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RING HOMOMORPHISMS ON COMMUTATIVE
REGULAR BANACH ALGEBRAS

TAKESHI MIURA, SIN-EI TAKAHASI, AND NORIO NIWA

ABSTRACT. We give a partial representation of a ring homomorphism, which need
not be continuous nor surjective, from a semisimple commutative regular Banach
algebra into a semisimple commutative Banach algebra. As a corollary to our
main theorem, we prove that there are no surjective ring homomorphism from
$C_{0}(R)$ onto $C_{0}(D)$ .

1. Introduction and the statement of results

Let $\mathcal{A}$ and $\mathcal{B}$ be algebras over the complex number field $\mathbb{C}$ . A mapping $\rho:\mathcal{A}\rightarrow \mathcal{B}$

is a ring homomorphism provided that

$\rho(f+g)=\rho(f)+\rho(g)$ $(f, g\in \mathcal{A})$

$\rho(fg)=\rho(f)\rho(g)$ $(f, g\in \mathcal{A})$ .

If, in addition, $\rho$ preserves scalar multiplication, that is, $\rho(\lambda f)=\lambda\rho(f)$ for every
$f\in \mathcal{A}$ and $\lambda\in \mathbb{C}$ , then $\rho$ is an ordinary homomorphism. The zero mapping
$\rho(z)=0(z\in \mathbb{C})$ , the identity mapping $\rho(z)=z(z\in \mathbb{C})$ and the complex conjugate
$\rho(z)=\overline{z}(z\in \mathbb{C})$ are typical examples of ring homomorphisms on $\mathbb{C}$ . These are
called trivial ring homomorphisms on $\mathbb{C}$ , or in short trivial. It is obvious that the
trivial ring homomorphisms on $\mathbb{C}$ are continuous. The converse is also valid, that is,
a continuous ring homomorphism is trivial. Moreover, the following is well-known,
so we omit a proof (For a proof, see, for example [9, Proposition 2.1]).

Proposition A. If $\rho$ is a ring homomorphism on $\mathbb{C}$ , each of the following two
statements implies the other:

(a) $\rho$ is trivial.
(b) There exist $\alpha_{0},$ $\beta_{0}>0$ such that $|z|<\alpha_{0}$ implies $|\rho(z)|\leq\beta_{0}$ .

One might expect that ring homomorphisms on $\mathbb{C}$ are necessarily trivial. Unfor-
tunately, this is not true. In fact, there exists a non-trivial ring homomorphism on
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$\mathbb{C}$ . By Proposition $A$ , we see that a ring homomorphism $\tau$ on $\mathbb{C}$ is non-trivial if and
only if the following are satisfied:

$(*)$ for each $\alpha,$ $\beta>0$ , there exists $z\in \mathbb{C}$ with $|z|<\alpha$ but $|\tau(z)|>\beta$ .

We shall use $(*)$ in Lemma 3.3. It seems that the existence of a non-trivial ring
homomorphism had been investigated by C. Segre [14] and M. H. Lebesgue [6] (see
[5]). H. Kestelman [5] had given many different ways to construct a non-trivial ring
homomorphism under the axiom of choice, or one of some equivalent propositions,
say the well-ordering theorem of Zermelo, or Zorn’s lemma. By its construction,
we see that there are infinitely many non-trivial rimg homomorphisms on $\mathbb{C}$ . More
explicitly, M. Charnow [2] proved that if $G$ is the set of all ring automorphisms on
an algebraically closed field $k$ , then $\# G=\# 2^{k}$ , where $\# S$ denotes the cardinal number
of a set $S$ . In particular, there are $\# 2^{\mathbb{C}}$ ring automorphisms on $\mathbb{C}$ . Moreover, ring
homomorphic image is very complicated. Let $H(\Omega)$ be the algebra of all holomorphic
functions on a region $\Omega\subset \mathbb{C}$ . In [9], it is proved that there exists an injective ring
homomorphism from $H(\Omega)$ into $\mathbb{C}$ , that is, we may regard $H(\Omega)$ as a subring of $\mathbb{C}$ .
Ring homomorphisms are studied by many authors (cf. [1, 3, 4, 7, 8, 9, 10, 11, 12,
13, 15, 17]).

In this paper, we will consider a ring homomorphism $\rho$ from a semisimple commu-
tative.regular complex Banach algebra $A$ into a semisimple commutative complex
Banach algebra $B$ ; Neither the continuity nor the surjectivity of $\rho$ are assumed.
The maximal ideal spaces of $A$ and $B$ are denoted by $M_{A}$ and $M_{B}$ , respectively.
We wil give a representation of such a ring homomorphism. For simplicity, we will
denote the Gelfand transform of $a$ by the same letter $a$ ; This will cause no confusion.
Recall that $A$ is regular if and only if for each pair $(F, K)$ of closed subset $F$ and
compact subset $K$ of $M_{A}$ with $ F\cap K=\emptyset$ , there exists $a\in A$ such that $a(F)=0$
and $a(K)=1$ (cf. [16, Theorem 27.2]). Note that we do not assume that $A$ and
$B$ are with unit. We will denote by $A_{e}$ the commutative Banach algebra obtained
by adjunction of a unit element $e$ to $A$ . Recall that $P$ is a prime ideal of $A$ if $P$

is a proper ideal satisfying that $fg\in P$ implies $f\in P$ or $g\in P$ . In particular,
every maximal modular ideal is a prime ideal. Although we are concerned with ring
homomorphisms, by an ideal we mean an algebm ideal.

Now we are ready to state our main result.

Theorem 1.1. Let $A$ be a semisimple commutative regular complex Banach algebra
and $B$ a semisimple commutative complex Banach algebm with maximal ideal spaces
$M_{A}$ and $M_{B}$ , respectively. If $\rho:A\rightarrow B$ is a ring homomorphism, then there exist a
decomposition $\{M_{-1}, M_{0}, M_{1}, M_{d}\}$ of $M_{B}$ and a continuous mapping $\varphi:M_{B}\backslash M_{0}\rightarrow$



$M_{A_{e}}$ such that

(1.1) $\rho(f)(y)=\left\{\begin{array}{ll}\overline{f(\varphi(y))} & y\in M_{-1}\\0 & y\in M_{0}\\f(\varphi(y)) & y\in M_{1}\\\tau_{y}(q_{y}(f)) & y\in M_{d}\end{array}\right.$

for every $f\in A$ , where $q_{y}$ is the quotient mapping from a prime ideal $P_{y}$ of $A$ onto
$A/P_{y}$ and $\tau_{y}$ is a nonzero field homomorphism from the quotient field of $P_{y}$ into $\mathbb{C}$ .

For a subset $S$ of $B$ , we say that $S$ is sepamting if to each $y_{1},$ $y_{2}\in M_{B}$ with
$y_{1}\neq y_{2}$ there corresponds $b_{1}\in S$ such that $b_{1}(y_{1})\neq b_{1}(y_{2})$ . If, for every $y\in M_{B}$ ,
there exists $b_{2}\in S$ such that $b_{2}(y)\neq 0$ , then we say that $S$ vanishes nowhere.

Corollary 1.2. Let $\rho:A\rightarrow B$ be a ring homomorphism. If the mnge $\rho(A)$ con-
tains a subalgebra $B_{0}$ of $B$ such that $B_{0}$ is sepamting and vanishes nowhere, then
there exist a decomposition $\{M_{-1}, M_{1}, M_{d}\}$ of $M_{B}$ and an injective, continuous and
closed mapping $\varphi:M_{B}\rightarrow M_{A}$ with the following property: To each $y\in M_{d}$ there
corresponds a non-trivial ring automorphism $\tau_{y}$ from $\mathbb{C}$ onto itself such that

(1.2) $\rho(f)(y)=\left\{\begin{array}{ll}\overline{f(\varphi(y))} & y\in M_{-1}\\f(\varphi(y)) & y\in M_{1}\\\tau_{y}(f(\varphi(y))) & y\in M_{d}\end{array}\right.$

for all $f\in A$ . In particular, $B$ is necessarily regular.

2. Construction of the mapping $\varphi$

Recall that we never assume that $A$ and $B$ are with unit. Let $ A_{e}=\{f+\lambda e:f\in$

$A,$ $\lambda\in \mathbb{C}$ } be the Banach algebra obtained by adjunction of a unit element $e$ to $A$ .
Note that $A_{e}$ is well-defined even for unital $A$ . The maximal ideal space $M_{A_{e}}$ of $A_{e}$

is the one-point compactification of $M_{A}$ . We see that $A_{e}$ is regular since so is $A$ . If
$\{x_{\infty}\}=M_{A_{e}}\backslash M_{A}$ , then $f(x_{\infty})=0$ for every $f\in A$ .

In this section, $\rho$ will be a ring homomorphism from $A$ into $B$ , and $\rho_{y}$ for $y\in M_{B}$

will be the induced ring homomorphism from $A$ into $\mathbb{C}$ defined by

$\rho_{y}(f)=\rho(f)(y)$ $(f\in A)$ .

We define a subset $M_{0}$ of $M_{B}$ by

$M_{0}=$ { $y\in M_{B}$ : $\rho_{y}$ is identically $0$ }.

Lemma 2.1. Let $y\in M_{B}\backslash M_{0}$ .

(a) $\rho_{y}$ can be extended to a unique ring homomorphism $\tilde{\rho}_{y}$ of $A_{e}$ .



(b) Let $f+\lambda e\in A_{e}$ . Then $ f+\lambda e\in$ ker $\tilde{\rho}_{y}$ if and only if $ fa+\lambda a\in$ ker $\rho_{y}$ for
every $a\in A$ with $\rho_{y}(a)\neq 0$ .

Proof. (a) Take $a\in A$ with $\rho_{y}(a)\neq 0$ . If we define $\tilde{\rho}_{y}$ : $A_{e}\rightarrow \mathbb{C}$ by

(2.1) $\tilde{\rho}_{y}(f+\lambda e)=\rho_{y}(f)+\frac{\rho_{y}(\lambda a)}{\rho_{y}(a)}$ $(f+\lambda e\in A_{e})$ ,

then it is obvious to verify that $\tilde{\rho}_{y}$ is additive and $\tilde{\rho}_{y}|_{A}=\rho_{y}$ . By the equations

(2.2) $\rho_{y}(\nu h)=\rho_{y}(h)\frac{\rho_{y}(\nu a)}{\rho_{y}(a)}$ $(\nu\in \mathbb{C}, h\in A)$

and

(2.3) $\frac{\rho_{y}(\lambda\mu a)}{\rho_{y}(a)}=\frac{\rho_{y}(\lambda a)}{\rho_{y}(a)}\frac{\rho_{y}(\mu a)}{\rho_{y}(a)}$ $(\lambda, \mu\in \mathbb{C})$ ,

we have, for each $f+\lambda e,$ $g+\mu e\in A_{e}$ , that

$\tilde{\rho}_{y}((f+\lambda e)(g+\mu e))=\tilde{\rho}_{y}(fg+\mu f+\lambda g+\lambda\mu e)$

$=\rho_{y}(fg+\mu f+\lambda g)+\frac{\rho_{y}(\lambda\mu a)}{\rho_{y}(a)}$ (by (2.1))

$=\rho_{y}(f)\rho_{y}(g)+\rho_{y}(f)\frac{\rho_{y}(\mu a)}{\rho_{y}(a)}+\rho_{y}(g)\frac{\rho_{y}(\lambda a)}{\rho_{y}(a)}$

$\rho_{y}(\lambda a)\rho_{y}(\mu a)$

$+\overline{\rho_{y}(a)}\overline{\rho_{y}(a)}$
(by (2.2) and (2.3))

$=\{\rho_{y}(f)+\frac{\rho_{y}(\lambda a)}{\rho_{y}(a)}\}\{\rho_{y}(g)+\frac{\rho_{y}(\mu a)}{\rho_{y}(a)}\}$

$=\tilde{\rho}_{y}(f+\lambda e)\tilde{\rho}_{y}(g+\mu e)$ ,

which proves that $\tilde{\rho}_{y}$ is multiplicative. We have now proved that there exists a ring
homomorphism $\tilde{\rho}_{y}$ ffom $A_{e}$ into $\mathbb{C}$ such that $\tilde{\rho}_{y}|_{A}=\rho_{y}$ .

It remains to be proved that $\tilde{\rho}_{y}=\rho_{y}^{*}$ , whenever $\rho_{y}^{*}$ is another ring homomorphism
with $\rho_{y}^{*}|_{A}=\rho_{y}$ . So, take $f+\lambda e\in A_{e}$ arbitrarily. Since

(2.4) $\rho_{y}(\lambda a)=\rho_{y}^{*}(\lambda a)=\rho_{y}^{*}(\lambda e)\rho_{y}(a)$ ,

it follows from (2.1) and (2.4) that

$\rho_{y}^{*}(f+\lambda e)=\rho_{y}^{*}(f)+\rho_{y}^{*}(\lambda e)=\rho_{y}(f)+\frac{\rho_{y}(\lambda a)}{\rho_{y}(a)}=\tilde{\rho}_{y}(f+\lambda e)$ ,

and the uniqueness is proved. In particular, $\tilde{\rho}$ does not depend on a choice of $a\in A$

with $\rho_{y}(a)\neq 0$ .
(b) By the uniqueness, $\tilde{\rho}_{y}$ is of the form (2.1) for any $a\in A$ with $\rho_{y}(a)\neq 0$ . Now

it is obvious that $f+\lambda e\in ker\tilde{\rho}_{y}$ if and only if $fa+\lambda a\in ker\rho_{y}$ for every $a\in A$ with
$\rho_{y}(a)\neq 0$ . The proof is complete. $\square $



From now on, the letter $\tilde{\rho}_{y}$ will denote the unique ring homomorphism from $A_{e}$

to $\mathbb{C}$ with $\tilde{\rho}_{y}|_{A}=\rho_{y}$ for $y\in M_{B}\backslash M_{0}$ .

Definition 2.1. For $y\in M_{B}\backslash M_{0}$ , we dePne a nonzero ring homomorphism $\sigma_{y}$ : $\mathbb{C}\rightarrow$

$\mathbb{C}$ by
$\sigma_{y}(\lambda)=\tilde{\rho}_{y}(\lambda e)$ $(\lambda\in \mathbb{C})$ .

By a simple calculation, we see that $\sigma_{y}(r)=r$ for every $y\in M_{B}\backslash M_{0}$ and rational
real number $r$ . It follows from the equation

$\rho_{y}(\lambda f)=\tilde{\rho}_{y}(\lambda f)=\tilde{\rho}_{y}(\lambda e)\rho_{y}(f)$ $(\lambda\in \mathbb{C}, f\in A)$

that

(2.5) $\rho_{y}(\lambda f)=\sigma_{y}(\lambda)\rho_{y}(f)$ $(\lambda\in \mathbb{C}, f\in A)$

for every $y\in M_{B}\backslash M_{0}$ . Thus (2.1) and (2.5) give

(2.6) $\tilde{\rho}_{y}(f+\lambda e)=\rho_{y}(f)+\sigma_{y}(\lambda)$ $(f+\lambda e\in A_{e})$

for all $y\in M_{B}\backslash M_{0}$ .

Lemma 2.2. Let $y\in M_{B}\backslash M_{0}$ . Then
(a) the kernel ker $\rho_{y}$ is a prime ideal of $A$ , which is contained in at most one

maximal modular ideal of $A$ ,
(b) ker $\tilde{\rho}_{y}$ is contained in a unique maximal ideal of $A_{e}$ , and
(c) if ker $\rho_{y}$ is a maximal modular ideal of $A$ , then ker $\tilde{\rho}_{y}$ is a maximal ideal of

$A_{e}$ .

Proof. (a) By (2.5), we see that ker $\rho_{y}$ is an algebm ideal of $A$ . Now it is obvious
that ker $\rho_{y}$ is a prime ideal.

Suppose that ker $\rho_{y}$ is contained in a maximal modular ideal of $A$ , that is, there
exists $x_{1}\in M_{A}$ such that

(2.7) ker $\rho_{y}\subset\{f\in A:f(x_{1})=0\}$ .

Take $x_{2}\in M_{A}\backslash \{x_{1}\}$ arbitrarily. We will show that ker $\rho_{y}$ is not contained in the
maximal modular ideal $\{f\in A : f(x_{2})=0\}$ . Choose an open neighborhood $V_{j}$

of $x_{j}$ , for $j=1,2$ , so that $ V_{1}\cap V_{2}=\emptyset$ . The regularity of $A$ therefore shows the
existence of $f_{j}\in A$ such that

(2.8) $f_{j}(x_{j})=1$ and $f_{j}(M_{A}\backslash V_{j})=0$ $(j=1,2)$ .

Hence $f_{1}f_{2}=0$ on $M_{A}$ , and so $\rho_{y}(f_{1})\rho_{y}(f_{2})=0$ . It follows from (2.7) and (2.8) that
$\rho_{y}(f_{1})\neq 0$ , and hence $f_{2}\in ker\rho_{y}\backslash \{f\in A:f(x_{2})=0\}$ . Since $x_{2}\in M_{A}\backslash \{x_{1}\}.was$

arbitrary, ker $\rho_{y}$ is contained in at most one maximal modular ideal.



(b) Note that ker $\tilde{\rho}_{y}$ is a proper ideal of a unital commutative Banach algebra $A_{e}$

since $\tilde{\rho}_{y}|_{A}=\rho_{y}$ is nonzero. Thus ker $\tilde{\rho}_{y}$ is contained in at least one maximal ideal
of $A_{e}$ . We see that the proof of (a) can be applied to $A_{e}$ and ker $\tilde{\rho}_{y}$ , and so ker $\tilde{\rho}_{y}$

is contained in at most one maximal ideal of $A_{e}$ . We thus conclude that ker $\tilde{\rho}_{y}$ is
contained in a unique maximal ideal of $A_{e}$ .

(c) Suppose that

(2.9) ker $\rho_{y}=\{f\in A:f(x_{0})=0\}$

for some $x_{0}\in M_{A}$ . Take $a\in A$ with $a(x_{0})\neq 0$ . Then $\rho_{y}(a)\neq 0$ by (2.9). If
$g+\mu e\in ker\tilde{\rho}_{y}$ , then $ga+\mu a\in ker\rho_{y}$ by (b) of Lemma 2.1, and hence (2.9) implies
$(g(x_{0})+\mu)a(x_{0})=0$ . Since $a(x_{0})\neq 0$ , we have $g+\mu e\in\{f\in A_{e} : f(x_{0})=0\}$ . Thus
ker $\tilde{\rho}_{y}\subset\{f\in A_{e} : \tilde{f}(x_{0})=0\}$ .

Take $a^{j}\in A$ with $\rho_{y}(a^{\prime})\neq 0$ . Since $(g(x_{0})+\mu)a^{\prime}(x_{0})=0$ for every $ g+\mu e\in\{f\in$

$A_{e}$ : $\tilde{f}(x_{0})=0$ }, we have $ ga^{\prime}+\mu a^{\prime}\in$ ker $\rho_{y}$ by hypothesis. Thus (b) of Lemma
2.1 shows $g+\mu e\in ker\tilde{\rho}_{y}$ , which implies that $\{\tilde{f}\in A_{e} : f(x_{0})=0\}=ker\tilde{\rho}_{y}$ . We
thus conclude that ker $\tilde{\rho}_{y}$ is a maximal ideal whenever ker $\rho_{y}$ is a maximal modular
ideal. $\square $

Definition 2.2. By (b) of Lemma 2.2, for each $y\in M_{B}\backslash M_{0}$ , ker $\tilde{\rho}_{y}$ is contained in
a unique maximal ideal of $A_{e}$ . So, there exists a mapping $\varphi:M_{B}\backslash M_{0}\rightarrow M_{A_{e}}$ such
that ker $\tilde{\rho}_{y}\subset\{f\in A_{e} ; f(\varphi(y))=0\}$ for every $y\in M_{B}\backslash M_{0}$ .

Lemma 2.3. Let $y\in M_{B}\backslash M_{0}$ and let $r$ be a rational real number. If $\tilde{h}\in A_{e}$

satisfies $\tilde{h}(\tilde{G})=r$ for some open neighborhood $\tilde{G}\subset M_{A_{\epsilon}}$ of $\varphi(y)$ , then $\tilde{\rho}_{y}(\tilde{h})=r$ .

Proof. Put $\tilde{h}_{r}=\tilde{h}-re\in A_{e}$ , and so $\tilde{h}_{r}=0$ on $\tilde{G}$ . By the regularity of $A_{e}$ , there
exists $\tilde{g}\in A_{e}$ such that $\tilde{g}(\varphi(y))=1$ and $\tilde{g}(M_{A_{e}}\backslash \tilde{G})=0$ . Then $\tilde{g}\tilde{h}_{r}=0$ on $M_{A_{e}}$ ,
and hence $\tilde{\rho}_{y}(\tilde{g})\tilde{\rho}_{y}(\tilde{h}_{r})=0$ . Since $\tilde{g}(\varphi(y))=1$ , we have by the definition of $\varphi$ that
$\tilde{\rho}_{y}(\tilde{g})\neq 0$ , and hence $\tilde{\rho}_{y}(\tilde{h}_{r})=0$ . Since $\tilde{\rho}_{y}(re)=\sigma_{y}(r)=r$ , we have $\tilde{\rho}_{y}(\tilde{h})=r$ . $\square $

Definition 2.3. We introduce the following notation

$M_{-1}=\{y\in M_{B}\backslash M_{0} : \sigma_{y}(\lambda)=\overline{\lambda}, (\lambda\in \mathbb{C})\}$

$M_{1}=\{y\in M_{B}\backslash M_{0} : \sigma_{y}(\lambda)=\lambda (\lambda\in \mathbb{C})\}$ ,

where $\sigma_{y}$ is as in Definition 2.1. Put

$M_{d}=$ { $y\in M_{B}\backslash M_{0}$ : $\sigma_{y}$ is non-trivial}.
Then $M_{-1},$ $M_{0},$ $M_{1}$ and $M_{d}$ are (possibly empty) pairwise disjoint subsets of $M_{B}$

with $M_{B}=M_{-1}\cup M_{0}\cup M_{1}\cup M_{d}$ .

It should be mentioned that we can define the quotient field of an integral domain
$R$ , commutative ring which has no zero divisor, even if $R$ has no unit: For if $ a\in$



$R\backslash \{0\}$ , then the equivalence class $a/a$ , with respect to the usual equivalence relation,
is a unit. Moreover, we can identify $b\in R$ with $ba/a$ .

Lemma 2.4. Let $y\in M_{B}\backslash M_{0}$ and $q_{y}$ : $A\rightarrow A/ker\rho_{y}$ be the quotient mapping. If $F_{y}$

is the quotient field of $q_{y}(A)$ , then there exists a unique nonzem field homomorphism
$\tau_{y}$ : $F_{y}\rightarrow \mathbb{C}$ such that

(a) $\rho_{y}=\tau_{y}oq_{y}$ ,
(b) $\tau_{y}|_{\mathbb{C}}=\sigma_{y}$ , and
(c) $\tau_{y}=\sigma_{y}$ whenever ker $\rho_{y}$ is a maximal modular ideal of $A$ .

Proof. Note Prst that the quotient Peld $F_{y}$ of $q_{y}(A)$ is well-defined since $q_{y}(A)$ is an
integral domain by (a) of Lemma 2.2. We define a mapping $\tau_{y}$ : $F_{y}\rightarrow \mathbb{C}$ by

(2.10) $\tau_{y}(q_{y}(f)/q_{y}(g))=\frac{\rho_{y}(f)}{\rho_{y}(g)}$ $(q_{y}(f)/q_{y}(g)\in F_{y})$ .

A simple calculation shows that $\tau_{y}$ is a well-defined nonzero field homomorphism on
$F_{y}$ . Take $a\in A$ with $\rho_{y}(a)\neq 0$ .

(a) As noted above, we may identify $q_{y}(f)$ with $q_{y}(fa)/q_{y}(a)$ for every $f\in A$ .
Under this identification, we have by (2.10) that

$\rho_{y}(f)=\frac{\rho_{y}(fa)}{\rho_{y}(a)}=\tau_{y}(q_{y}(fa)/q_{y}(a))=\tau_{y}(q_{y}(f))$

for every $f\in A$ , proving $\rho_{y}=\tau_{y}oq_{y}$ .
(b) The identification $\lambda\in \mathbb{C}$ with $q_{y}(\lambda a)/q_{y}(a)\in F_{y}$ shows that

$\tau_{y}(\lambda)=\tau_{y}(q_{y}(\lambda a)/q_{y}(a))=\frac{\rho_{y}(\lambda a)}{\rho_{y}(a)}$ $(\lambda\in \mathbb{C})$ .

Rom (2.5) it follows that $\rho_{y}(\lambda a)/\rho_{y}(a)=\sigma_{y}(\lambda)$ for every $\lambda\in \mathbb{C}$ , and hence $\tau_{y}|_{\mathbb{C}}=\sigma_{y}$ .
(c) Suppose that ker $\rho_{y}$ is a maximal modular ideal of $A$ . Then $q_{y}(A)=A/ker\rho_{y}$

is isomorphic to $\mathbb{C}$ . Thus we may assume $F_{y}=\mathbb{C}$ , and hence $\tau_{y}=\sigma_{y}$ by (b). $\square $

3. Topological properties of the decomposition of $M_{B}$

In this section, $\{M_{-1}, M_{0}, M_{1}, M_{d}\}$ will stand for the decomposition of $M_{B}$ as in
Definition 2.3.

Lemma 3.1. $M_{0}$ is a closed subset of $M_{B}$ .

Proof. Let $\{y_{\alpha}\}\subset M_{0}$ be a net converging to a point $y_{0}\in M_{B}$ . Take $f\in A$

arbitrarily. Then $\rho(f)(y_{\alpha})=\rho_{y_{\alpha}}(f)=0$ by definition. Since $\rho(f)$ is a continuous
function on $M_{B}$ , we have $\rho_{y0}(f)=0$ . Since $f\in A$ was arbitrary, we have $y_{0}\in M_{0}$ ,
proving $M_{0}$ closed. $\square $

Lemma 3.2. Both $M_{-1}\cup M_{0}$ and $M_{0}\cup M_{1}$ are closed subsets of $M_{B}$ .



Pmof. Since $M_{0}$ is closed, it is enough to show that $c1(M_{j})\subset M_{0}\cup M_{j}$ for $j=\pm 1$ .
Here and after, $c1(S)$ denotes the closure of a set $S$ . It will cause no confusion if we
use the same letter to designate a closure in $M_{A}$ and $M_{B}$ .

For $j=\pm 1$ , take $y_{0}\in c1(M_{j})$ and a net $\{y_{\alpha}\}\subset M_{j}$ converging to $y_{0}$ . If $y_{0}\not\in M_{0}$ ,
then there exists $a\in A$ such that $\rho_{y0}(a)\neq 0$ . Since $\rho_{y_{\alpha}}(a)=\rho(a)(y_{\alpha})$ converges to
$\rho_{y0}(a)\neq 0$ , without loss of generality we may assume $\rho_{y_{\alpha}}(a)\neq 0$ for all $\alpha$ . It follows
from (2.5) that

$\sigma_{y_{\alpha}}(\lambda)=\frac{\rho_{y_{\alpha}}(\lambda a)}{\rho_{y_{\alpha}}(a)}\rightarrow\frac{\rho_{y0}(\lambda a)}{\rho_{y0}(a)}=\sigma_{y0}(\lambda)$ $(\lambda\in \mathbb{C})$ .

On the other hand, since $\{y_{\alpha}\}\subset M_{j}$ , we have $\sigma_{y0}(\lambda)=\overline{\lambda}$ if $j=-1$ , and $\sigma_{y0}(\lambda)=\lambda$

if $j=1$ . Thus $y_{0}\in M_{j}$ for $j=\pm 1$ . We thus obtain $c1(M_{j})\subset M_{0}\cup M_{j}$ , and the
proof is complete. $\square $

Lemma 3.3. The mnge $\varphi(M_{d})\subset M_{A}$. is at most finite.
Proof. Assume, to get a contradiction, that $\varphi(M_{d})$ contains a countable subset
$\{w_{n}\}_{n\in N}$ . We may assume that $\{w_{n}\}_{n\in N}\subset M_{A}$ . We first assert that there exists a
subset $\{x_{k}\}_{k\in N}$ of $\{w_{n}\}_{n\in N}$ with the following property: To each $k\in N$ there corre-
sponds an open neighborhood $U_{k}$ of $x_{k}$ such that $\{c1(U_{k})\}_{k\in N}$ is a pairwise disjoint
family; If each $w_{k}$ is an isolated point of $\{w_{n}\}_{n\in N}$ , then it is obvious that there is such
an open neighborhood $U_{k}$ of $w_{k}$ , and so we will consider the case where there is a
limit point, say $w_{1}$ , in $\{w_{n}\}_{n\in N}$ . Take $x_{1}\in\{w_{n}\}_{n\in N}$ with $x_{1}\neq w_{1}$ arbitrarily. There
exists an open neighborhood $U_{1}$ of $x_{1}$ such that $w_{1}\not\in c1(U_{1})$ . Since $w_{1}$ is assumed
to be a limit point in $\{w_{n}\}_{n\in N}$ , there exists $x_{2}\in(M_{A}\backslash c1(U_{1}))\cap\{w_{n}\}_{n\in N}$ such that
$x_{2}\neq w_{1}$ . Choose an open neighborhood $U_{2}$ of $x_{2}$ so that $c1(U_{2})\cap(c1(U_{1})\cup\{w_{1}\})=\emptyset$ .
Inductively, for each $k\in N$ with $k\geq 2$ there exists $x_{k}\in\{w_{n}\}_{n\in N}$ and an open neigh-
borhood $U_{k}$ of $x_{k}$ such that

(3.1) $c1(U_{k})\cap(\bigcup_{n=1}^{k-1}c1(U_{n})\cup\{w_{1}\})=\emptyset$ .

From (3.1) it is obvious that each $U_{k}$ is an open neighborhood of $x_{k}$ such that
$\{c1(U_{k})\}_{k\in N}$ is a pairwise disjoint family.

For each $k\in N$ , take an open neighborhood $V_{k}$ of $x_{k}$ , with compact closure $c1(V_{k})$ ,
such that $c1(V_{k})\subset U_{k}$ . The regularity of $A$ shows that there exists $g_{k}\in A$ such that
$g_{k}(c1(V_{k}))=1$ and $g_{k}(M_{A}\backslash U_{k})=0$ . Take $y_{k}\in M_{d}$ with $x_{k}=\varphi(y_{k})$ . Since $\sigma_{y_{k}}$

is non-trivial, it follows from $(*)$ (see Proposition A) that there exists $\lambda_{k}\in \mathbb{C}$ such
that

(3.2) $|\lambda_{k}|<\frac{1}{2^{k}\Vert g_{k}\Vert}$ and $|\sigma_{y_{k}}(\lambda_{k})|>2^{k}$ .

Set $f_{k}=\lambda_{k}g_{k}\in A$ . It follows from (3.2) that 1 $f_{k}\Vert<2^{-k}$ , and so the series $\sum_{k=1}^{\infty}f_{k}$

converges in the norm of $A$ , say $f_{0}$ . Then $f_{0}=f_{k}$ on $U_{k}$ since $g_{m}(M_{A}\backslash U_{m})=0$ for



every $ m\in$ N. By Lemma 2.3, applied to an open $U_{k}\subset M_{A_{e}}$ and $f_{0}-f_{k}\in A_{e}$ , we
have $\rho_{y_{k}}(f_{0}-f_{k})=0$ , and so $\rho_{y_{k}}(f_{0})=\rho_{y_{k}}(f_{k})$ . Another application of Lemma 2.3
yields $\rho_{y_{k}}(g_{k})=1$ since $g_{k}(V_{k})=1$ . By (2.5), we have

$\rho_{y_{k}}(f_{k})=\sigma_{y_{k}}(\lambda_{k})\rho_{y_{k}}(g_{k})=\sigma_{y_{k}}(\lambda_{k})$ .

It follows from (3.2) that

$|\rho(f_{0})(y_{k})|=|\rho_{y_{k}}(f_{0})|=|\rho_{y_{k}}(f_{k})$ I $=|\sigma_{y_{k}}(\lambda_{k})|>2^{k}$ .

We now arrived at a contradiction since $\rho(f_{0})$ is bounded on $M_{B}$ , and hence we have
proved that the range $\varphi(M_{d})$ is at most finite. $\square $

Lemma 3.4. Set $M_{d}(x)^{d}=^{ef}\{y\in M_{d} : \varphi(y)=x\}$ for $x\in M_{A_{e}}$ .
(a) Each $y_{0}\in M_{j}$ is an interior point of $M_{j}\cup M_{d}(\varphi(y_{0}))$ for $j=\pm 1$ .
(b) Each $y_{0}\in M_{d}$ is an interior point of $M_{d}(\varphi(y_{0}))$ . In particular, $M_{d}(\varphi(y_{0}))$ is

an open subset of $M_{B}$ .

Proof. For $j=\pm 1$ , take $y_{0}\in M_{j}\cup M_{d}$ and set $x_{0}=\varphi(y_{0})$ . There exist open
neighborhoods $\tilde{U},\tilde{V}\subset M_{A_{e}}$ of $x_{0}$ such that $c1(\tilde{V})\subset\tilde{U},$ $c1(\tilde{V})$ compact and

(3.3) $\varphi(M_{d})\backslash \{x_{0}\}\subset M_{A_{e}}\backslash c1(\tilde{U})$ .

This would be possible since $\varphi(M_{d})$ is at most finite by Lemma 3.3. Since $A_{e}$ is
regular, there exists $f\in A_{e}$ such that

(3.4) $f(c1(\tilde{V}))=1$ and $f(M_{A_{e}}\backslash \tilde{U})=0$ .

By Lemma 2.3, applied to $f$ and $\tilde{V}$ , we have

(3.5) $\tilde{\rho}_{y0}(\tilde{f})=1$ .

Since $f(M_{A_{e}}\backslash c1(\tilde{U}))=0$ by (3.4), another application of Lemma 2.3 shows that

(3.6) $\tilde{\rho}_{y}(\tilde{f})=0$ for every $y\in\varphi^{-1}(M_{A_{e}}\backslash c1(\tilde{U}))$ .

Recall that $f\in A_{e}$ is of the form $f=f+\lambda e$ for some $f\in A$ and $\lambda\in \mathbb{C}$ . Let
$\{x_{\infty}\}=M_{A_{e}}\backslash M_{A}$ . If $x_{0}=x_{\infty}$ , then by (3.4) we have that $ 1=f(x_{0})=f(x_{0})+\lambda$ ,
and hence $\lambda=1$ since $f\in A$ vanishes at infinity. If $x_{0}\neq x_{\infty}$ , assume, without loss
of generality, that $\tilde{U},\tilde{V}\subset M_{A}$ and $c1(\tilde{U})$ compact in $M_{A}$ . It follows from (3.4), with
$x_{\infty}\in M_{A_{e}}\backslash c1(\tilde{U})$ , that $ 0=f(x_{\infty})=\lambda$ . In each case, $f$ is of the form $f+re$ , where
$r=0$ or $r=1$ . Thus (2.6) gives

$\tilde{\rho}_{y}(\tilde{f})=\rho_{y}(f)+r$ $(y\in M_{B}\backslash M_{0})$ .

It follows from (3.5) and (3.6) that $\rho_{y0}(f)=1-r$ and that

(3.7) $\rho_{y}(f)=-r$ for every $y\in\varphi^{-1}(M_{A_{e}}\backslash c1(\tilde{U}))$ .



Since $\rho(f)$ is continuous, there exists an open neighborhood $O\subset M_{B}$ of $y_{0}$ such that

(3.8) $|\rho_{y}(f)-1+r|<\frac{1}{2}$ $(y\in O)$ .

Since $M_{j}\cup M_{d}$ is open by Lemma 3.2, we may assume $O\subset M_{j}\cup M_{d}$ . It follows from
(3.7) and (3.8) that $\varphi(y^{\prime})\in c1(\tilde{U})$ for every $y^{\prime}\in O\cap M_{d}$ , and so $\varphi(y^{\prime})=x_{0}$ by (3.3).
This implies that $O\subset M_{j}\cup M_{d}(x_{0})$ , that is, if $y_{0}\in M_{j}$ , then $y_{0}\in O\subset M_{j}\cup M_{d}(x_{0})$ ,
proving (a); If $y_{0}\in M_{d}$ , then $y_{0}\in O\cap M_{d}\subset M_{d}(x_{0})$ as proved above, which proves
(b) since $M_{d}$ is open by Lemma 3.2. This completes the proof. $\square $

4. A proof of results and remarks

Proof of Theorem 1.1. Let $\rho:A\rightarrow B$ be a ring homomorphism and $\{M_{-1}, M_{0}, M_{1}, M_{d}\}$

the decomposition of $M_{B}$ as in Definition 2.3. Let $q_{y}$ be the quotient mapping of $A$

onto $A/ker\rho_{y}$ for every $y\in M_{B}\backslash M_{0}$ . By (a) of Lemma 2.4, for every $y\in M_{B}\backslash M_{0}$

there exists a nonzero field homomorphism $\tau_{y}$ from the quotient field $F_{y}$ of $A/ker\rho_{y}$

into $\mathbb{C}$ such that $\rho_{y}=\tau_{y}oq_{y}$ : If $f\in A$ , then $\rho(f)(y)=0$ for every $y\in M_{0}$ , and
$\rho(f)(y)=\tau_{y}(q_{y}(f))$ for every $y\in M_{B}\backslash M_{0}$ .

Let $y\in M_{B}\backslash M_{0}$ and $\varphi$ the mapping as in Definition 2.2. Suppose that ker $\rho_{y}$ is a
maximal modular ideal of $A$ . Then (c) of Lemma 2.2 shows that ker $\tilde{\rho}_{y}$ is a maximal
ideal of $A_{e}$ . By the definition of $\varphi$ , we have ker $\tilde{\rho}_{y}=\{f\in A_{e} : f(\varphi(y))=0\}$ , which
implies that $f-f(\varphi(y))e\in ker\tilde{\rho}_{y}$ for every $f\in A$ . It follows from (2.6) that

(4.1) $\rho_{y}(f)=\sigma_{y}(f(\varphi(y)))$ $(f\in A)$

whenever ker $\rho_{y}$ is a maximal modular ideal. By (2.5), if $y\in M_{-1}(y\in M_{1})$ , then
$\overline{\rho_{y}}$ (resp. $\rho_{y}$ ) is a nonzero complex homomorphism on $A$ . So, ker $\rho_{y}$ is a maximal
modular ideal of $A$ for every $y\in M_{-1}\cup M_{1}$ . By the definition of $M_{-1}$ and $M_{1}$

with (4.1), we have for each $f\in A$ that $\rho(f)(y)=\overline{f(\varphi(y))}$ for $y\in M_{-1}$ and
$\rho(f)(y)=f(\varphi(y))$ for $y\in M_{1}$ . We thus conclude that $\rho$ is of the form (1.1).

Finally, we shall prove the continuity of $\varphi:M_{B}\backslash M_{0}\rightarrow M_{A_{e}}$ . Take $y_{0}\in M_{B}\backslash M_{0}$ ,
and set

$M_{d}(\varphi(y_{0}))=\{y\in M_{d} : \varphi(y)=\varphi(y_{0})\}$ .
If $y_{0}\in M_{d}$ , it follows from (b) of Lemma 3.4 that $M_{d}(\varphi(y_{0}))$ is open, and hence
$\varphi$ is continuous on $M_{d}$ . So, we need consider only the case where $y_{0}\in M_{-1}\cup M_{1}$ .
Suppose that $y_{0}\in M_{1}$ and choose a net $\{y_{\alpha}\}\subset M_{B}\backslash M_{0}$ converging to $y_{0}$ . By (a)
of Lemma 3.4, $y_{0}$ is an interior point of $M_{1}\cup M_{d}(\varphi(y_{0}))$ . Thus, we may assume that
$y_{\alpha}\in M_{1}\cup M_{d}(\varphi(y_{0}))$ for every $\alpha$ . By (4.1) and the definition of $M_{d}(\varphi(y_{0}))$ , we have

$f(\varphi(y_{\alpha}))=\left\{\begin{array}{ll}\rho_{y_{\alpha}}(f) & y_{\alpha}\in M_{1}\\f(\varphi(y_{0})) & y_{\alpha}\in M_{d}(\varphi(y_{0}))\end{array}\right.$



for every $f\in A$ . Since $\rho_{y0}(f)=f(\varphi(y_{0}))$ , it follows that

$|f(\varphi(y_{\alpha}))-f(\varphi(y_{0}))|\leq|\rho_{y_{\alpha}}(f)-\rho_{y0}(f)|$ $(f\in A)$

for every $\alpha$ . Since $\rho(f)$ is continuous, $\rho_{y_{\alpha}}(f)=\rho(f)(y_{a})$ converges to $\rho_{y0}(f)$ . Hence
$f(\varphi(y_{\alpha}))$ converges to $f(\varphi(y_{0}))$ for every $f\in A$ , that is, $f(\varphi(y_{\alpha}))$ converges to
$f(\varphi(y_{0}))$ for every $f\in A_{e}$ . By the definition of the Gelfand topology, we see that
$\varphi(y_{\alpha})$ converges to $\varphi(y_{0})$ . This implies the continuity of $\varphi$ on $M_{1}$ . In the same way,
we see that $\varphi$ is continuous on $M_{-1}$ . The proof is complete. $\square $

Pmof of Corollary 1.2. Under the notation of Theorem 1.1, $ M_{0}=\emptyset$ since $B_{0}$ van-
ishes nowhere on $M_{B}$ , and hence $\varphi:M_{B}\rightarrow M_{A_{e}}$ is a continuous mapping. We first
show that ker $\rho_{y}$ is a maximal modular ideal of $A$ for every $y\in M_{B}$ . To prove this,
take $y\in M_{B}$ and $ f\not\in$ ker $\rho_{y}$ arbitrarily. Since the subalgebra $B_{0}$ of $B$ vanishes
nowhere, there exists $b\in B_{0}$ such that $b(y)=1/\rho_{y}(f)$ . Because $B_{0}\subset\rho(A)$ , there
exists $a\in A$ such that $\rho(a)=b$ , and so $\rho_{y}(f)\rho_{y}(a)=1$ . It follows from (2.6)
that $ fa-- e\in$ ker $\tilde{\rho}_{y}$ . By the definition of $\varphi$ , we have $f(\varphi(y))a(\varphi(y))-1=0$ ,
and so $f(\varphi(y))\neq 0$ . This implies that $\{f\in A : f(\varphi(y))=0\}\subset$ ker $\rho_{y}$ . Hence,
ker $\rho_{y}=\{f\in A : f(\varphi(y))=0\}$ for every $y\in M_{B}$ . Since $ M_{0}=\emptyset$ , we have
$\varphi(M_{B})\subset M_{A}$ . So, we may regard $\varphi$ as a mapping from $M_{B}$ into $M_{A}$ .

Since ker $\rho_{y}$ is a maximal modular ideal of $A$ for every $y\in M_{B},$ $(4.1)$ holds for
every $y\in M_{B}$ . If $y\in M_{d}$ , then (c) of Lemma 2.4 and the definition of $M_{d}$ imply
that $\tau_{y}=\sigma_{y}$ is non-trivial. We thus conclude that $\rho$ is of the form (1.2) for all
$f\in A$ . Since $\rho(A)$ contains a subalgebra $B_{0}$ which vanishes nowhere, we see that $\tau_{y}$

is surjective: For if $y\in M_{d}$ and $\lambda\in \mathbb{C}$ , then there exists $a‘\in A$ such that $\rho_{y}(a^{\prime})=\lambda$ ,
and so by (1.2) we have that $\tau_{y}(a^{\prime}(\varphi(y)))=\lambda$ , proving $\tau_{y}$ surjective.

We next show that $\varphi$ is injective. Let $y_{1},$ $y_{2}\in M_{B}$ with $y_{1}\neq y_{2}$ . Since $B_{0}$ is a
separating subalgebra, there exists $b_{0}\in B_{0}$ such that $b_{0}(y_{1})=0$ and $b_{0}(y_{2})=1$ .
Choose $a_{0}\in A$ so that $\rho(a_{0})=b_{0}$ . Then $\rho(a_{0})(y_{1})=0$ and $\rho(a_{0})(y_{2})=1$ . Thus
(1.2) gives $a_{0}(\varphi(y_{1}))=0$ and $a_{0}(\varphi(y_{2}))=1$ , proving $\varphi$ injective.

In the following step, we show that $\varphi$ is a closed mapping. If $B$ is unital then $\varphi$

is a closed mapping since $\varphi$ is a continuous mapping from a compact space into a
Hausdorff space. We thus consider the case where $B$ is without unit. In this case, $A$

is also without unit: For if $A$ has a unit $e$ , it follows from (1.2) that $\rho(e)(y)=1$ for
every $y\in M_{B}$ , and hence $\rho(e)$ is a unit of $B$ because $B$ is assumed to be semisimple.
We define a mapping $\tilde{\varphi}:M_{B_{e}}\rightarrow M_{A_{e}}$ by

$\tilde{\varphi}(y)=\left\{\begin{array}{ll}\varphi(y) & y\in M_{B}\\x_{\infty} & y=y_{\infty}\end{array}\right.$

where $\{x_{\infty}\}=M_{A_{e}}\backslash M_{A}$ and $\{y_{\infty}\}=M_{B_{e}}\backslash M_{B}$ . Then $\tilde{\varphi}$ is continuous: In fact, it
is enough to show the continuity of $\tilde{\varphi}$ at $y_{\infty}$ . Let $\{y_{\alpha}\}\subset M_{B_{e}}$ be a net converging to



$y_{\infty}$ . Lemma 3.3 with the injectivity of $\varphi$ implies that $M_{d}$ is at most finite, and hence
$M_{B_{e}}\backslash M_{d}$ is an open neighborhood of $y_{\infty}$ . Thus we may assume $\{y_{\alpha}\}\subset M_{B_{e}}\backslash M_{d}$ .
Pick $f\in A$ arbitrarily. Note that

(4.2) $f(\tilde{\varphi}(y_{\alpha}))=\left\{\begin{array}{ll}f(\varphi(y_{\alpha})) & y_{\alpha}\in M_{B}\backslash M_{d}\\f(x_{\infty})=0 & y_{\alpha}=y_{\infty}.\end{array}\right.$

It follows from (1.2) and (4.2) that $|f(\tilde{\varphi}(y_{\alpha}))|=|\rho(f)(y_{\alpha})|$ for each $\alpha$ . Since $\rho(f)$ is
continuous on $M_{B_{e}},$ $\rho(f)(y_{\alpha})$ converges to $\rho(f)(y_{\infty})=0$ . This implies that $f(\tilde{\varphi}(y_{\alpha}))$

converges to $0=f(\tilde{\varphi}(y_{\infty}))$ . Since $f\in A$ was arbitrary, we thus obtain $f(\tilde{\varphi}(y_{\alpha}))$

converges to $\tilde{f}(\varphi(y_{\infty}))$ for every $f\in A_{e}$ . By the definition of the Gelfand topology,
we see that $\tilde{\varphi}(y_{\alpha})$ converges to $x_{\infty}=\tilde{\varphi}(y_{\infty})$ , proving the continuity of $\tilde{\varphi}$ . Now it
is easy to see that $\varphi$ is a closed mapping. In fact, let $F$ be a closed subset of $M_{B}$ .
Then $F\cup\{y_{\infty}\}\subset M_{B_{\epsilon}}$ is compact. Since $\tilde{\varphi}$ is continuous on $M_{B_{e}},\tilde{\varphi}(F\cup\{y_{\infty}\})=$

$\varphi(F)\cup\{x_{\infty}\}$ is compact in $M_{A_{e}}$ , and so $\varphi(F)\subset M_{A}$ is closed. This proves that $\varphi$

is a closed mapping.
Finally, we show that $B$ is regular. To do this, let $F$ and $K$ be a closed subset and

a compact subset of $M_{B}$ with $ F\cap K=\emptyset$ . Since $\varphi$ is an injective, continuous and
closed mapping as proved above, $\varphi(F)$ is closed and $\varphi(K)$ is compact in $M_{A}$ with
$\varphi(F)\cap\varphi(K)=\emptyset$ . Since $A$ is regular, there exists $a_{1}\in A$ such that $a_{1}(\varphi(K))=1$

and $a_{1}(\varphi(F))=0$ . By (1.2), we have that $\rho(a_{1})(K)=1$ and $\rho(a_{1})(F)=0$ , and so
the regularity of $B$ is proved. $\square $

Example 4.1. Let $D$ and $\overline{D}$ be the open and the closed unit discs respectively.
Let $A(\overline{D})$ be the disc algebra, that is, the uniform algebra of all complex-valued
continuous functions on $\overline{D}$ , which are holomorphic in D. Let $H^{\infty}(D)$ be the com-
mutative Banach algebra of all bounded holomorphic functions on D. Neither $A(\overline{D})$

nor $H^{\infty}(D)$ are regular. Let $B=A(\overline{D})$ or $H^{\infty}(D)$ . By Corollary 1.2, there are no
ring homomorphism $\rho$ from a semisimple regular commutative Banach algebra $A$

to $B$ such that $\rho(A)$ contains $a$ separating and vanishes nowhere subalgebra of $B$ .
In particular, both $A(\overline{D})$ and $H^{\infty}(D)$ can not be the ring homomorphic images of
any semisimple regular commutative Banach algebra $A$ (cf. [11, Example 1]). The
case where $A=C_{0}(X)$ , the regular commutative Banach algebra of all complex-
valued continuous functions on a locally compact Hausdorff space $X$ , which vanish
at infinity, was proved by Moln\’ar [12, Corollary].

Example 4.2. Let $X$ and $Y$ be locally compact Hausdorff spaces such that $Y$ can
not be embedded into $X$ . By Corollary 1.2, there are no surjective ring homomor-
phism from $C_{0}(X)$ onto $C_{0}(Y)$ .

Remark 4.1. Let $X$ be the closure of $\{1/n:n\in N\}$ in $\mathbb{R}$ with its usual topology.
P. \v{S}emrl [15, Example 5.4] constructed a ring homomorphism $\rho:C(X)\rightarrow \mathbb{C}$ such



that ker $\rho$ is a nonmaximal prime ideal of $C(X)$ , where $C(X)$ denotes the commuta-
tive regular Banach algebra of all complex-valued continuous functions on $X$ . There
do exist infinitely many such mappings. In fact, let $\mathcal{A}$ be a uniform algebra on an
infinite compact metric space and $G$ the set of all ring homomorphisms of $\mathcal{A}$ into $\mathbb{C}$ ,
whose kernels are nonmaximal prime ideals. In [10, Corollary 1.2], it is proved that
$\# G=\# 2^{\mathbb{C}}$ , where $\# S$ denotes the cardinal number of a set $S$ .
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