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1. Summary and Introduction

Many statistical procedure on testing hypotheses about the mean of‘a normal distri-
bution with an unknown variance has been investigated by many people. In this paper
we shall discuss the problem of the testing statistical hypotheses by using a sequential
procedure with finite memory, so that the limiting probability of selecting the incorrect
hypotheses is made zero. Now let a population have a normal distribution N(6, azj,
where ¢ and ¢2 are unknown to us. We denote the hypotheses: 0=48; by H;, i=1, 2,... m.
At the preceding experiment the hypothesis H; is assumed to be acceptable, where “we
accept the hypothesis H;” is called “the hypothesis H; is acceptable”. Then a sample X;
is drawn from N(6, ¢?) and we make |X;—¢:|. Comparing |X;—6i| with a preassigned
positive number /, we decide which hypothesis is acceptable. If we reject the hypothesis
H;, we draw (m—1) mutually independent samples X; from N(6, ¢2) and make |X;—8;],
=1, 2,..., m, and j==i. By comparing them with /, we decide which hypothesis is accep-
table. Next, we shall describe finite memory. There are now m specified memories T3,
i=1,2,..., m. According to the procedure described above, one of m memories is used.
If memory T is used. we accept the hypothesis H;. Hence at each experiment memory
is changed.

Now we shall state a process of the experiments. The nth stage of the experiments
consists of d»n experiments described above, where d. tends to infinity as n—c. When
after d», experiments memory 7T; is used, it is said that the hypothesis H; is acceptable at
the nth stage. When after rth experiment at the nth stage memory 7T; is used, it is said
that the hypothesis H; is acceptable at the rth experiment on the nth stage. Therefore,
in this paper, we use only m memories in the procedure of testing statistical hypotheses.
Let Pi(ds) denote the probability that the hypothesis H; is acceptable and P;(») denote
the stationary probability that the hypothesis H; is acceptable on the nth stage by using
a specified Markov chain M(»#). @ When the hypothesis H; is true, according to the

sequential procedure specified in next section, it can be shown that f]lﬁl(dn)= oo and ﬁ
n= n=1
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Pi(dn)<oo for i=2,...,, m. Thus by the Borel zero-one law it is found that with proba-
bility one the hypotheses H; (i=2,..., m) are acceptable only a finite number of times and
the hypothesis H; is acceptable an infinite number of times. This shows that by using
the procedure the limiting probability of selecting the incorrect hypotheses is made zero.

This paper consists of three sections. In Section 2 we shall describe the procedure
with finite memory. In Section 3 several lemmas will be proved, and by using them a
theorem will be established. '

2. The statistical procedure with finite memory

The experiments are carried out as follows. As described in Section 1, we make dx
experiments at the nth stage. We goon to the (n+1)th stage after the nth stage and
successively continue these stages. Now we shall describe the nth stage in detail. The
memory T; is assumed to be used after the rth experiment, that is, the hypothesis H; is
assumed to be acceptable at the rth experiment. Then at the (r+1)th experiment we
draw a sample Xu; from N(6, ¢?) and make |X»i—6@:|. If it holds that |Xui—6i| <lu,
memory 7T; is used again. Here, /» is a positive number such that i 1/1x2< 0, for
example /,=n. If it holds that |Xui—8:| >I», furthermore we draw (mi_ll) samples Xy;
independently from N(6, ¢2) and make |Xn;—8;|, j=1, 2,..., m, and j==i. If ‘Fhere exist
J15...» Jr such that | Xnj, —0j,| <Ila for t=1,..., h, and | Xur—0r| >I» for k=ji,..., jr, and k=i,
memory Tj,(t=1,..., h) are used with equal probability 1/4. Otherwise memory T; is
used. We set Aj(n)=Pr(|Xn;j—0;| >lx), j=1, 2,..., m. The following figure shows a
state transition of the memories from the rth experiment to the (4 1)th experiment on
the nth stage.

( ani—ﬁil >ln

h
Tj,, 717 1 1-4 j,(n))kg_ Ar(n) and
/ . t_ B=7 | Xnje—05e | <in
T; if¢ (¢=1, .., k)
) ——11:;[1( - ]t(n))kg, k(n) IX.nk'—'a? l >l”
k=1 : \ Ck#]lp---’ Jhy z)
Tims T, otherwise

Fig. A state transition

We note that at the first experiment on each stage the experiment will be done, T3
assuming to be used, that is, the hypothesis H; assuming to be acceptable. This precau-
tion yields independence of each stage. Now let the transition probability matrix of the
Markov chain at the nth stage be denoted by M(n)=(Pi;(n)), where P;j(n) is a transi-
tion probability from memory T: to memory Tj,i, j=1, 2,..., m. Therefore the experiment
at the nth stage turn out that the experiments are done d, times by using this transition
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matrix M(»n). From now, we denote Tk by & (k=1, 2,..., m). From the figure we get

m-1 h L
Pij(m)= 3} 5 33 T (1—A4;(m) I Ae(m), ji,
h=1 Ileeh;j’ =1 k¥j,
h

where Ryr= {j1,..., Jn}, rE{1,..., m} (k=1,..., h), andRE means the summation of all com-
W Di
. Ry3j

binations of R&, such that RrBi and Rr3j, andeI the multiplication of all values of %
#5¢

such that k==j:(¢t=1, 2;..., k). Let Pi(dn) be the same notation as in Section 1. For
sufficiently large dn, Bi(dy) is nearly equal to P;(n), so from the nature of dn, P;(dy) is
nearly equal to P:(n) for sufficiently large n. Hence for sufficiently large n, we may
regard the probability that the memory 7T is used after the d. experiments as P;(n).
The properties of the stationary probabilities P; (#) will be described in the next section.

3. Proof of lemmas and a theorem

Our problem will be solved as follows. Without loss of generality we may assume
that the hypothesis H, is true and 0<|6;—6;| < |6;—603| <---<|0,—0m|. From the preser-
vation of probabilities at each stage, we obtain

Plcn)=1—_y"_’; Pi(n) for n=1, 2,....
p2

If 3P (n)<oo for i=2,... m, then ilPl (n)=oo. Thus by Borel zero-one law it is
e

found :lr;alt with probability one the hypotheses H; (i =2,..., m) are acceptable only a finite
number of times and the hypothesis H; is acceptable an infinite number of times. There-
fore we obtain the following theorem.

THEOREM. We assume that the hypothesis Hy is true and 0<|0,—0;| <|61—03|<---
< |01—6m|. Then it holds that

> Pi(m)<oo fori=2,.., m
and
glPl(n)z .

The proof of this theorem will be given afterward. The stationary probabilities
P;(n)(i=1, 2,..., m) satisfy the following relations:

G. D J.D,-(n)=_§_':1 Pi(m)Psi(n), i=1,2,..,m
p2

and
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@G 2 z'i Pi(n)=1
=

We set Pij(n)=Pij(n) for i3 and Pii(n)=Pii(n)—1. In the same way as'K. TANAKa,
K. INaDA and S. Iwase [4], we have

@ 3 Pi(my= %M
2 a;j(n)
j=1
where ki
?_u_(n) ...... - _ml-Cn) ...... P, -u(n)
a(m)=(-Dm1| : : >0

Pip1(#)+—Prp1(#)++ —Pry_ym1 (%)
for i=1,...,, m—1, and
?11.(’0 """ P, m711(”)

an(M=(—1"1| >0
Flm-l(") ** 'Pm—lm—l("o

LEMMA 1. We assume that the hypothesis Hy is true and
0<]0,—6;]| <|61— 05| <---<[61—0m]|.

Then
Ai(m)<A(m)<--<Am(n).

Proor.
Aj(n)=Pr(| Xnj—0;| >In)
(Vo V" e exel e G0 Jas
=(SZ-01+1,, SOJ 2 I”)1/2 exp( lxz)dx
=(S; 1 + S;ﬁ )1_/12—7_[ exp(—%xz)dx

where Bi’;- =—fi"—‘-f!'——l”— and c;;=60i—0;.

By assumption
leijl=leji]l and 0<|ec|<|cg|<---- <|eiml-

We put
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Br—_lciiltln  a0q Fr—lciltin
1] o 17 o .

Since /,—> 0, without loss of generality we may assume that — |cym|+7»>0 for

n=1, 2,....
Then
0< BY < ooveee B12<B = B”1< B12\ ...... <B:,
Since
450 =({at, +a1, )z exo(— 5 )as
and
% = 1 1
Aja(n) =(S—1—3’1'7'+1 -+ Sfi’l'jﬂ )1—/_2_; exp(—“z—xz)dx,
we have
—n
B B1j+1
Aja(m)—A;j(n)= (S £ - S_n] ) Voo exp(———xz)dx>0
Bii By;j
In fact
ﬁfl _??;ﬂ: Ff;ﬂ" _B_;’j and
0<B;u<By<By,<Bin.
In the case j=1, “>"” is replaced by “>”. (Q.ED.)

LemMma 2. Fori=1, 2,..., m,
Pyy(m)>Pip(n)>---e-- 2P 1(n) 2P a(n)>---- = Pim(n).
Proor.

Pi(m=1L

Z (1—-An(n)) H Ak(n), j==i.
h=1 gz

Let j<I(j==i, I==i) be satisfied. Then by Lemma 1, we have
A—A;m))AI() =1 —Ai(n))A;(n).

Now we put

Eij = Z - Au(n)) H AkCn)

Rth
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=[ N 4+ 3 ]n(l—Aj,CnD IT Ax(n)
Rp®i Rppi,l | ¢ k=3t
Rp3j5.1 Rp3j

Let us consider the second part of the right hand side in the above equation.

21 11 (1—-An(")) HAk(n)

Rppi,l
Rp>j
=1- AJ(n))Az(n)h;J noa- An(n)) H] IAk(n)
>(1—Al(n))Aj(n)R Ztl I (1—-A;(n)) I} ]Ak(")

2 [T A—4;(n) H Ak(”)

R h ) t Jit
Thus, it holds that

Eij>[2_ + 2 JII(I Au(n))HAk(n) Eu

Therefore we obtain

Pii(n)>Pu(n), for j>I(j%i,l+i).

(In the case j=1, “>” is replaced by “>".)
This proves Lemma 2. (Q.ED.)
Now we shall consider the following expression of P;(n):

3. 3) Pimy= %" m)>0, for i=12,..,m
2“1(”)

j=1

Using Lemma 2, in the same way as K. Tanaka, K. INapa and S. Iwase [4], we can
obtain the following evaluation:

a;(n) < KmP1o(n) Ppy(n)-+++++ Pi_11(0) Py y11(7) +++++- Py (1)
G 49 for i=2,...,, m, and
ay(n) = Pyy(n) Py(n)-+-+--Ppu(n)

where K is a positive constant such that it depends on only .
Therefore for i=2,..., m, it holds that

3. 5 Pimy= %) a(m) < g, Pr(n)
12=1a](n> al(”) P;(n) -

LemMa 3. Fori=2,..., m,

Pyy(n) __ A(n)
P;y(n) Ai(@ .
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REMARK. “@n~Dbn means “an/bn—1 as n—oo”.
Proor. For every j,
Aj(n)=Pr(|Xnj—0ij| >ln)—0 as n—oo.

From the definition of P;;j(n), we have

Py(y=i [543 T A=4300) 11 Ak
Ry3j o

—Ai(n) [‘n‘zl——lkg,- (1—Ar(n))

m—2
+5FL 51T (- Ajn) I Avm) ]
h=1 52:; t=1 i

Since the above brackets tend to m}—l as n— oo, it holds that

Pyp(n) _ Ai(n)
Py(n)  Ai(m) -

LEmMMA 4. Fori=2,..., m,

A(m) o
ATy <.

Proor. Using the same notation as in Lemma 1,

oo

Ay _ 2 P e
(s + G g ol

2{at, vz (= g )
 a v ee(- s

By the next inequality

37

(Q.E.D.)

mon(-da)i ~ do(-10) oty e >0

we have

—~ L' -@pl].
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Since

— (14 -+ ln

= »1 as #n— oo,

S| &
Y
5

we obtain

A ~ zexp[ - LB - B

Furthermore we get

[¢)

>

(o]
l_'l
l\’)ll—‘
A,

(BY cBl,f}

Nlr—l
—~A—
VY
et
b
\_/
/\
|
Ny
+
S
2
N’
=5

where the above inequality follows from a simple inequality:

e —xzz— for every x>>0.

As I, is a positive number such that 3! 1//,2< oo, it holds that
n=1

s e [~1 {1~ )]

<exp [ gazz] ﬁz'iziz

Therefore we have

Now we shall prove the theorem. From (3. 5),

) Pyy(n) -
P;(n)<Km———-Pi1 O for 1=2,..., m.

According to Lemma 3 and Lemma 4, we obtain

(QED)
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E Pi(m)<Km3 ?ZEZ% <o for i=2,..., m.

As the preservation of probabililies at each stage, we have

Pl(n)=1—i_§}2 Pi(n).

Therefore we have

2, Piim=co

Thus, the proof of the theorem is completed.

(1]

(2]
[3]

4]
[5]
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