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K-HOMOLOGY OF CONTINUOUS FIELDS OF
NONCOMMUTATIVE TORI

TAKAHIRO SUDO

ABSTRACT. We study K-homology of continuous fields of noncommutative
(or commutative) tori, and obtain formulae to count up generators of K-
homology for the C*-algebras of all continuous functions on the usual tori
and some continuous field C*-algebras with fibers noncommutative tori such
as the discrete Heisenberg group C*-algebra and its generalizations.

1. Introduction

C*-algebras associated with continuous fields of C*-algebras as fibers over spaces
(that we call continuous field C*-algebras) have been of great interest in the theory
of C*-algebras (see Dixmier [4]). They can be viewed as a noncommutative coun-
terpart to complex vector bundles over spaces by taking as fibers C*-algebras that
are noncommutative in general. C*-algebras considered as fibers mainly in [4] are
elementary C*-algebras such as the C*-algebra of all compact operators on a Hilbert
space. Beyond this, a typical and important example of continuous field C*-algebras
is given by the group C*-algebra of the discrete Heisenberg group (of rank 3) that
can be viewed as a continuous field of rotation C*-algebras 2(y (also called noncom-
mutative 2-tori) on the 1-torus T, where %y is defined to be the universal C*-algebra
generated by two unitaries U, V such that VU = €UV for 6 € [0, 1] (mod 1) iden-
tified with T (for instance, see Anderson and Paschke [1], but this picture is well
known).

Among many contributions related to this topic, it is Hadfield [5] who considered
its K-homology. K-homology for C*-algebras (or involutive algebras over C) is a
starting point of the quantum calculus in noncommutative geometry of Connes [3].
In this paper, we consider K-homology of continuous field C*-algebras modifying
some methods of Hadfield [5] in more general settings. Our main contribution is to
give explicit formulae to count up generators of K-homology for the C*-algebras of
all continuous functions on the usual n-tori T™ and some continuous field C*-algebras
with fibers noncommutative tori such as the generalized discrete Heisenberg group
C*-algebras and their generalizations, which should have more applications. This
result is in fact a K-homology version of the author [7] for K-theory of continuous
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fields of noncommutative (or quantum) tori. It is found that (generalized) Dirac
Fredholm modules for K-homology that we define correspond to (generalized) Bott
projections for K-theory in these settings. This picture should be of independent
interest and might be useful for more studying noncommutative geometry in the
future.

2. Fredholm modules as K-homology

Following Hadfield [5] (and Connes [3]), recall that a Fredholm module over an
involutive, i.e., x-algebra 2 is defined to be a triple (H,w, F), where 7 is a *-
representation of 2 to B(H) the C*-algebra of bounded operators on a Hilbert space
H, and F is a self-adjoint operator on H such that F? = 1, and the commutators
[F,7(a)] = Fn(a) — m(a)F for a € A are in K(H) the C*-algebra of all compact
operators on H. A Fredholm module is even if there exists a grading operator
v € B(H) such that v = v4*, ¥* = 1, [7,7m(a)] = 0 for a € A, and Fy = —yF. A
Fredholm module is odd if otherwise. It is usual that the *-algebra 2 is taken as
a C*-algebra or a dense *-subalgebra of a C*-algebra such that 2 is closed under
holomorphic functional calculus.

Example 2.1 Let 2 be a C*-algebra with a *-homomorphism ¢ : % — C. Then
we have the even Fredholm module my = (H, 7, F') over 2 given by

2 _ _ (0 1 (1 0
H=C* wmn=¢p®0, F—-(l 0 Y=\o -1)-

(o) (7 0)- (0 0 Qo)

(o0 0)= (0 ") =20 (1 7).
‘mz(lo(ofa (?Bv’
(3 0) (0 --(% )

Note that even Fredholm modules over a C*-algebra 2 can be viewed as eleinents
(or representatives of classes) of KK°(,C), i.e., the even K-homology (group) of
2A. Moreover, K K°(2, C) is isomorphic to the Kop-group Ko(2A) of 2. See Blackadar
[2] for more details in K- and KK-theories.

H

[F,m(a)]

I

Example 2.2 Let 2 be a unital C*-algebra with a nonzero *-homomorphism ¢ :
A — C. Let A x, Z be the crossed product C*-algebra of 2 by an action a of Z by
automorphisms of 2. Define an odd Fredholm module m; = (H,x, F) over A X, Z:

H=1L*T), and =:%Ax,Z— B(L*T))



defined by 7(a)V" = p(a™(a))V™ and m(V)V" = V™ for a € A, n € Z, where V
is the implementing unitary for the action « such that VaV* = a(a), and it is also
regarded as a generator of L%(T), and 7 is the representation of 2 %, Z induced
from the representation ¢ of 2, and

vr n >0,

FV™ =i V" =
sign(n) {—V" n < 0.

Indeed, we calculate

[F,m(a)]V" = (Fr(a) — w(a)F)V"
= Fp(a"™(a))V" — m(a)sign(n)V"™ = 0,
[F,mn(V)|[V"* = (Fr(V) —n(V)F)V"
= FV™! — n(V)sign(n)V"
= sign(n + 1)V — sign(n)V"*!
_Jo - n>20andn < -2,
C|2v=2-1 n=-1

Hence, [F,7(V)] is a rank one operator, which is compact.

Note that the odd Fredholm module m; can be viewed as an element (or a
representative of a class) of KK(A %, Z,C), i.e., the odd K-homology (group) of
A x4 Z. Moreover, KK'(93B,C) for a C*-algebra B is isomorphic to the K;-group
K1(*B) of B. See Blackadar [2] for more details. Note that C X, Z for « trivial is
just the group C*-algebra C*(Z) of Z.

In what follows, even or odd Fredholm modules m over a C*-algebra are of-
ten identified with (or distinguished from) their classes [m] of its even or odd K-
homology. Emphasized (in part) are Fredholm modules, not their classes.

3. K-homology of C(T")

Let C(T) be the C*-algebra of all continuous functions on the 1-torus T, which is
also the universal C*-algebra generated by a unitary U.

Proposition 3.1 The even K-homology KK°(C(T),C) = Z is generated by the
following even Fredholm module over C(T) :

01 1 0
m10=(H=C217T=(P@OaF=<1 0))? ’7=<0 _1)

where ¢ : C(T) — C is the trivial unital *x-homomorphism (or trivial character)
defined by o(U) = 1.

Since C*(Z) is isomorphic to C(T) by the Fourier transform, we have



Proposition 3.2 The odd K-homology KK(C(T),C) = Z is generated by the fol-
lowing odd Fredholm module over C(T) :

my = (Lz(T)aﬂ'bF),

where m; is the (identity) representation defined by m(U) = U which is regarded as
the multiplication operator acting on L*(T), and FU™ = sign(n)U™ for n € Z.

Let C(T?) be the C*-algebra of all continuous functions on the 2-torus T2, which
is also the universal C*-algebra generated by commuting unitaries U, V.

Proposition 3.3 The even K-homology KK°(C(T?),C) = Z? is generated by the
following even Fredholm modules over C(T?) :

01 1 0
m20=(H=C27”T=(P€BOaF=(1 0))1 ’7=(0 _1)

where ¢ : C(T?) — C is the trivial unital x-homomorphism, and
22 2 /2 0 Fp
D= H=L(T)@L(T),7T=7T0®7T0,F= F
o O
(which we call the Dirac Fredholm module), where mo(U)U™ = U™, mg(U)V™ = V™
forn € Z, and mo(V)U™ = U™, mo(V)V"™ = V™! forn € Z, and
FU™V™ = (m 4+ in)(m? 4+ n2)7V2U™y™ (m,n) # (0,0),
and Fyl = 1, where U,V are unitary generators of C(T?).

Proof. For the Dirac Fredholm module D defined in the statement, we compute that

F) oy ) = En0) = x0)m) (o)

_ 0 Fo\ (mU) 0 mo(U) 0 0 F ymyn
= ((F{{ 0) ( 0 7T0(U)) ( 0 71’0(U)) (F(’)" 0)) (Uth)
-( 0 Fm(U) - mO)R) (U’"V")

FO*’ITO(U) - WO(U)FJ 0 Usvt
— ( (Fomo(U) — mo(U) Fo)U*V* )

(Fgmo(U) — mo(U)Fg)U™V™
_( FoU™Vt — mo(U)(s + it)(s? + £2) 20V
= (F(;‘Um+lvn — w(U)(m — in)(m? + n2)_l/2UmV")
B < (s +1) +at)((s + 1) + 13) V2 — (s +4t)(s% + £2) "V UsHV? )
— \((m+1) —in)((m+1)? + n?) 72 — (m — in)(m +n?) /2 U1V

for m,n, s, t € Z.



Furthermore, we compute

((s+1)+it)((s+ 1)+ £2)712 _ (s +it)(s® + 12)-1/2

_ s+1 _ s iy t _ t
CA\VE+D)T+ VP VE+1)2+82 V2t )

For the imaginary part,

1 1
g (\f(s+1)2+t2 - \/32+t2) |
it (\/32—0—152—\/(.s+1)2—{—t2)I

V(s +1)2+12y/s% + 12

1t (s24+12) — (s +1)2 —¢2
VEFLZ+ 2V + (VS + 82+ 4/(s+ 1?2 +12)
|t(—2s — 1)

RV CES VT Ty

It is clear that the last expression goes to zero as s,t — oo. Since

s+1 s
Vis+1)2+82 V24 t2

1

1 1
Z(S“)(m‘m)*m’

the real part also goes to zero as s,t — oo. Hence, the coefficient for Ustivt
vanishes as s,t — oco. Similarly, the coefficient for U™+'V™ vanishes as m,n — oo.
Therefore, [F, w(U)] is compact. Similarly, so is [F,7(V')]. Also,

(0 R\(1 0\_[(0 —-F\_ (1 0\(0 FR\__
e )6 2)-( 0)--0 B s v)=—r

O

Remark. The coeficient (m + in)(m? +n?)~1/2 for F does not vanish as m,n — oo.
For instance, let m = n > 0. Then (m + im)(m? + m?)~Y2 = (1 +14)/v2.

Proposition 3.4 The odd K-homology KK*(C(T?),C) = Z? is generated by the
following odd Fredholm modules over C(T?) :

mo1 = (L2(T),W1,F), Mooy = (L2(T),7T2,F)

where m(U) = U, m (V) =1, and ma(U) =1, ma(V) =V



Also, the odd Fredholm modules ma;, may over C(T?) can be replaced by v/} ([my1]),
Y3 ([ma1]) respectively, where ¢; : C(T?) — C(T) (j = 1,2) are *-homomorphisms
defined by ¥ (U) = U, (V) =1 in C(T), and ¢2(U) = 1, (V) = U in C(T),
and ¢} : KK'(C(T),C) — KK'(C(T?),C) (j = 1,2) are the induced maps from

Y;.
Note that the Baum-Connes assemply map:
u: KKI(C(BZ?),C) = KKI(C(T?), C) — K;(C*(Z2)) = K;(C(T?)

(j = 0,1) is an isomorphism, where BZ? = T? is the classifying space of Z? (see
Connes [3]). Without using this map we can obtain the isomorphism identifying
the even Fredholm modules myy, D with the Kjy-classes [1], [B] in Ko(C(T?)) and
the odd Fredholm modules myg;, mge with the Kj-classes [U], [V] in K;(C(T?))
respectively, where B is the Bott projection in the 2 x 2 matrix algebra M,(C(T?))
over C(T?) (see Anderson and Paschke [1] for B).

Let C(T?3) be the C*-algebra of all continuous functions on the 3-torus T3 gen-
erated by mutually commuting unitaries U;, U, and Us. Then it is known that

KK°(C(T®),C) = 74, KK'(C(T®),C) = Z*.
We can interpret this fact as follows:

Proposition 3.5 The even K-homology K K°(C(T3),C) = Z* is generated by the
canonical even Fredholm module msy over C*(T3) that corresponds to the trivial -
homomorphism: C(T3) — C and the even Fredholm modules @;([D]) 1 <5<3)
over C*(T3), where [D] € KK°(C(T?),C) is the class of the even Dirac Fredholm
module D over C(T?) defined above, and *-homomorphisms p; : C(T3) — C(T?)
(1 < j < 3) are defined by p;(U;) = 1 and ¢;j(Ux) = Uy for k # j, and P
KK°(C(T?),C) — KK°(C(T?),C). Namely,

KK°(C(T?),C) = Z[mg] @ (®2_,Z¢}([D])).

Proposition 3.6 The odd K-homology KK*(C(T3),C) = Z* is generated by both
the odd Fredholm modules ¥} ([ma1]) (1 < j < 3) over C(T?), where x-homomorphisms
Y; : C(T?) — C(T) (1 < j < 3) are defined by ¢;(U;) = U and ¢;(Ui) = 1 for
k # j, and the odd Fredholm module ©}([D]) & ¥}([m11]) over C(T3). Namely,

KK (C(T®),C) = (&5,Z¢] ([mn1])) ® Z(#}([D)) & ¥} ([mau))).
Moreover, for a discrete group I', the Baum-Connes assemply map:

u: KK (Co(BT),C) — K;(C(T))



is an isomorphisms in many cases, where BT is the classifying space of I' and Co(BT")
is the C*-algebra of all continuous functions on BT vanishing at infinity (see [3]).
In particular, let I' = Z3. Then BZ3? = T3 and

u: KKI(C(T), C) = K;(C*(2%) = K;(C(T%).

Without using the map we can obtain the isomorphism defining p([mso]) = [1],
p(@;(ID])) = [B;] (1 < j < 3), where B; are the Bott projections that correspond
to two variables z; of (zx)3_, € T? for k # j, and p(¥;([mu])) = [U;] (1 <5 < 3),
[.L((,O’{([D]) S ¢{([m11])) = [Ig + (Zl - 1) X Bl], where .[2 + (Zl - 1) ® B]_ € Mg(C(TS))
and I is the 2 x 2 identity matrix.

Let C(T™) be the C*-algebra of all C-valued continuous functions on the n-torus
T™ generated by the mutually commuting unitaries U; (1 < j < n). Then it is
known (by Wegge-Olsen [8]) that

KKi(C(T"),C) = K;(C(T") = 2*, j=0,1.

Now define the even Fredholm modules over C(T?¢) for the even tori T2*:

0 F.
Do = (H = L2(']1‘2k) ® L*(T%), wop = Tok,0 ® T2k,0, For = <F2*ko 286’0))

(which we call the (generalized) Dirac Fredholm modules), where 7o (U;)U; = U7
and ok o(U;)U; = U, for | # j (1 < j,1 < 2k), that is, max o are the representations
of C(T?) on L?(T?) by the multiplication operators, and

ForoU_1Ug: = (m + in)(m? + n®) 72Uz _ Uy, (m,n) # (0,0),

and Fpol = 1 for 1 < j < k, where {U;}2%, are the unitary generators of C(T?¥) =
®*_;C(T?), which can also be regarded as the generators of L?(T?*) = ®%_, L*(T?).

Proposition 3.7 The (generalized) Dirac Fredholm modules Dy defined above are
even Fredholm modules over C(T?%).



Proof. For the Dirac Fredholm modules Dy, defined above, we compute that
Uml Um Um2k
[Fak, T2k (Us;)] ( [}{uUz; : U%',;k )

Uy ...y
= (Faxmar(Uaj) — mor(Usj) Fax) ( [}lnlezz U%,;k ) =

[( 0 F2k,0) (sz,o(Uzj) 0 )
Fyo O 0 ak,0(Uz;)
_ (7r2k,0(U2j) 0 )] ( 0 sz,()) (U;nlUén’Z e U;rk'?k)
0 Tak,0(Uz;) oko O UrtUy? - - - Ug*
_ ( 0 Fok ook 0(Us;) — 7T2k,0(U2j)F2k,0)
F;k,0W2k,0(U2j) - 2k,o(U2j)F5k,o 0

U{m Uénz o U2722k
Upuge .. Upe

(Far,o0m2k,0(Uzj) — Tak,0(Uzj) Fak,0)UT™ Umz U;Z%)
(sz 07T2ko(U2J) — M2k 0(U2J)F2k o)U{L1 o2 Uplk
_ .'121"':l,'j_lil,'j.’lij_*_l"'.’likUInlU;nz U§2::1 Umzk
Yoo yj—ly;'yj+l e kai"'l ;’ . U 235 . U‘nzk

for m;,n; € Z (1 < i < 2k), where

= (mgi—1 + me)(mzz—l + m21,) 172

forlSzSg—landj+1§z$k,
T = maj_1 + i(mag; + 1)) (m3;_; + (mg; + 1)%)7/2
— (mgj—1 + z7”"23)("7'2] 1t ng) 12,
Y = (ngi1 + ing) (ng;_y +n3;) "/
for1<i<j—landj+1<i<k,
Y; = (ngj—1 — i(ng; + 1)) (ng;_; + (ng; +1)%)7V/?

— (ngj—1 — in2j)("§j—1 + ngj)—l/z.

Furthermore, to show the coefficients vanishing at infinity it suffices to show that
x;, y; vanish at infinity as mg;_1, mg; — 0o and ngj_;,ne; — 00 respectively. Their
computation are the same as given in the proof of Proposition 3.3. Therefore,
[Fok, max(Uz;)] are compact. Similarly, we can show that [Fyg, max(Usj—1)] are com-

pact. Also, we have Fy;y = —vFy as shown in the proof of Proposition 3.3.

Using the above proposition extensively we obtain fhe following theorems for

counting up generators of (even and odd) K-homology for C(T"):



Theorem 3.8 The generators of the even K-homology KK°(C(T"),C) = 72" are
determined by the following decompositions:

KKO(C(T2n), (C) o 22n—1 ~ Z2nCD P Z2n02 DD ZZnCQn’
KKO(C(T2n+1), C) o~ 92n o Zzn+1Co D Zzn+102 DD Zgn+102n’

for n > 1, where the combinations 3,Cax (07 2,+1C2k) (0 < k < n) correspond to the
canonical even Fredholm module mapn o (01 Mani10) over C(T?™) (or C(T?*"*1)) that
corresponds to the trivial x-homomorphism: C(T*) (or C(T*"*1)) — C for k =0,
and to the even Fredholm modules go;f([DQk]) (1 < j§ < 2,C9% (0r 2041C2%)) over
C(T?") (or C(T2"*1)) for 1 < k < n (respectively), where [Da] € KK°(C(T?%*),C)
is the class of the even Dirac Fredholm module Dy over C(T?*) defined above and -
homomorphisms p; : C(T?) (or C(T?1)) — C(T?*) (1 < j < 2aC% (07 2041C2))
are deﬁned by ‘Pj(Uﬁ) = Uj1’ M) ‘pj(Ujak) = szk and So:i(Ul) =1 forl 7é J1st 5 J2ks
where we identify j = {j1, -+ ,jax} i {1,--- ,2n} (or {1,--- ,2n+1}) (respectively),
and ¢} : KK°(C(T%*),C) — KK°(C(T*),C) (or KK°(C(T***'),C)) are the in-
duced maps from ;. Namely,

KK°(C(T?),C) = Zmano] ® (D=1 (D1<j<ncan Z¢; ([Dax]))),
KK°(C(T**),C) = Z[man,o] ® (Dher (B1<i<ans100L05 ([D2x])))-

Proof. The statement is explaining our construction for generators of K K°(C(T"),C).
Note that the classes of the above generators of K K°(C(T™),C) just correspond to
choosing above and not to their permutations since exchanging the unitary genera-
tors produces the same class in K K°(C(T"),C). Note that

2”‘1=nOO+nC2+nC4+"':nCI+nC3+n05+"' .
O

2n—1

Theorem 3.9 The generators of the odd K-homology KK'(C(T"),C) & Z*" " are

determined by the following decompositions:

KKY(C(T™),C) = 2t 271 g Z B g --- @ Z2nCan-1,
KKI (C(T2n+1), (C) o 22n ~ Z2n+1C’1 o) Z2n+103 DD Z2"+102"+1,

for n > 1, where the combinations 2,Cors1 (07 2n+1C2k+1) (0 < k < n) correspond
to choosing one of the canonical odd Fredholm modules ¥} ([m1]) over C(T*") (or
C(T?"*1)) that corresponds to the *-homomorphisms v; : C(T?") (or C(T?**')) —
C(T) (1 < j < 2n (or 2n+ 1)) defined by ¥;(U;) = U and ¥;(Uy) = 1 for k # j
and to choosing one of the even Fredholm modules ¢5([Dac]) (1 < j < 2.Cox (or
ant1C2k)) over C(T?*) (or C(T?*1)) for 1 < k < n (respectively), where [Da] €
KKOC(T?),C) is the class of the even Dirac Fredholm module Dy over C(T?)



defined above, and x-homomorphisms ¢; : C(T?") (or C(T?*!)) — C(T?*) (1 <
J < 2nCok (07 2,+1C2)) are defined above. Namely,

KK (C(T?),C) = (@32, Z}([mu1]))®

(BrZ1 (®1<jUj' <30 Caiss Z(05 (D)) @ w5 ([ma1))))),
KK'(C(T*"*),C) = (@I Zop5 ([mn1]))®

(s (®1507 <anenoen 22 ((Dad) © ¥ (maa]))))

where jU j' means the number that corresponds to the disjoint union {ji,- - ,jor} U
{.7’} n {1a T 7277’} (07‘ {1v T ,2n + 1})

Proof. The statement is explaining our construction for generators of K K*(C(T"), C).
Note that the classes of the above generators of K K1(C(T"),C) just correspond to
choosing above and not to their permutations since exchanging the unitary genera-
tors produces the same class in K K1(C(T"),C). O

Remark. We can obtain the isomorphisms KK7(C(T"),C) = K;(C(T")) (j = 0,1)
by sending the even K-homology classes ¢} ([Dzx]) (identified with generalized Dirac
Fredholm modules Dy) to the Ko-group classes of the generalized Bott projections
B; in My(C(T?)) and the odd K-homology classes ©}([Da]) & %3 ([m11]) to the
Ki-group classes of the unitaries I + (u; — 1) ® B; in My(C(T?*+1)) respectively.
See [7] for more details about the generalized Bott projections and the unitaries
involving them.

4. K-homology of the discrete Heisenberg group C*-algebra
The discrete Heisenberg group of rank 3 is defined by

1
H%:{(c,b,a):(o ) |a,b,c € Z
0

Set u = (0,0,1), v = (0,1,0), and w = (1,0,0). We have HJ = Z? x, Z, where
aa(c,b) = (c + ab,b) for (c,b,a) € Hj. Let C*(H3) be the group C*-algebra of H3.
Then it is isomorphic to the crossed product C*-algebra C*(Z?) x,Z. By the Fourier
transform, C*(Z?) x4 Z = C(T?) xan Z, where o’ is the dual action of & via the dual
group (Z*)" = T2. In fact, C(T?) X~ Z is generated by the unitaries U, V, W that
correspond respectively to u,v,w via the universal representation, where U is the
unitary corresponding to the action o and C(T?) is generated by W,V commuting
mutually such that UV = WVU and UW = WU.

Note that it can be viewed as the C*-algebra I'(T, {As}ser) of a continuous
field on the base space T with fibers noncommutative 2-tori 2y, where we identify
6 € [0, 1) with ™ € T, and

C(T2) MXon Z = F(T7 {C(T) Hap Z}BGT)

oS~ Q
— o0



where 2y = C(T) X,p Z and «p is the restriction of o” to {#} x T in T2.

Recall that the C*-algebra B = I'(X, {®B:}cx) of a continuous field of C*-
algebras B; over a compact Hausdorff space X with the supremum norm is defined
by giving a continuous field of certain continuous operator fields f : t — f(t) € B;
with the norm || f|| = sup,cx || f(¢)]| finite such that the maps X >t — || f(t)| are
continuous (and vanishing at infinity if X is locally compact and non-compact),
where such a continuous field is closed under point-wise operations such as addition,
multiplication, and involution, with the local uniform convergence, and has the
image dense in 9B; for each t (see [4]). .

For each § € R (mod 1), we have a surjective *-homomorphism g : C*(H3) —
given by @p(U) = U, @p(V) = V, pg(W) = €?™1. Then we have the following
induced map by g:

¢y« KKI(%,C) — KKI(C*(HE),C)

which pull back Fredholm modules over 2y to ones over C*(H3). In particular, for
the case 6 = 0, let @y : C*(H3) — Ao = C(T?) with po(W) = 1.

It is known (by [8]) that the K-groups of the fibers 2y (0 < # < 1) are given
by Ko(As) = Z + 6Z generated by the Ky-classes of the identity element of 2y and
the Rieffel projection Ry of ¢ and K;(Ag) = Z? generated by the K;-classes of
the generating unitaries Uy, Vj of Ay satisfying VoUy = €?™®UyV,. Since Ry are not
definable at # = 0 and not continuous at & = 0 (i.e., not continuous to the Bott
projection for C(T?) at § = 0), their classes in Ky(2g) do not produce an element
for Ko(C*(H3)), while Uy, Vj are (identically) continuous (at § = 0 or on T). (This
argument was first used in [7]). In fact, the group Z + 6Z converges to Z as 6 — 0
(or 1 mod 1), not to Z? = Ky(C(T?)). Therefore, it is deduced that we can not
have the (non-trivial) Fredholm modules for K K°(C*(H3),C) by pulling back the
ones corresponding to Ry by the above maps ¢} (in particular, the Dirac Fredholm
module over C(T?2) by ¢y), and it is enough to consider the canonical even Fredholm
module in this setting. This interpretation is quite different from that of Hadfield
[5], in which it is said that it is sufficient to consider the case § = 0.

Furthermore, we have x*-homomorphisms ¢; (j = 1,2) from C*(H3) to C(T?)
defined by ¢1(U) = U, p1(V) = 1, p:(W) = W, and 2(U) = 1, p2(V) =V,
p2(W) = W. By pulling back the even Dirac Fredholm module D over C(T?) by ¢;
we obtain the even Fredholm modules ¢}([D]) over C*(H3). In these cases, there is
no obstruction as explained above. Therefore,

Theorem 4.1 The generators of the even K-homology KK°(C*(H3),C) are given
by the canonical even Fredholm module hsy over C*(H3) that corresponds to the
trivial x-homomorphism: C*(H3) — C, and the even Fredholm modules ¢}([D])
(1 < j < 2), where D is the even Dirac Fredholm module over C(T?). Namely,

KK°(C*(Hz),C) = Z[hso] ® Zy1([D]) & Ze3([D]).

Moreover,



Theorem 4.2 The generators of the odd K-homology KK'(C*(H3),C) are given
by the odd Fredholm modules 5([mi1]), ©;([D])®¥3([m1i]), and ©5([D])®v;([mai)),
where *-homomorphisms y; : C*(H3) — C(T) (1 < j < 3) are defined by ¢;(U;) =
U and ¥j(Ux) =1 fork # j in C(T), whereUy =U, Uy =V, and Us = W. Namely,

KK'(C*(Hz),C) = Zyp3([mu]) @ Z(¥1([D]) ® ¥3([mu))) & Z(w3([D]) & %1 ([mu))).

5. K-homology of the generalized discrete
Heisenberg group C*-algebras

The generalized discrete Heisenberg group of rank 2n + 1 is defined by

1 a c
H2 = {(c,b,a)= [0, 1, ¥ |a,b€Z " ce€Z
0 0, 1 ‘
where 1, is the n x n identity matrix, 0, = (0,--- ,0) € Z" (a row vector), and

- b, 0% (column vectors) are the trasposes of b,0, (row vectors) respectively. Set
u; = (0,0n, (0x1)p_y1), v; = (0,(0jx1)5-1,0,), and w = (1,0,,0,), where d; = 1
if k=jand §; = 0 if k # j. We have H"*1 = Z™+1 %, Z", where a,(c,b) =
(c+ 3%, axbk,d) for (c,b,a) € H3"*! with a = (ax)?_;, b = (bx)7_,. Let C*(HZ"1)
be the group C*-algebra of Hé"'”. Then it is isomorphic to the crossed product C*-
algebra C*(Z™*!) x4 Z™. By the Fourier transform, C*(Z"*!) x4 Z™ & C(T™*!) Xgn
Z™, where o” is the dual action of a defined by o (w,v) = (w, (w*vg)}_,) forw € T,
v = (vg)%_,; € T™ via the dual group (Z"*')" = T"*!. Furthermore, C(T"*1) X 4r Z™
is generated by the unitaries U;, V;, W (1 < j < n) that correspond respectively to
u;,v;,w (1 < j < n) via the universal representation, where U; are the unitaries
corresponding to the action " of Z", and C(T"*!) is generated by W, V; (1 < j < n)
mutually commuting such that U;V; = WV,U; and U;W = WU,.

Note that it can be viewed as the C*-algebra I'(T, {®"g}ect) of a continuous
field on the base space T with fibers noncommutative (2n)-tori "y (the n-fold
tensor product), where we identify 6 € [0, 1] with 2™ € T:

C(T™) Xgn Z" = T(T™, {C(T") Xay Z"}oer)

where C(T") x4y Z™ = @™y and oy is the restriction of o” to {6} x T".

For # € R (mod 1), we have a surjective *-homomorphism ¢y : C*(H2"*!) —
Q"Ay given by we(U;) = Uj, wa(V;) = V;, (W) = €2™1. Then we have the
following induced map by g:

¢h : KKI(8"%,C) — KKI(C*(HF™),C)

which pulls back Fredholm modules over ®"2l4 to ones over C*(H2"*!). In particu-
lar, for the case § = 0 let g : C*(H2"t') — @ = C(T?") with @o(W) = 1.



By the same reason as given before Theorem 4.1, we have no non-trivial even
(and odd) Fredholm modules for K K°(C*(H2"*!),C) (and KK(C*(HZ"t),C))
by pulling back the ones corresponding to (generalized, or tensor products of) Ri-
effel projections for Ky(®"2s) (and to unitaries involving (generalized, or tensor
products of) Rieffel projections for K;(®"2y)) by the above maps ¢} (respectively)
(in particular, the generalized Dirac Fredholm modules over C(T?") by ¢), and
it is enough to consider the canonical even (and odd) Fredholm module(s) and
other even (and odd) Fredholm module(s) corresponding to Dirac Fredholm mod-
ules over C(T?*) generated by 2k commuting unitaries in ®"2ly in this setting. In
fact, K;(®"Ap) = K;(C(T?")) = 22" for j = 0,1 (see [8] and [6]), but for instance,
if n = 2, then the Kiinneth formula (see [8]) implies

Ko(%p @ 2p) = (Ko(Ue) ® Ko(™Ap)) & (K1(™p) ® K1(Ap))
~ ((Z+02) ® (Z+ 6Z)) ® (Z* ® Z°),
K1 (%o ® Ag) = (Ko(Ag) ® K1(Ap)) @ (K1(Ae) ® Ko(Ap))
~ ((Z+0Z)®7Z*) & (Z* ® (Z + 0Z))
and both converge to Z ® (Z2 @ Z?) = Z° and to (Z R Z2) & (Z* ® Z) = Z* as
@ — 0 (or 1 mod 1) respectively. Furthermore, we need to consider the unitary

corresponding to the base space T, which also commutes with generating unitaries
of ®™Ay. Considering this situation we state the following:

Theorem 5.1 The generators of the even K-homology K K°(C*(Hz"*),C) are de-
termined by the following decompositions:
KKO(C*(H%'H-I), C) ~7 @ Z22n02 @D Z24nC4 BB Z22m2m02m
® Z2ncl o) Z23nca fast Z25n05 AP Z22m—12mc2m—1

for n =2m, and

KKO(C*(H%TH-l)a C) =7Z®d Z22"C2 ) Z24"C4 PP Z22"”2m+102m
@ Z2n01 @ Z23"C3 @ Zzsncs @ . @ Z22m—}—1

2m+1C2m+1
b

forn=2m+1, and
KKO(C*(H%H_I), (C) ~~ @Z=0Z2k"0k Y] Z3n,

where C*(HZ"1) = T(T, {® A }oer) with the fibers @Ay the n-fold tensor prod-
ucts of the rotation algebras Ay for 6 € T = [0,1] (mod 1), and the combina-
tion ,Co corresponds to choosing 2k-fold tensor products %Ay in @"Ag, and
the power 22¢ corresponds to choosing commuting 2k unitaries, each of which is
chosen from two generating unitaries Uj1,Ujz of the (different) factors ™Ay = Uy ;
(1 <j < 2k) in ®**2y, from which we obtain the even Fredholm modules ¢y ;([Dax])
over C*(HZ"™) (1 < j < 2%, Cq), where Dy, is the even Dirac Fredholm module



over C(T?*) generated by unitaries U;, (1 < j < 2k,z = 1,2) and *-homomorphisms
Porj : C*(HI) — C(T%*) are defined by wor,j(Ujz) = Ujz and @or ;(V) = 1 for
V' other generating unitaries, and similarly, the combination ,Coky1 corresponds to
choosing (2k + 1)-fold tensor products %+, in @Ay, and the power 22+1 cor-
responds to choosing commuting 2k + 1 unitaries, each of which is chosen from two
generating unitaries Uj1, Uja of the (different) factors g = Ap; (1 < j < 2k + 1)
in @*1Ay, from which we obtain the even Fredholm modules 3y 5 ;([Dak42]) over
C*(HZ*Y) (1 < j < 2%+ Cgry1), where Dogys is the even Dirac Fredholm module
over C(T%*+2) generated by unitaries Uj; (1 < j < 2k + 1,z = 1,2) and the gen-
erating unitary of C(T), where this T is the base space, and furthermore, the first
Z corresponds to the canonical even Fredholm module honi19 over C*(H%""‘l) that
corresponds to the trivial -homomorphism: C*(Ha"*') — C. Namely,

KK°(C*(H3"*"),C) = Z[hznt1,0] @ (DFt1 (P1<j<ar*,cy ZPsk, ; ([D2x])))
® (Do (B1<j<220+1,, 0oy LPok 12,5 ([D2r+2])))

forn=2m orn=2m+1.

Proof. The explanation in the statement is just saying our construction for genera-
tors of the even K-homology K K°(C*(H2"*'),C) of C*(H2"*!). Note that by the
binary expansion

F"=(1+2)"=142,C,+2%,Co+---+25,C +--- +2",C,.
O
Theorem 5.2 The generators of the odd K-homology K K'*(C*(H2"*"),C) are de-

termined by the following decompositions:

KK'(C*(HF"*"),C) 2 Z @ 2% @ 2*% @ - .. @ 27O
@ Zzncl fas) Z23nC3 @ Z25nc5 @ coe @ Z22m_1

2mC2m—1

for n =2m, and

KK (C*(HF),C) 2 Z® 2" @ Z*+C4 @ - - - @ Z¥ " 2m+1Cam
@ Z2nc'1 @ Z23n03 @ Z25n05 @ e @ Z22m+12m+lc2m+1,

forn=2m+1, and
KK'(C"(Hf"™),C) & @fZ" "% = Z°,

where C’*(H%""‘l) >~ I(T, {®"As }oer), and the combination ,Car corresponds to
choosing 2k-fold tensor products %y in @"Ag, and the power 2% corresponds
to choosing commuting 2k unitaries, each of which is chosen from two generating



unitaries U;1,Uja of the (different) factors g = Ag; (1 < j < 2k) in ®R2*U,,
from which and the generating unitary of C(T) for T the base space we obtain the
odd Fredholm modules @3, ;([Dax]) ® i ([mai]) over C*(HZ*™) (1 < j < 2%%,C),
where Dy, is the even Dirac Fredholm module over C(T?*) generated by unitaries
Uiz (1 < j < 2k,z = 1,2) and my; is the odd Fredholm module over C(T) for
T the base space and the x-homomorphism <, : C*(Ha"™') — C(T) is defined
by sending the unitary generator for the base space T to itself and other unitary
generators to the identity element, and similarly, the combination ,Coxy1 corre-
sponds to choosing (2k + 1)-fold tensor products 1y in @"Ay, and the power
22k+1 corresponds to choosing commuting 2k + 1 unitaries, each of which is cho-
sen from two generating unitaries Uji,Uje of the (different) factors ™Ag = g ;
(1 <j <2k+1) in %1%y, from which we obtain the odd Fredholm modules
O3 i ([D2x]) ® W31 ([maa]) over C*(HZ*) (1 < j < 2%,C%), where Doy is the even
Dirac Fredholm module over C(T?*) generated by unitaries Uiy (1 < j < 2k, x = 1,2)
and my, is the odd Fredholm module over C(T) generated by Usg+1,, (z = 1,2) and *-
homomorphisms .1 : C*(Ha*™') — C(T) are defined by Yok+1(Uzk+1,2) = Uokr1z
and Yor1(V) = 1 for V other generating unitaries, and furthermore, the first Z
corresponds to the canonical odd Fredholm module v}(my1]) over C*(HZ"*') that
corresponds to the x-homomorphism 1, : C*(Ha"t') — C(T). Namely,

KK'(C*(Hz*"),C) =
Zapi([maa]) @ (BFe1(P1<j<o2*, 00 Lok, ([Dax]) @ Y1 ([maa])))
® (Breo(Br<j<orr+t, Cper s Z(Pok,; ([D2k])) © Yagia ([man]))

forn=2m orn =2m+ 1.

Proof. The explanation in the statement is just saying our construction for genera-
tors of the odd K-homology K K(C*(HZ"*!),C) of C*(HZ™). -

6. K-homology of certain continuous fields of noncommuta-
tive tori

Let g, be a noncommutative n-torus generated by n unitaries U; (1 < j < n) such
that U;U; = e U;U; for 1 < i,j < n, where 6;; € R and 6, = (Hij)zj=1 is an
n x n skew-adjoint matrix over R. See Rieffel [6].

Let I'(T™, {”e,(z) }zeT=) be a continuous field C*-algebra over the m-torus T™
with the fibers g, (,) noncommutative n-torus generated by n unitaries U; (1 < j <
n) such that U;U; = 2122+ - - 2,U;Uj for 1 <i < j <mand z = (21,22, -+ ,2Zm) € T™.

See [7] for an explicit description for the generalized Rieffel projections and the
associated unitaries for Ky(2de,) and K;(2e, ) of a general noncommutative n-torus
Ao, respectively, and we omit the details. This part is quite crucial, but our principle
is that by the same reasons as given before Theorems 4.1 and 5.1 we do not need



to consider those projections and unitaries in caluculating K-theory groups or K-
homology groups in these settings as well. Note that K;(2e,) = K;(C(T")) = Z*"
by Pimsner-Voiculescu exact sequece for crossed product C*-algebras by Z (see [6]
and [2]), and e, can be viewed as a successive crossed product C*-algebra by Z,
ie, C(T) X Z---xZ ((n — 1)-times). Then we have the following:

Theorem 6.1 The generators of the even K-homology for I'(T™, {6, (2) }.c1m) are
determined by the following decompositions:

KKO(F(Tma {Qlen(z)}ze’ll‘m), C) =

KK°(C(T™),C) ® (zn: KK%(C(T™),C)/KK*(C(T™),C)) =

Z?”“l ® (®?=1Z2'"/Z2m_1) o~ Z(n+1)2’"—1,

where K K°(C(T™), C) is the even K-homology for C(T™) for T™ the base space, and
C(T™*!) for each KK°(C(T™*!),C) is the C*-algebra generated by one of unitary
generators of Ue, ;) and the unitary generators.of C(T™) for T™ the base space, and
KK°(C(T™*!),C)/KK°(C(T™),C) means a quotient group.

Similarly, we obtain the following;:

Theorem 6.2 The generators of the odd K-homology for I'(T™, {«e,.(z)} zcTm) are
determined by the following decompositions:

KKl (F(Tm7 {Q(Gn(z) }ZET""), C) =

KK'(C(T™),C) ® (zn: KK'(C(T™"),C)/KK(C(T™),C)) =

=1
277 @ (@1, 27" /27 = vt

More generally, let I'(T™, {®}_,e,(z) }zeT) be a continuous field C*-algebra
over the m-torus T™ with the fibers ®§c=1919n(z) [-fold tensor products of non-
commutative n-tori generated by m unitaries U; (1 < j < n) such that U;U; =
2123 zpUUj for 1 < i< j <nand z = (21,22, ,2n) € T™. We first consider
the case m = 1.

Theorem 6.3 The generators of the even K-homology for the continuous field C*-
algebra T'(T, {®,_,Y6,(z) }:eT) are determined by the following:
KK° (P(T’ {®;c=12len(l)}ZET)’ C) =
ZOZC" P ... P Z1C2kn?* @ Z:Cax+1m
o~ szc:Olenk — Z(1+n)‘,

2k+1

D - Zom



where the combination ;Cj, corresponds to choosing k-fold tensor products @*Ae,, (2
m ®§€:12l@n(z), and the power n* corresponds to choosing k commuting unitaries,
each of which is chosen from the generating unitaries of the (different) factors Ae,,(»)
of ®Ae,.(2), from which we obtain the even Fredholm modules by pulling back Dirac
Fredholm modules over C(T*) generated by either those unitaries if k is even or
those unitaries and the generating unitary of C(T) for T the base space if k is odd,
and the first Z corresponds to the canonical even Fredholm module.

Proof. By the binary expansion, we have
(14+n) =1+ ,Cn+,Con%+--- +,Ckn* + -+ +,Cn.
O

Similarly, we obtain the following:

Theorem 6.4 The generators of the odd K-homology for the continuous field C*-
algebra T(T, {®%_,e,.(») }ze1) are determined by the following decompositions:

KKl(P(T’ {®€c=12‘6n(2)}z€'ﬂ')7 C) =
7 D 7:C1n DD ZzCz;:nM o 71 Cak+1n
o szﬂ,lcknk — Z(l-}-n)l,

2k+1

@...@Zlct"l

where the combination ;C) corresponds to choosing k-fold tensor products ®k2len(z)
in ®§c=122l9n(z), and the power n* corresponds to choosing k commuting unitaries,
each of which is chosen from the generating unitaries of the (different) factors e, (z)
of ®Ae,. (), from which if k is even we obtain the odd Fredholm modules by pulling
back Dirac Fredholm modules over C(T*) generated by those unitaries plus the odd
Fredholm module over C(T) for T the base space, and if k is odd we obtain the odd
Fredholm modules by pulling back Dirac Fredholm modules over C(T*~!) generated
by those unitaries plus the odd Fredholm module over C(T) generated by the other
unitary, and the first Z corresponds to the canonical odd Fredholm module.

Furthermore, we obtain the following two theorems:

Theorem 6.5 The generators of the even K-homology for the continuous field C*-
algebra T'(T™, {®}_ U6, (») }ze1) are determined by the following:

KKO(P(Tm, {®§g=1m@n(z)}z€'ﬂ‘), C) ~ Z2m_1 Egc:()tck'nk — sz—1(1+n)’,
where we have
mCo+mCa+mCs+ - =2""1=pC1+mCs+mCs+ -+ - .

so that the power 2™~ corresponds to considering how many unitary generators of
C(T™) are involved in constructing the even Fredholm modules by pulling back and

using these unitaries and the other commuting unitaries which are taken from the
fibers.



Theorem 6.6 The generators of the odd K-homology for the continuous field C*-
algebra T(T™, {®%_ e, (z) }zeT) are determined by the following:

KKl (F(Tm, {®i;=1919n(z)}z€']l')1 C) o Z2m_1 E;c___olenk — Z2""_1(l+n)l.

More generally, let I'(T™, {®f€=1§2(9nk (z) }2eTm) be a continuous field C*-algebra
over the m-torus T™ with the fibers ®fc=1919nk (z) I-fold tensor products of noncom-
mutative ng-tori (1 < k < ) generated by n unitaries U; (1 < j < n;) such that
U;U; = 2122 - 2mU;Uj for 1 < i < j < ng and 2z = (21,29, + , 2) € T™.

Theorem 6.7 The generators of the even and odd K-homology for the continuous
field C*-algebra T'(T™, {®l=1m6nk(z)}ze'l‘) are determined by the following:

KK* (F(Tm, {®L=1m9nk (z)}zeT)a C) o Z2’"‘1 k=0 1Ck ey Ty oy,

for x = 0,1, where the subset {ki, ke, - ,kx} of {1,2,---,1} corresponds to one of
1Cr combinations.

Remark. Summing up our whole argument, our K-homology formulae for the con-
tinuous field C*-algebras with fibers noncommutative tori say that it is enough to
count the Fredholm modules coming from commuting unitaries from the base spaces
and fibers inside the continuous field C*-algebras, and not to count those coming
from uncommuting unitaries in the fibers since they are not continuous at the end
points or on the base spaces.
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