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QUASINORMALITY AND FUGLEDE-PUTNAM THEOREM FOR
CLASS A(s,t) OPERATORS

S.M. PATEL, K. TANAHASHI!, A. UCHIYAMA AND M. YANAGIDA

ABSTRACT. We investigate several properties of Aluthge transform T'(s,t) =
IT|*U|T|* of an operator T = U|T|. We prove (1) if T is a class A(s,t) oper-
ator and T'(s,t) is quasi-normal (resp., normal), then T is quasi-normal (resp.,
normal), (2) if T is a contraction with kerT = kerT? and T'(s,t) is a partial
isometry, then T is a quasinormal partial isometry, (3) if T' is paranormal and
T(s,t) is a partial isometry, then T is a quasinormal partial isometry, and (4)
Fuglede-Putnam type theorem holds for a class A(s,t) operator T with s+¢ <1
if T satisfies a kernel condition ker T" C ker T*.

1. INTRODUCTION

Let 'H be a complex Hilbert space and T' = U|T| be the polar decomposition of
a bounded linear operator T' € B(H). An operator T is said to be p-hyponormal
if (T*T)? > (T'T*)?, where p > 0. In paticular, 1-hyponormal operators and 1/2-
hyponormal operators are hyponormal and semi-hyponormal operators. It is known
that hyponormal operators and semi-hyponormal operators enjoy some nice prop-
erties. In [1], Aluthge extended the class of hyponormal operators by introducing
p-hyponormal operators and obtained some properties with the help of the trans-
form T'(1/2,1/2) = |T|2U|T|'/?, which now known as the Aluthge transform. The
introduction of these operators by Aluthge has inspired many researchers not only
to expose some important properties of p-hyponormal operators but also to in-
troduce the number of its extensions ({2, 7, 10, 17, 23]). In this endeavor, the
Aluthge transform and more generally, the generalized Aluthge transform defined
as T'(s,t) = |T|*U|T|* with s,t > 0, have been proved to be important tools. In the
present article, we investigate class A(s,t) operators with the help of the generalized
Aluthge transform. According to [7, 10, 11], an operator T is defined to be a class
A(s, t) operator if

IT(s, )% 2 |T| or (|T*ITP|T*) 7 > |T*[*,

where s,t > 0.

If T is p-hyponormal and 0 < ¢ < p, then T is g-hyponormal by Lowner-Heinz’s
inequality [9, 13]. If T is invertible and log(T*T) > log(TT™*), then T is said to

be log-hyponormal. Invertible p-hyponormal operators are log-hyponormal, and p-
hyponormal or log-hyponormal operators are class A(s,t) operators for all 0 < s, t.
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If T is a class A(s,t) operator and s < s’,t < ¢/, then T is a class A(s,t') operator.
T is called a class A operator if

T2 > |T?,

which means T is a class A(1,1) operator. These classes are expanding for p, s,
and several authors investigated properties of these classes (see [10,11,15,17,18,23]).

We show in Section 2 that if T is a class A(s, t) operator and its Aluthge transform
T(s,t) is quasinormal (resp. normal), then T is also quasinormal (resp. normal).

In section 3, we consider a partial isometry. Let 7" = U|T| be a quasinormal
partial isometry. Then T'(s,t) = U, and hence T'(s,t) is a partial isomery. The
converse does not hold in general. However we show that (1) if T is a contraction
with ker T = ker T2 and T'(s,t) is a partial isometry, then T = T'(s,t) = U and T
is a quasinormal partial isometry, and (2) if T is paranormal and T'(s, t) is a partial
isometry, then T'= T'(s,t) = U and T is a quasinormal partial isometry.

Section 4 is devoted mainly to show that Fuglede-Putnam theorem holds for a class
A(s,t) operator T with s + ¢t = 1 if T satisfies a kernel condition ker T' C ker T™*.

2. QUASINORMALITY

Let T = U|T| be the polar decomposition of T' € B(H). T is said to be quasi-
normal if |T|U = U|T|, or equivalently, TT*T = T*TT. Patel [14] proved that if T
is p-hyponormal and its Aluthge transform 7°(1/2,1/2) is normal, then T is normal
and T = T(1/2,1/2). Aluthge and Wang [2] proved that if T is class A(1/2,1/2),
ker T C ker T* and its Aluthge transform 7°(1/2,1/2) is normal, then T is normal
and T'=T(1/2,1/2). The following is a generalization of these results.

Theorem 2.1. Let T be a class A(s,t) operator with the polar decomposition T =
U|T|. If T(s,t) = |T|*U|T|* is quasinormal, then T is also quasinormal. Hence T
coinsides with its Aluthge transform T(1/2,1/2) = |T|2U|T|z.

Proof. Since T is a class A(s,t) operator,
(1) IT(s, )| 2 |T| > [T(s, )]

for all r € (0, min{s,t}] by [11, Theorem 3] and Lowner-Heinz’s inequality [9, 13].
Then Douglas’s theorem [3] implies

[ran |T'(s,t)|] = [ran |T'|] D [ran |T'(s,t)*|] = [ran T'(s, t)]

where [M] denotes the norm closure of M. Let T'(s,t) = W|T(s,t)| be the polar
decomposition of T'(s,t). Then

E=WW=U'U>WW*=:F.

*_1_t_ X 0 _ W1 W2
= (50w (% %)

H = [ran T'(s,t)] ® ker T'(s, t)*.

Put

on
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Then X is injective and has a dense range. Since T'(s, t) is quasinormal, W commutes
with |T'(s, t)| and

[T (s, 8)|5% = W*W|T (s, t) |55 = W*|T(s, t)| 5 W
> W*|T|2rW > W*lT(s,t)*lf—LW = |T(s,t)|s%:?,

Hence . .

T (s, )| = W*|T(s,t)| "W = W*|T|"'W,
and
(2.2) IT(s,t)* |55 = WI|T (s, t)| "R W* = WW*|T (s, t)| " WW"

2r
(2.3) = WW* T WW* = (XO 8) .
Since WW* = ((1) 8), (2.1), (2.2) and (2.3) imply that |T(s,t)ls%:'t and |T'|?" are of
the forms
2r X 0 , X 0

(2.4) |T(s, )|+ = < 0 Y2r> 2> |T|2 = ( 0 Z%)
where

[ran Y] = [ran Z] = [ran |T|] © [ran T'(s,t)] = ker T'(s,t)* © ker T.
Since W commutes with |T'(s, t)|,
Wi, Wo (X 0 _ (X 0\ (W W,
0 O 0 Y/ \0o Y 0 0)/)°

So W1 X = XW; and W,Y = XW,, and hence [ran W] and [ran W;] are reducing
subspaces of X. Since W*W|T'(s,t)| = |T(s, t)|, we have W}W; =1 and

Xk = wywi X* = Wi X,

YF = WyWwL,Y* = Wor XFW,.

Un Uiz
Ua1 Uz

X 0 Un U\ (Xt 0 _ (W1 WL\ (X5 0
0 Zz° U21 U22 o Zzt) 0 0 0 Yst+t |-

XU Xt =W Xt = X°W, X¢,
X8U12Zt — W2Y8+t — ‘}(3+th2

Put U = ( ) Then T'(s,t) = |T|°*U|T|t = W|T (s, t)| implies

Hence

and
Xs(Un - Wl)Xt = O,
XU Zt — XtW,) = 0.
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Since X is injective and has a dense range, Uy; = W) is isometry and U2 2% = XtW,.
Then
U*U — UflUll + U51U2]_ UiklU12 + U51U22
Ufoll + U;2U21 Uf2Ul2 + U52U22

on H = [ran T(s,t)] @ ker T'(s,t)* is the orthogonal projection onto [ran|T|] D
[ran T'(s,t)], we have Us; = 0 and

,., 1 0
U = (0 Ui"2U12+U5‘2U22>'
Since U2t = XtW,, we have
Z% > 2t Ui Zt = Wa* X2W, = Y2,
and
27 > (ZWi*Upn 2% % = Wy XT Wy = YZ > 22
by Lowner-Heinz inequality and (2.4). Hence
(ZtU12*U12Zt)% — Z2‘r — Y21"
so Z =Y and |T(s,t)| = |T|***. Since
Z% = Z'Uyp* Uy Z°
< ZU1*Ura 2t + ZHUx*Un 2t < Z%,

Z'Up%"UxpZ* = 0 and UxpZ* = 0. This implies ran U}, C ker Z. Since ran (Uj,Us2 +
Us,Uz,) C [ran Z) and U3,Use < Uf,Uia+Us,Us2, we have ran Usy* C [ran Z]. Hence

W, U,
U22=0,U=(01 62) and

ran U C [ran T'(s,t)] C [ran |T|] =ran E.
Since W commutes with |T(s,t)| = |T'|**, W commutes with |T'| and
ITI*(W — D)ITI* = WIT|*|T|* - |T|°UIT*
=W|T(s,t)| — T(s,t) =0.
Hence E(W — U)E =0 and
U=UE=FEUE=FEWE=WE=W.
Thus U = W commutes with |T'| and T is quasinormal. O

Corollary 2.2. Let T = U|T| be a class A(s,t) operator T. If T(s,t) = |T|*U|T|
is normal, then T is also normal.

Proof. Since T'(s,t) is normal, T is quasinormal by Theorem 2.1. Hence T'(s,t) =
|T|*U|T|* = U|T|*** and T'(s,t)* = |T|***U*. hence

T = |T(s,1)|? = |T(s,1)*? = [T***2.
This implies |T'| = |T*| and T is normal. O
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3. PARTIAL ISOMETRY

In this section, we deals with a partial isometry, i.e., VV*V = V. Let V be
a quasinormal partial isometry. Then VV™* is the orthogonal projection onto V'H
and V*V is the orthogonal projection onto V*H. Let V = U|V| be the polar
decomposition of V. Since V. =U and |V| =V %V, we have

V(s,t) = |VIU|V| = V*VVV*V = V.

Hence the Aluthge transform V(s,t) of V is a partial isometry and coincides with
V. In this section, we deal with converse situation in which either T'(s,?) is a partial
isometry or T'(s,t) = T. First we consider the situation in which T'(s, t) is a partial
isometry. We start with the following lemma, which is well known.

Lemma 3.1. If0< A <1, and |Az|| = ||z||. Then Az = z.

Lemma 3.2. Let T = U|T| be a contraction and T(s,t) = |T|°U|T|* a partial
isometry for some s,t > 0. Then T(s,t) = T(s',t') for all §',t' > 0. In particular,
ker T'(s,t) = ker T'(1,1) = ker T°.
Proof. Since T'(s,t) is an isometry on ran T(s,t)*, |||T|*U|T|'z|| = ||z| for all z €
ran T'(s,t)*. Since T is a contraction, |T'|* and |T'|* are also contractions, hence we
have
|T)'x = z, |T|°U|T|'z = |T|°Uz = Uz

by Lemma 3.1. Hence |T|fz = z, |T|¥Uz = Uz and |T|*U|T|¥z = |T|* Uz = Uz
for all ¢/,¢ > 0. Hence we have T'(s,t) = T'(s',t') = U on ran T'(s,t)*. To prove the
rest, it suffices to show that ker T'(s,t) = ker T'(s,t') because H = ran T'(s,t)* &
ker T'(s, t).

Since

|T|*U|T|'x = 0 <= U|T|'z € ker T' = ker |T|
— |T)*U|T|tz = 0,

we have T'(s,t) = T'(s',t). By using the same argument as above, we have T'(s,t)* =
T(s,t')* for all t' > 0. Hence

ker T(s, ¢) = (ran T(s, £)*)* = (ran T(s,¢)*)*
=kerT'(s,t') =kerT'(s,t').
Thus T'(s,t) = T(s',t'). It is clear that ker T(1,1) = ker T?. O

Theorem 3.3. Let T = U|T)| be a contraction such thatker T' = ker T?. IfT(s,t) =
|T|*U|T|* is a partial isometry, then T = T'(s,t) = U and T is a quasinormal partial
tsometry.

Proof. By Lemma, 3.2,
ker T'(s,t) = ker T? = ker T = ker U,

so ran T'(s,t)* = [ran T*] = [ran |T'|]. Since T'(s,t) = U on ran T'(s,t)* = [ran |T'|]
and ker T'(s,t) = kerU = ker T, T'(s,t) = U because H = [ran |T'|] & ker T'. This
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shows
ran U = ran T'(s,t) C [ran |T|] = ran U*U.
Thus U = UU*U = U*UU. Let

|T|* = ()0( g) ,U'U = ((1) g) on H = [ran |T'|] & ker |T|.

Since T is a contraction, we have U*|T'|?*U <1 and 0 < X < 1. Then
U*U =T(s,t)*'T(s,t) = |T|'U*|T|*U|T|* < |T|* < U*U.

Hence |T| =U*U and T = U|T| = UU*U = U = T(s,t). Thus T is a quasinormal
partial isometry. O

Remark 3.4. Theorem 3.3 is invalid if any one of conditions ker T = ker T? and
[IT|| €1 is dropped.
(Example 1)

LetT=(

quasinormal.
(Example 2)
Let T = ((1) (1)) Then ||T|| = v/2, T(1/2,1/2) is a projection, ker T = ker T2

and T is not quasinormal.

01

0 0). Then ||T|| = 1, T(s,t) = 0, kerT # kerT? and T is not

Corollary 3.5. Let T = U|T| € B(H) be a paranormal operator, i.e., ||Tz|?* <
|T2z||||z|| for all z € H. If T(s,t) = |T|°U|T|* is a partial isometry, then T =
T(s,t) =U and T is a quasinormal partial isometry.

Proof. Since T is paranormal, ker T' = ker T2. Hence it suffices to show that T is a

contraction by Theorem 3.3. Let T' # 0. Then ||T’|| = |A| for some 0 # X\ = |\|e¥ €
o(T). Then there exist unit vectors z,, such that

(T - Nz, —0,(T — A\)*z, — 0.
Then
(T) = |A)zn — 0, (U — €¥)z, — 0.
Hence
(T(s,t) = |AI** )z, — 0

and |\**te® € o(T(s,t)). Since T'(s,t) is a partial isometry, we have |A\|*** <
IT(s,t)|]| < 1. Hence ||T|| = |A| < 1.
O

Corollary 3.6. Let T = U|T| be a class A(s,t) operator. If T(s,t) = |T|°U|T|* is
a partial isometry, then T'(s,t) =T and T is a quasinormal partial isometry.

Proof. Since |T'(s,t)| is a contraction and |T(s,t)|32_+ft > |T|?, it follows that T is a
contraction and ker T = ker T'(s, t) = ker T? by Lemma 3.2. Now the result follows
from Theorem 3.3. O
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Now we study the situation in which T'(s,t) = 7. In case s +t = 1, a simple
argument shows that 7' is quasinormal. In what follows, we study cases in which
t>s+1,t=s+1,and t < s+ 1. We begin with the following lemma.

Lemma 3.7. Let T = U|T| and T = T(s,t) = |T|*U|T|*. Then the following
assertions hold.

(i) (T*T)*(TT*)* =TT*, hence T*T commutes with TT*.

(if) kerT C kerT™.

(ili) X € o(T*T) implies ™ € o(T*T) for each positive integer n where

fn) = (A —=12)/s)".

Proof.

(i) Since T' = T'(s, t),
U|T|U* = |T|°U|T|'U* = U|T|*U*|T|°.
Hence |T'| commutes with |T™| = U|T|U* and
TT* =U|T\U*U|T|\U*
= [T {T T = (T T) (T

(ii) (i) implies (TT*)Y(T*T)* = TT* and so (ii) is immediate.

(iii) Assume 0 # A € o(T*T). Then A € o(TT*). Then there exist unit vec-
tors z, such that (T'T* — A\)z, — 0. Then ((TT*)* — A)z, — 0 and therefore
(T*T)*(TT*)t — XY(T*T)%)x,, — 0. Then (TT* — X¥(T*T)°)x, — 0 by (i). Since
(T'T* — Nz, — 0, we obtain (A\*(T'T*)* — A)z, — 0. Hence, as X is different from
0, we arrive at MY € o(TT*) and therefore A € o(T*T). Now applying the

same argument to A1), we get Af® € ¢(T*T). Continuing in the same fashion, we
obtain A/ € o(T*T) for each n. a

Theorem 3.8. Let T = U|T| and T = T'(s,t) = |T|*U|T|* for some 0 < s,t with
t>s+ 1. Then T is a quasinormal partial isometry.

Proof. By Lemma 3.7 and our assumption on {,
TT*(TT*)Y(T*T)* — 1) = 0
or equivalently, .
T*((TT*)"Y(T*T)* — 1) = 0.
This implies
IT|\U*(TT*)*H(T*T)* = 1) =0
and hence
|T\U*(U|T|*2U*|T|** — 1) = 0.
Then |T|?*~1U*|T|* = |T|U*. Since t > 1, we have U|T|%*2U*|T|** = UU*. In
consequence of this, we find |T|®#-2U*|T'|?* = U*. This shows that the generalized
Aluthge Transform T'(2s,2t — 2) = |T|?*U|T|?~? is a partial isometry and ker T =
kerU = kerT(2s,2t — 2) = kerT? by Lemma 3.2. In view of Theorem 3.3, the

proof is over once we establish the inequality ||T']| < 1. Choose a non-negative real
number X € o(|T|) such that A = |||T||| = ||T||]. Then there exist unit vectors z,
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such that (|| — A)z, — 0. By Lemma 3.7 (iii), we have A € o(T*T) for each
positive integer n. In particular Af®® € o(T*T). If A > 1, then the assumption
that ¢ > s + 1 will show that f(2n) — oo and so Af®®) — 0o as n — oco. This is
clearly impossible. Therefore ||T'|| = A < 1. a

Remark 3.9. Ift < s+ 1, then Theorem 3.8 does not hold.

(iiIncaseofl <t<s+1)

Letp=(t—1)/s € (0,1). Let {en}n=12, be an orthonormal base of H and 0 < a.
Define a weighted shift T by

—myn—1
Te, = a(™P €nt1-

Since aP"" — @ =1, T is bounded. Let T = U |T'| be the polar decomposition of
T. Then U is a unilateral shift (i.e., Ue, = eny1) and |T| = 5" aCP""' P, where P,
is the orthogonal projection onto Ce,,. Then

T(s,t)e, = |T|°U|T| e, = ITISUat(‘p)"_len
=gt PP = gP)" e L = T,

Hence T'(s,t) =T. Since U does not commute with |T'|, T is not quasinormal. Since
a or a”? is larger than 1, ||T|| > 1, so T is not a partial isometry.

(ii. In case of 0 < s,t =1)
Let 0 < a # 1. Define a weighted shift T by

Te, = acz z:f n=1
éeny1 if n>1.

Then T(s,t) = |T|°U|T| =T, but T is neither quasinormal nor a partial isometry.

(iii. Incase of 0 <t < 1,1<s+1)
Letp=(1-1t)/s € (0,1) and 0 < a # 1. Define a weighted shift T by

Te, = af enq1.
Then T'(s,t) = |T|°U|T|* =T, but T is neither quasinormal nor a partial isometry.

(iv. In case of 0 < s,t,s+t=1)
Let 0 < a # 1. Define a weighted shift T by

Te, = aep41-
Then |T| = a and T(s,t) = a*Ua® =T, but T is not a partial isometry.

(v.Incase of 0 < s+t <1)
Letp=(1—-1t)/s>1 and 0 < a < 1. Define a weighted shift T by

7
Te, = a? enq1.

Then T'(s,t) = |T|*PU|T|* = T and T is quasinilpotent because a?" — 0. Since U does
not commute with |T|, T is not quasmormal Since ||Te;|| = ||aPes|| = a? # |lesl|, T
is not a partial isometry.
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t t=s+1

The preceding remarks suggest that additional restrictions on 7" are required to
insure the validity of Theorem 3.8 in case t < s + 1.

Theorem 3.10. Let T be a contraction with T = T'(s,t), wheret =s+ 1. Then T
s a quasinormal partial isometry.

Proof. Since U|T| = |T|*U|T|**!, we have U = |T|*U|T|® as ker |T| = ker U. Then
UU* =U|T)PU*|T|® = |T*)°|T|)® = |T|°|T™*|°.

Hence |T'| commutes with |T™*|. Since UU* is the orthogonal projection, (UU*)/* =

UU* = |T||T*| = |T*||T|. Then U = UU*U = |T||T*|U = |T|\U|T|\U*U = |T|U|T| =

T(1,1). Hence T'(1,1) is a partial isometry and ker T2 = ker T'(1,1) = ker U = ker T'.
Thus T is a quasinormal partial isometry by Theorem 3.3. O

Remark 3.11. Theorem 8.10 does not hold if s = 0. In this case T(0,1) = T for
any invertible operator T'. Also the condition that |T)| < 1 cannot be removed. For

f T = 1(/)2 (2J on H = C2, then it has the polar decomposition T' = U|T| with
U= ((1) (1)) and |T| = (1(/)2 g) . Also T(1,2) =T, ||IT|| > 1 and T is neither a

partial isometry nor quasinormal.

Theorem 3.12. Let T be a contraction with T = T(s,t), wheret < s+ 1.

(i) If t > 1, then T is a quasinormal partial isometry.

(ii) If s+t < 1 and 0 is not a limit point of o(T*T), then T is a quasinormal
partial isometry.

(iii) If 1—s < t < 1 and 1 is not a limit point of o(T*T), then T is a quasinormal
partial isometry.

Proof. (i) Since U|T| = |T|*U|T?,
U=|T|°U|T|*" = T(s,t — 1).
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Hence T'(s,t — 1) is a partial isometry and UU* = U|T|'*"'U*|T|*. Then kerU =
kerT = ker|T| C kerU* = kerT* and kerT = kerT2. Thus T is a quasinormal
partial isometry by Theorem 3.3.

(ii) Since |T|*U|T|t = U|T|, we have |T|*U = U|T|*~t. Then |T*|*~t = U|T|*"tU* =
|T|*UU* = UU*|T|*. Hence

T|* > UU*|T|* = |T*|.

Let A € o(T*T). Since T is a contraction, 0 < A < 1. Then M@ € ¢(T*T) for each
positive integer n, where f(2n) = (%)zn by Lemma 3.7. Assume 0 < A < 1. Then
o(T*T) > M@ S 0as 1< (1—;—5)2 This is a contradiction. Hence o(T*T) C {0,1}
and T*T is the orthogonal projection. Thus T is a partial isometry and |T'|U = U|T|.

(iii) The proof is similar to (ii).

O

Remark 3.13. Theorem 3.12 (i) is not true in case t = 1. For the counter example,
refer to Remark 8.9 (ii). Theorem 3.12 (ii) is not valid if 0 is not a limit point of
o(T*T) as can be seen in Remark 8.9 (V). Also Theorem 3.12 (iii) is not valid if 1
is not a limit point of o(T*T) as can be seen in Remark 3.9 (iii).
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4. FUGLEDE-PUTNAM TYPE THEOREM

Our basic aim in this section is to extend the Fuglede-Putnam Theorem [6, 16],
one of the celebrated theorems in the subject of operator theory. We would like to
state the theorem.

Proposition 4.1 (Fuglede-Putnam). Let S € B(H) and T* € B(K) be normal op-
erators and SX = XT for some operator X € B(H,K). Then S*X = XT*,[ran X|
reduces S, (ker X)* reduces T', and S|yan xJ,

T|kerx)L are unitarily equivalent normal operators.

Various extensions of the Fuglede-Putnam Theorem can be found in the literature.
(See [5], [12], [15]). Recently Uchiyama and Tanahashi [20] generalized the theorem
for p-hyponormal operators and log-hyponormal operators, a subclass of A(s,t) op-
erators with s = ¢ = 1/2. In the present section, we extend the above theorem for
class A(s,t) operators with s + ¢t = 1 with reducing kernels. Further extensions for
class A operators and more generally for class A(s,t) operators remain as an open
problem. Here we wish to give two alternate proofs.

1. First Proof.
First we start with establishing several lemmas.

Lemma 4.2. ([22]) Let A, B and C be positive operators, 0 <p and 0 <r < 1. If
(B:APB%)# > B" and B > C, then (C3APC3)5+ > CT.

Lemma 4.3. Let T be a class A(s,t) operator for some s,t € (0,1] and M an
invariant subspace of T. Then the restriction T|p is also a class A(s,t) operator.

n S
0 T3
7y O
0 0

|[To** = (P|IT|*P)* 2 PIT|*P

Proof. Let T = ( ) on H = M @& M+ and P the orthogonal projection onto

M. LetTO=TP=( ).Then

by Hansen’s inequality, and
|T*|> = TT* > TPT* = |T§|>
Hence,

T is a class A(s,t) operator
= (T[T |T*|") 7 > |T*|*
—> (ITg[ITI*|Tg ") 7 > [Tg|* (by Lemma 4.2)
= (ITy [ To/*|T5 )7 > |Tg*  (since |Tg|* = |T5]*P = P|Tg")

‘<= T\ is a class A(s,t) operator .
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Lemma 4.4. Let T € L(H) be a class A operator. Let M be an invariant subspace

of T and T = T01 ]‘S” on H=Me&M*. IfTy = T|m is quasinormal, then
2

ran S C kerTy. Moreover, if kerT C kerT* and T) = T|p is normal, then M
reduces T

Proof. Let P be the orthogonal projection onto M. Then we have,

( T10T1 8 ) = PT*TP < P|T?|P (since T is class A)

*2r 2y 1
< ( (Ty (I')Tl )? g ) (by Hansen’s inequality (8])

= ( . OTI g ) (since T is quasinormal).

Let (T2 = ( o &

T*2T2, we have

). Then X = T1*T; by the above inequality. Since |T2|2 =

ZY*+Y*X Y*Y +2Z2

_ T1*2T12 T1*2(T15 + STy)
- (S*Tl* + T;S*)le (S*Tl* + T;S*)(T1S + STz) + T2*2T22

( X24+YY* XY +YZ)

and hence
X24YY* =T*N2 = (T Th)? = X2
This implies that Y = 0. Then
2| Tl*Tl 0 * _ Tl*Tl TI*S
Il = ( 0 Z) 2T'T= ( STy S'S+T'T
and 77*S = 0. This implies
ran S C ker T7'.
Moreover, assume 73 is normal. Then

S(MY) ckerT¥ =kerTy C ker T C ker T™.
1

pwa._(I7 O Sz\ _(1{Sz
O‘TS“"(S* T;)(O)—(S*Sx)

for z € M*. This implies $*S = 0 and S = 0. Thus M reduces T 0

Hence, we have

Remark 4.5. The following example shows that there exists a class A operator T
such that T'|pm is quasinormal but M does not reduce T

Let T be a bilateral shift on €*(Z) definded by Te, = ent1 and M = Vo<, Cey.
Then T is unitary and T'|s is isometry. However M does not reduce T'.

The next lemma is a simple consequence of the preceding one.
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Lemma 4.6. Let T € L(H) be a class A operator with kerT C kerT*. Then
T=T&T> on H="H;®Hy where Ty is normal, ker Ty = {0} and T3 is pure class
A, i.e., Ty has no non-zero invariant subspace M such that Ty| s is normal.

Lemma 4.7. Let T = U|T| € B(H) be a class A(s,t) operator with s+t =1 and
kerT C kerT*. Let T(s,t) = |T|*U|T|*. Suppose T(s,t) be of the form N & T’
on H = M ® M*, where N is a normal operator on M. Then T = N @ T;
and U = Uy ® Uz, where Ty is a class A(s,t) operator with kerTy C ker Ty and
N = Uy1|N]| is the polar decomposition of N.

Proof. Since
[T (s, )™ > [T > |T(s,8)**
for r € (0, min{s,t}], we have
NP @ [T > [T 2 [N @ |7
by assumption. This implies that |T is of the form |N|@®L for some positive operator

_( Un Uy
L. Let U = ( Us Usy

decomposition H = M & M. Then the definition T'(s,t) = |T|°U|T|* means

N o\ _ [N} o U Us IN|t ©
o )=\ o L Uy Us o L)

Hence, we have

) be 2 x 2 matrix representation of U with respect to the

N = [N|*Upn|N[t, [N|*UpLt = 0, L*Uyy | N|t = 0.
Since ker T’ C ker T,
[ran U] = [ran T] = (ker T*)* C (ker T)* = [ran |T].
Let Nz =0 for x € M. Then x € ker |T| = ker U, and

_ (U U\ (7 _ (Unz\ _
Uz = (U21 Uzz) (0) - (UZIx) =0.

ker N C ker U11 N ker U21.

Hence

Let £ € M. Then

U (g) = (g;ii) € [ran |T|] = [ran (|N| @ L)].
Hence
ran Uy; C [ran|N]|], ran Uy C [ranL).
Similarly

ran Uje C [ran|N|], ran U C [ranL).
Let Lz = 0 for £ € M*. Then z € ker |T'| = ker U and

0 _ U12.'L' .
0 (2) = (uin) =
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Hence
ker L C ker Uy, N ker Uss.
Let N = V|N| be the polar decomposition of N. Then
(VIN[® = [N|"Un)IN|* = 0.
Hence V|N|* — |[N|*U;; = 0 on [ran |N]|]. Since ker N C ker Uy, this implies 0 =
Vlle - |N|8U11 = |NI8(V - Un). Hence
ran (V — Uy1) C ker |[N| N [ran |[N|] = {0}.

Hence V = Uy; and N = Uy |N| is the polar decomposition of N. Since |N|*U;p Lt =
0,
ran Ujp Lt C ker |[N| N [ran |N|] = {0}.

Hence U3 Lt = 0 and Uy = 0. Similarly we have Uy = 0 by L°Uy |N|* = 0. Hence
U= U11 D U22. So we obtain

T=U|T|=Un|N|®UxL=Na&T,
where Tl = U22L. O

Theorem 4.8. Let S € B(H) and T* € B(K) are class A(s,t) operators with
s+t <1 and kerS C ker S*,kerT* C kerT. Let SX = XT for some operator

X € B(K,H). Then S*X = XT*,[ran X] reduces S, (ker X)* reduces T, and
S|iran x] Tl(ker x)L are unitarily equivalent normal operators.

Proof. We may assume s+t = 1 by [11, Theorem 4]. Decompose S, T* into normal
parts and pure parts as in Lemma 4.6, i.e., S = S; ® S; on H = H; & H, and
T* =Ty ®T; on K = Ky & K2 where S;,T7 are normal and S;,T; are pure. Let

_(Xn X2 . T
X = (X21 ng)' Then SX = XT implies

S1 X1 51X\ _ (XuTy XT3
SaXo1 S2Xo2 XaTh XooT3)°

Let Sy = Us|Ss|, Ty = V;*|T5| be the polar decompositions and
Sa(s,t) = |S2|*Ua|S2|', T (s, t) = | T |V |T5 |5, W = |S2|* Xoo| T3 |°.
Then
Sa(s, )W = |S2|° 82 X oo | T3 |
= |S2|* X To| T3 |° = W(T3 (s, 8))"

Since Sp, Ty are class A(s,t) operators, Sa(s,t),T5(s,t) are min{s,t}-hyponormal.
Hence [ran W] reduces Sy(s,t), (ker W)* reduces T;(s,t) and

Sa(s,t)|ran w) = T3 (S, t)| (ker w)L

are unitarily equivalent normal operators by [5]. Since Sz, Ty are pure, we have
W = 0 by Lemma 4.7. Then X3, = 0 as S2,T; are injective by Lemma 4.6. Since
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Szle = X21T1 and Sleg = X12T2, we have X21T1 = 0 and Slez =0 by similar
arguments. Then SX = X7T implies

S1Xu 0\ _ (XuTi XioTo
SoXo51 0) 0 0

and X2 =0, X5; = 0. Hence X = <X;)11 g) and

ran X =ran Xy; @ {0}, (ker X)* = (ker X;;)* & {0}.

Since S1X11 = X1Ti, we have S} Xy = X111y, [ran Xi;] reduces Si, Silran xi
and 71| ker x,,)+ are unitarily equivalent normal operators by Proposition 4.1. Then
Sl{ran Xx] = Sl|[ran X11)]» zﬂll(kerXu)‘L = 'Tl(kerX)l lmply that S*X = XT*’ [ran X]
reduces S, (ker X)* reduces T, and S|jran x], T'|(ker x)+ are unitarily equivalent normal
operators. O

Remark 4.9. The authors [19, Example 13] made a class A(1/2,1/2) operator A
such that ker A does not reduce A. Let S =T* = A and X = P be the orthogonal
projection onto ker S. Then SX = 0 = XT, but S*X # XT*. Hence the kernel
condition is necessary for Theorem 4.8.

2. Second Proof.

Theorem 4.10. Let T € B(H) be a class A(s,t) operator with s +t < 1 and
kerT C ker T*. If L is self-adjoint and TL = LT*, then T*L = LT.

Proof. We may assume s +t¢ = 1 by [11, Theorem 4]. Since kerT C kerT* and
TL = LT”, kerT reduces T and L. Hence

T=T160, L=L,&L; on H=[ran T"] ® ker T,
TiL, = LyTy* and {0} = ker T} C ker T7. Since [ran L,] is invariant under Ty and

reduces Ly,

T S .
n= ( 61 T22> ,Li = Ly; ® 0 on [ran T*] = [ran L;] & ker L.

T1: is an injective class A(s,t) operator by Lemma 4.3 and L;; is an injective
self-adjoint operator (hence it has dense range) such that T3:L1; = L11T11*. Let
Ty; = Vi1|T11] be the polar decomposition of T3; and T1:1(s, t) = |T11|*Va1|Tult, W =
|T11|8L11|T11|S. Then .
T (s, )W = |Tu1|*Vau|Tua || 11 |° Laa | T |°
= |Tu|*TuLu|Tul® = |Tu LTy | Ta
= T |* L1 |Tua |°| T PV | Tua | = W (s, B)*

Since T11(s,t) is min{s, t}-hyponormal and ran W is dense (because ker W = {0}),
T11(s,t) is normal by [5, Theorem 7]. Hence T1; is normal and Ti;, = T1i(s,t) by
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Corollary 2.2. Then [ran L,] reduces Ty by Lemma 4.4 and T3,"Ly; = L1173, by
Proposition 4.1. Hence
T=T ®T o0,
L=L;;®08 L,
and
T*L - Tl*lLll %) 0@ 0 = L11T11 @ 0 &) 0 = LT
O

Remark 4.11. Let T = A be a class A(1/2,1/2) operator as in Remark 4.9. Let
X = P be the orthogonal projection onto kerT. Then T is a class A operator and
TL = 0 = LT*, but T*L # LT. Hence the kernel condition kerT C kerT™ is
necessary for Theorem 4.10.

Corollary 4.12. Let T € B(H) be a class A(s,t) operator with s +t < 1 and
kerT C kerT*. If TX = XT* for some X € B(H), then T*X = XT.

Proof. Let X = L + iK be the Cartesian decomposition of X. Then we have
TL = LT* and TJ = JT* by the assumption. By Theorem 4.10, we have T*L = LT
and T*J = JT. This implies that T* X = XT. O

Corollary 4.13. Let S € B(K),T* € B(H) be class A(s,t) operators with s+t <1
and ker S C ker S*, kerT* C kerT. If SX = XT for some X € B(K,H), then
S*X =XT~.

Proof. Put A = :’(; g andB=()O( g)on'H@IC. Then A is a class
A(s,t) operator with ker A C ker A*, which satisfies AB = BA*. Hence we have
A*B = BA by Corollary 4.12, and therefore $*X = XT™*. O

As an application of Corollary 4.13, we establish below Corollary 4.14; thus com-
pleting the second proof.

Corollary 4.14. Let S € B(H) and T* € B(K) are class A(s,t) operators with
s+t <1 andkerS C ker S*,kerT* C kerT. Let SX = XT for some operator
X € B(K,H). Then [ran X] reduces S, (ker X)* reduces T and S|ian x], T (xer x)1
are unitarily equivalent normal operators.

Proof. By Corollary 4.13, S*X = XT*. Therefore S*SX = XT*T and so |S|X =
X|T|. Let S = U|S|,T = V|T| be polar decomposition. Then UX|T| = U|S|X =
SX = XT = XVI|T|. Let z € ker|T|. Then Vz = 0 and SXz = XTz = 0.
Hence Xz € kerS = kerU and UXz = 0. Hence UX = XV. Since kerU =
kerT C kerT* = kerU*, UU* < U*U. Hence U*UU = U*UUU*U = UU*U =
U. This implies U and V* are quasinormal. Hence U*X = XV*, [ranX] reduces
U,|S|, (ker X)* reduces V,|T|. We may assume ¢ < s. Then S, T* are class A(s, s)
operators with reducing kernels. Let S(s, s) = |S|°U|S|%, T(s,s) = |T|°*V|T|*. Then
S(s,s),T*(s,s) = |T*|*V*|T*|* = VT'(s, s)*V* are semi-hyponormal. Also, since

|7°(s, s)*l - |T(S7 3)' = V*(IT*(S’ 3)' - |T*(3a 3)*DV >0,
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T'(s, s)* is semi-hyponormal, too. Then
S(s,8)X = |S|°U|S)°X = |S|°UX|T)?
= |SIPXVI|T|? = XT(s,s),
hence S(s,s)*X = XT (s, s)*, [ran X] reduces S(s, s), (ker X)* reduces T'(s, s) and
Sliran x1(8,8) = 5(8, 8)|[ran x] = T(8, 8)|kerx)t = Tl (ker x)1 (5, 8)

are unitarily equivalent normal operators. Hence S|ian x], T|(ker x)+ are normal by
Corollary 2.2, and that they are unitarily equivalent follows from the fact that if
N = U|N| are M = W|M]| are normal operators, then for a unitary operator V,
N =V*MV if and only if U = V*WV and |N|* = V*|M|*V for any s > 0. O

Theorem 4.15. Let T = U|T| € B(H) be a class A(s,t) operator with s+t <1
and N a normal operator. Let TX = XN. Then the following assertions hold.

(i) If the range ran X is dense, then T is normal.

(ii) If ker X* C ker T*, then T is quasinormal.

Proof. Let Z = |T|*X. Then
T(s,t)Z = |T|*PU|THT|* X = |T)°TX
= |T|*XN = ZN.
Since T'(s,t) is min{s, t}-hyponormal, we have
T(s,t)*Z = ZN*
by [20]. Hence
(T'(s,t)*T(s,t) — T(s,t)T(s,8)") |IT|°X
=T(s,t)"T(s,t)Z — T(s,t)T(s,t)*Z
= T(s,t)*ZN — T(s,t)ZN* = ZN*N — ZNN* = 0.
(i) If ran X is dense, then
(T'(s,t)*T(s,t) — T(s,t)T(s,t)*) |T|° = 0.

Since
ker |T'|° C ker T'(s,t) Nker T'(s, t)*,
this implies T'(s, t) is normal. Hence T is normal by Corollary 2.2.

(ii) Let X*|T|*z = 0. Then |T|°z € ker X* C kerT* = ker U* and T'(s,t)*x =
|T|*U*|T|°x = 0. Hence ker(X*|T|°) C T(s,t)* and [ran T'(s,t)] C [ran |T|*X].
Hence '

(T'(s,t)*T'(s,t) — T(s,t)T(s,t)*) T(s,t) =0

by (i). This implies T'(s,t) is quasinormal, and 7" is quasinormal by Theorem 2.1.
O

Next theorem is an extension of Theorem 3 of [20].
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Theorem 4.16. Let S € B(H) be dominant and T* € B(K) a class A(s,t) operator
with s+t <1 andkerT* CkerT. Let SX = XT for some operator X € B(K,H).
Then S*X = XT*,[ran X] reduces S, (ker X)* reduces T, and S|jan x}> T|(ker x)+
are unitarily equivalent normal operators.

Proof. Decompose S,T* into normal parts and pure parts as in Lemma 4.6 and [4],
ie,S=51®Son H=H®Hzand T* =Ty & T; on K = K; & K, where Sy, T}
ﬁ; i((;: . Let Ty = U}|T#| be the
polar decomposition of Ty and Ty(s,t) = |TY|*Us|Ty|*. Let Ti(s,t) = V5 |Ty(s,t)]
be the polar decomposition of T5(s,t) = W and W (s,t) = |T5(s,t)|*Vy| Ty (s, t)[ .
Since SX = XT, we have

are normal and S, 75 are pure. Let X =

SoXo1 = X Th,
S$2 X | T3 °|T5 (s, £)1° = Xaa| T3 1°|T5 (s, )W (s, £)*
51 X12 = X121

Then X3, X229, X12 = 0 by [4, Corollary 1] and Theorem 4.10. The rest of the proof
is similar to the proof of Theorem 4.10. O

Remark 4.17. Let T* = A as in Remark 4.9. Let X = P be the orthogonal
projection onto kerT* and S =1— P. Then SX =0=XT, but 0 = S*X # XT*.
Hence the kernel condition is necessary for Theorem 4.16.
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