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RING HOMOMORPHISMS ON COMMUTATIVE
REGULAR BANACH ALGEBRAS

TAKESHI MIURA, SIN-EI TAKAHASI, AND NORIO NIWA

ABSTRACT. We give a partial representation of a ring homomorphism, which need
not be continuous nor surjective, from a semisimple commutative regular Banach
algebra into a semisimple commutative Banach algebra. As a corollary to our
main theorem, we prove that there are no surjective ring homomorphism from
Co(R) onto Cp(D).

1. Introduction and the statement of results

Let A and B be algebras over the complex number field C. A mapping p: A — B
is a ring homomorphism provided that

p(f+9)=p(f) +p(g) (f,g€A)
p(fg) =p(fr(g)  (f,g€A).

If, in addition, p preserves scalar multiplication, that is, p(Af) = Ap(f) for every
f € A and A € C, then p is an ordinary homomorphism. The zero mapping
p(z) = 0 (z € C), the identity mapping p(z) = z (¢ € C) and the complex conjugate
p(z) = z (z € C) are typical examples of ring homomorphisms on C. These are
called trivial ring homomorphisms on C, or in short trivial. It is obvious that the
trivial ring homomorphisms on C are continuous. The converse is also valid, that is,
a continuous ring homomorphism is trivial. Moreover, the following is well-known,
so we omit a proof (For a proof, see, for example [9, Proposition 2.1]).

Proposition A. If p is a ring homomorphism on C, each of the following two
statements implies the other:

(a) p is trivial.

(b) There exist ag, Bo > 0 such that |z| < ap implies |p(2)| < Bo.

One might expect that ring homomorphisms on C are necessarily trivial. Unfor-
tunately, this is not true. In fact, there exists a non-trivial ring homomorphism on
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C. By Proposition A, we see that a ring homomorphism 7 on C is non-trivial if and
only if the following are satisfied:

(%) for each o, 8 > 0, there exists z € C with |z| < a but |7(2)| > 8.

We shall use (x) in Lemma 3.3. It seems that the existence of a non-trivial ring
homomorphism had been investigated by C. Segre [14] and M. H. Lebesgue [6] (see
(5]). H. Kestelman [5] had given many different ways to construct a non-trivial ring
homomorphism under the axiom of choice, or one of some equivalent propositions,
say the well-ordering theorem of Zermelo, or Zorn’s lemma. By its construction,
we see that there are infinitely many non-trivial ring homomorphisms on C. More
explicitly, M. Charnow (2| proved that if G is the set of all ring automorphisms on
an algebraically closed field k, then §G = #2*, where §S denotes the cardinal number
of a set S. In particular, there are #§2€ ring automorphisms on C. Moreover, ring
homomorphic image is very complicated. Let H(2) be the algebra of all holomorphic
functions on a region  C C. In [9], it is proved that there exists an injective ring
homomorphism from H () into C, that is, we may regard H(Q?) as a subring of C.
Ring homomorphisms are studied by many authors (cf. [1, 3, 4, 7, 8, 9, 10, 11, 12,
13, 15, 17]).

In this paper, we will consider a ring homomorphism p from a semisimple commu-
tative regular complex Banach algebra A into a semisimple commutative complex
Banach algebra B; Neither the continuity nor the surjectivity of p are assumed.
The maximal ideal spaces of A and B are denoted by M4 and Mp, respectively.
We will give a representation of such a ring homomorphism. For simplicity, we will
denote the Gelfand transform of a by the same letter a; This will cause no confusion.
Recall that A is regular if and only if for each pair (F, K) of closed subset F and
compact subset K of M4 with F'N K = (), there exists a € A such that a(F) = 0
and a(K) = 1 (cf. [16, Theorem 27.2]). Note that we do not assume that A and
B are with unit. We will denote by A, the commutative Banach algebra obtained
by adjunction of a unit element e to A. Recall that P is a prime ideal of A if P
is a proper ideal satisfying that fg € P implies f € P or g € P. In particular,
every maximal modular ideal is a prime ideal. Although we are concerned with ring
homomorphisms, by an ideal we mean an algebra ideal.

Now we are ready to state our main result.

Theorem 1.1. Let A be a semisimple commutative regular complex Banach algebra
and B a semisimple commutative complex Banach algebra with mazimal ideal spaces
M4 and Mp, respectively. If p: A — B is a ring homomorphism, then there exist a
decomposition {M_,, My, My, My} of Mp and a continuous mapping ¢: Mg\ My —



My, such that

((  ——

fle(y)) ye M,
0 y € My
1.1 _
4 DW= sowy vem
\Ty(Qy(f)) y € My

for every f € A, where q, is the quotient mapping from a prime ideal P, of A onto
A/P, and 7, is a nonzero field homomorphism from the quotient field of P, into C.

For a subset S of B, we say that S is separating if to each y;,y» € Mp with
Y1 # Y2 there corresponds b; € S such that bi(y1) # bi(y2). If, for every y € Mp,
there exists by € S such that by(y) # 0, then we say that S vanishes nowhere.

Corollary 1.2. Let p: A — B be a ring homomorphism. If the range p(A) con-
tains a subalgebra By of B such that By is separating and vanishes nowhere, then
there exist a decomposition {M_1, M1, My} of Mp and an injective, continuous and
closed mapping p: Mg — M, with the following property: To each y € My there
corresponds a non-trivial ring automorphism 1, from C onto itself such that

Fe(y)) yeE M,
(1.2) p(f)(y) = § fle(y)) yeM
n(f(p(y) yE€ My

for all f € A. In particular, B is necessarily regular.

2. Construction of the mapping ¢

Recall that we never assume that A and B are with unit. Let Ac = {f + Xe: f €
A, A € C} be the Banach algebra obtained by adjunction of a unit element e to A.
Note that A, is well-defined even for unital A. The maximal ideal space My, of A,
is the one-point compactification of M 4. We see that A, is regular since so is A. If
{Zoo} = M4, \ My, then f(zo) = 0 for every f € A.

In this section, p will be a ring homomorphism from A into B, and p, for y € Mp
will be the induced ring homomorphism from A into C defined by

py(f)=p(Hy) (fe€A.
We define a subset My of Mg by »
M, = {y € Mg : p, is identically 0}.
Lemma 2.1. Let y € Mg\ M,.

(a) py can be extended to a unique ring homomorphism p, of A..



(b) Let f+ Xe € A.. Then f + Ae € ker py if and only if fa + Aa € ker p, for
every a € A with py(a) # 0.

Proof. (a) Take a € A with p,(a) # 0. If we define g,: A. — C by
py(Aa)

(2.1) Py(f+2e) =p,(f)+ == (f+Ae€ A,
py(a)
then it is obvious to verify that g, is additive and py|4 = p,. By the equations
(2.2 ok = o, 2D e he a)
py(a)
and A
(2.3) py(Aua) _ py(Aa) py(pa) O\ p € C),

py(@)  py(a) py(a)
we have, for each f + e, g + ue € A, that

py((f + Ae)(g + pe)) = py(fg + uf + Ag + Aue)

= py(fg+nf+rg) + p—’;i?%;) (by (2.1))
_ py(pa) py(Aa)
= Py(f)Py(g) + py(f) 1y (a) + py(9) py(a)

py(a) py(a)
py(Aa) } { py(pa)
=1m(f) + py(9) +
{ Y py(a) Y py(a)
= ﬁy(f + Xe) py(g + ue),
which proves that g, is multiplicative. We have now proved that there exists a ring
homomorphism g, from A, into C such that g,|4 = p,.
It remains to be proved that p, = p,*, whenever p,* is another ring homomorphism
with p,*|a = p,. So, take f + Ae € A, arbitrarily. Since

(2.4) py(Aa) = p,"(Aa) = p,"(Ae)py(a),
it follows from (2.1) and (2.4) that
py(Aa)

py"(f + Ae) = p*(f) + py"(Ne) = py(f) + p,(a) = py(f + Xe),

and the uniqueness is proved. In particular,  does not depend on a choice of a € A
with p,(a) # 0.

(b) By the uniqueness, j, is of the form (2.1) for any a € A with p,(a) # 0. Now
it is obvious that f + Ae € ker p, if and only if fa+ Aa € ker p, for every a € A with
py(a) # 0. The proof is complete. O




From now on, the letter g, will denote the unique ring homomorphism from A.
to C with gy|a = p, for y € Mp \ Mp.

Definition 2.1. For y € Mg\ My, we define a nonzero ring homomorphism ¢, : C —
C by
0,(N) =5,0)  (A€C).
By a simple calculation, we see that o,(r) = r for every y € Mp\ M, and rational
real number r. It follows from the equation

py(Af) = py(Af) = By(Ne)py(f) (A e€C,fe4)

that |
(2.5) py(Af) =0y(Npy(f) (A €C,f €A
for every y € Mp \ Mp. Thus (2.1) and (2.5) give

(2.6) py(f +2e) = py(f) +oy())  (f+Ae€A)

for all y € Mg \ Mp.
Lemma 2.2. Let y € Mg\ My. Then

(a) the kernel ker p, is a prime ideal of A, which is contained in at most one
mazimal modular ideal of A,

(b) ker p, is contained in a unique mazimal ideal of Ae, and

(c) if ker py is a mazimal modular ideal of A, then ker p, is a mazimal ideal of
Ae.

Proof. (a) By (2.5), we see that ker p, is an algebra ideal of A. Now it is obvious
that ker p, is a prime ideal.

Suppose that ker p, is contained in a maximal modular ideal of A, that is, there
exists £; € M4 such that

(2.7) kerp, C {f € A: f(z1) = 0}.

Take 3 € My \ {z:} arbitrarily. We will show that ker p, is not contained in the
maximal modular ideal {f € A : f(z2) = 0}. Choose an open neighborhood V}
of z;, for j = 1,2, so that V; NV, = 0. The regularity of A therefore shows the
existence of f; € A such that

(2.8) filz;)=1 and f;(Ma\V;)=0 (j=12).

Hence f1fa = 0 on My, and so p,(f1)p,(f2) = 0. It follows from (2.7) and (2.8) that
py(fi) # 0, and hence fo € kerp, \ {f € A: f(z2) = 0}. Since z2 € M4\ {z1} was
arbitrary, ker p, is contained in at most one maximal modular ideal.



(b) Note that ker g, is a proper ideal of a unital commutative Banach algebra A,
since py|a = p, is nonzero. Thus ker g, is contained in at least one maximal ideal
of A.. We see that the proof of (a) can be applied to A, and ker g,, and so ker g,
is contained in at most one maximal ideal of A,. We thus conclude that ker g, is
contained in a unique maximal ideal of A..

(c) Suppo_Se that
(2.9) kerp, = {f € A: f(z0) = 0}
for some o € M4. Take a € A with a(zo) # 0. Then p,(a) # 0 by (2.9). If
g+ pe € ker g, then ga + pa € ker p, by (b) of Lemma 2.1, and hence (2.9) implies
(9(zo) + 1)a(zo) = 0. Since a(zo) # 0, we have g+ pe € {f € A. : f(zo) = 0}. Thus
ker 5, C {f € A. : f(zo) = 0}. i

Take a’ € A with p,(a’) # 0. Since (g9(zo) + p)a’(zo) = 0 for every g + pe € {f €
A. : f(mo) = 0}, we have ga’ + pa’ € ker p, by hypothesis. Thus (b) of Lemma
2.1 shows g + pe € ker jy, which implies that {f € A, : f(zo) = 0} = ker py. We
thus conclude that ker j, is a maximal ideal whenever ker p, is a maximal modular
ideal. a

Definition 2.2. By (b) of Lemma 2.2, for each y € Mg\ M), ker p, is contained in
a unique maximal ideal of A.. So, there exists a mapping ¢: Mg\ My — M4, such
that ker p, C {f € A, : f(¢(y)) = 0} for every y € Mp \ M,.

Lemma 2.3. Let y € Mg \ My and let r be a rational real number. If h € A,
satisfies h(G) = r for some open neighborhood G C Ma, of p(y), then p,(h) = r.

Proof. Put h, = h —re € A., and so h, = 0 on G. By the regularity of A., there
exists § € A, such that §(p(y)) = 1 and §(M4, \ G) = 0. Then Gh, = 0 on My,,
and hence 5,(3)p,(h,) = 0. Since §(¢(y)) = 1, we have by the definition of @ that
py(g) # 0, and hence j,(h,) = 0. Since py(re) = o, (r) =r, we have g, (h) =r. O
Definition 2.3. We introduce the following notation

M_1={y€M3\Mo:ay()\)=5\, (/\GC)}

My ={ye Mg\ My:0y(X\) =X (Ae€C)},
where o, is as in Definition 2.1. Put
My ={y € Mg\ M, : 0, is non-trivial }.

Then M_,, My, M, and M, are (possibly empty) pairwise disjoint subsets of Mg
with MB = M_]_ U MO U M1 U Md.

It should be mentioned that we can define the quotient field of an integral domain
R, commutative ring which has no zero divisor, even if R has no unit: For if a €



R\ {0}, then the equivalence class a/a, with respect to the usual equivalence relation,
is a unit. Moreover, we can identify b € R with ba/a.

Lemma 2.4. Lety € Mg\ My and g,: A — A/ker p, be the quotient mapping. If F,
is the quotient field of q,(A), then there exists a unique nonzero field homomorphzsm
: Fy — C such that

( ) Py =Ty oy,
(b) 1ylc = oy, and
(c) 1y = o, whenever ker p, is a mazimal modular ideal of A.

Proof. Note first that the quotient field F,, of g,(A) is well-defined since g,(A) is an
integral domain by (a) of Lemma 2.2. We define a mapping 7,: F, — C by

(2.10) o (a(F)/a(9)) = ”EQ (@(1)/a(9) € E,).

A simple calculation shows that 7, is a well-defined nonzero field homomorphism on
F,. Take a € A with py(a) # 0.

(a) As noted above, we may identify g,(f) with g,(fa)/gy(a) for every f € A.
Under this identification, we have by (2.10) that

) = 280 — 7 g, (fa) 0 (o)) = (s 1)

for every f € A, proving p, = 7, o gy.
(b) The identification A € C with g,(Aa)/qy(a) € F, shows that

Aa
) = g 0a)/g @) = 2020 e
py(a)
From (2.5) it follows that p,(Aa)/py(a) = oy(A) for every A € C, and hence 7|c = 0y.
(c) Suppose that ker p, is a maximal modular ideal of A. Then ¢,(A) = A/ker p,

is isomorphic to C. Thus we may assume F, = C, and hence 7, = o, by (b). O

3. Topological properties of the decomposition of Mp

In this section, {M_,, My, My, My} will stand for the decomposition of Mp as in
Definition 2.3.

Lemma 3.1. M, is a closed subset of Mp.

Proof. Let {yo} C M, be a net converging to a point yo € Mp. Take f € A
arbitrarily. Then p(f)(¥a) = py.(f) = 0 by definition. Since p(f) is a continuous
function on Mp, we have p,,(f) = 0. Since f € A was arbitrary, we have yo € Mo,
proving My closed. ]

Lemma 3.2. Both M_; U My and My U M, are closed subsets of Mp.



Proof. Since M, is closed, it is enough to show that cl(M;) C My U M; for j = +1.
Here and after, cl(S) denotes the closure of a set .S. It will cause no confusion if we
use the same letter to designate a closure in M4 and Mp.

For j = +£1, take yo € cl(M;) and a net {y,} C M; converging to yo. If yo & Mo,
then there exists a € A such that p,,(a) # 0. Since p,_ (a) = p(a)(ya) converges to
Pyo(a) # 0, without loss of generality we may assume p,_(a) # 0 for all . It follows
from (2.5) that

r() = el L BB o) (re )

On the other hand, since {y,} C M;, we have 0,,(A) = X if j = —1, and 0,,(\) = A
if = 1. Thus yo € M; for j = £1. We thus obtain cl(M;) C My U M;, and the
proof is complete. O

Lemma 3.3. The range p(My) C My, is at most finite.

Proof. Assume, to get a contradiction, that (M) contains a countable subset
{wn}nen. We may assume that {wy,}nen C Ma. We first assert that there exists a
subset {z}xen Of {wy }nen with the following property: To each k € N there corre-
sponds an open neighborhood Uy of xj such that {cl(Ux)}xren is a pairwise disjoint
family; If each wy is an isolated point of {wy, },en, then it is obvious that there is such
an open neighborhood Uy of wyi, and so we will consider the case where there is a
limit point, say w, in {wp}nen. Take z; € {wy, }nen With z; # w; arbitrarily. There
exists an open neighborhood U; of z; such that w; ¢ cl(U;). Since w; is assumed
to be a limit point in {wy }nen, there exists 2 € (M4 \ cl(U1)) N {wy }nen such that
z9 # wy. Choose an open neighborhood Us of x so that cl(Uz) N (cl(Ur)U{w,}) = 0.
Inductively, for each £ € N with k > 2 there exists 2 € {w, }nen and an open neigh-
borhood Uy, of zi such that

(3.1) cl(Uk) N (UnZicl(Un) U {wn}) = 0.

From (3.1) it is obvious that each Uy is an open neighborhood of z; such that
{cl(Ux) }xen is a pairwise disjoint family.

For each k € N, take an open neighborhood V, of zi, with compact closure cl(V}),
such that cl(Vi) C Ux. The regularity of A shows that there exists gx € A such that
gr(cl(Vk)) = 1 and gx(Ma4 \ Ux) = 0. Take yx € My with z = ¢(yx). Since oy,
is non-trivial, it follows from () (see Proposition A) that there exists \; € C such
that

1
3.2 M| < == and |o,, (A)| > 2F.
( ) I k' 2k”gk” I yk( k)l

Set fx = Mgk € A. It follows from (3.2) that || f¢|| < 2%, and so the series Y o, fi
converges in the norm of A, say fo. Then fo = fi on Uy since g,,(Ma \ Uy,) = 0 for



every m € N. By Lemma 2.3, applied to an open Uy C M4, and fy — fr € Ae, we
have py, (fo — fr) = 0, and so py, (fo) = py,(fx). Another application of Lemma 2.3
yields p,, (gx) = 1 since gx(V%) = 1. By (2.5), we have ‘

Py (fi) = 0y (M) Py, (gk) = 0 (Ak)-
It follows from (3.2) that

1o(fo) We)| = |py, (fo)l = lpy. (fi)l = loy. (Ae)| > 2.

We now arrived at a contradiction since p(fy) is bounded on Mg, and hence we have
proved that the range ¢(M,) is at most finite. O
Lemma 3.4. Set My(z) & {y € My : o(y) = z} for £ € Ma,.
(a) Each yo € M; is an interior point of M; U My(p(yo)) for j = £1.
(b) Each yo € My is an interior point of Ma(¢(yo)). In particular, My(p(yo)) is
an open subset of Mp.

Proof. For j = +1, take yo € M; U My and set zo = ¢(yo). There exist open
neighborhoods U, V € M, of z, such that cl(V) c U, cl(V) compact and

(3.3) @(Mg) \ {zo} C Ma, \ cl(D).

This would be possible since ¢(My) is at most finite by Lemma 3.3. Since A, is
regular, there exists f € A, such that

(3.4) F@A(V) =1 and f(Ma \U)=0.

By Lemma 2.3, applied to f and V, we have

(3.5) | Bro(F) = 1.

Since f(Ma, \ cl(U)) = 0 by (3.4), another application of Lemma 2.3 shows that
(3.6) py(f) =0 for every y € ™ (Ma, \ cl(D)).

Recall that f € A, is of the form f = f + Xe for some f € A and A € C. Let
{Zoo} = Ma, \ My. If 2o = o, then by (3.4) we have that 1 = f(zo) = f(zo) + A,
and hence A = 1 since f € A vanishes at infinity. If 9 # ., assume, without loss
of generality, that U7, V M4 and cl(U) compact in M. It follows from (3.4), with
Too € My, \ cl(U), that 0 = f(2+) = . In each case, f is of the form f + re, where
r =0 or r = 1. Thus (2.6) gives

pu(f)=p(f)+r  (y€Mp\ M)
It follows from (3.5) and (3.6) that p,,(f) =1 — r and that

(3.7) py(f) = —r for every y € o~ }(Ma, \ cl(D)).



Since p(f) is continuous, there exists an open neighborhood O C Mg of y, such that

(3:8) b(f)~1+7l<5  (WeO)

Since M;U M, is open by Lemma 3.2, we may assume O C M;UMj,. It follows from
(3.7) and (3.8) that ¢(y’) € cl(U) for every ¥’ € ON M;, and so p(y) = zo by (3.3).
This implies that O C M; U My(xo), that is, if yo € M, then yo € O C M; U My(=y),
- proving (a); If yo € My, then yo € O N My C My(z,) as proved above, which proves
(b) since My is open by Lemma 3.2. This completes the proof. a

4. A proof of results and remarks

Proof of Theorem 1.1. Let p: A — B be aring homomorphism and {M_,, My, My, My}
the decomposition of Mp as in Definition 2.3. Let ¢, be the quotient mapping of A
onto A/ker p, for every y € Mg\ M,. By (a) of Lemma 2.4, for every y € Mg\ M,
there exists a nonzero field homomorphism 7, from the quotient field F, of A/ker p,
into C such that p, = 7, 0¢,: If f € A, then p(f)(y) = 0 for every y € M,, and
p(F)(y) = 7y(gy(f)) for every y € Mp \ Mo.

Let y € Mp\ M, and ¢ the mapping as in Definition 2.2. Suppose that ker py is a
maximal modular ideal of A. Then (c) of Lemma 2.2 shows that ker 5, is a maximal
ideal of A.. By the definition of ¢, we have ker 3, = {f € A. : f(¢(y)) = 0}, which
implies that f — f(o(y))e € ker p, for every f € A. It follows from (2.6) that

(4.1) py(f) = oy (f((y))) (f e A

whenever ker p, is a maximal modular ideal. By (2.5), if y € M_; (y € M,), then
py (resp. py) is a nonzero complex homomorphism on A. So, ker p, is a maximal
modular ideal of A for every y € M_; U M;. By the definition of M_; and M,
with (4.1), we have for each f € A that p(f)(y) = f(e(y)) for y € M_; and
p(f)(y) = f(p(y)) for y € M;. We thus conclude that p is of the form (1.1).

Finally, we shall prove the continuity of ¢: Mp\ My — M,,. Take yo € Mp\ My,
and set

My(e(yo)) = {y € Ma: o(y) = o(y0)}-

If yo € My, it follows from (b) of Lemma 3.4 that My(p(yo)) is open, and hence
¢ is continuous on My. So, we need consider only the case where yo € M_; U M.
Suppose that yo € M; and choose a net {y,} C Mp \ M, converging to yo. By (a)
of Lemma, 3.4, yp is an interior point of M; U My(¢(yo)). Thus, we may assume that
Yo € M1 U My(p(yo)) for every a. By (4.1) and the definition of My(¢(yo)), we have

Py (f) Yo € My

flp(ya)) = {f(SO(yO)) Yo € Ma(p(yo))



for every f € A. Since py,(f) = f(¢(yo)), it follows that

|f(e(Wa)) = FP(y0))] < |0ye (f) — Pyo(f)] (f € A)

for every a. Since p(f) is continuous, p,. (f) = p(f)(ya) converges to py,(f). Hence
f(p(ya)) converges to f(p(yo)) for every f € A, that is, f(¢(ys)) converges to
f (¢(yo)) for every f € A.. By the definition of the Gelfand topology, we see that
©(yo) converges to ¢(yo). This implies the continuity of ¢ on M;. In the same way,
we see that ¢ is continuous on M_;. The proof is complete. a

Proof of Corollary 1.2. Under the notation of Theorem 1.1, My = @ since By van-
ishes nowhere on Mp, and hence ¢: Mg — My, is a continuous mapping. We first
show that ker p, is a maximal modular ideal of A for every y € Mp. To prove this,
take y € Mp and f ¢ ker p, arbitrarily. Since the subalgebra By of B vanishes
nowhere, there exists b € By such that b(y) = 1/p,(f). Because By C p(A), there
exists a € A such that p(a) = b, and so p,(f)py(a) = 1. It follows from (2.6)
that fa — e € kerp,. By the definition of ¢, we have f(p(y))a(p(y)) —1 = 0,
and so f(¢(y)) # 0. This implies that {f € A : f(¢(y)) = 0} C kerp,. Hence,
kerp, = {f € A: f(p(y)) = 0} for every y € Mp. Since My = 0, we have
@(Mp) C M4. So, we may regard ¢ as a mapping from Mp into Ma4.

Since ker p, is a maximal modular ideal of A for every y € Mg, (4.1) holds for
every y € Mp. If y € M, then (c) of Lemma 2.4 and the definition of My imply
that 7, = o, is non-trivial. We thus conclude that p is of the form (1.2) for all
f € A. Since p(A) contains a subalgebra By which vanishes nowhere, we see that 7,
is surjective: For if y € M, and A € C, then there exists a’ € A such that p,(a’) = A,
and so by (1.2) we have that 7,(a’(¢(y))) = A, proving 7, surjective.

We next show that ¢ is injective. Let y;,y2 € Mp with y; # y,. Since By is a
separating subalgebra, there exists by € By such that by(y1) = 0 and by(yz) = 1.
Choose ag € A so that p(ag) = by. Then p(ag)(y1) = 0 and p(ap)(y2) = 1. Thus
(1.2) gives ag(p(y1)) = 0 and ao(¢(y2)) = 1, proving ¢ injective.

In the following step, we show that ¢ is a closed mapping. If B is unital then ¢
is a closed mapping since ¢ is a continuous mapping from a compact space into a
Hausdorff space. We thus consider the case where B is without unit. In this case, A
is also without unit: For if A has a unit e, it follows from (1.2) that p(e)(y) = 1 for
every y € Mp, and hence p(e) is a unit of B because B is assumed to be semisimple.
We define a mapping ¢: Mp, — M4, by

5(y) = {so(y) y € Mp
Too Y=Y

where {Zo} = M4, \ M4 and {y} = Mp, \ Mp. Then @ is continuous: In fact, it
is enough to show the continuity of @ at y. Let {yo} C Mp, be a net converging to



Yoo Lemma 3.3 with the injectivity of ¢ implies that M, is at most finite, and hence
Mp, \ M, is an open neighborhood of y.,. Thus we may assume {y,} C Mp, \ Mj.
Pick f € A arbitrarily. Note that

{ZUN) Yo € Mp \ My
f(xoo) =0 Ya = Yoo-

It follows from (1.2) and (4.2) that |f(&(ya))| = |o(f)(ys)| for each a. Since p(f) is
continuous on Mp,, p(f)(y.) converges to p(f)(ys) = 0. This implies that f(@(y.))
converges to 0 = f(@(¥oo)). Since f € A was arbitrary, we thus obtain f(@(ya))
converges to f(¢(yoo)) for every f € A.. By the definition of the Gelfand topology,
we see that @(y,) converges t0 Too, = P(Yoo), Proving the continuity of @. Now it
is easy to see that ¢ is a closed mapping. In fact, let ' be a closed subset of Mp.
Then F U {ys} C Mp, is compact. Since @ is continuous on Mp_, ¢(F U {yoo}) =
©(F) U {Zx} is compact in M4,, and so p(F) C M, is closed. This proves that ¢
is a closed mapping.

Finally, we show that B is regular. To do this, let F' and K be a closed subset and
a compact subset of Mg with F N K = (). Since ¢ is an injective, continuous and
closed mapping as proved above, ¢(F) is closed and ¢(K) is compact in M, with
e(F)N@(K) = 0. Since A is regular, there exists a; € A such that a;(p(K)) =1
and a1(p(F)) = 0. By (1.2), we have that p(a;)(K) = 1 and p(a,)(F) = 0, and so
the regularity of B is proved. d

(4.2) f(@(ya)) = {

Example 4.1. Let D and D be the open and the closed unit discs respectively.
Let A(D) be the disc algebra, that is, the uniform algebra of all complex-valued
continuous functions on D, which are holomorphic in D. Let H*°(D) be the com-
mutative Banach algebra of all bounded holomorphic functions on D. Neither A(D)
nor H*°(D) are regular. Let B = A(D) or H*(D). By Corollary 1.2, there are no
ring homomorphism p from a semisimple regular commutative Banach algebra A
to B such that p(A) contains a separating and vanishes nowhere subalgebra of B.
In particular, both A(ID) and H*°(D) can not be the ring homomorphic images of
any semisimple regular commutative Banach algebra A (cf. [11, Example 1]). The
case where A = Cy(X), the regular commutative Banach algebra of all complex-
valued continuous functions on a locally compact Hausdorff space X, which vanish
at infinity, was proved by Molnér [12, Corollary].

Example 4.2. Let X and Y be locally compact Hausdorff spaces such that Y can
not be embedded into X. By Corollary 1.2, there are no surjective ring homomor-
phism from Cy(X) onto Cy(Y).

Remark 4.1. Let X be the closure of {1/n : n € N} in R with its usual topology.
P. Semrl [15, Example 5.4] constructed a ring homomorphism p: C(X) — C such



that ker p is a nonmaximal prime ideal of C(X), where C(X) denotes the commuta-
tive regular Banach algebra of all complex-valued continuous functions on X. There
do exist infinitely many such mappings. In fact, let A be a uniform algebra on an
infinite compact metric space and G the set of all ring homomorphisms of A into C,
whose kernels are nonmaximal prime ideals. In [10, Corollary 1.2], it is proved that
#G = #2C, where #S denotes the cardinal number of a set S.
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