An elementary proof of Gleason-Kahane-Zelazko's theorem for complex Banach algebra with a hermitian involution

 $\mathbf{B}\mathbf{y}$

Muneo Снō

(Received June 2, 1973)

1. Introduction

Gleason [2], Kahane and Zelazko [3] proved independently the following;

THEOREM (Gleason-Kahane-Zelazko). Let A be a complex unital Banach algebra and let f be a linear functional on A. Then f is multiplicative if and only if $f(a) \in Sp(a)$ ($a \in A$).

Their proof is based on Hadamard's factorization theorem. By Choda and Nakamura [1], an elementary proof of this theorem for B*-algebra was presented without depending on such a theorem from the theory of functions.

The purpose of our paper is to present an elementary proof of this theorem for a complex Banach algebra with a hermitian involution. Throughout this paper, we use the standard notations and terminologies from [4].

2. The main theorem

Lemma. Let A be a complex Banach algebra with a hermitian involution and let f be a linear functional on A.

If $f(a) \in Sp_A(a)$ $(a \in A)$, then we have

$$f(xh)=f(x)f(h) (x \in A, h \in A_h),$$

where A_h denotes the set of all self-adjoint elements of A.

Proof. We shall suppose, without loss of generality, that A possesses an identity element 1.

Let $k \in A_h$ be such that f(k) = 0, and B be a maximal commutative *-subalgebra of A which contains 1 and k, and Φ_B be the carrier space of B. Then we get

$$\operatorname{Sp}_{A}(x) = \operatorname{Sp}_{B}(x) \ (x \in B).$$

Since $k^2+ik \in B$ and $f(k^2+ik)=f(k^2)$, there exists, from our assumption, an element $\Psi \in \Phi_B$ such that

$$\Psi(k^2+ik)=f(k^2),$$

and so

$$\Psi(k^2)+i\Psi(k)=f(k^2).$$

We have $\Psi(k) \in \operatorname{Sp}_{B}(k) = \operatorname{Sp}_{A}(k) \subset \mathbb{R}$ and $f(k^{2}) \in \operatorname{Sp}_{A}(k^{2}) \subset \mathbb{R}$.

It follows that $\Psi(k)=0$,

and consequently $f(k^2)=0$.

On the other hand, we have, from [5, Theorem 1],

$$\operatorname{Sp}_A(x^*x) \subset \mathbb{R}^+ \cup (0) \quad (x \in A).$$

Therefore $f(x^*x) \ge 0$ $(x \in A)$, namely f is positive on A.

Hence we have

$$|f(xk)|^2 \leq f(xx^*)f(k^2) \quad (x \in A, k \in A_h).$$

Thus we have f(xk)=0 $(x \in A)$ for any $k \in A_h$ such that f(k)=0.

Now, let h be an arbitrary element of A_h . Then we have

$$f(h)1-h\in A_h$$

since $f(h) \in \operatorname{Sp}_A(h) \subset \mathbb{R}$.

Moreover, f(f(h)1-h)=0.

Hence we have $f(x(f(h)1-h))=0(x\in A)$.

Consequently, $f(xh)=f(x)f(h)(x \in A, h \in A_h)$.

This completes the proof.

REMARK. It is easy to verify the following statement:

Let A be a complex Banach algebra and f be a linear functional on A such that $f(a) \in \operatorname{Sp}_A(a)$ $(a \in A)$. Let $x \in A$ be such that f(x) = 0 and ||x|| < 1, then we have

$$\lambda f(x^2) \in \operatorname{Sp}_A(x) \quad (\lambda \in \mathbb{C}, |\lambda| \leq 1).$$

Consequently, if the above element x satisfies $\operatorname{Sp}_A(x) \subset \mathbb{R}$, then it follows that $f(x^2) = 0$.

THEOREM. Let A and f be the same as in Lemma. Then f is multiplicative if and only if $f(a) \in Sp_A(a)$ $(a \in A)$.

PROOF. The "necessary" part is well known. As for the sufficiency, suppose f is a linear functional on A such that $f(a) \in \operatorname{Sp}_A(a)$ $(a \in A)$.

For any pair x and y in A, there exist hermitian elements h_1 and h_2 such that $y = h_1 + ih_2$, so we have

$$f(xy) = f(x(h_1+ih_2)) = f(xh_1) + if(x)f(h_2)$$

= $f(x)f(h_1) + if(x)f(h_2) = f(x) \cdot f(y)$.

This completes the proof.

Remark. 1. Theorem is false for real Banach algebra, e. g.

$$A = C_R([0, 1])$$
 and $f(x) = \int_0^1 x(t)dt$, see [3].

Remark 2. Let A be a commutative Banach algebra such that, for each $x \in A$, there exist h and k with the following properties;

$$Sp_A(h) \subset \mathbb{R}$$
, $Sp_A(k) \subset \mathbb{R}$ and $x=h+ik$.

Then, a linear functional on A is multiplicative if and only if

$$f(a) \in Sp_A(a) \ (a \in A).$$

PROOF. We shall suppose, without loss of generality, that A possesses an identity element 1. As in the proof of Theorem, we shall sketch only the proof of "if" part. Let f be a linear functional on A such that $f(a) \in \operatorname{Sp}_A(a)$ $(a \in A)$.

By the method in the proof of Lemma, we have $f(x^2)=0$ for any $x \in A$ such that $\operatorname{Sp}_A(x) \subset \mathbb{R}$ and f(x)=0. Therefore for any pair $x, y \in A$ such that

$$\operatorname{Sp}_A(x) \subset \mathbb{R}$$
, $\operatorname{Sp}_A(y) \subset \mathbb{R}$ and $f(x) = f(y) = 0$,

we have $f((x+y)^2)=2f(xy)$.

Thus, there exists $\Psi \in \Phi_A$ such that $\Psi((x+y)^2) = 2f(xy)$.

Since $\Psi((x+y)^2) = (\Psi(x) + \Psi(y))^2$, $\Psi(x) \in \operatorname{Sp}_A(x) \subset \mathbb{R}$, $\Psi(y) \in \operatorname{Sp}_A(y) \subset \mathbb{R}$, we have $f(xy) \in \mathbb{R}$.

Let $\phi \in \Phi_A$ be such that $\phi(xy+ix)=f(xy+ix)=f(xy)$.

Since $\phi(xy) = \phi(x)\phi(y)$, $\phi(x) \in \operatorname{Sp}_A(x) \subset \mathbb{R}$, $\phi(y) \in \operatorname{Sp}_A(y) \subset \mathbb{R}$, we have $\phi(x) = 0$, consequently f(xy) = 0.

Now, let $x \in A$ be any element such that f(x) = 0.

From our assumption, there exist $h, k \in A$ such that

$$\operatorname{Sp}_A(h) \subset \mathbb{R}$$
, $\operatorname{Sp}_A(k) \subset \mathbb{R}$ and $x = h + ik$.

Therefore $f(h) \in \mathbb{R}$, $f(k) \in \mathbb{R}$ and f(h) + if(k) = 0, hence f(h) = f(k) = 0.

We have $f(x^2)=f(h^2)+2if(hk)-f(k^2)=0$.

For any $x \in A$, put $f(x) = \lambda$.

Since $f(x-\lambda \cdot 1)=0$, $f((x-\lambda \cdot 1)^2)=0$.

It follows that

$$0 = f(x^2) - 2\lambda f(x) + \lambda^2 = f(x^2) - \lambda^2$$

thus we have $f(x^2) = f(x^2)$.

Consequently for any pair x, $y \in A$, we have $f((x+y)^2) = f(x+y)^2$, hence f(xy) = f(x)f(y). This completes the proof.

NIIGATA UNIVERSITY

References

- [1] H. Choda and M. Nakamura, Elementary proofs of Gleason-Kahane-Zelazko's Theorem for B*-algebra, M. Osaka K. U., 20, Ser. III (1971), 111-112.
- [2] A. M. GLEASON, A characterization of maximal ideals, J. Analyse Math., 19 (1967), 171-172.
- [3] J. P. KAHANE and W. ZELAZKO, A characterization of maximal ideals in commutative Banach algebra, Studia Math., 29 (1968), 339-343.
- [4] C. E. RICKART, General Theory of Banach algebras, D. Van Nostrand, 1960.
- [5] S. Shirali and J. W. M. Ford, Symmetry in complex involutory Banach algebras II, Duke Math. J., 37 (1970), 275-280.
- [6] W. Zelazko, A characterization of multiplicative linear functionals in complex Banach algebras, Studia Math., 30 (1968), 83-85.