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1. Introduction

Gleason [2], Kahane and Zelazko [3] proved independently the following;
THEOREM (Gleason Kahane-Zelazko). Let $A$ be a complex unital Banach algebra and

letf bealinearfunctional on A. $ThenfismuI\hslash plicativeifandonlyiff(a)\in Sp(a)(a\in A)$ .
Their proof is based on Hadamard’s factorization theorem. By Choda and Nakamura

[1], an elementary proof of this theorem for $B^{*}$-algebra was presented without depending
on such a theorem from the theory of functions.

The purpose of our paper is to present an elementary proof of this theorem for a
complex Banach algebra with a hermitian involution. Throughout this paper, we use
the standard notations and terminologies from [4].

2. The main theorem

LEMMA. Let $A$ be a complex Banach algebra with a hermitian involution and let $f$ be a
linear functional on $A$ .
If $f(a)\in Sp_{A}(a)(a\in A)$ , then we have

$f(xh)=f(x)f(h)(x\in A, h\in Ah)$ ,

where $Ah$ denotes the set of all $self\cdot adjoint$ elements of $A$ .
PROOF. We shall suppose, without loss of generality, that $A$ possesses an identity

element 1.
Let $k\in Ah$ be such that $f(k)=0$, and $B$ be a maximal $commutative*$-subalgebra of $A$

which contains 1 and $k$, and $\Phi_{B}$ be the carrier space of $B$. Then we get

Sp$A(x)=Sp_{B}(x)(x\in B)$ .
Since $k^{2}+ik\in B$ and $f(k^{2}+ik)=f(k^{2})$ , there exists, from our assumption, an element

$\Psi\in\Phi_{B}$ such that
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$\Psi(k^{2}+ik)=f(k^{2})$ ,

and so

$\Psi(k^{2})+t\Psi(k)=f(k^{2})$ .
We have $\Psi(k)\in Sp_{B}(h)=Sp_{A}(k)\subset R$ and $f(k^{2})\in Sp_{A}(k^{2})\subset R$ .
It follows that $\Psi(k)=0$,

and consequently $f(k^{2})=0$ .
On the other hand, we have, from [5, Theorem 1],

$Sp_{A}(x^{*}x)\subset R^{+}\cup(0)$ $(x\in A)$ .
Therefore $f(x^{*}x)\geqq 0(x\in A)$, namely $f$ is positive on $A$ .
Hence we have

$|f(xk)|^{2}\leqq f(xx^{*})f(k^{2})$ $(x\in A, k\in Ah)$ .
Thus we have $f(xk)=0(x\in A)$ for any $k\in Ah$ such that $f(k)=0$.
Now, let $h$ be an arbitrary element of $Ah$ . Then we have

$f(h)1-h\in A_{h}$

since $f(h)\in Sp_{A}(h)\subset R$ .
Moreover, $f(f(h)1-h)=0$ .
Hence we have $f(x(f(h)1-h))=0(x\in A)$ .
Consequently, $f(xh)=f(x)f(h)(x\in A, h\in Ah)$ .
This completes the proof.

REMARK. It is easy to verify the following statement:
Let $A$ be a complex Banach algebra and $f$ be a linear functional on $A$ such that

$f(a)\in Sp_{A}(a)(a\in A)$ . Let $x\in A$ be such that $f(x)=0$ and $\Vert x\Vert<1$ , then we have

$\lambda f(x^{2})\in Sp_{A}(x)$ $(\lambda\in \mathbb{C}, |\lambda|\leqq 1)$ .
Consequently, if the above element $x$ satisfies $Sp_{A}(x)\subset R$, then it follows that $f(x^{2})=$

$0$ .
THEOREM. Let $A$ and $f$ be the same as in Lemma. Then $f$ is mulhplicative if and only

if $f(a)\in Sp_{A}(a)(a\in A)$ .
PROOF. The “necessary“ part is well known. As for the sufficiency, suppose $f$ is

a linear functional on $A$ such that $f(a)\in Sp_{A}(a)(a\in A)$ .
For any pair $x$ and $y$ in $A$ , there exist hermitian elements $h_{1}$ and $h_{2}$ such that $y=$

$h_{1}+ih_{2}$, so we have

$f(xy)=f(x(h_{1}+ih_{2}))=f(xh_{1})+if(x)f(h_{2})$

$=f(x)f(h_{1})+if(x)f(h_{2})=f(x)\cdot f(y)$ .
This completes the $pr\infty f$ .
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REMARK. 1. Theorem is false for real Banach algebra, $e$ . $g$.

$A=C_{R}([0,1])$ and $f(x)=\int_{0}^{1}x(t)dt$, see [3].

REMARK 2. Let $A$ be a commutative Banach algebm such that, for each $x\in A$ , there exist
$h$ and $k$ with the following properties;

$sp_{A}(h)\subset R,$ $Sp_{A}(k)\subset R$ and $x=h+ik$.
’

Then, a linear functional on $A$ is multiplicative if and only if
$f(a)\in Sp_{A}(a)(a\in A)$ .

PROOF. We shall suppose, without loss of generality, that $A$ possesses an identity
element 1. As in the proof of Theorem, we shall sketch only the proof of “if” part. Let
$f$ be a linear functional on $A$ such that $f(a)\in Sp_{A}(a)(a\in A)$ .

By the method in the proof of Lemma, we have $f(x^{2})=0$ for any $x\in A$ such that
Sp$A(x)\subset R$ and $f(x)=0$ . Therefore for any pair $x,$ $y\in A$ such that

Sp$A(x)\subset R$, Sp$A(y)\subset R$ and $f(x)=f(y)=0$,

we have $f((x+y)^{2})=2f(xy)$ .
Thus, there exists $\Psi\in\Phi_{A}$ such that $\Psi((x+y)^{2})=2f(xy)$ .
Since $\Psi((x+y)^{2})=(\Psi(x)+\Psi(y))^{2},$ $\Psi(x)\in Sp_{A}(x)\subset R,$ $\Psi(y)\in Sp_{A}(y)\subset R$,

we have $ f(xy)\in$R.
Let $\phi\in\Phi_{A}$ be such that $\phi(xy+ix)=f(xy+ix)=f(xy)$ .
Since $\phi(xy)=\phi(x)\phi(y),$ $\phi(x)\in Sp_{A}(x)\subset R,$ $\phi(y)\in Sp_{A}(y)\subset R$, we have $\phi(x)=0$,

consequently $f(xy)=0$ .
Now, let $x\in A$ be any element such that $f(x)=0$ .
From our assumption, there exist $h,$ $k\in A$ such that

$Sp_{A}(h)\subset R,$ $Sp_{A}(k)\subset R$ and $x=h+ik$.
Therefore $f(h)\in R,$ $f(k)\in R$ and $f(h)+if(k)=0$ ,

hence $f(h)=f(k)=0$ .
We have $f(x^{2})=f(h^{2})+2if(hk)-f(k^{2})=0$ .
For any $x\in A$ , put $ f(x)=\lambda$ .
Since $f(x-\lambda\cdot 1)=0,$ $f((x-\lambda\cdot 1)^{2})=0$ .
It follows that

$0=f(x^{2})-2\lambda f(x)+\lambda^{2}=f(x^{2})-\lambda^{2}$,

thus we have $f(x^{2})=f(x^{2})$ .
Consequently for any pair $x,$ $y\in A$ , we have $f((x+y)^{2})=f(x+y)^{2}$, hence $f(xy)=$

$f(x)f(y)$ . This completes the proof.
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