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1. Introduction

Gleason [2], Kahane and Zelazko [3] proved independently the following;

THeorREM (Gleason-Kahane-Zelazko). Lel A be a complex unital Banach algebra and
let f be a linear functional on A. Then f is multiplicative if and only if f(a)ESp(a) (a=A).

Their proof is based on Hadamard’s factorization theorem. By Choda and Nakamura
[1], an elementary proof of this theorem for B*-algebra was presented without depending
on such a theorem from the theory of functions.

The purpose of our paper is to present an elementary proof of this theorem for a
complex Banach algebra with a hermitian involution. Throughout this paper, we use
‘the standard notations and terminologies from [4].

2. The main theorem

LEMMA. Let A be a complex Banach algebra with a hermitian involution and let f be a
linear functional on A.
If fa)eSpala) (acA), then we have

SR =f(2)f(h) (x€A, heAn),

where An denotes the set of all self-adjoint elements of A.

Proor. We shall suppose, without loss of generality, that A possesses an identity
element 1.

Let k= An be such that f(%2)=0, and B be a maximal commutative %-subalgebra of A
which contains 1 and &, and @z be the carrier space of B. Then we get

Spa(x)=Spp(x) (x&B).

Since k2+ikcEB and f(k2+ik)=f(k?), there exists, from our assumption, an element
¥'=dp such that



U (k2+ik)=f(k%),
and so
TR +iW (k) =1 (kD).
We have ¥ (k)ESps(k)=Spa(A)CR and f(R)ESpa()CR.
It follows that Z'(%)=0,

and consequently f(%2)=0.
On the other hand, we have, from [5, Theorem 1],

Spa(#*)CR*U0) (1EA).

Therefore f(x*x)=0 (xA), namely f is positive on A.
Hence we have

| (k) |2<E(ax)f (B2 (€A, kEAR).

Thus we have f(xk)=0 (x=A) for any k= An such that f(k)=0.
Now, let % be an arbitrary element of As. Then we have

S(W1—h&An

since f(A)ESpa(A)CR.

Moreover, f(f(h)1—h)=0.

Hence we have f(x(f(h)1—h))=0(xEA).

Consequently, f(xh)=r(x)f(B)(xEA, h&An).

This completes the proof. '

ReMARK. It is easy to verify the following statement:

Let A be a complex Banach algebra and f be a linear functional on A such that
Sf(@)ESpa(a) (acA). Let x=A be such that f(x)=0 and || x]|<1, then we have

A (#)ESpa(x) (QEC, [2|<D).
Consequently, if the above element x satisfies Sp4(#*)CR, then it follows that f(x2)=

THEOREM. Let A and f be the same as in Lemma. Then f is multiplicative if and only
if f(@ESpa(a) (acA).

Proor. The “necessary” part is well known. As for the sufficiency, suppose f is
a linear functional on A such that f(a)ESps(@) (ecA).

For any pair x and y in A, there exist hermitian elements #; and 4, such that y=
hy+ih,, so we have

JCxy)=f (x(+ihg)) =Ff (xh1)+3f (2D Che)
=F (@S )+ (0 f (h) =1 (%) * ().

This completes the proof.
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ReMARK. 1. Theorem is false for real Banach algebra, e. g.
A=Cg([0,1]) and f(x)=8(1)x(t)dt, see [3].

REMARK 2. Let A be a commutative Banach algebra such that, for each x= A, there exist
h and k with the following properties;

Spa(B)CR, Spa(E)CR and x=h-+ik.
fThen, a linear functional on A is multiplicative if and only if

f&ESpa(a) (acA).

Proor. We shall suppose, without loss of generality, that A possesses an identity
element 1. As in the proof of Theorem, we shall sketch only the proof of “if” part. Let
f be a linear functional on A such that f(@)&Spa(a) (acA).

By the method in the proof of Lemma, we have f(x2)=0 for any x=A such that
Spa(#)CR and f(x)=0. Therefore for any pair x, y=A such that

| SPA(X)CR, Spa (W)CR and f(x)=f(y)=0,

we have f((x+5)2) =2 xy).

Thus, there exists ¥&®4 such that ¥((x+y)2)=2f(xy).

Since ¥((x4+3)D=TX+T(»))2 T(xDESPA(X)CR, T(¥)ESPA)CR,
we have f(xy»)ER.

Let 6= @4 be such that ¢(xy+ix) =f(xy+ix)=7(xy).

Since. ¢(xy)=¢(x)(¥), ¢(2)ESPpA(x)CR, ¢(»)ESP4(¥)CR, we have ¢(x)=0,
consequently f(xy)=0.

Now, let ¥ A be any element such that f(x)=0.

From our assumption, there exist %, k=A such that

Spa(B)CR, Spa(A)CR and x=h-+ik.

Therefore f(AER, f(RYER and f(h)+if(k)=0,
hence f(h)=f(k)=0.

We have f(x2)=f(h2)+2if (hk)—f (k2)=0.

For any x& A, put f(x)=A.

Since f(x—2+1)=0, f((x—21+1)2)=0.

It follows that ‘

| 0=7(#2)—24f (%) + 22=f (x2)— 22,

thus we have f(x2)=7f(x2).
Consequently for any pair x, y=A, we have f((x+y)2)=f(x+»)? hence f(xy)=
Ff(x)f(y). This completes the proof.
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