori=2, -, m, we obtain

o Ai(n)
2 Ay <

PROOF.

2 S_,,(zn)—i e % dx
B
<
S_n(Zn)“} e ¥ dx
B;
By an inequality
r—1==exp (—l x2 )dx ~ lexp (—lyZ) for sufficiently large y,
y v/ 2r 2 y 2
B? .
] — "—|C1I+ln '——'1 as n,——»oo,
and =n .
B,

we have
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2 §_°°,, @r)y et gy
B

~2 — LB —@me!].
i

(B}~ (B?)
=(inCot+ap 4 == Gl + 1) - G+t )

=—(o}+aD71( G} —2| GilIn).
Therefore,

exp[—L{B2-Em2}]

CZ
_ L e[ -Gl .,
it Ml ol
G 20t +a)" 4
<(exp[z<a§+ag) D ¢ n

where the above inequality followé from a simple inequality

e~ x }25 for every x > 0.

Since <0, it is found that

M
|-

1

by M

exp [—%{(_B—{‘)z— (f,’.‘)z}] < oo.

1

Therefore, we obtain

&, A]_(ﬂ?
tim] Az(n)

<o for i=2,..., m.

Thus, the proof of the lemma is completed.

(QED)

Now we shall prove the theorem. From the preservation of probabilities at each
stage, we may show that >3 Pi(n)< oo for i=2,---, m.
n=1

From (3. 3), we get
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) Pyp(n) o ...
Pi(n) < Km I2O) for i=2,..., m.

According to Lemmas 6 and 7, we obtain

#=1 Pa(n)

Therefore, we have

=, Pp(n) < oo

for i=2,..-, m.

3 Pi(n)<oo for i=2,---, m,
n=1

which concludes the proof of the theorem.
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