A sequential procedure with finite memory for some statistical problem

By

Kensuke TANAKA, Eiichi ISOGAI and Seiichi IWASE

(Received October 24, 1973)

1. Introduction

In this paper we shall give a sequential procedure with finite memory for the following statistical problem, so that the limiting probability of making the incorrect choice is made zero; find a normal population with the same mean as $N(\theta, \sigma_1^2)(\theta)$ and σ_1^2 are unknown to us) from m normal populations $N(\theta_i, \sigma_2^2)(\theta_i)$ and σ_2^2 are unknown to us for i = 1, \cdots , m). Here, it is assumed that there exists only one normal population with the same mean as $N(\theta, \sigma_1^2)$. Statistical problems like this, for example, problems of testing hypotheses with finite memory, were investigated by T. M. Cover [1] and [2]. Let $N(\theta, \sigma_1^2)$ be denoted by Π and $N(\theta_i, \sigma_2^2)$ by $\Pi_i (i = 1, \dots, m)$. After the preceding experiment let it be assumed that Π_i is decided to have the same mean as Π . Then we draw independently a sample X from Π and X_i from Π_i and make $|X-X_j|$. Comparing $|X-X_i|$ with a preassigned positive number l, we decide whether or not Π_i has the same mean as Π . If Π_i is decided not to have the same mean, we draw independently m-1 samples X from Π and a sample X_j from each Π_j except Π_i , respectively and make $|X-X_j|$ $(j=1, \dots, m, m, m)$ $j \neq i$). By comparing them with l, decide which population has the same mean as II. If IIi is decided to have the same mean, we proceed with the next experiment. Now we shall state finite memory. Here, there are m specified memories $T_i(i=1,\dots,m)$. According to comparison described above, one of m memories is used. If memory T_i is used, Π_i is decided to have the same mean. That is, "memory T_i is used" is equal to " Π_i is decided to have the same mean." Hence at each experiment memory is changed.

Next, we shall describe a process of the experiments. The nth stage of the experiments consists of the d_n experiments described above, where d_n tends to infinity as $n \longrightarrow \infty$. We call " Π_i is favorable at the nth stage" if after the d_n experiments memory T_i is used. Therefore in this statistical problem we use only m memories. Let $\overline{P}_i(d_n)$ denote the probability of memory T_i at the nth stage, that is, the probability of Π_i being decided to have the same mean after the d_n experiments. We denote by $P_i(n)$ the stationary probability that Π_i is favorable at the nth stage by using a Markov chain M(n) described

in the next section. When Π_1 has truly the same mean as Π , according to the sequential procedure stated in the next section, it can be shown that $\sum_{n=1}^{\infty} \overline{P_1}(d_n) = \infty$ and $\sum_{n=1}^{\infty} \overline{P_i}(d_n) < \infty$ for $i=2, \dots, m$. Therefore by the Borel zero-one law it is found that with probability one memory T_1 is used an infinite number of times and memory T_i ($i=2, \dots, m$) are used only a finite number of times, that is, Π_1 is decided to have the same mean an infinite number of times and Π_i ($i=2, \dots, m$) are decided to have the same mean only a finite number of times. This shows that the limiting probability of making the incorrect choice is made zero.

This paper consists of three sections. In Section 2 we shall describe the procedure with finite memory. In Section 3 we shall prove several lemmas, and then by using them a theorem will be established.

2. The procedure with finite memory

First we shall state the experiments. As described in Section 1, we make the d_n experiments at the nth stage. After the experiments at the nth stage we go on to the (n+1)th stage and successively continue these stages. Now we shall describe the *n*th stage in detail. It is assumed that Π_i is decided to have the same mean at the rth experiment on the nth stage. Then at the (r+1)th experiment we draw independently a sample X_n and X_{in} from Π and Π_i , respectively. If $|X_n - X_{in}| \le l_n$, Π_i is favorable. If $|X_n - X_{in}| > l_n$, we draw (m-1) independent samples X_n from Π and a sample X_{jn} from each Π_j except Π_i , respectively. Thus random variables $\{X_{kn}\}$ are mutually independent for all values of k and n, $k=1, \dots, m$ and $n=1, 2, \dots$ If there exist j_1, \dots, j_h such that $|X_n-X_{j_n}| \leq l_n$ for $t=1, \dots, h$ and $|X_n-X_{kn}|>l_n$ for $k\neq j_1, \dots j_h$, where l_n is a positive real number such that $\sum_{n=1}^{\infty} 1/l_n^2 < \infty$, e.g. $l_n = n$, Π_{j_t} $(t = 1, \dots, h)$ are favorable with equal probability 1/h, that is, Π_{jt} $(t=1, \dots, h)$ are decided to have the same mean with equal probability 1/h. Otherwise Π_i is favorable. We set $A_i(n) = \Pr(|X_n - X_{in}| > l_n)$. A random variable X_n is normally distributed with mean θ and variance σ_1^2 , and a random variable X_{in} is normally distributed with mean θ_i and variance σ_2^2 , so a random variable $X_n - X_{in}$ is normally distributed with mean $\theta - \theta_i$ and variance $\sigma_1^2 + \sigma_2^2$. The following figure shows a state transition of the memories from the rth experiment to the (r+1)th experiment at the nth stage.

$$T_{j_{1}}, \frac{1}{h} \prod_{t=1}^{h} (1-A_{j_{t}}(n)) \prod_{\substack{k \neq j_{t} \\ k = i}} A_{k}(n)$$

$$\vdots$$

$$T_{i} \qquad \vdots$$

$$T_{j_{h}}, \frac{1}{h} \prod_{t=1}^{h} (1-A_{j_{t}}(n)) \prod_{\substack{k \neq j_{t} \\ k = i}} A_{k}(n)$$

$$T_{i} \longrightarrow T_{i}, \qquad \text{otherwise}$$

$$if \begin{cases} |X_{n}-X_{in}| > l_{n} \\ |X_{n}-X_{j_{t}n}| \leq l_{n} \\ (t=1, \dots, h) \\ \text{and} \\ |X_{n}-X_{kn}| > l_{n} \\ (k \neq j_{1}, \dots, j_{h}, i) \end{cases}$$

$$(k \neq j_{1}, \dots, j_{h}, i)$$

Fig. A state transition

We note that at the first experiment on each stage the experiment will be done, T_1 assuming to be used. This precaution yields independence of each stage. Now let the transition probability matrix of the Markov chain at the *n*th stage be denoted by $M(n) = (P_{ij}(n))$, where $P_{ij}(n)$ is a transition probability from memory T_i to memory T_j being used for i, $j = 1, \dots, m$. Therefore the experiments at the *n*th stage turn out that the experiment is done d_n times by using this matrix M(n). Let T_k be denoted by $k(k = 1, \dots, m)$. From the figure we get

$$P_{ij}(n) = \sum_{h=1}^{m-1} \frac{1}{h} \sum_{\substack{R_h \ni i \\ R_k \ni j}} \prod_{t=1}^{h} (1 - A_{jt}(n)) \prod_{\substack{k \neq j_t \\ k=i}} A_k(n)$$

for $j \neq i$, where $R_h = (j_1, \dots, j_h)$, $j_t \in \{1, \dots, m\}$ $(t = 1, \dots, h)$ and $\sum_{\substack{R_h \ni i \\ R_h \ni j}}$ means the sum-

mation of all combinations of R_h such that $j_t=j$ for some $t(t=1, \dots, h)$ and j_t+i for all $t(t=1, \dots, h)$, and $\prod_{\substack{k\neq j_t\\k=i}}$ means the multiplication of all values of k such that $k\neq j_t$ for all

 $t(t=1,\,\cdots,\,h)$ and k=i. Let $\overline{P_i}(d_n)$ and $P_i(n)$ denote the same notations as in Section 1. For sufficiently large d_n , $\overline{P_i}(d_n)$ is nearly equal to $P_i(n)$, so $\overline{P_i}(d_n)$ is nearly equal to $P_i(n)$ for sufficiently large n because of $d_n\to\infty$ as $n\to\infty$. Thus for sufficiently large n we may regard the probability of memory T_i being used at the nth stage as $P_i(n)$. Hence when Π_1 has truly the same mean as Π , to show that $\sum_{n=1}^{\infty} \overline{P_i}(d_n) = \infty$ and $\sum_{n=1}^{\infty} \overline{P_i}(d_n) < \infty$ for $i=2,\cdots,m$, it suffices to show that $\sum_{n=1}^{\infty} P_1(n) = \infty$ and $\sum_{n=1}^{\infty} P_i(n) < \infty$ for $i=2,\cdots,m$. In Section 3 we shall assume that Π_1 has truly the same mean as Π . The properties of the stationary probabilities $P_i(n)$ will be stated in the next section.

3. Proof of lemmas and a theorem

Without loss of generality we may assume that

$$0 = |\theta - \theta_1| < |\theta - \theta_2| \leqslant \cdots \leqslant |\theta - \theta_m|.$$

From the preservation of probabilities at each stage, we obtain

$$P_1(n) = 1 - \sum_{i=2}^{m} P_i(n)$$
 for $n = 1, 2, \dots$

If $\sum_{n=1}^{\infty} P_i(n) < \infty$ for $i = 2, \dots, m$, then $\sum_{n=1}^{\infty} P_1(n) = \infty$. Thus by the Borel zero-one law it follows that with probability one Π_1 is decided to have the same mean as Π an infinite number of times and $\Pi_i(i=2, \dots, m)$ are decided to have the same mean as Π only a finite number of times. This shows that the limiting probability of making the incorrect choice is made zero.

THEOREM. We assume that

$$0 = |\theta - \theta_1| \leq |\theta - \theta_2| \leq \cdots \leq |\theta - \theta_m|.$$

Then we obtain

$$\sum_{n=1}^{\infty} P_i(n) < \infty \qquad for \quad i=2,\dots, m$$

and

$$\sum_{n=1}^{\infty} P_1(n) = \infty.$$

The proof of this theorem will be given afterward.

First, we mention without proof the lemmas 1 and 2 given by K. TANAKA and E. Isogai [5].

LEMMA 1.

$$P_i(n) = \frac{\overline{\alpha}_i(n)}{\sum_{k=1}^{m} \overline{\alpha}_k(n)}$$
 for $i=1,\dots, m-1,$

where

$$\overline{\alpha}_{i}(n) = \begin{cases} (-1) \sum_{j=1}^{m-1} \overline{P}_{mj}(n) D_{ij}(n) & \text{for } i=1,\dots, m-1 \\ \det(\overline{P}(n)) & \text{for } i=m \end{cases}$$

and $\overline{P}(n) = (\overline{P}_{ij}(n)),$

$$\overline{P_{ij}}(n) = \begin{cases} -(P_{i1}(n) + \dots + P_{ii-1}(n) + P_{ii+1}(n) + \dots + P_{im}(n)) & \text{for } i = j \\ P_{ij}(n) & \text{for } i \neq j \end{cases}$$

$$(i, j = 1, \dots, m-1),$$

$$\Delta_{ij}(n) = \begin{vmatrix} \overline{P}_{11}(n) & \cdots & \overline{P}_{m-11}(n) \\ \vdots & \vdots & \vdots \\ \overline{P}_{1m-1}(n) & \cdots & \overline{P}_{m-1m-1}(n) \end{vmatrix} (\widehat{i},$$

a symbol "\\" denotes an exception of the row or column of the corresponding number and $D_{ij}(n) = (-1)^{i+j} \Delta_{ij}(n)$.

LEMMA 2. For every $i, j (i, j=1, \dots, m-1)$, we have

$$D_{ii}^m(n) > 0$$
 and det $(\overline{P}^m(n)) < 0$ if m is even,

and

$$D_{ii}^m(n) < 0$$
 and det $(\overline{P}^m(n)) > 0$ if m is odd,

where $D_{ij}^{m}(n)$ denotes the dependence of $D_{ij}(n)$ on m. Next, we shall prove the following lemma.

LEMMA 3. We assume that

$$0 = |\theta - \theta_1| < |\theta - \theta_2| \leqslant \cdots \leqslant |\theta - \theta_m|.$$

Let A_i ($i=1,\dots, m$) be the same notations as in Section 2. Then, there exists a positive integer N_0 such that for every $n \ge N_0$

$$A_1(n) < A_2(n) \leq \cdots \leq A_m(n).$$

PROOF. A random variable $X_n - X_{in}$ is normally distributed with mean $\theta - \theta_i$ and variance $\sigma_1^2 + \sigma_2^2$, so

$$A_{j}(n) = Pr(|X_{n} - X_{jn}| > l_{n})$$

$$= \int_{l_{n}}^{\infty} (2\pi)^{-\frac{1}{2}} (\sigma_{1}^{2} + \sigma_{2}^{2})^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2(\sigma_{1}^{2} + \sigma_{2}^{2})} (x - (\theta - \theta_{j}))^{2} \right\} dx$$

$$+ \int_{-\infty}^{-l_{n}} (2\pi)^{-\frac{1}{2}} (\sigma_{1}^{2} + \sigma_{2}^{2})^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2(\sigma_{1}^{2} + \sigma_{2}^{2})} (x - (\theta - \theta_{j}))^{2} \right\} dx$$

$$= \int_{l_{n} - (\theta - \theta_{j})}^{\infty} (2\pi)^{-\frac{1}{2}} e^{-\frac{1}{2}x^{2}} dx + \int_{-\infty}^{\frac{-l_{n} - (\theta - \theta_{j})}{\sqrt{\sigma_{1}^{2} + \sigma_{2}^{2}}}} (2\pi)^{-\frac{1}{2}} e^{-\frac{1}{2}x^{2}} dx$$

$$= \int_{l_{n} - (\theta - \theta_{j})}^{\infty} (2\pi)^{-\frac{1}{2}} e^{-\frac{1}{2}x^{2}} dx + \int_{l_{n} + (\theta - \theta_{j})}^{\infty} (2\pi)^{-\frac{1}{2}} e^{-\frac{1}{2}x^{2}} dx$$

$$= \int_{B_{j}^{n}}^{\infty} (2\pi)^{-\frac{1}{2}} e^{-\frac{1}{2}x^{2}} dx + \int_{\widetilde{B}_{j}^{n}}^{\infty} (2\pi)^{-\frac{1}{2}} e^{-\frac{1}{2}x^{2}} dx,$$

where
$$C_j = \theta - \theta_j$$
, $\widetilde{C}_j = \theta_j - \theta$, $B_j^n = \frac{C_j + l_n}{\sqrt{\sigma_1^2 + \sigma_2^2}}$ and

$$\widetilde{B}_{j}^{n} = \frac{\widetilde{C}_{j} + l_{n}}{\sqrt{\sigma_{1}^{2} + \sigma_{2}^{2}}}.$$

By the assumption of the lemma, we get

$$|C_j| = |\widetilde{C}_j|$$
 and $0 = |C_1| < |C_2| \leq \cdots \leq |C_m|$.

We put
$$\overline{B}_j^n = \frac{|C_j| + l_n}{\sqrt{\sigma_1^2 + \sigma_2^2}}$$
 and $\overline{\overline{B}}_j^n = \frac{-|C_j| + l_n}{\sqrt{\sigma_1^2 + \sigma_2^2}}$.

Then we obtain

(3. 1)
$$A_{j}(n) = \int_{\overline{B}_{j}^{n}}^{\infty} (2\pi)^{-\frac{1}{2}} e^{-\frac{1}{2}x^{2}} dx + \int_{\overline{B}_{j}^{n}}^{\infty} (2\pi)^{-\frac{1}{2}} e^{-\frac{1}{2}x^{2}} dx.$$

Since $\sum_{n=1}^{\infty} 1/l_n^2 < \infty$, $l_n \longrightarrow \infty$ as $n \longrightarrow \infty$. Therefore, there exists a positive integer N_0 such that for every $n \ge N_0$ $-|C_m| + l_n > 0$. From this, we get easily that

$$(3. 2) 0 < \overline{\overline{B}}_{m}^{n} \le \overline{\overline{B}}_{m-1}^{n} \le \cdots \le \overline{\overline{B}}_{2}^{n} < \overline{\overline{B}}_{1}^{n} = \overline{\overline{B}}_{1}^{n} < \overline{\overline{B}}_{2}^{n} \le \overline{\overline{B}}_{3}^{n} \le \cdots \le \overline{\overline{B}}_{m}^{n}$$

for every $n \ge N_0$.

Now we shall show that $A_{j+1}(n) \ge A_j(n)$.

$$A_{j+1}(n) - A_{j}(n)$$

$$= \int_{\overline{B}_{j+1}^{n}}^{\overline{B}_{j}^{n}} (2\pi)^{-\frac{1}{2}} e^{-\frac{1}{2}x^{2}} dx - \int_{\overline{B}_{j}^{n}}^{\overline{B}_{j+1}^{n}} (2\pi)^{-\frac{1}{2}} e^{-\frac{1}{2}x^{2}} dx \qquad (from (3. 1))$$

$$\begin{cases} \ge 0 & \text{for } j=2,\dots, m-1 \\ >0 & \text{for } j=1 \text{ (by (3. 2))}. \end{cases}$$

This shows the proof of the lemma.

(Q. E. D.)

LEMMA 4. We assume that

$$0 = |\theta - \theta_1| < |\theta - \theta_2| \leq \cdots \leq |\theta - \theta_m|.$$

Then for every $n \ge N_0$, where N_0 is the same as in Lemma 3, we obtain

$$P_{i1}(n) > P_{i2}(n) \geqslant \cdots \geqslant P_{ii-1}(n) \geqslant P_{ii+1}(n) \geqslant \cdots \geqslant P_{im}(n)$$

for $1 \leq i \leq m$.

PROOF. For simplicity, we denote $P_{ij}(n)$ and $A_i(n)$ by P_{ij} and A_i , respectively. For $j \neq i$,

$$P_{ij} = \sum_{h=1}^{m-1} \frac{1}{h} \sum_{\substack{R_h \ni i \\ R_h \ni j}} \prod_{t=1}^{h} (1 - A_{j_t}) \prod_{\substack{k \neq j_t \\ k=i}} A_k.$$

We set
$$(E) = \sum_{\substack{R_h \ni i \\ R_h \ni j}} \prod_{t=1}^{h} (1 - A_{j_t}) \prod_{\substack{k \neq j_t \\ k=i}} A_k.$$

$$(E) = \sum_{\substack{R_h \ni i, j+1 \\ R_h \ni j}} \prod_{t=1}^{h} (1 - A_{j_t}) \prod_{\substack{k \neq j_t \\ k=i}} A_k$$

$$+ \sum_{\substack{R_h \ni i \\ R_h \ni i}} \prod_{t=1}^{h} (1 - A_{j_t}) \prod_{\substack{k \neq j_t \\ k=i}} A_k.$$

Let us consider the first part of the right hand side in the above equation.

$$\sum_{\substack{R_h \ni i, j+1 \ k=1}} \prod_{t=1}^{h} (1-A_{j_t}) \prod_{\substack{k \neq j_t \\ k=i}} A_k$$

$$= (1-A_j) \sum_{\substack{R_h \ni i, j+1, j \ t=1}} \prod_{t=1}^{h-1} (1-A_{j_t}) \prod_{\substack{k \neq j_t \\ k=i}} A_k$$

$$\geqslant (1-A_{j+1}) \sum_{\substack{R_h \ni i, j+1, j \ t=1}} \prod_{t=1}^{h-1} (1-A_{j_t}) \prod_{\substack{k \neq j_t \\ k=i}} A_k$$

$$= \sum_{\substack{R_h \ni i, j \ k=j+1}} \prod_{i=1}^{h} (1-A_{j_t}) \prod_{\substack{k \neq j_t \\ k=i}} A_k,$$

$$= \sum_{\substack{R_h \ni j+1}} \prod_{i=1}^{h} (1-A_{j_t}) \prod_{\substack{k \neq j_t \\ k=i}} A_k,$$

because of $1-A_{j+1} \leqslant 1-A_j$.

Hence

$$(E) \geqslant \sum_{\substack{R_h \ni i, j \\ R_h \ni j+1}} \prod_{t=1}^{h} (1 - A_{j_t}) \prod_{\substack{k \neq j_t \\ k=i}} A_k$$

$$+ \sum_{\substack{R_h \ni i \\ R_h \ni j, j+1}} \prod_{t=1}^{h} (1 - A_{j_t}) \prod_{\substack{k \neq j_t \\ k=i}} A_k$$

$$= \sum_{\substack{R_h \ni i \\ R_h \ni j+1}} \prod_{t=1}^{h} (1 - A_{j_t}) \prod_{\substack{k \neq j_t \\ k=i}} A_k.$$

Therefore we obtain

$$P_{ij} \geqslant \sum_{h=1}^{m-1} \frac{1}{h} \sum_{\substack{R_h \ni i \ R_h \ni j+1}} \prod_{t=1}^{h} (1 - A_{j_t}) \prod_{\substack{k \neq j_t \ k=i}} A_k = P_{ij+1}.$$

For j = 1, we can replace " \geqslant " by ">", because of $A_1 < A_2$. This proves Lemma 4.

(Q.E.D.)

Now, we shall consider the evaluation of P_i ($i=1,\dots, m$), By putting $\alpha_i = (-1)^{m-1} \bar{\alpha}_i$,

$$P_{i} = \frac{\overline{\alpha_{i}}}{\sum\limits_{k=1}^{m} \overline{\alpha_{k}}}$$
 (by Lemma 1)
$$= \frac{(-1)^{m-1} \overline{\alpha_{i}}}{(-1)^{m-1} \sum\limits_{k=1}^{m} \overline{\alpha_{k}}}$$

$$= \frac{\alpha_{i}}{\sum\limits_{k=1}^{m} \alpha_{k}}, \quad 1 \leq i \leq m.$$

For $1 \leq i \leq m-1$,

$$\alpha_{i} = (-1)^{m-1} \overline{\alpha}_{i}$$

$$= (-1)^{m-1} (-1) \sum_{j=1}^{m-1} P_{mj} D_{ij}^{m}$$
 (by Lemma 1)
$$= \sum_{j=1}^{m-1} P_{mj} (-1)^{m} D_{ij}^{m}.$$

From Lemma 2, we have $(-1)^m D_{ij}^m > 0$.

Thus we get $\alpha_i > 0$ for $1 \le i \le m-1$. By Lemma 2, we have

$$\alpha_m = (-1)^{m-1} \det (\overline{P}^m) > 0.$$

Therefore, we obtain

$$P_i = \frac{\alpha_i}{\sum\limits_{k=1}^m \alpha_k}$$
 and $\alpha_i > 0$ for $i = 1, \dots, m$.

LEMMA 5. It is assumed that

$$0 = |\theta - \theta_1| < |\theta - \theta_2| \leqslant \cdots \leqslant |\theta - \theta_m|.$$

Then for every $n \ge N_0$, where N_0 is the same as in Lemma 3, we obtain

$$\alpha_i(n) \geqslant K_m P_{12}(n) P_{21}(n) \cdots P_{i-11}(n) P_{i+11}(n) \cdots P_{m1}(n)$$

for $i=1,\dots, m$, and

$$\alpha_1(n) \geqslant P_{21}(n)P_{31}(n)\cdots P_{m1}(n),$$

where Km is a constant depending on m.

PROOF. We shall show the outline of the lemma. For simplicity, we omit n. First we shall show the first part of the lemma.

$$0 < (-1)^m D_{ii}$$

$$\leq \sum_{\tau} |\overline{P}_{\tau(1)}| \cdots |\overline{P}_{\tau(i-1)i-1}| |\overline{P}_{\tau(i+1)i+1}| \cdots |\overline{P}_{\tau(m-1)m-1}|,$$

where τ is a permutation on a set $\{1, 2, \dots, i-1, i+1, \dots, m-1\}$ and the sum is taken over all permutations on the set. According to Lemma 4, we obtain

$$|\overline{P_{\tau(j)j}}| \leqslant \begin{cases} (m-1)P_{\tau(j)1} & \text{for } 2 \leqslant \tau(j) \leqslant m-1 \\ (m-1)P_{12} & \text{for } \tau(j)=1. \end{cases}$$

Hence, we get

$$(-1)^m D_{ii} \leq \sum_{r} (m-1)^{m-2} P_{12} P_{21} \cdots P_{i-11} P_{i+11} \cdots P_{m-11}$$
.

Setting $K_m^1 = \sum_{m=1}^{\infty} (m-1)^{m-2}$, we have

$$0 < (-1)^m D_{ii} \le K_m^1 P_{12} P_{21} \cdots P_{i-11} P_{i+11} \cdots P_{m-11}$$

for $1 \leq i \leq m-1$.

Since in the case i < j, we can prove

$$(-1)^m \, D_{ij} \leqslant \, K_m^1 \, P_{12} P_{21} \cdots P_{i-11} P_{i+11} \cdots P_{m-11}$$

in the same way as in the case j < i, we assume that $j < i \le m-1$.

$$0 < (-1)^{m} D_{ij}$$

$$\leq \sum_{\tau} |\overline{P}_{\tau(1)1}| \cdots |\overline{P}_{\tau(j-1)j-1}| |\overline{P}_{\tau(j)j+1}| \cdots |\overline{P}_{\tau(i-1)i}| |\overline{P}_{\tau(i+1)i+1}| \cdots |\overline{P}_{\tau(m-1)m-1}|.$$

A set $\{\tau(1), \dots, \tau(i-1), \tau(i+1), \dots, \tau(m-1)\}$ coincides with a set $\{1, 2, \dots, i-1, i+1, \dots, m-1\}$. According to Lemma 4, we have

$$|\overline{P_{\tau(k)k'}}| \leqslant \begin{cases} (m-1)P_{\tau(k)1} & \text{for } \tau(k) \neq 1\\ (m-1)P_{12} & \text{for } \tau(k) = 1 \end{cases}$$

for every $k' \in \{1, \dots, j-1, j+1, \dots, m-1\}$.

Hence, we obtain

$$(-1)^{m}D_{ij}$$

$$\leq \sum_{\tau} (m-1)^{m-2}P_{12}P_{21}\cdots P_{i-11}P_{i+11}\cdots P_{m-11}$$

$$= K_{m}^{1}P_{12}P_{21}\cdots P_{i-11}P_{i+11}\cdots P_{m-11}.$$

Thus

$$0 < (-1)^m D_{ij}$$

$$\leq K_m^1 P_{12} P_{21} \cdots P_{i-11} P_{i+11} \cdots P_{m-11}$$

for $1 \leq i, j \leq m$.

Therefore for $1 \le i \le m-1$,

$$\alpha_i \leqslant \sum_{i=1}^{m-1} K_m^1 P_{12} P_{21} \cdots P_{i-11} P_{i+11} \cdots P_{m1}.$$

Putting $K_m^2 = \sum_{j=1}^{m-1} K_m^1$, we obtain

$$\alpha_i \leqslant K_m^2 P_{12} P_{21} \cdots P_{i-11} P_{i+11} \cdots P_{m_1}$$

for $i=1,\dots, m-1$.

From the definition of α_m

$$\alpha_{m} = (-1)^{m-1} \det (\overline{P})$$

$$\leq \sum_{\tau} |\overline{P}_{\tau(1)1}| \cdots |\overline{P}_{\tau(m-1)m-1}|$$

$$\leq \sum_{\tau} (m-1)^{m-1} P_{12} P_{21} \cdots P_{m-11}.$$

Setting $K_m^3 = \sum_{n=1}^{\infty} (m-1)^{m-1}$, we obtain

$$\alpha_m \leqslant K_3^m P_{12} P_{21} \cdots P_{m-11}.$$

Therefore putting $K_m = \max(K_m^2, K_m^3)$, we have

$$\alpha_i \leq K_m P_{12} P_{21} \cdots P_{i-11} P_{i+11} \cdots P_{m1}$$

for $i=1,\dots, m$.

This proves the first part in the lemma.

Next, we shall show the remaining part in the lemma.

Since $(-1)^m D_{1j} > 0$ for $2 \le j \le m-1$, we get

$$\begin{split} \alpha_{1} &= \sum_{j=1}^{m-1} P_{mj} (-1)^{m} D_{1j} \geqslant P_{m1} (-1)^{m} D_{11}. \\ &(-1)^{m} D_{11} = (-1)^{m} \sum_{\tau} \operatorname{sgn}(\tau) \prod_{k=2}^{m-1} \overline{P_{\tau}}_{(k)k} \\ &= (-1)^{m} \operatorname{sgn}(\tau_{0}) \prod_{k=2}^{m-1} \overline{P_{\tau}}_{0(k)k} + (-1)^{m} \sum_{\tau = \tau_{0}} \operatorname{sgn}(\tau) \prod_{k=2}^{m-1} \overline{P_{\tau}}_{(k)k} \\ &= (-1)^{m} \prod_{k=2}^{m-1} (-\beta_{kk}) + (-1)^{m} \sum_{\tau = \tau_{0}} \operatorname{sgn}(\tau) \prod_{k=2}^{m-1} \overline{P_{\tau}}_{(k)k} \\ &\geqslant \prod_{k=2}^{m-1} \beta_{kk} - \sum_{\tau = \tau_{0}} \prod_{k=2}^{m-1} |\overline{P_{\tau}}_{(k)k}|, \end{split}$$

where τ_0 is an identical permutation.

We denote by G_1 and G_2 collections of all terms obtained by expanding $\prod_{k=2}^{m-1} \beta_{kk}$ and $\sum_{\tau = \tau_0}$

 $\prod_{k=2}^{m-1} |P_{r(k)k}|$, respectively. Then we can show that all terms in G_2 are mutually different

and each term in G_2 belongs to G_1 . Furthermore we can also prove that a term $P_{12}P_{21}\cdots P_{m-11}$ belongs to G_1 , but not to G_2 . So, we have

$$\prod_{k=2}^{m-1}\beta_{kk}-\sum_{\tau=\tau_0}\prod_{k=2}^{m-1}|\overline{P_{\tau}}_{(k)k}|\geqslant P_{12}P_{21}\cdots P_{m-11}.$$

Therefore, we get $\alpha_1 \ge P_{12} P_{21} \cdots P_{m1}$. Thus the proof of the lemma is completed.

(Q.E.D.)

Since

$$P_i(n) = \frac{\alpha_i(n)}{\sum\limits_{k=1}^{m} \alpha_k(n)}$$
 for $i=1,\dots, m$, by Lemma 5 we have

$$P_i(n) \leqslant \frac{\alpha_i(n)}{\alpha_1(n)}$$

(3. 3)
$$\leq K_m \frac{P_{12}(n)}{P_{i1}(n)}$$
 $(i=2,\dots,m)$

for every $n \ge N_0$.

Now we shall consider the stationary probabilities $P_i(n)$ $(i = 2, \dots, m)$. Since the probabilities $P_i(n)(i=2, \dots, m)$ are stationary, they have the properties in the lemmas from Lemma 1 to Lemma 5.

LEMMA 6. It is assumed that

$$0 = |\theta - \theta_1| < |\theta - \theta_2| \leq \cdots \leq |\theta - \theta_m|.$$

Then, for $i = 2, \dots, m$,

$$\frac{P_{12}(n)}{P_{i1}(n)} \longrightarrow \frac{A_1(n)}{A_i(n)},$$

where "~" denotes asymptotic equality.

Proof. Since $X_n - X_{jn}$ is normally distributed with mean $\theta - \theta_j$ and variance $\sigma_1^2 + \sigma_2^2$, and $l_n \longrightarrow \infty$, it is easily found that

(3. 4)
$$A_j(n) = Pr(|X_n - X_{jn}| > l_n) \longrightarrow 0 \text{ as } n \longrightarrow \infty.$$

For $j \neq i$, we have

$$P_{ij}(n) = A_j(n) \left[\frac{1}{m-1} \prod_{k \neq i} (1 - A_k(n)) \right]$$

$$+\sum_{h=1}^{m-2}\frac{1}{h}\sum_{\substack{R_h \ni i \\ R_h \ni j}}\prod_{t=1}^{h}(1-A_{j_t}(n))\prod_{k \neq j_t, i}A_k(n)\Big].$$

Let us denote the inside of the above brackets by $W_{ij}(n)$.

By (3. 4), we have
$$W_{ij}(n) \longrightarrow \frac{1}{m-1}$$
 as $n \longrightarrow \infty$.

Hence

$$P_{ij}(n) \longrightarrow \frac{1}{m-1} A_i(n)$$
 as $n \longrightarrow \infty$.

Therefore we obtain

$$\frac{P_{12}(n)}{P_{i1}(n)} = \frac{A_1(n)}{A_i(n)} \cdot \frac{W_{12}(n)}{W_{i1}(n)} \sim \frac{A_1(n)}{A_i(n)},$$

which concludes the proof of Lemma 6.

(Q.E.D.)

LEMMA 7. We assume that

$$0 = |\theta - \theta_1| < |\theta - \theta_2| \leqslant \cdots \leqslant |\theta - \theta_m|.$$

For i = 2, ..., m, we obtain

$$\sum_{n=1}^{\infty} \frac{A_1(n)}{A_i(n)} < \infty.$$

Proof.

$$\frac{A_{1}(n)}{A_{i}(n)} = \frac{2\int_{\overline{B}_{1}^{n}}^{\infty} (2\pi)^{-\frac{1}{2}} e^{-\frac{1}{2}x^{2}} dx}{\int_{\overline{B}_{i}^{n}}^{\infty} (2\pi)^{-\frac{1}{2}} e^{-\frac{1}{2}x^{2}} dx + \int_{\overline{B}_{i}^{n}}^{\infty} (2\pi)^{-\frac{1}{2}} e^{-\frac{1}{2}x^{2}} dx}$$

$$\leq \frac{2\int_{\overline{B}_{1}^{n}}^{\infty} (2\pi)^{-\frac{1}{2}} e^{-\frac{1}{2}x^{2}} dx}{\int_{\overline{B}_{i}^{n}}^{\infty} (2\pi)^{-\frac{1}{2}} e^{-\frac{1}{2}x^{2}} dx}$$

By an inequality

$$\int_{y}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}x^{2}\right) dx \sim \frac{1}{y} \exp\left(-\frac{1}{2}y^{2}\right) \text{ for sufficiently large } y,$$

and

$$\frac{\overline{B}_{i}^{n}}{\overline{R}_{i}^{n}} = \frac{-|C_{i}| + l_{n}}{l_{n}} \longrightarrow 1 \text{ as } n \longrightarrow \infty,$$

we have

$$\frac{2\int_{\overline{B}_{1}^{n}}^{\infty} (2\pi)^{-\frac{1}{2}} e^{-\frac{1}{2}x^{2}} dx}{\int_{\overline{B}_{i}^{n}}^{\infty} (2\pi)^{-\frac{1}{2}} e^{-\frac{1}{2}x^{2}} dx} \qquad 2 \exp\left[-\frac{1}{2}\left\{(\overline{B}_{1}^{n})^{2} - (\overline{\overline{B}}_{i}^{n})^{2}\right\}\right].$$

$$(\overline{B}_{1}^{n})^{2} - (\overline{\overline{B}}_{i}^{n})^{2}$$

$$= \left(l_{n}(\sigma_{1}^{2} + \sigma_{2}^{2})^{-\frac{1}{2}}\right)^{2} - \left((-|C_{i}| + l_{n}) \cdot (\sigma_{1}^{2} + \sigma_{2}^{2})^{-\frac{1}{2}}\right)^{2}$$

$$= -(\sigma_{1}^{2} + \sigma_{2}^{2})^{-1}(C_{i}^{2} - 2|C_{i}|l_{n}).$$

Therefore,

$$\begin{split} &\exp\left[-\frac{1}{2}\left\{(\overline{B}_{1}^{n})^{2} - (\overline{\overline{B}}_{i}^{n})^{2}\right\}\right] \\ &= \exp\left[\frac{C_{i}^{2}}{2(\sigma_{1}^{2} + \sigma_{2}^{2})}\right] \cdot \exp\left[-\frac{|C_{i}|}{(\sigma_{1}^{2} + \sigma_{2}^{2})} \cdot l_{n}\right] \\ &\leq \left(\exp\left[\frac{C_{i}^{2}}{2(\sigma_{1}^{2} + \sigma_{2}^{2})}\right]\right) \cdot \frac{2(\sigma_{1}^{2} + \sigma_{2}^{2})^{2}}{C_{i}^{2}} \cdot \frac{1}{l_{n}^{2}}, \end{split}$$

where the above inequality follows from a simple inequality

$$e^{-x} < \frac{2}{x^2}$$
 for every $x > 0$.

Since $\sum_{n=1}^{\infty} \frac{1}{l_n^2} < \infty$, it is found that

$$\sum_{n=1}^{\infty} \exp \left[-\frac{1}{2} \left\{ (\overline{B}_{1}^{n})^{2} - (\overline{\overline{B}}_{i}^{n})^{2} \right\} \right] < \infty.$$

Therefore, we obtain

$$\sum_{n=1}^{\infty} \frac{A_1(n)}{A_i(n)} < \infty \qquad \text{for } i=2,\dots, m.$$

Thus, the proof of the lemma is completed.

(Q.E.D.)

Now we shall prove the theorem. From the preservation of probabilities at each stage, we may show that $\sum_{n=1}^{\infty} P_i(n) < \infty$ for $i=2,\cdots, m$.

From (3. 3), we get

$$P_i(n) \leq K_m \frac{P_{12}(n)}{P_{i1}(n)}$$
 for $i=2,\dots, m$.

According to Lemmas 6 and 7, we obtain

$$\sum_{n=1}^{\infty} \frac{P_{12}(n)}{P_{i1}(n)} < \infty \qquad \text{for } i=2,\dots, m.$$

Therefore, we have

$$\sum_{n=1}^{\infty} P_i(n) < \infty \qquad \text{for } i=2,\dots, m,$$

which concludes the proof of the theorem.

NIIGATA UNIVERSITY

References

- [1] Cover, T. M.: A note on the two-armed bandit problem with finite memory. Information and Control, 12 (1968), 371-377.
- [2] COVER, T. M.: Hypothesis testing with finite statistics. Ann. Math. Statist., 40, (1969) 828-835.
- [3] Fu, K. S.: Stochastic automata as models of learning systems. Computer and Information Sciences-II, Academic Press, New York, (1967), 177-191.
- [4] TANAKA, K., INADA, K. and IWASE, S.: Some extension of the two-armed bandit problem with finite memory (II). To appear.
- [5] TANAKA, K. and Isogai, E.: A sequential procedure with finite memory for selecting the population with the largest mean from m normal populations. To appear.