Notes on Certain Hermitian Spaces

By
Hideo MIZUSAWA

(Received April 20, 1960)

The purpose of this note is to generalize some theorems which have been obtained in a Kählerian space [11], [2] to a certain Hermitian space, that is, a Hermitian space with a condition $\nabla_{r} F_{i}^{\cdot r}=0$, where ∇_{r} denotes the covariant derivative with respect to the Riemannian connection. we shall call such a space a semiKählerian space or an Apte's space [1], [6]. In this space we shall consider an infinitesimal holomorphically projective transformation, the conformally flatness and a constant sectional curvatur. Next, we shall show that if this space be conformal to a Kählerian space, then it coincides with a Kählerian space.

As to the notations and conventions, we follow J. A, Schouten [4].

§1. Preliminaries

In a 2 n -dimensional differentiable space, if an almost Hermitian structure is defined by assigning to the space a tensor field $F_{j}^{{ }^{\circ}}$ and a positive definite Riemannian meric tensor field $g_{j i}$ such that

$$
\begin{align*}
& F_{j}^{\cdot r} F_{r}^{\cdot i}=-\delta_{j}^{i} \tag{1.1}\\
& g_{j i}=F_{j}^{\cdot b} F_{i}^{\cdot a} g_{b a} . \tag{1.2}
\end{align*}
$$

then the space is called an almost Hermitian space.
An almost Hermitian space is called a Hermitian space if the Nijenhuis tensor identically vanishes, that is

$$
\begin{equation*}
N_{j i} h \equiv F_{j}^{\cdot r}\left(\nabla_{r} F_{i}^{\cdot h}-\nabla_{i} F_{r}^{\cdot h}\right)-F_{i}^{\cdot r}\left(\nabla_{r} F_{j}^{\cdot h}-\nabla_{j} F_{r}^{\cdot h}\right)=0 . \tag{1.3}
\end{equation*}
$$

Taking account of the relation

$$
N_{j i h}+2 N_{h(j i)}=2\left(F_{j}^{\cdot r} \nabla_{r} F_{i h}+F_{i}^{\cdot r} \nabla_{j} F_{r h}\right),
$$

we see that (1.3) is equivalent to the following [6]

$$
\begin{equation*}
\nabla_{j} F_{i h}-F_{j}^{\bullet b} F_{i}^{\cdot a} \nabla_{b} F_{a h}=0 \tag{1.4}
\end{equation*}
$$

or

$$
F_{j}^{\cdot r} \nabla_{r} F_{i h}+F_{i}^{\cdot r} \nabla_{j} F_{r h}=0
$$

where

$$
N_{j i h}=N_{j i}{ }^{r} g_{r h}, \quad F_{j h}=g_{h r} F_{j}^{\cdot r} .
$$

If a Hermitian space satisfies

$$
\begin{equation*}
\nabla_{r} F_{j}^{\cdot r}=0 \tag{1.5}
\end{equation*}
$$

then the space is ealled a semi-Kählerian space or an Apte's space.
It is easily verified that the condition (1.5) is equivalent to the following, with respect to a complex coordinates ($Z^{\alpha}, \bar{Z}^{\alpha}$)

$$
\left\{a_{\bar{\lambda}}^{a}\right\}=0, \text { Conj. } \quad \alpha=1,2, \ldots, n . ; \bar{\lambda}=\overline{1}, \overline{2}, \ldots, \bar{n} .
$$

Next, we shall define the following operations for any tensor $T_{j i h}, T_{j i}{ }^{h}$ in an almost Hermitian space.

$$
\begin{cases}O_{j i} T_{j i h}=\frac{1}{2}\left(T_{j i h}-F_{j}^{\cdot b} F_{i}^{\cdot a} T_{b a h}\right), & O_{j}^{h} T_{j i} h=\frac{1}{2}\left(T_{j i} h-F_{j}^{\cdot b} F_{a}^{\cdot h} T_{b i} a\right), \tag{1.6}\\ * O_{j i} T_{j i h}=\frac{1}{2}\left(T_{j i h}+F_{j}^{\cdot b} F_{i}^{\cdot a} T_{b a h}\right), & * O_{j}^{h} T_{j i} h=\frac{1}{2}\left(T_{j i} h+F_{j}^{\cdot b} F_{a}^{\cdot h} T_{b i}\right)\end{cases}
$$

As to the two operations with the same indices, we have

$$
\begin{equation*}
O O=0, * O * O=* O, * O O=O * O=0 . \tag{1.7}
\end{equation*}
$$

A tensor is called pure (hybrid) in two indices if it vanishes by transvection of $* O(O)$ on these indices.

By the definition, (1.4) is written

$$
\begin{equation*}
O_{j i} \nabla_{j} F_{i h}=0 . \tag{1.8}
\end{equation*}
$$

In an almost Hermitian space we denote the Riemannian curvature tensor by $K_{k j i^{h}}$ and put

$$
\left\{\begin{array}{l}
K_{k j i h}=K_{k j i} r g_{r h}, K_{j i}=K_{k j i^{k},} \widetilde{K}_{j i}=F_{j}^{\cdot r} K_{i r}, \tag{1.9}\\
H_{j i}=\frac{1}{2} F^{b a} K_{a b j i}, \widetilde{H}_{j i}=F_{j}^{\cdot r} H_{i r}, K=g^{j i} K_{j i}, H=F^{j i} H_{j i}
\end{array}\right.
$$

By the definition (1.9) and the first Bianchi identies, we have

$$
\begin{equation*}
H_{j i}=F^{k h} K_{k j i h .} \tag{1.10}
\end{equation*}
$$

A vector field v^{i} is called analytic, if it satisfies [8]

$$
\begin{equation*}
\underset{v}{\underset{\sim}{f}} F_{j}^{\cdot i}=v^{r} \nabla_{r} F_{j}^{\cdot i}-F_{j}^{\cdot r} \nabla_{r} v^{i}+F_{r}^{\cdot i} \nabla_{j} v^{r}=0, \tag{1.10}
\end{equation*}
$$

where $\underset{v}{\boldsymbol{f}}$ denotes the operator of Lie derivation with sespect to v^{i}.
A pure tensor $T_{i_{1} i_{2} \cdots i_{p}}{ }^{j_{1} j_{2} \cdots j_{q}}$ is called analytic, if it satisfies [8]

$$
\begin{align*}
& \Phi_{l} T_{(i)}^{(j) \equiv} \equiv F_{l}^{\cdot r} \nabla_{r} T_{(i)}^{(j)}-\nabla_{l}\left(F_{i_{1}}^{\cdot r} T_{r i_{2} \cdots i^{(j)}}\right)+\sum_{k=1}^{p}\left(\nabla_{i_{k}} F_{l}^{\cdot r}\right) T_{i_{1} \cdots r \cdots i_{(k)}^{(j)}} \tag{1.11}\\
& +\sum_{k=1}^{q}\left(\nabla_{l} F_{r}^{\cdot j_{k}}-\nabla_{r} F_{l}^{\cdot j_{k}}\right) T_{(i)^{j_{1} \cdots}{ }^{(k)}{ }_{q}^{(k)}{ }_{q}=0}
\end{align*}
$$

where we have put

$$
T_{(i)}^{(j)}=T_{i_{1} i_{2} \cdots i p}{ }^{j_{1} j_{2} \cdots j q} .
$$

§2. Semi-Kählerian spaces

We shall consider a semi-Kählerian space, then it holds that

$$
\begin{gather*}
\nabla_{j} F_{i h}-F_{j}^{\cdot b} F_{i}^{\cdot a} \nabla_{b} F_{a h}=0, \tag{2.1}\\
\nabla_{r} F_{i}^{\cdot r}=0 .
\end{gather*}
$$

Operating ∇_{h} to (2.1), we have

$$
\nabla_{h} \nabla_{j} F_{i}^{\bullet h}-F_{j}^{\bullet b}\left(\nabla_{h} F_{i}^{\bullet a}\right)\left(\nabla_{b} F_{a}^{\bullet h}\right)-F_{i}^{\bullet a}\left(\nabla_{h} F_{j}^{\bullet b}\right)\left(\nabla_{b} F_{a}^{\bullet h}\right)-F_{j}^{\bullet b} F_{i}^{\cdot a} \nabla_{h} \nabla_{b} F_{a}^{\bullet h}=0 .
$$

It is easily verified that in the left hand side of the above equation the second term is zero and the third term is symmetric with respect to j and i.

Hence we have

$$
\begin{equation*}
O_{j i}\left(\nabla_{h} \nabla_{j} F_{i}^{\cdot h}\right)=O_{i j}\left(\nabla_{h} \nabla_{i} F_{j}^{\cdot h}\right) \tag{2.3}
\end{equation*}
$$

On the other hand, applying the Ricci's identity to $F_{i}^{\cdot h}$, we get

$$
\nabla h \nabla_{j} F_{i}^{\cdot h}-\nabla_{j} \nabla_{h} F_{i}^{\cdot h}=K_{h j r}{ }^{h} F_{i}^{\cdot r}-K_{h j i} r F_{r}^{\cdot h}
$$

By virtue of (2.2) and (1.9), we have

$$
\begin{equation*}
\nabla h \nabla{ }_{j} F_{i}^{\cdot h}=\widetilde{K}_{i j}-H_{i j} . \tag{2.4}
\end{equation*}
$$

Substituting (2.4) into (2.3), we have [5]

$$
\begin{equation*}
O_{j i} H_{j i}=0 \tag{2.5}
\end{equation*}
$$

Next, using (2.2), we have

$$
0=\nabla_{h}\left[\nabla_{j}\left(F_{i}^{\bullet h} F^{j i}\right)\right]=F^{j i} \nabla_{h} \nabla_{j} F_{i}^{\bullet h}+\left(\nabla_{j} F_{i}^{\bullet h}\right)\left(\nabla_{h} F^{j i}\right)
$$

Substituting (2.4) into the last equation, we get

$$
\begin{equation*}
\left(\nabla_{j} F_{i}^{\cdot h}\right)\left(\nabla_{h} F^{j i}\right)=K-H . \tag{2.6}
\end{equation*}
$$

On the other hand, if we transvect $\nabla^{h} F^{j i}$ to (2.1), we obtain

$$
\begin{equation*}
\left(\nabla_{j} F_{i h}\right)\left(\nabla^{h} F^{j i}\right)=0 . \tag{2.7}
\end{equation*}
$$

Hence we have

$$
\begin{equation*}
K-H=0 . \tag{2.8}
\end{equation*}
$$

In the next place, we shall consider some analytic tensors.
Theorem 2.1. In a semi-Kählerian space, if. a tensor $H_{j}^{\cdot i}$ is analytic, then $H(=K)$ is an absolute constant.

Proof. From (2.5) $H_{j}^{\cdot i}$ is a pure tensor. Applying analytic operation Φ_{l} to $H_{j}^{\cdot i}$, we get

$$
\Phi_{l} H_{j}^{\cdot i} \equiv F_{l}^{\cdot r} \nabla_{r} H_{j}^{\cdot i}-F_{r}^{\cdot i} \nabla_{l} H_{j}^{\cdot r}+H_{r}^{\cdot i} \nabla_{j} F_{l}^{\cdot r}-H_{j}^{\cdot r} \nabla_{r} F_{l}^{\cdot i}=0 .
$$

By contraction with respect to j and i, we have

$$
F_{r}^{\cdot i} \nabla_{l} H_{i}^{\cdot r}=\mathbf{0}
$$

On the other hand,

$$
\nabla l H=\nabla l\left(F_{r}^{\cdot i} H_{. i}^{r}\right)=-F_{r}^{\cdot i} \nabla_{l} H_{i}^{\cdot r}-H_{i}^{\cdot r} \nabla_{l} F_{r}^{\cdot i}=-F_{r}^{\cdot i} \nabla_{l} H_{i}^{\cdot r}=0 .
$$

N.B. This theorem is valid for an almost Hermitian space with a pure tensor H_{j}^{\bullet}, for instance a Kählerian space and a K-space, but in a K-space $H \neq K$.

Theorem 2.2. In an Hermitian space, $\widetilde{H}_{j}^{{ }^{i}}$ is analytic, if and only if $H_{j}^{\boldsymbol{j}^{i}}$ is analytic.
Proof. Let $H_{j}^{\cdot i}$ be analytic, then by virtue of (1.3), and the purity of $\tilde{H}_{j}^{\cdot i}$, we can easily get

$$
\Phi_{l} F_{j}^{\cdot i}=N_{l j}^{i}=0, \quad \Phi_{l} \tilde{H}_{j}^{\cdot i}=\Phi_{l}\left(F_{j}^{\cdot r} H^{i}, r\right)=H^{i}{ }_{. r} \Phi_{l} F_{j}^{\cdot r}+F_{j}^{\cdot r} \Phi_{l} H_{., r}^{i}=0 .
$$

The converse is obvious.
In a semi-Kählerian space, it is unknown that the Ricci tensor $K_{j i}$ is pure or hybrid. But $O_{j}{ }^{i} K_{j}{ }^{i}$ is pure, then we have

Theorem 2.3. In an Hermitian space $O_{j}{ }^{i} \widetilde{K}_{j}{ }^{i}$ is analytic if and only if $O_{j}{ }^{i} K_{j}{ }^{i}$ is analytic, and in this case K is an absolute constant.

In fact, let $O_{j}{ }^{i} K_{j}{ }^{i}$ be analytic, then we have

$$
\begin{aligned}
& O_{j} i \widetilde{K}_{j}^{i}=O_{j}^{i}\left(F_{j}^{\cdot r} K_{r}{ }^{i}\right)=F_{j}^{\cdot r}\left(O_{r}{ }^{i} K_{r}{ }^{i}\right), \\
& \Phi_{l}\left(O_{j} i \tilde{K}_{j}^{i}\right)=F_{j}^{\cdot r} \Phi_{l}\left(O_{r}{ }^{i} K_{r} i\right)=0, \\
& \Phi_{l}\left(O_{j} K_{j}^{i}\right)=F_{l}^{\cdot r} \nabla_{r}\left(O_{j}^{i} K_{j}^{i}\right)-F_{r}^{\cdot i} \nabla_{l}\left(O_{j}^{r} K_{j} r\right)+\left(O_{r}^{i} K_{r}{ }^{i}\right) \nabla_{j} F_{l}^{\cdot r}-\left(O_{j} r K_{j}^{r}\right) \nabla_{r} F_{l}^{r}=0 .
\end{aligned}
$$

Transvecting the last equation with respect to j and i, we get

$$
\nabla_{r} K=0
$$

§3. Analytic holomorphically projective transformations

If we put $\underset{v}{\mathcal{E}}\left\{\begin{array}{l}h \\ j\end{array}\right\}=t_{j i}{ }^{h}$, then the following identities are known [11]:

$$
\begin{align*}
& t_{j i} h \equiv \underset{v}{£}\left\{\begin{array}{l}
h \\
j i
\end{array}\right\}=\nabla j \nabla i v^{h}+K_{r j i}{ }^{h} v^{r}, \tag{3.1}\\
& \underset{v}{£} \nabla{ }_{j} F_{i}^{\cdot h}-\nabla{ }_{j} \underset{v}{£} F_{i}^{\cdot h}=F_{i}^{\cdot r} t_{j r} h-F_{r}^{\cdot h} t_{j i}, \tag{3.2}\\
& \underset{v}{£} K_{k j i} h=\nabla{ }_{k} t_{j i}{ }^{h}-\nabla{ }_{j} t_{k i}{ }^{h} . \tag{3.3}
\end{align*}
$$

A vector field v^{i} is called an infinitesimal holomorphically projective transformation or briefly an H. P. Transformation, if it satisfies

$$
t_{j i} h=\underset{v}{\mathcal{L}}\left\{\begin{array}{l}
h \tag{3.4}\\
j i
\end{array}\right\}=\rho_{j} \delta_{i}^{h}+\rho_{i} \delta_{j}^{h}-\tilde{\rho}_{j} F_{i}^{\cdot h}-\tilde{\rho}_{i} F_{j}^{\cdot h}
$$

where ρ_{i} is a certain vector and $\tilde{\rho}_{i}=F_{i}^{*} \rho_{r}$. We call ρ_{i} the associated vector of the H. P. transformation. Contracting (3.4) with respect to i and h, we get $\rho_{j}=$ $\{1 / 2(n+1)\} \nabla_{j} \nabla_{r} v^{r}$. Hence ρ_{i} is a gradient vector. Thus it holds that

$$
\begin{equation*}
\nabla_{j} \rho_{i}=\nabla_{i} \rho_{j} . \tag{3.5}
\end{equation*}
$$

Now, in an almost Hermitian space, we shall introduce a curve which satisfies the following differential equations [3]

$$
\begin{equation*}
\frac{d^{2} x^{h}}{d t^{2}}+\left\{\left\{_{j i}^{h}\right\} \frac{d x^{j}}{d t} \frac{d x^{i}}{d t}=\alpha \frac{d x^{h}}{d t}+\beta F_{j}^{\cdot h} \frac{d x^{j}}{d t}\right. \tag{3.6}
\end{equation*}
$$

where α and β are certain functions of the parameter t. Such a curve is called a holomorphically flat curve and has the property that the tangent holomorphic plane deplaced parallelly along the curve remains holomorphically tangent to the curve.

Let v^{i} be an infinitesimal transformation and we assume that an infinitesimal point transformation ' $x^{i}=x^{i}+\varepsilon v^{i}$ transforms any holomorphically flat curve into
such a curve.
A necessary and sufficient condition for a vector field v^{i} to be such a transr. formation is that [2]

$$
\begin{align*}
& \dot{x}_{\boldsymbol{j} \boldsymbol{\jmath} F_{j}^{\cdot i}=a \dot{x}^{i}+b F_{j}^{\cdot i} \dot{x}^{j}} \tag{3.7}\\
& \dot{x} \dot{x}^{i} i t_{j i} h=c \dot{x}^{h}+d F_{j}^{\cdot h} \dot{x}^{j} \tag{3.8}
\end{align*}
$$

are hold for any direction $\dot{x}^{i}=d x^{i} / d t$, where a, b, c, and d are some functions of x^{i} and \dot{x}^{i}.

The following Lemmas are known [2].
Lemma 1. In an almost complex space, let $a_{j}{ }^{i}$ be a hybrid tensor, if it satisfies

$$
a_{r} u^{r}=\alpha u^{i}+\beta F_{r}^{\cdot{ }^{\cdot}} u^{r}
$$

for any vector u^{i}, where α and β are real valued functions of u^{i}, then $a_{j}{ }^{i}$ must be zero tensor.

Lemma 3. Let $t_{j i}{ }^{h}$ be a symmetric tensor with respect to j and i. If it satisfies

$$
t_{j i}{ }^{h} u_{j}^{j} u^{i}=\alpha u^{h}+\beta F_{j}^{\cdot h} u^{j}
$$

for any vector u^{i}, then $t_{i i^{h}}{ }^{h}$ takes the following form

$$
t_{j i}{ }^{h}=\rho_{j} \delta_{i}{ }^{h}+\rho_{i} \delta_{j}^{h}+\sigma_{j} F_{i}^{\cdot h}+\sigma_{i} F_{j}^{\bullet h}
$$

where α and β are real valued functions of u^{i} and ρ_{i} and σ_{i} are certain vectors.
Now, let v^{i} be an H. P. transformation, then from (3.7) and Lemma 1, we have

$$
\begin{equation*}
\underset{v}{£ F_{j}^{\cdot i}}=0 . \tag{3.9}
\end{equation*}
$$

Next, from (3.8) and Lemm 3, we have

$$
\begin{equation*}
t_{j i}{ }^{h}=\rho_{j} \delta_{i} \dot{h}+\rho_{i} \delta_{j}{ }^{h}+\sigma_{j} F_{i}^{\cdot h}+\sigma_{i} F_{j}^{\cdot h} . \tag{3.10}
\end{equation*}
$$

If we substitute (3.9) into (3.2), then we get

$$
\underset{v}{£} \nabla_{j} F_{i}^{\bullet h}=t_{j r}{ }^{h} F_{i}^{\cdot r}-t_{j i}{ }^{r} F_{r}^{\bullet h}
$$

Contracting with j and h and using (2.2), we have

$$
t_{j r}{ }^{j} F_{i}^{\cdot r}-t_{j i} r F_{r}^{\cdot j}=0
$$

Substituting (3.10) into the last equation, we have $\sigma_{j}=-\widetilde{\rho}_{j}$. Hence

$$
\begin{equation*}
t_{j i}{ }^{h}=\rho_{j} \delta_{i} h+\rho_{i} \delta_{j}^{h}-\tilde{\rho}_{j} F_{i}^{*}-\tilde{\rho}_{i} F_{j}^{\cdot h} . \tag{3.11}
\end{equation*}
$$

Therefore v^{i} is analytic and at the same time an H. P. transformation. The converse is evident. Thus we have the following.

Theorem 3.1. In an almost Hermitian space with the relation $\nabla_{r} F_{i}^{\cdot r}=0$, in order that an infinitesimal H. P. transformation carried any holomorphically flat curve into such a curve, it is necessary and sufficient that it is an analytic H. P. transformation,

In a semi-Kählerian space, let v^{i} be an analytic $H . P$. transformation. If we substitute (3.11) into (3.3), we have

$$
\begin{align*}
& \underset{v}{£} K_{k j i} h=\delta_{j}{ }^{h} \nabla_{k} \rho_{i}-\delta_{k}^{h} \nabla_{j} \rho_{i}-F_{j}^{\cdot h} \nabla_{k} \tilde{\rho}_{i}+F_{k}^{\cdot h} \nabla_{j} \tilde{\rho}_{i}-F_{i}^{\cdot h}\left(\nabla_{k} \tilde{\rho}_{j}-\nabla_{j} \tilde{\rho}_{k}\right) \tag{3.12}\\
& -\widetilde{\rho}_{j} \nabla_{\vdots} F_{i}^{\cdot h}+\check{\rho}_{k} \nabla_{j} F_{i}^{\cdot h}+\tilde{\rho}_{i}\left(\nabla_{j} F_{k}^{\cdot h}-\nabla_{k} F_{j}^{\cdot h}\right) .
\end{align*}
$$

Transvecting with $F_{h}^{* k}$ and making use of (3.9), (2.2) and (1.9), we have

$$
\begin{equation*}
\underset{v}{£ H_{j i}=-2 F_{j}^{\cdot r} \nabla_{r} \rho_{i}+2 n F_{i}^{\cdot r} \nabla_{r} \rho_{j}+(2 n+1)\left(\nabla_{j} F_{i}^{* h}\right) \rho_{r}-\left(\nabla_{i} F_{j}^{\cdot r}\right) \rho_{r} ~} \tag{3.13}
\end{equation*}
$$

Taking the alternating part with respect to j and i, we get

$$
\begin{equation*}
\underset{v}{f} H_{j i}=-(n+1)\left[\left(F_{j}^{\cdot r} \nabla_{r} \rho_{i}-F_{i}^{\cdot r} \nabla_{r} \rho_{j}\right)-\left(\nabla_{j} F_{i}^{\cdot r}-\nabla_{i} F_{j}^{\cdot r}\right) \rho_{r}\right], \tag{3.14}
\end{equation*}
$$

and

$$
(n-1)\left(F_{j}^{\cdot r} \nabla_{r} \rho_{i}+F_{i}^{\cdot r} \nabla_{r} \rho_{j}\right)+n\left(\nabla_{j} F_{i}^{\cdot r}+\nabla_{i} F_{j}^{\cdot r}\right) \rho_{r}=0 .
$$

This is equivalent to

$$
\begin{equation*}
2(n-1) O_{j i}\left(F_{j}^{\cdot r} \nabla_{r} \rho_{i}\right)+n\left(\nabla_{j} F_{i}^{\cdot r}+\nabla_{i} F_{j}^{\cdot r}\right) \rho_{r}=0 . \tag{3.15}
\end{equation*}
$$

If we operate $O_{j i}$ to (3.15), then by virtue of (1.7) and (1.8), we have

$$
\begin{equation*}
F_{j}^{\cdot r} \nabla_{r} \rho_{i}+F_{i}^{\bullet r} \nabla_{r} \rho_{j}=0 . \tag{3.16}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\left(\nabla_{j} F_{i}^{\cdot r}+\nabla_{i} F_{j}^{\cdot r}\right) \rho_{r}=0 . \tag{3.17}
\end{equation*}
$$

From the last two equations, we find

$$
\nabla{ }_{j} \tilde{\rho}_{i}+\nabla i \tilde{\rho}_{j}=0 .
$$

Theorem 3.2. In a semi-Kählerian space, if ρ_{i} is the associated vector of an
analytic H. P. transformation, then $\tilde{\rho}_{i}$ is a Killing vector.
From (3.13), (3.16) and (3.17), for an analytic H. P. transformation v^{i}, we have

$$
\underset{v}{£} H_{j i}=2(n+1) \nabla{ }_{j} \tilde{\rho}_{i} .
$$

Operating $O_{j i}$ to the last equation and taking account of (2.5) and (3.9), we get

$$
O_{j i} £ H_{j i}=\underset{v}{£ O_{j i} H_{j i}=0=2(n+1) O_{j i} \nabla_{j} \tilde{p}_{i} .}
$$

Thus from (3.16) and the last equation, we have
Theorem 3.3. In a semi-Kählerian space, if ρ_{i} is the associated vector of an analytic H. P. transformation, then $\nabla_{j} \rho_{i}$ and $\nabla_{j} \tilde{\rho}_{i}$ are both hybrid with respect to j and i.

From (3.14)(3.16) and (3.17), we get

$$
\underset{v}{£} H_{j i}=-2(n+1)\left[F_{j}^{\cdot r} \nabla_{r} \rho_{i}-\left(\nabla_{j} F_{i}^{\cdot r}\right) \rho_{r}\right] .
$$

From which we have

Next, if we contract (3.12) with respect to h and k, then we have

$$
\underset{v}{£} K_{j i}=-2 n \nabla j \rho_{i}-\left(F_{j}^{\cdot r} \nabla r \widetilde{\rho}_{i}+F_{i}^{\cdot r} \nabla r \widetilde{\rho}_{j}\right) .
$$

By virtue of the theorem 3.3, it holds that

$$
F_{j}^{\cdot r} \nabla_{r} \tilde{\rho}_{i}-F_{i}^{\cdot r} \nabla_{r} \tilde{\rho}_{j}=0 .
$$

Therefore we have

$$
\begin{equation*}
\underset{v}{£} K_{j i}=-2\left[(n+1) \nabla_{j} \rho_{i}+\left(\nabla_{j} F_{i}^{* h}\right) \tilde{\rho}_{r}\right] . \tag{3.19}
\end{equation*}
$$

Eilminating ($\nabla_{j} F_{i}^{\cdot}$) $\tilde{\rho}_{r}$ from (3.18) and (3.19), we obtain

$$
\begin{equation*}
\underset{v}{f}\left[\tilde{H}_{j i}-(n+1) K_{j i}\right]=2 n(n+1) \nabla_{j} \rho_{i} . \tag{3.20}
\end{equation*}
$$

§4. Certain Einstein semi-Kählerian spaces

We shall call a semi-Kählerian space with a Ricci tensor proportional to $g_{j i}$ an Einstein semi-Kählerian space, that is,

$$
\begin{equation*}
K_{j i}=\frac{K}{2 n} g_{j i} \tag{4.1}
\end{equation*}
$$

is valid. We suppose that $K \neq 0$. It is well known that K is an absolute constant.

Moreover in this space, if we assume that $H_{j i}$ be proportional to $F_{j i}$, i.e;

$$
\begin{equation*}
H_{j i}=\lambda F_{j i} . \tag{4.2}
\end{equation*}
$$

Then we have

$$
\tilde{H}_{j i}=\frac{H}{2 n} g_{j i} .
$$

On the other hand, in §2, we have seen that in a semi-Kählerian space

$$
K=H
$$

is valid.
Thus the assumption (4.2) is equivalent to

$$
\begin{equation*}
\widetilde{H}_{j i}=K_{j i} . \tag{4.4}
\end{equation*}
$$

Afterward, we shall consider an Einstein semi-Kählerian space satisfying (4.4).
N.B. An Hermitian space satisfying (4.4) is not a Kählerian space. S. Koto has called it a S. K. II space [5].

Now, let v^{i} be an analytic H. P. transformation, then (3.20) holds. From (4.4) we have

$$
\begin{equation*}
\underset{v}{£} K_{j i}=-(n+1) \nabla_{j} \rho_{i} \tag{4.5}
\end{equation*}
$$

From (4.1), (3.5) and the relation $\underset{v}{£_{j}} g_{j i}=\nabla{ }_{j} \rho_{i}+\nabla_{i} \rho_{j}$, we obtain

$$
\nabla_{j}\left(v_{i}-\frac{1}{k} \rho_{i}\right)+\nabla_{i}\left(v_{j}-\frac{1}{k} \rho_{j}\right)=0
$$

where we have put

$$
k=-K / n(n+1)
$$

If we define p_{i} by

$$
p_{i}=v_{i}-\frac{1}{k} \rho_{i},
$$

then p_{i} is a Killing vector. Next, if we put $q_{i}=\frac{1}{k} \tilde{p}_{i}$, then q_{i} is also a Killing vector by virtue of Theorem 3.2.

Thus we obtain the following.
Theorem 4.1 In an Einstein semi-Kählerian space satisfying $\widetilde{H}_{j i}=K_{j i}$ an analytic H. P. transformation v^{i} is uniquely decomposed into the form

$$
\begin{equation*}
v^{i}=p^{i}+F_{r}^{\cdot i} q^{r} \tag{4.6}
\end{equation*}
$$

where p^{i} and q^{i} are both Killing vectors.
N.B. Theorem 4.1 is a particular case of the Matsushima's theorem in a compact Kählerian space. [10]. For a K-space cf. Tachibana, S. [9].

From (4.6) we have

Substituting (3.1) and (3.11) into the last equation, we obtain

$$
\begin{equation*}
\nabla j \nabla i \rho^{h}+K_{r j i} h \rho^{r}=k\left(\rho_{j} \delta_{i}^{h}+\rho_{i} \delta_{j}^{h}-\widetilde{\rho}_{j} F_{i}^{\cdot h}-\widetilde{\rho}_{i} F_{j}^{\cdot h}\right) . \tag{4.7}
\end{equation*}
$$

From which it follows
Theorem 4.2 In an Einstein semi-Kählerian space satisfying $\widetilde{H}_{j i}=K_{j i}$, the associated vector of an analytic H. P. transformation is an H. P. transformation.

§5. Conformally flat semi-Kählerian spaces

Now we suppose a semi-Kählerian space to be conformally flat, then the curvature tensor takes the following form [11]

$$
2(n-1) K_{k j i h}=g_{k h} K_{j i}-g_{j h} K_{k i}+g_{j i} K_{k h}-K /(2 n-1)\left(g_{j i} g_{k h}-g_{k i} g_{j h}\right)
$$

Transvecting with $F^{* k}$, we get

$$
\begin{equation*}
2(n-1) H_{j i}=\widetilde{K}_{j i}-\tilde{K}_{i j}-\{1 /(2 n-1)\} K F_{j i} . \tag{5.1}
\end{equation*}
$$

From which we have

$$
(2 n-1) H-K=0 .
$$

Taking account of (2.8), we obtain for $n>1$

$$
K=H=0 .
$$

Theorem 5.1 If a semi-Kählerian space is conformally flat, then the space has a vanishing scalar curvature.

Theorem 5.2. In a conformally flat semi-Kählerian space, the tensor $H_{j i}$ is effective.

In this space, if we suppose that $\widetilde{H}_{j i}=K_{j i}$, then $H_{j i}=\widetilde{K}_{j i}$ holds, and from (5.1) we have

$$
\begin{gathered}
(n-1) H_{j i}=\frac{1}{2}\left(\widetilde{K}_{j i}-\widetilde{K}_{i j}\right)=* O_{j i} \tilde{K}_{j i}=* O_{j i} H_{j i}=H_{j i} . \\
H_{j i}=\widetilde{K}_{j i}=0 . \\
K_{j i}=0 .
\end{gathered}
$$

Theorem 5.3. [5] If a semi-Kählerian space satisfying $\tilde{H}_{j i}=K_{j i}$ is conformally flat, then it is of zero curvature.

Theorem 5.4. If a semi-Kählerian space is of constant curvature, then it is of
zero curvature.

§6. Semi-Kählerian spaces conformal to a Kählerian spaces

The following theorem is known [11], [12].
Theorem A necessary and sufficient condition that $2 n$-dimensional Hermitian space be conformal to a Kählerian space is that
for $2 n>4$

$$
C_{j i h} \equiv F_{j i h}-1 / 2(n-1)\left(F_{j i} F_{h}+F_{i h} F_{j}+F_{h j} F_{i}\right)=0
$$

and for $2 n=4$

$$
C_{j i} \equiv 2 \nabla_{[j} F_{i]}=0
$$

Where $F_{j}=F_{j i h} F^{i h}, F_{j i h}=3 \nabla_{[j} F_{i h}$.
Now we suppose that a semi-Kählerian space be conformal to a Kählerian space, then the above theorem is valid. From (2.2) we get

$$
F_{j}=0
$$

therefore we have for $n>2$

$$
F_{j i h}=0 .
$$

Theorem 6.1. In order that a semi-Kählerian space be conformal to a Kählerian space, it is necessary sufficient that the tensor $F_{j i}$ be harmonic.

Theorem 6.2. A necessary and sufficient condition that a semi-Kählerian space be conformal to a Kählerian space is it coincides with a Kählerian space.

Bibliography

[1] Apte, M.: Sur certaines veriétés hermitiques. C.R. (1954), 1091-3.
[2] Ishihara, S. and Tachibana, S.: On infinitesimal holomor phically projective transformation in a Kählerian space. Tohoku Math. J. 12, no. 1 (1960), 77-101.
[3] Otsuki, T. and Tachiro, Y.: On curves in Kaehlerian spaces. Math. J. Okayama Univ., 4 (1954), 57-78.
[4] Schouten J. A. Ricci Culcules, second edition. Springer (1954).
[5] Kotō, S.: Curvatures in Hermitian spaces. to appear.
[6] Kotō, S.: Some theorems on almost Kählerian spaces. J. Math. Soc. Japan 12 (1960), 422-433
[7] Tachibana, S. On almost analytic vectors in certain almost-Hermitian manifolds. Tohoku Math. J. 11, no. 3 (1959), 352-363.
[8] Tachibana, S.! Analytic vectors and its generalization. to appear.
[9] Tachipana, S.: On infinitesimal holomor phically projective transformations in certain almostHermitian space. Nat. Sci. Rep. Ochanomizu Univ. 10 (1959), 45-51.
[10] Matsushima, Y.: Ser la structure du groupe d'homéomor phismes analytiques d'une certaine veriété Kählérienne. Nagoya Math. J. 11 (1957), 145-150.
[11] Yano, K.: The Theory of Lie derivative and its application, Amsterdam (1057).
[12] Westlake, W. J.: Conformally Kähler manifolds. Proc. Cambridge Philos. Soc. 50 (1954), 16-19.

