QUASINORMALITY AND FUGLEDE-PUTNAM THEOREM FOR CLASS A(s,t) OPERATORS

S.M. PATEL, K. TANAHASHI¹, A. UCHIYAMA AND M. YANAGIDA

ABSTRACT. We investigate several properties of Aluthge transform $T(s,t) = |T|^s U|T|^t$ of an operator T = U|T|. We prove (1) if T is a class A(s,t) operator and T(s,t) is quasi-normal (resp., normal), then T is quasi-normal (resp., normal), (2) if T is a contraction with $\ker T = \ker T^2$ and T(s,t) is a partial isometry, then T is a quasinormal partial isometry, (3) if T is paranormal and T(s,t) is a partial isometry, then T is a quasinormal partial isometry, and (4) Fuglede-Putnam type theorem holds for a class A(s,t) operator T with $s+t \leq 1$ if T satisfies a kernel condition $\ker T \subset \ker T^*$.

1. Introduction

Let \mathcal{H} be a complex Hilbert space and T = U|T| be the polar decomposition of a bounded linear operator $T \in B(\mathcal{H})$. An operator T is said to be p-hyponormal if $(T^*T)^p > (TT^*)^p$, where p > 0. In paticular, 1-hyponormal operators and 1/2hyponormal operators are hyponormal and semi-hyponormal operators. It is known that hyponormal operators and semi-hyponormal operators enjoy some nice properties. In [1], Aluthge extended the class of hyponormal operators by introducing p-hyponormal operators and obtained some properties with the help of the transform $T(1/2, 1/2) = |T|^{1/2}U|T|^{1/2}$, which now known as the Aluthge transform. The introduction of these operators by Aluthge has inspired many researchers not only to expose some important properties of p-hyponormal operators but also to introduce the number of its extensions ([2, 7, 10, 17, 23]). In this endeavor, the Aluthge transform and more generally, the generalized Aluthge transform defined as $T(s,t) = |T|^s U|T|^t$ with s,t>0, have been proved to be important tools. In the present article, we investigate class A(s,t) operators with the help of the generalized Aluthge transform. According to [7, 10, 11], an operator T is defined to be a class A(s,t) operator if

$$|T(s,t)|^{\frac{2t}{s+t}} \ge |T|^{2t} \text{ or } (|T^*|^t|T|^{2s}|T^*|^t)^{\frac{t}{s+t}} \ge |T^*|^{2t},$$

where s, t > 0.

If T is p-hyponormal and 0 < q < p, then T is q-hyponormal by Löwner-Heinz's inequality [9, 13]. If T is invertible and $\log(T^*T) \ge \log(TT^*)$, then T is said to be log-hyponormal. Invertible p-hyponormal operators are log-hyponormal, and p-hyponormal or log-hyponormal operators are class A(s,t) operators for all 0 < s,t.

¹ This research was supported by Grant-in-Aid Research No. 15540180 2000 Mathematics Subject Classification. 47B20.

Key words and phrases. p-hyponormal operator, class A operator, class A(s,t) operator.

If T is a class A(s,t) operator and $s \leq s', t \leq t'$, then T is a class A(s',t') operator. T is called a class A operator if

$$|T^2| \ge |T|^2,$$

which means T is a class A(1,1) operator. These classes are expanding for p, s, t and several authors investigated properties of these classes (see [10,11,15,17,18,23]).

We show in Section 2 that if T is a class A(s,t) operator and its Aluthge transform T(s,t) is quasinormal (resp. normal), then T is also quasinormal (resp. normal).

In section 3, we consider a partial isometry. Let T = U|T| be a quasinormal partial isometry. Then T(s,t) = U, and hence T(s,t) is a partial isometry. The converse does not hold in general. However we show that (1) if T is a contraction with ker $T = \ker T^2$ and T(s,t) is a partial isometry, then T = T(s,t) = U and T is a quasinormal partial isometry, and (2) if T is paranormal and T(s,t) is a partial isometry, then T = T(s,t) = U and T is a quasinormal partial isometry.

Section 4 is devoted mainly to show that Fuglede-Putnam theorem holds for a class A(s,t) operator T with s+t=1 if T satisfies a kernel condition $\ker T \subset \ker T^*$.

2. Quasinormality

Let T = U|T| be the polar decomposition of $T \in B(\mathcal{H})$. T is said to be quasinormal if |T|U = U|T|, or equivalently, $TT^*T = T^*TT$. Patel [14] proved that if Tis p-hyponormal and its Aluthge transform T(1/2, 1/2) is normal, then T is normal and T = T(1/2, 1/2). Aluthge and Wang [2] proved that if T is class A(1/2, 1/2), ker $T \subset \ker T^*$ and its Aluthge transform T(1/2, 1/2) is normal, then T is normal and T = T(1/2, 1/2). The following is a generalization of these results.

Theorem 2.1. Let T be a class A(s,t) operator with the polar decomposition T=U|T|. If $T(s,t)=|T|^sU|T|^t$ is quasinormal, then T is also quasinormal. Hence T coinsides with its Aluthge transform $T(1/2,1/2)=|T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$.

Proof. Since T is a class A(s,t) operator,

$$(2.1) |T(s,t)|^{\frac{2r}{s+t}} \ge |T|^{2r} \ge |T(s,t)^*|^{\frac{2r}{s+t}}$$

for all $r \in (0, \min\{s, t\}]$ by [11, Theorem 3] and Löwner-Heinz's inequality [9, 13]. Then Douglas's theorem [3] implies

$$[\operatorname{ran}\,|T(s,t)|] = [\operatorname{ran}\,|T|] \supset [\operatorname{ran}\,|T(s,t)^*|] = [\operatorname{ran}\,T(s,t)]$$

where $[\mathcal{M}]$ denotes the norm closure of \mathcal{M} . Let T(s,t) = W|T(s,t)| be the polar decomposition of T(s,t). Then

$$E := W^*W = U^*U > WW^* =: F.$$

Put

$$|T(s,t)^*|^{\frac{1}{s+t}} = \begin{pmatrix} X & 0 \\ 0 & 0 \end{pmatrix}, W = \begin{pmatrix} W_1 & W_2 \\ 0 & 0 \end{pmatrix}$$

on

$$\mathcal{H} = [\operatorname{ran} T(s,t)] \oplus \ker T(s,t)^*.$$

Then X is injective and has a dense range. Since T(s,t) is quasinormal, W commutes with |T(s,t)| and

$$|T(s,t)|^{\frac{2r}{s+t}} = W^*W|T(s,t)|^{\frac{2r}{s+t}} = W^*|T(s,t)|^{\frac{2r}{s+t}}W$$

$$\geq W^*|T|^{2r}W \geq W^*|T(s,t)^*|^{\frac{2r}{s+t}}W = |T(s,t)|^{\frac{2r}{s+t}}.$$

Hence

$$|T(s,t)|^{\frac{2r}{s+t}} = W^*|T(s,t)|^{\frac{2r}{s+t}}W = W^*|T|^{2r}W,$$

and

$$(2.2) |T(s,t)^*|^{\frac{2r}{s+t}} = W|T(s,t)|^{\frac{2r}{s+t}}W^* = WW^*|T(s,t)|^{\frac{2r}{s+t}}WW^*$$

(2.3)
$$= WW^*|T|^{2r}WW^* = \begin{pmatrix} X^{2r} & 0\\ 0 & 0 \end{pmatrix}.$$

Since $WW^* = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, (2.1), (2.2) and (2.3) imply that $|T(s,t)|^{\frac{2r}{s+t}}$ and $|T|^{2r}$ are of the forms

$$(2.4) |T(s,t)|^{\frac{2r}{s+t}} = \begin{pmatrix} X^{2r} & 0\\ 0 & Y^{2r} \end{pmatrix} \ge |T|^{2r} = \begin{pmatrix} X^{2r} & 0\\ 0 & Z^{2r} \end{pmatrix}$$

where

$$[\operatorname{ran} Y] = [\operatorname{ran} Z] = [\operatorname{ran} |T|] \ominus [\operatorname{ran} T(s,t)] = \ker T(s,t)^* \ominus \ker T.$$

Since W commutes with |T(s,t)|,

$$\begin{pmatrix} W_1 & W_2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} X & 0 \\ 0 & Y \end{pmatrix} = \begin{pmatrix} X & 0 \\ 0 & Y \end{pmatrix} \begin{pmatrix} W_1 & W_2 \\ 0 & 0 \end{pmatrix}.$$

So $W_1X = XW_1$ and $W_2Y = XW_2$, and hence [ran W_1] and [ran W_2] are reducing subspaces of X. Since $W^*W|T(s,t)| = |T(s,t)|$, we have $W_1^*W_1 = 1$ and

$$X^{k} = W_{1}^{*}W_{1}X^{k} = W_{1}^{*}X^{k}W_{1},$$

$$Y^{k} = W_{2}^{*}W_{2}Y^{k} = W_{2}^{*}X^{k}W_{2}.$$

Put
$$U = \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix}$$
. Then $T(s,t) = |T|^s U |T|^t = W |T(s,t)|$ implies
$$\begin{pmatrix} X^s & 0 \\ 0 & Z^s \end{pmatrix} \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix} \begin{pmatrix} X^t & 0 \\ 0 & Z^t \end{pmatrix} = \begin{pmatrix} W_1 & W_2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} X^{s+t} & 0 \\ 0 & Y^{s+t} \end{pmatrix}.$$

Hence

$$X^{s}U_{11}X^{t} = W_{1}X^{s+t} = X^{s}W_{1}X^{t},$$

$$X^{s}U_{12}Z^{t} = W_{2}Y^{s+t} = X^{s+t}W_{2}$$

and

$$X^{s}(U_{11} - W_{1})X^{t} = 0,$$

$$X^{s}(U_{12}Z^{t} - X^{t}W_{2}) = 0.$$

Since X is injective and has a dense range, $U_{11} = W_1$ is isometry and $U_{12}Z^t = X^tW_2$. Then

$$U^*U = \begin{pmatrix} U_{11}^*U_{11} + U_{21}^*U_{21} & U_{11}^*U_{12} + U_{21}^*U_{22} \\ U_{12}^*U_{11} + U_{22}^*U_{21} & U_{12}^*U_{12} + U_{22}^*U_{22} \end{pmatrix}$$

on $\mathcal{H} = [\operatorname{ran} T(s,t)] \oplus \ker T(s,t)^*$ is the orthogonal projection onto $[\operatorname{ran}|T|] \supset [\operatorname{ran} T(s,t)]$, we have $U_{21} = 0$ and

$$U^*U = \begin{pmatrix} 1 & 0 \\ 0 & U_{12}^*U_{12} + U_{22}^*U_{22} \end{pmatrix}.$$

Since $U_{12}Z^t = X^tW_2$, we have

$$Z^{2t} \ge Z^t U_{12}^* U_{12} Z^t = W_2^* X^{2t} W_2 = Y^{2t},$$

and

$$Z^{2r} \geq (Z^t U_{12}{}^* U_{12} Z^t)^{\frac{r}{t}} = W_2{}^* X^{2r} W_2 = Y^{2r} \geq Z^{2r}$$

by Löwner-Heinz inequality and (2.4). Hence

$$(Z^t U_{12}^* U_{12} Z^t)^{\frac{r}{t}} = Z^{2r} = Y^{2r},$$

so Z = Y and $|T(s,t)| = |T|^{s+t}$. Since

$$Z^{2t} = Z^t U_{12}^* U_{12} Z^t$$

$$\leq Z^t U_{12}^* U_{12} Z^t + Z^t U_{22}^* U_{22} Z^t \leq Z^{2t},$$

 $Z^t U_{22}^* U_{22} Z^t = 0$ and $U_{22} Z^t = 0$. This implies ran $U_{22}^* \subset \ker Z$. Since ran $(U_{12}^* U_{12} + U_{22}^* U_{22}) \subset [\operatorname{ran} Z]$ and $U_{22}^* U_{22} \leq U_{12}^* U_{12} + U_{22}^* U_{22}$, we have ran $U_{22}^* \subset [\operatorname{ran} Z]$. Hence $U_{22} = 0$, $U = \begin{pmatrix} W_1 & U_{12} \\ 0 & 0 \end{pmatrix}$ and

$$\operatorname{ran}\, U \subset [\operatorname{ran}\, T(s,t)] \subset [\operatorname{ran}\, |T|] = \operatorname{ran}\, E.$$

Since W commutes with $|T(s,t)| = |T|^{s+t}$, W commutes with |T| and

$$|T|^{s}(W - U)|T|^{t} = W|T|^{s}|T|^{t} - |T|^{s}U|T|^{t}$$
$$= W|T(s,t)| - T(s,t) = 0.$$

Hence E(W-U)E=0 and

$$U = UE = EUE = EWE = WE = W$$
.

Thus U = W commutes with |T| and T is quasinormal.

Corollary 2.2. Let T = U|T| be a class A(s,t) operator T. If $T(s,t) = |T|^s U|T|^t$ is normal, then T is also normal.

Proof. Since T(s,t) is normal, T is quasinormal by Theorem 2.1. Hence $T(s,t) = |T|^s U|T|^t = U|T|^{s+t}$ and $T(s,t)^* = |T|^{s+t}U^*$. hence

$$|T|^{2(s+t)} = |T(s,t)|^2 = |T(s,t)^*|^2 = |T^*|^{2(s+t)}$$

This implies $|T| = |T^*|$ and T is normal.

3. Partial isometry

In this section, we deals with a partial isometry, i.e., $VV^*V = V$. Let V be a quasinormal partial isometry. Then VV^* is the orthogonal projection onto $V\mathcal{H}$ and V^*V is the orthogonal projection onto $V^*\mathcal{H}$. Let V = U|V| be the polar decomposition of V. Since V = U and |V| = V * V, we have

$$V(s,t) = |V|^{s}U|V|^{t} = V^{*}VVV^{*}V = V.$$

Hence the Aluthge transform V(s,t) of V is a partial isometry and coincides with V. In this section, we deal with converse situation in which either T(s,t) is a partial isometry or T(s,t)=T. First we consider the situation in which T(s,t) is a partial isometry. We start with the following lemma, which is well known.

Lemma 3.1. If $0 \le A \le 1$, and ||Ax|| = ||x||. Then Ax = x.

Lemma 3.2. Let T = U|T| be a contraction and $T(s,t) = |T|^s U|T|^t$ a partial isometry for some s,t > 0. Then T(s,t) = T(s',t') for all s',t' > 0. In particular, $\ker T(s,t) = \ker T(1,1) = \ker T^2$.

Proof. Since T(s,t) is an isometry on ran $T(s,t)^*$, $||T|^sU|T|^tx|| = ||x||$ for all $x \in \text{ran } T(s,t)^*$. Since T is a contraction, $|T|^s$ and $|T|^t$ are also contractions, hence we have

$$|T|^t x = x, |T|^s U |T|^t x = |T|^s U x = U x$$

by Lemma 3.1. Hence $|T|^{t'}x = x$, $|T|^{s'}Ux = Ux$ and $|T|^{s'}U|T|^{t'}x = |T|^{s'}Ux = Ux$ for all s', t' > 0. Hence we have T(s,t) = T(s',t') = U on ran $T(s,t)^*$. To prove the rest, it suffices to show that $\ker T(s,t) = \ker T(s',t')$ because $\mathcal{H} = \operatorname{ran} T(s,t)^* \oplus \ker T(s,t)$.

Since

$$|T|^{s}U|T|^{t}x = 0 \iff U|T|^{t}x \in \ker T = \ker |T|$$

 $\iff |T|^{s'}U|T|^{t}x = 0,$

we have T(s,t) = T(s',t). By using the same argument as above, we have $T(s,t)^* = T(s,t')^*$ for all t' > 0. Hence

$$\ker T(s,t) = (\operatorname{ran} T(s,t)^*)^{\perp} = (\operatorname{ran} T(s,t')^*)^{\perp}$$
$$= \ker T(s,t') = \ker T(s',t').$$

Thus T(s,t) = T(s',t'). It is clear that $\ker T(1,1) = \ker T^2$.

Theorem 3.3. Let T = U|T| be a contraction such that $\ker T = \ker T^2$. If $T(s,t) = |T|^s U|T|^t$ is a partial isometry, then T = T(s,t) = U and T is a quasinormal partial isometry.

Proof. By Lemma 3.2,

$$\ker T(s,t) = \ker T^2 = \ker T = \ker U,$$

so ran $T(s,t)^* = [\operatorname{ran} T^*] = [\operatorname{ran} |T|]$. Since T(s,t) = U on ran $T(s,t)^* = [\operatorname{ran} |T|]$ and $\ker T(s,t) = \ker U = \ker T$, T(s,t) = U because $\mathcal{H} = [\operatorname{ran} |T|] \oplus \ker T$. This

shows

$$\operatorname{ran} U = \operatorname{ran} T(s,t) \subset [\operatorname{ran} |T|] = \operatorname{ran} U^*U.$$

Thus $U = UU^*U = U^*UU$. Let

$$|T|^{2t} = \begin{pmatrix} X & 0 \\ 0 & 0 \end{pmatrix}, U^*U = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 on $H = [\operatorname{ran} |T|] \oplus \ker |T|$.

Since T is a contraction, we have $U^*|T|^{2s}U \leq 1$ and $0 \leq X \leq 1$. Then

$$U^*U = T(s,t)^*T(s,t) = |T|^t U^*|T|^{2s} U|T|^t \le |T|^{2t} \le U^*U.$$

Hence $|T| = U^*U$ and $T = U|T| = UU^*U = U = T(s,t)$. Thus T is a quasinormal partial isometry.

Remark 3.4. Theorem 3.3 is invalid if any one of conditions $\ker T = \ker T^2$ and $||T|| \le 1$ is dropped.

(Example 1)

Let $T=\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Then ||T||=1, T(s,t)=0, $\ker T\neq \ker T^2$ and T is not quasinormal.

(Example 2)

Let $T = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$. Then $||T|| = \sqrt{2}$, T(1/2, 1/2) is a projection, $\ker T = \ker T^2$ and T is not quasinormal.

Corollary 3.5. Let $T = U|T| \in B(\mathcal{H})$ be a paranormal operator, i.e., $||Tx||^2 \le ||T^2x|| ||x||$ for all $x \in \mathcal{H}$. If $T(s,t) = |T|^s U|T|^t$ is a partial isometry, then T = T(s,t) = U and T is a quasinormal partial isometry.

Proof. Since T is paranormal, $\ker T = \ker T^2$. Hence it suffices to show that T is a contraction by Theorem 3.3. Let $T \neq 0$. Then $||T|| = |\lambda|$ for some $0 \neq \lambda = |\lambda|e^{i\theta} \in \sigma(T)$. Then there exist unit vectors x_n such that

$$(T-\lambda)x_n \to 0, (T-\lambda)^*x_n \to 0.$$

Then

$$(|T|-|\lambda|)x_n\to 0, (U-e^{i\theta})x_n\to 0.$$

Hence

$$(T(s,t) - |\lambda|^{s+t}e^{i\theta})x_n \to 0$$

and $|\lambda|^{s+t}e^{i\theta} \in \sigma(T(s,t))$. Since T(s,t) is a partial isometry, we have $|\lambda|^{s+t} \le ||T(s,t)|| \le 1$. Hence $||T|| = |\lambda| \le 1$.

Corollary 3.6. Let T = U|T| be a class A(s,t) operator. If $T(s,t) = |T|^s U|T|^t$ is a partial isometry, then T(s,t) = T and T is a quasinormal partial isometry.

Proof. Since |T(s,t)| is a contraction and $|T(s,t)|^{\frac{2s}{s+t}} \ge |T|^{2s}$, it follows that T is a contraction and $\ker T = \ker T(s,t) = \ker T^2$ by Lemma 3.2. Now the result follows from Theorem 3.3.

Now we study the situation in which T(s,t) = T. In case s + t = 1, a simple argument shows that T is quasinormal. In what follows, we study cases in which t > s + 1, t = s + 1, and t < s + 1. We begin with the following lemma.

Lemma 3.7. Let T = U|T| and $T = T(s,t) = |T|^s U|T|^t$. Then the following assertions hold.

- (i) $(T^*T)^s(TT^*)^t = TT^*$, hence T^*T commutes with TT^* .
- (ii) $\ker T \subset \ker T^*$.
- (iii) $\lambda \in \sigma(T^*T)$ implies $\lambda^{f(n)} \in \sigma(T^*T)$ for each positive integer n where $f(n) = ((1-t)/s)^n$.

Proof.

(i) Since T = T(s, t),

$$U|T|U^* = |T|^s U|T|^t U^* = U|T|^t U^*|T|^s.$$

Hence |T| commutes with $|T^*| = U|T|U^*$ and

$$\begin{split} TT^* &= U|T|U^*U|T|U^* \\ &= |T|^s|T^*|^t|T|^s|T^*|^t = (T^*T)^s(TT^*)^t. \end{split}$$

- (ii) (i) implies $(TT^*)^t(T^*T)^s = TT^*$ and so (ii) is immediate.
- (iii) Assume $0 \neq \lambda \in \sigma(T^*T)$. Then $\lambda \in \sigma(TT^*)$. Then there exist unit vectors x_n such that $(TT^* \lambda)x_n \to 0$. Then $((TT^*)^t \lambda^t)x_n \to 0$ and therefore $((T^*T)^s(TT^*)^t \lambda^t(T^*T)^s)x_n \to 0$. Then $(TT^* \lambda^t(T^*T)^s)x_n \to 0$ by (i). Since $(TT^* \lambda)x_n \to 0$, we obtain $(\lambda^t(TT^*)^s \lambda)x_n \to 0$. Hence, as λ is different from 0, we arrive at $\lambda^{f(1)} \in \sigma(TT^*)$ and therefore $\lambda^{f(1)} \in \sigma(T^*T)$. Now applying the same argument to $\lambda^{f(1)}$, we get $\lambda^{f(2)} \in \sigma(T^*T)$. Continuing in the same fashion, we obtain $\lambda^{f(n)} \in \sigma(T^*T)$ for each n.

Theorem 3.8. Let T = U|T| and $T = T(s,t) = |T|^s U|T|^t$ for some 0 < s,t with t > s + 1. Then T is a quasinormal partial isometry.

Proof. By Lemma 3.7 and our assumption on t,

$$TT^*((TT^*)^{t-1}(T^*T)^s - 1) = 0$$

or equivalently,

$$T^*((TT^*)^{t-1}(T^*T)^s - 1) = 0.$$

This implies

$$|T|U^*((TT^*)^{t-1}(T^*T)^s - 1) = 0$$

and hence

$$|T|U^*(U|T|^{2t-2}U^*|T|^{2s}-1)=0.$$

Then $|T|^{2t-1}U^*|T|^{2s} = |T|U^*$. Since t > 1, we have $U|T|^{2t-2}U^*|T|^{2s} = UU^*$. In consequence of this, we find $|T|^{2t-2}U^*|T|^{2s} = U^*$. This shows that the generalized Aluthge Transform $T(2s, 2t-2) = |T|^{2s}U|T|^{2t-2}$ is a partial isometry and $\ker T = \ker T$

such that $(|T| - \lambda)x_n \to 0$. By Lemma 3.7 (iii), we have $\lambda^{f(n)} \in \sigma(T^*T)$ for each positive integer n. In particular $\lambda^{f(2n)} \in \sigma(T^*T)$. If $\lambda > 1$, then the assumption that t > s+1 will show that $f(2n) \to \infty$ and so $\lambda^{f(2n)} \to \infty$ as $n \to \infty$. This is clearly impossible. Therefore $||T|| = \lambda \leq 1$.

Remark 3.9. If t < s + 1, then Theorem 3.8 does not hold.

(i. In case of 1 < t < s + 1)

Let $p = (t-1)/s \in (0,1)$. Let $\{e_n\}_{n=1,2,\dots}$ be an orthonormal base of \mathcal{H} and 0 < a. Define a weighted shift T by

$$Te_n = a^{(-p)^{n-1}}e_{n+1}.$$

Since $a^{(-p)^{n-1}} \to a^0 = 1$, T is bounded. Let T = U|T| be the polar decomposition of T. Then U is a unilateral shift (i.e., $Ue_n = e_{n+1}$) and $|T| = \sum a^{(-p)^{n-1}} P_n$ where P_n is the orthogonal projection onto $\mathbb{C}e_n$. Then

$$T(s,t)e_n = |T|^s U|T|^t e_n = |T|^s U a^{t(-p)^{n-1}} e_n$$
$$= a^{t(-p)^{n-1} + s(-p)^n} e_{n+1} = a^{(-p)^{n-1}} e_{n+1} = T e_n.$$

Hence T(s,t) = T. Since U does not commute with |T|, T is not quasinormal. Since a or a^{-p} is larger than 1, ||T|| > 1, so T is not a partial isometry.

(ii. In case of 0 < s, t = 1)

Let $0 < a \neq 1$. Define a weighted shift T by

$$Te_n = \begin{cases} ae_2 & \text{if } n = 1\\ e_{n+1} & \text{if } n > 1. \end{cases}$$

Then $T(s,t) = |T|^s U|T| = T$, but T is neither quasinormal nor a partial isometry.

(iii. In case of 0 < t < 1, 1 < s + t)

Let $p = (1-t)/s \in (0,1)$ and $0 < a \neq 1$. Define a weighted shift T by

$$Te_n = a^{p^n} e_{n+1}.$$

Then $T(s,t) = |T|^s U|T|^t = T$, but T is neither quasinormal nor a partial isometry.

(iv. In case of 0 < s, t, s + t = 1)

Let $0 < a \neq 1$. Define a weighted shift T by

$$Te_n = ae_{n+1}.$$

Then |T| = a and $T(s,t) = a^s U a^t = T$, but T is not a partial isometry.

(v. In case of 0 < s + t < 1)

Let p = (1-t)/s > 1 and 0 < a < 1. Define a weighted shift T by

$$Te_n = a^{p^n}e_{n+1}$$
.

Then $T(s,t) = |T|^s U|T|^t = T$ and T is quasinilpotent because $a^{p^n} \to 0$. Since U does not commute with |T|, T is not quasinormal. Since $||Te_1|| = ||a^p e_2|| = a^p \neq ||e_1||$, T is not a partial isometry.

QUASINORMALITY, FUGLEDE-PUTNAM THEOREM FOR A(s,t) OPERATORS

The preceding remarks suggest that additional restrictions on T are required to insure the validity of Theorem 3.8 in case $t \leq s+1$.

Theorem 3.10. Let T be a contraction with T = T(s, t), where t = s + 1. Then T is a quasinormal partial isometry.

Proof. Since $U|T| = |T|^s U|T|^{s+1}$, we have $U = |T|^s U|T|^s$ as $\ker |T| = \ker U$. Then $UU^* = U|T|^s U^*|T|^s = |T^*|^s |T|^s = |T|^s |T^*|^s.$

Hence |T| commutes with $|T^*|$. Since UU^* is the orthogonal projection, $(UU^*)^{1/s} = UU^* = |T||T^*| = |T^*||T|$. Then $U = UU^*U = |T||T^*|U = |T|U|T|U^*U = |T|U|T| = T(1,1)$. Hence T(1,1) is a partial isometry and $\ker T^2 = \ker T(1,1) = \ker U = \ker T$. Thus T is a quasinormal partial isometry by Theorem 3.3.

Remark 3.11. Theorem 3.10 does not hold if s = 0. In this case T(0,1) = T for any invertible operator T. Also the condition that $||T|| \le 1$ cannot be removed. For if $T = \begin{pmatrix} 0 & 2 \\ 1/2 & 0 \end{pmatrix}$ on $\mathcal{H} = \mathbb{C}^2$, then it has the polar decomposition T = U|T| with $U = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $|T| = \begin{pmatrix} 1/2 & 0 \\ 0 & 2 \end{pmatrix}$. Also T(1,2) = T, ||T|| > 1 and T is neither a partial isometry nor quasinormal.

Theorem 3.12. Let T be a contraction with T = T(s,t), where t < s + 1.

- (i) If t > 1, then T is a quasinormal partial isometry.
- (ii) If s + t < 1 and 0 is not a limit point of $\sigma(T^*T)$, then T is a quasinormal partial isometry.
- (iii) If 1-s < t < 1 and 1 is not a limit point of $\sigma(T^*T)$, then T is a quasinormal partial isometry.

Proof. (i) Since $U|T| = |T|^s U|T|^t$,

$$U = |T|^{s}U|T|^{t-1} = T(s, t-1).$$

Hence T(s, t-1) is a partial isometry and $UU^* = U|T|^{t-1}U^*|T|^s$. Then $\ker U = \ker T = \ker |T| \subset \ker U^* = \ker T^*$ and $\ker T = \ker T^2$. Thus T is a quasinormal partial isometry by Theorem 3.3.

(ii) Since $|T|^sU|T|^t=U|T|$, we have $|T|^sU=U|T|^{1-t}$. Then $|T^*|^{1-t}=U|T|^{1-t}U^*=|T|^sUU^*=UU^*|T|^s$. Hence

$$|T|^s \ge UU^*|T|^s = |T^*|^{1-t}.$$

Let $\lambda \in \sigma(T^*T)$. Since T is a contraction, $0 \le \lambda \le 1$. Then $\lambda^{f(2n)} \in \sigma(T^*T)$ for each positive integer n, where $f(2n) = \left(\frac{1-t}{s}\right)^{2n}$ by Lemma 3.7. Assume $0 < \lambda < 1$. Then $\sigma(T^*T) \ni \lambda^{f(2n)} \to 0$ as $1 < \left(\frac{1-t}{s}\right)^2$. This is a contradiction. Hence $\sigma(T^*T) \subset \{0,1\}$ and T^*T is the orthogonal projection. Thus T is a partial isometry and |T|U = U|T|. (iii) The proof is similar to (ii).

Remark 3.13. Theorem 3.12 (i) is not true in case t = 1. For the counter example, refer to Remark 3.9 (ii). Theorem 3.12 (ii) is not valid if 0 is not a limit point of $\sigma(T^*T)$ as can be seen in Remark 3.9 (V). Also Theorem 3.12 (iii) is not valid if 1 is not a limit point of $\sigma(T^*T)$ as can be seen in Remark 3.9 (iii).

4. Fuglede-Putnam type Theorem

Our basic aim in this section is to extend the Fuglede-Putnam Theorem [6, 16], one of the celebrated theorems in the subject of operator theory. We would like to state the theorem.

Proposition 4.1 (Fuglede-Putnam). Let $S \in B(\mathcal{H})$ and $T^* \in B(\mathcal{K})$ be normal operators and SX = XT for some operator $X \in B(\mathcal{H}, \mathcal{K})$. Then $S^*X = XT^*$, [ran X] reduces S, $(\ker X)^{\perp}$ reduces T, and $S|_{[\operatorname{ran} X]}$, $T|_{(\ker X)^{\perp}}$ are unitarily equivalent normal operators.

Various extensions of the Fuglede-Putnam Theorem can be found in the literature. (See [5], [12], [15]). Recently Uchiyama and Tanahashi [20] generalized the theorem for p-hyponormal operators and log-hyponormal operators, a subclass of A(s,t) operators with s=t=1/2. In the present section, we extend the above theorem for class A(s,t) operators with s+t=1 with reducing kernels. Further extensions for class A operators and more generally for class A(s,t) operators remain as an open problem. Here we wish to give two alternate proofs.

1. First Proof.

First we start with establishing several lemmas.

Lemma 4.2. ([22]) Let A, B and C be positive operators, 0 < p and $0 < r \le 1$. If $(B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}})^{\frac{r}{p+r}} \ge B^{r}$ and $B \ge C$, then $(C^{\frac{r}{2}}A^{p}C^{\frac{r}{2}})^{\frac{r}{p+r}} \ge C^{r}$.

Lemma 4.3. Let T be a class A(s,t) operator for some $s,t \in (0,1]$ and \mathcal{M} an invariant subspace of T. Then the restriction $T|_{\mathcal{M}}$ is also a class A(s,t) operator.

Proof. Let
$$T = \begin{pmatrix} T_1 & S \\ 0 & T_2 \end{pmatrix}$$
 on $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}$ and P the orthogonal projection onto \mathcal{M} . Let $T_0 = TP = \begin{pmatrix} T_1 & 0 \\ 0 & 0 \end{pmatrix}$. Then

$$|T_0|^{2s} = (P|T|^2 P)^s \ge P|T|^{2s}P$$

by Hansen's inequality, and

$$|T^*|^2 = TT^* \ge TPT^* = |T_0^*|^2.$$

Hence,

T is a class A(s,t) operator

$$\iff (|T^*|^t |T|^{2s} |T^*|^t)^{\frac{t}{s+t}} \ge |T^*|^{2t}$$

$$\implies (|T_0^*|^t |T|^{2s} |T_0^*|^t)^{\frac{t}{s+t}} \ge |T_0^*|^{2t} \quad \text{(by Lemma 4.2)}$$

$$\implies (|T_0^*|^t |T_0|^{2s} |T_0^*|^t)^{\frac{t}{s+t}} \ge |T_0^*|^{2t} \quad \text{(since } |T_0^*|^t = |T_0^*|^t P = P|T_0^*|^t)$$

 $\iff T_{\mathcal{M}} \text{ is a class } A(s,t) \text{ operator }.$

Lemma 4.4. Let $T \in L(\mathcal{H})$ be a class A operator. Let \mathcal{M} be an invariant subspace of T and $T = \begin{pmatrix} T_1 & S \\ 0 & T_2 \end{pmatrix}$ on $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}$. If $T_1 = T|_{\mathcal{M}}$ is quasinormal, then ran $S \subset \ker T_1^*$. Moreover, if $\ker T \subset \ker T^*$ and $T_1 = T|_{\mathcal{M}}$ is normal, then \mathcal{M} reduces T.

Proof. Let P be the orthogonal projection onto \mathcal{M} . Then we have,

$$\begin{pmatrix} T_1^*T_1 & 0 \\ 0 & 0 \end{pmatrix} = PT^*TP \le P|T^2|P \quad \text{(since } T \text{ is class } A)$$

$$\le \begin{pmatrix} (T_1^{*2}T_1^{2})^{\frac{1}{2}} & 0 \\ 0 & 0 \end{pmatrix} \quad \text{(by Hansen's inequality [8])}$$

$$= \begin{pmatrix} T_1^*T_1 & 0 \\ 0 & 0 \end{pmatrix} \quad \text{(since } T_1 \text{ is quasinormal)}.$$

Let $|T^2| = \begin{pmatrix} X & Y \\ Y^* & Z \end{pmatrix}$. Then $X = T_1^*T_1$ by the above inequality. Since $|T^2|^2 = T^*T_1^2$, we have

$$\begin{pmatrix} X^2 + YY^* & XY + YZ \\ ZY^* + Y^*X & Y^*Y + Z^2 \end{pmatrix}$$

$$= \begin{pmatrix} T_1^{*2}T_1^2 & T_1^{*2}(T_1S + ST_2) \\ (S^*T_1^* + T_2^*S^*)T_1^2 & (S^*T_1^* + T_2^*S^*)(T_1S + ST_2) + T_2^{*2}T_2^2 \end{pmatrix}$$

and hence

$$X^2 + YY^* = T_1^{*2}T_1^2 = (T_1^*T_1)^2 = X^2.$$

This implies that Y = 0. Then

$$|T^2| = \left(\begin{array}{cc} {T_1}^*T_1 & 0 \\ 0 & Z \end{array}\right) \ge T^*T = \left(\begin{array}{cc} {T_1}^*T_1 & {T_1}^*S \\ {S^*T_1} & {S^*S} + {T_2}^*T_2 \end{array}\right)$$

and $T_1^*S = 0$. This implies

ran
$$S \subset \ker T_1^*$$
.

Moreover, assume T_1 is normal. Then

$$S(\mathcal{M}^{\perp}) \subset \ker T_1^* = \ker T_1 \subset \ker T \subset \ker T^*.$$

Hence, we have

$$0 = T^*Sx = \begin{pmatrix} T_1^* & 0 \\ S^* & T_2^* \end{pmatrix} \begin{pmatrix} Sx \\ 0 \end{pmatrix} = \begin{pmatrix} T_1^*Sx \\ S^*Sx \end{pmatrix}$$

for $x \in \mathcal{M}^{\perp}$. This implies $S^*S = 0$ and S = 0. Thus \mathcal{M} reduces T.

Remark 4.5. The following example shows that there exists a class A operator T such that $T|_{\mathcal{M}}$ is quasinormal but \mathcal{M} does not reduce T.

Let T be a bilateral shift on $\ell^2(\mathbb{Z})$ definded by $Te_n = e_{n+1}$ and $\mathcal{M} = \bigvee_{0 \leq n} \mathbb{C}e_n$. Then T is unitary and $T|_{\mathcal{M}}$ is isometry. However \mathcal{M} does not reduce T.

The next lemma is a simple consequence of the preceding one.

Lemma 4.6. Let $T \in L(\mathcal{H})$ be a class A operator with $\ker T \subset \ker T^*$. Then $T = T_1 \oplus T_2$ on $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$ where T_1 is normal, $\ker T_2 = \{0\}$ and T_2 is pure class A, i.e., T_2 has no non-zero invariant subspace \mathcal{M} such that $T_2|_{\mathcal{M}}$ is normal.

Lemma 4.7. Let $T = U|T| \in B(\mathcal{H})$ be a class A(s,t) operator with s+t=1 and $\ker T \subset \ker T^*$. Let $T(s,t) = |T|^s U|T|^t$. Suppose T(s,t) be of the form $N \oplus T'$ on $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}$, where N is a normal operator on \mathcal{M} . Then $T = N \oplus T_1$ and $U = U_{11} \oplus U_{22}$, where T_1 is a class A(s,t) operator with $\ker T_1 \subset \ker T_1^*$ and $N = U_{11}|N|$ is the polar decomposition of N.

Proof. Since

$$|T(s,t)|^{2r} \ge |T|^{2r} \ge |T(s,t)^*|^{2r}$$

for $r \in (0, \min\{s, t\}]$, we have

$$|N|^{2r} \oplus |T'|^{2r} \ge |T|^{2r} \ge |N|^{2r} \oplus |{T'}^*|^{2r}$$

by assumption. This implies that |T| is of the form $|N| \oplus L$ for some positive operator L. Let $U = \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix}$ be 2×2 matrix representation of U with respect to the decomposition $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}$. Then the definition $T(s,t) = |T|^s U |T|^t$ means

$$\left(\begin{array}{cc} N & 0 \\ 0 & T' \end{array}\right) = \left(\begin{array}{cc} |N|^s & 0 \\ 0 & L^s \end{array}\right) \left(\begin{array}{cc} U_{11} & U_{12} \\ U_{21} & U_{22} \end{array}\right) \left(\begin{array}{cc} |N|^t & 0 \\ 0 & L^t \end{array}\right).$$

Hence, we have

$$N = |N|^{s} U_{11} |N|^{t}, |N|^{s} U_{12} L^{t} = 0, L^{s} U_{21} |N|^{t} = 0.$$

Since $\ker T \subset \ker T^*$,

$$[\operatorname{ran} U] = [\operatorname{ran} T] = (\ker T^*)^{\perp} \subset (\ker T)^{\perp} = [\operatorname{ran} |T|].$$

Let Nx = 0 for $x \in \mathcal{M}$. Then $x \in \ker |T| = \ker U$, and

$$Ux = \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix} \begin{pmatrix} x \\ 0 \end{pmatrix} = \begin{pmatrix} U_{11}x \\ U_{21}x \end{pmatrix} = 0.$$

Hence

 $\ker N \subset \ker U_{11} \cap \ker U_{21}$.

Let $x \in \mathcal{M}$. Then

$$U\begin{pmatrix} x \\ 0 \end{pmatrix} = \begin{pmatrix} U_{11}x \\ U_{21}x \end{pmatrix} \in [\operatorname{ran}\ |T|] = [\operatorname{ran}\ (|N| \oplus L)].$$

Hence

ran
$$U_{11} \subset [ran|N|]$$
, ran $U_{21} \subset [ranL]$.

Similarly

ran
$$U_{12} \subset [\operatorname{ran}|N|]$$
, ran $U_{22} \subset [\operatorname{ran}L]$.

Let Lx = 0 for $x \in \mathcal{M}^{\perp}$. Then $x \in \ker |T| = \ker U$ and

$$U\begin{pmatrix}0\\x\end{pmatrix} = \begin{pmatrix}U_{12}x\\U_{22}x\end{pmatrix} = 0.$$

Hence

$$\ker L \subset \ker U_{12} \cap \ker U_{22}$$
.

Let N = V|N| be the polar decomposition of N. Then

$$(V|N|^s - |N|^s U_{11})|N|^t = 0.$$

Hence $V|N|^s - |N|^s U_{11} = 0$ on [ran |N|]. Since $\ker N \subset \ker U_{11}$, this implies $0 = V|N|^s - |N|^s U_{11} = |N|^s (V - U_{11})$. Hence

ran
$$(V - U_{11}) \subset \ker |N| \cap [\operatorname{ran} |N|] = \{0\}.$$

Hence $V = U_{11}$ and $N = U_{11}|N|$ is the polar decomposition of N. Since $|N|^s U_{12}L^t = 0$,

$$\operatorname{ran} U_{12}L^t \subset \ker |N| \cap [\operatorname{ran} |N|] = \{0\}.$$

Hence $U_{12}L^t=0$ and $U_{12}=0$. Similarly we have $U_{21}=0$ by $L^sU_{21}|N|^t=0$. Hence $U=U_{11}\oplus U_{22}$. So we obtain

$$T = U|T| = U_{11}|N| \oplus U_{22}L = N \oplus T_1,$$

where $T_1 = U_{22}L$.

Theorem 4.8. Let $S \in B(\mathcal{H})$ and $T^* \in B(\mathcal{K})$ are class A(s,t) operators with $s+t \leq 1$ and $\ker S \subset \ker S^*$, $\ker T^* \subset \ker T$. Let SX = XT for some operator $X \in B(\mathcal{K}, \mathcal{H})$. Then $S^*X = XT^*$, $[\operatorname{ran} X]$ reduces S, $(\ker X)^{\perp}$ reduces T, and $S|_{[\operatorname{ran} X]}, T|_{(\ker X)^{\perp}}$ are unitarily equivalent normal operators.

Proof. We may assume s+t=1 by [11, Theorem 4]. Decompose S, T^* into normal parts and pure parts as in Lemma 4.6, i.e., $S=S_1\oplus S_2$ on $\mathcal{H}=\mathcal{H}_1\oplus \mathcal{H}_2$ and $T^*=T_1^*\oplus T_2^*$ on $\mathcal{K}=\mathcal{K}_1\oplus \mathcal{K}_2$ where S_1,T_1^* are normal and S_2,T_2^* are pure. Let $X=\begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix}$. Then SX=XT implies

$$\begin{pmatrix} S_1 X_{11} & S_1 X_{12} \\ S_2 X_{21} & S_2 X_{22} \end{pmatrix} = \begin{pmatrix} X_{11} T_1 & X_{12} T_2 \\ X_{21} T_1 & X_{22} T_2 \end{pmatrix}.$$

Let $S_2 = U_2|S_2|$, $T_2^* = V_2^*|T_2^*|$ be the polar decompositions and

$$S_2(s,t) = |S_2|^s U_2 |S_2|^t, T_2^*(s,t) = |T_2^*|^s V_2^* |T_2^*|^t, W = |S_2|^s X_{22} |T_2^*|^s.$$

Then

$$S_2(s,t)W = |S_2|^s S_2 X_{22} |T_2^*|^s$$

= $|S_2|^s X_{22} T_2 |T_2^*|^s = W(T_2^*(s,t))^*.$

Since S_2, T_2^* are class A(s,t) operators, $S_2(s,t), T_2^*(s,t)$ are min $\{s,t\}$ -hyponormal. Hence [ran W] reduces $S_2(s,t)$, (ker W) $^{\perp}$ reduces $T_2^*(s,t)$ and

$$S_2(s,t)|_{[{\rm ran}\ W]} \simeq T_2^*(s,t)|_{(\ker W)^{\perp}}$$

are unitarily equivalent normal operators by [5]. Since S_2, T_2^* are pure, we have W=0 by Lemma 4.7. Then $X_{22}=0$ as S_2, T_2^* are injective by Lemma 4.6. Since

 $S_2X_{21} = X_{21}T_1$ and $S_1X_{12} = X_{12}T_2$, we have $X_{21}T_1 = 0$ and $S_1X_{12} = 0$ by similar arguments. Then SX = XT implies

$$\begin{pmatrix} S_1 X_{11} & 0 \\ S_2 X_{21} & 0 \end{pmatrix} = \begin{pmatrix} X_{11} T_1 & X_{12} T_2 \\ 0 & 0 \end{pmatrix}$$

and $X_{12} = 0, X_{21} = 0$. Hence $X = \begin{pmatrix} X_{11} & 0 \\ 0 & 0 \end{pmatrix}$ and

ran
$$X = \operatorname{ran} X_{11} \oplus \{0\}, \ (\ker X)^{\perp} = (\ker X_{11})^{\perp} \oplus \{0\}.$$

Since $S_1X_{11} = X_{11}T_1$, we have $S_1^*X_{11} = X_{11}T_1^*$, [ran X_{11}] reduces S_1 , $S_1|_{[\operatorname{ran} X_{11}]}$ and $T_1|_{(\ker X_{11})^{\perp}}$ are unitarily equivalent normal operators by Proposition 4.1. Then $S|_{[\operatorname{ran} X]} \simeq S_1|_{[\operatorname{ran} X_{11}]}$, $T_1|_{(\ker X_{11})^{\perp}} \simeq T|_{(\ker X)^{\perp}}$ imply that $S^*X = XT^*$, [ran X] reduces S, $(\ker X)^{\perp}$ reduces T, and $S|_{[\operatorname{ran} X]}$, $T|_{(\ker X)^{\perp}}$ are unitarily equivalent normal operators.

Remark 4.9. The authors [19, Example 13] made a class A(1/2, 1/2) operator A such that ker A does not reduce A. Let $S = T^* = A$ and X = P be the orthogonal projection onto ker S. Then SX = 0 = XT, but $S^*X \neq XT^*$. Hence the kernel condition is necessary for Theorem 4.8.

2. Second Proof.

Theorem 4.10. Let $T \in B(\mathcal{H})$ be a class A(s,t) operator with $s+t \leq 1$ and $\ker T \subset \ker T^*$. If L is self-adjoint and $TL = LT^*$, then $T^*L = LT$.

Proof. We may assume s+t=1 by [11, Theorem 4]. Since $\ker T \subset \ker T^*$ and $TL=LT^*$, $\ker T$ reduces T and L. Hence

$$T = T_1 \oplus 0$$
, $L = L_1 \oplus L_2$ on $\mathcal{H} = [\operatorname{ran} T^*] \oplus \ker T$,

 $T_1L_1 = L_1T_1^*$ and $\{0\} = \ker T_1 \subset \ker T_1^*$. Since [ran L_1] is invariant under T_1 and reduces L_1 ,

$$T_1 = \begin{pmatrix} T_{11} & S \\ 0 & T_{22} \end{pmatrix}, L_1 = L_{11} \oplus 0 \text{ on } [\operatorname{ran} T^*] = [\operatorname{ran} L_1] \oplus \ker L_1.$$

 T_{11} is an injective class A(s,t) operator by Lemma 4.3 and L_{11} is an injective self-adjoint operator (hence it has dense range) such that $T_{11}L_{11} = L_{11}T_{11}^*$. Let $T_{11} = V_{11}|T_{11}|$ be the polar decomposition of T_{11} and $T_{11}(s,t) = |T_{11}|^sV_{11}|T_{11}|^t$, $W = |T_{11}|^sL_{11}|T_{11}|^s$. Then

$$T_{11}(s,t)W = |T_{11}|^s V_{11}|T_{11}|^t |T_{11}|^s L_{11}|T_{11}|^s$$

$$= |T_{11}|^s T_{11}L_{11}|T_{11}|^s = |T_{11}|^s L_{11}T_{11}^*|T_{11}|^s$$

$$= |T_{11}|^s L_{11}|T_{11}|^s |T_{11}|^t V_{11}^*|T_{11}|^s = WT_{11}(s,t)^*.$$

Since $T_{11}(s,t)$ is min $\{s,t\}$ -hyponormal and ran W is dense (because ker $W=\{0\}$), $T_{11}(s,t)$ is normal by [5, Theorem 7]. Hence T_{11} is normal and $T_{11}=T_{11}(s,t)$ by

Corollary 2.2. Then [ran L_1] reduces T_1 by Lemma 4.4 and $T_{11}^*L_{11} = L_{11}T_{11}$ by Proposition 4.1. Hence

$$T = T_{11} \oplus T_{22} \oplus 0,$$

$$L = L_{11} \oplus 0 \oplus L_2$$

and

$$T^*L = T_{11}^*L_{11} \oplus 0 \oplus 0 = L_{11}T_{11} \oplus 0 \oplus 0 = LT.$$

Remark 4.11. Let T=A be a class A(1/2,1/2) operator as in Remark 4.9. Let X=P be the orthogonal projection onto $\ker T$. Then T is a class A operator and $TL=0=LT^*$, but $T^*L\neq LT$. Hence the kernel condition $\ker T\subset \ker T^*$ is necessary for Theorem 4.10.

Corollary 4.12. Let $T \in B(\mathcal{H})$ be a class A(s,t) operator with $s+t \leq 1$ and $\ker T \subset \ker T^*$. If $TX = XT^*$ for some $X \in B(\mathcal{H})$, then $T^*X = XT$.

Proof. Let X = L + iK be the Cartesian decomposition of X. Then we have $TL = LT^*$ and $TJ = JT^*$ by the assumption. By Theorem 4.10, we have $T^*L = LT$ and $T^*J = JT$. This implies that $T^*X = XT$.

Corollary 4.13. Let $S \in B(\mathcal{K}), T^* \in B(\mathcal{H})$ be class A(s,t) operators with $s+t \leq 1$ and $\ker S \subset \ker S^*, \ker T^* \subset \ker T$. If SX = XT for some $X \in B(\mathcal{K}, \mathcal{H})$, then $S^*X = XT^*$.

Proof. Put $A = \begin{pmatrix} T^* & 0 \\ 0 & S \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 0 \\ X & 0 \end{pmatrix}$ on $\mathcal{H} \oplus \mathcal{K}$. Then A is a class A(s,t) operator with $\ker A \subset \ker A^*$, which satisfies $AB = BA^*$. Hence we have $A^*B = BA$ by Corollary 4.12, and therefore $S^*X = XT^*$.

As an application of Corollary 4.13, we establish below Corollary 4.14; thus completing the second proof.

Corollary 4.14. Let $S \in B(\mathcal{H})$ and $T^* \in B(\mathcal{K})$ are class A(s,t) operators with $s+t \leq 1$ and $\ker S \subset \ker S^*, \ker T^* \subset \ker T$. Let SX = XT for some operator $X \in B(\mathcal{K}, \mathcal{H})$. Then $[\operatorname{ran} X]$ reduces $S, (\ker X)^{\perp}$ reduces T and $S|_{[\operatorname{ran} X]}, T|_{(\ker X)^{\perp}}$ are unitarily equivalent normal operators.

$$|T(s,s)^*| - |T(s,s)| = V^*(|T^*(s,s)| - |T^*(s,s)^*|)V \ge 0,$$

 $T(s,s)^*$ is semi-hyponormal, too. Then

$$S(s,s)X = |S|^{s}U|S|^{s}X = |S|^{s}UX|T|^{s}$$

= $|S|^{s}XV|T|^{s} = XT(s,s)$,

hence $S(s,s)^*X = XT(s,s)^*$, [ran X] reduces S(s,s), $(\ker X)^{\perp}$ reduces T(s,s) and

$$S|_{[\operatorname{ran}\ X]}(s,s) = S(s,s)|_{[\operatorname{ran}\ X]} \simeq T(s,s)|_{(\ker X)^{\perp}} = T|_{(\ker X)^{\perp}}(s,s)$$

are unitarily equivalent normal operators. Hence $S|_{[\operatorname{ran} X]}, T|_{(\ker X)^{\perp}}$ are normal by Corollary 2.2, and that they are unitarily equivalent follows from the fact that if N = U|N| are M = W|M| are normal operators, then for a unitary operator V, $N = V^*MV$ if and only if $U = V^*WV$ and $|N|^s = V^*|M|^sV$ for any s > 0.

Theorem 4.15. Let $T = U|T| \in B(\mathcal{H})$ be a class A(s,t) operator with $s + t \leq 1$ and N a normal operator. Let TX = XN. Then the following assertions hold.

- (i) If the range ran X is dense, then T is normal.
- (ii) If $\ker X^* \subset \ker T^*$, then T is quasinormal.

Proof. Let $Z = |T|^s X$. Then

$$T(s,t)Z = |T|^s U|T|^t |T|^s X = |T|^s TX$$
$$= |T|^s XN = ZN.$$

Since T(s,t) is min $\{s,t\}$ -hyponormal, we have

$$T(s,t)^*Z = ZN^*$$

by [20]. Hence

$$(T(s,t)^*T(s,t) - T(s,t)T(s,t)^*) |T|^s X$$

$$= T(s,t)^*T(s,t)Z - T(s,t)T(s,t)^*Z$$

$$= T(s,t)^*ZN - T(s,t)ZN^* = ZN^*N - ZNN^* = 0.$$

(i) If ran X is dense, then

$$(T(s,t)^*T(s,t) - T(s,t)T(s,t)^*)|T|^s = 0.$$

Since

$$\ker |T|^s \subset \ker T(s,t) \cap \ker T(s,t)^*,$$

this implies T(s,t) is normal. Hence T is normal by Corollary 2.2.

(ii) Let $X^*|T|^sx=0$. Then $|T|^sx\in\ker X^*\subset\ker T^*=\ker U^*$ and $T(s,t)^*x=|T|^tU^*|T|^sx=0$. Hence $\ker(X^*|T|^s)\subset T(s,t)^*$ and $[\operatorname{ran}\ T(s,t)]\subset [\operatorname{ran}\ |T|^sX]$. Hence

$$(T(s,t)^*T(s,t) - T(s,t)T(s,t)^*)T(s,t) = 0$$

by (i). This implies T(s,t) is quasinormal, and T is quasinormal by Theorem 2.1.

Next theorem is an extension of Theorem 3 of [20].

Theorem 4.16. Let $S \in B(\mathcal{H})$ be dominant and $T^* \in B(\mathcal{K})$ a class A(s,t) operator with $s + t \leq 1$ and $\ker T^* \subset \ker T$. Let SX = XT for some operator $X \in B(\mathcal{K}, \mathcal{H})$. Then $S^*X = XT^*$, $[\operatorname{ran} X]$ reduces S, $(\ker X)^{\perp}$ reduces T, and $S|_{[\operatorname{ran} X]}, T|_{(\ker X)^{\perp}}$ are unitarily equivalent normal operators.

Proof. Decompose S, T^* into normal parts and pure parts as in Lemma 4.6 and [4], i.e., $S = S_1 \oplus S_2$ on $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$ and $T^* = T_1^* \oplus T_2^*$ on $\mathcal{K} = \mathcal{K}_1 \oplus \mathcal{K}_2$ where S_1, T_1^* are normal and S_2, T_2^* are pure. Let $X = \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix}$. Let $T_2^* = U_2^* | T_2^* |$ be the polar decomposition of T_2^* and $T_2^*(s,t) = |T_1^*|^s U_2^* |T_1^*|^t$. Let $T_2^*(s,t) = V_2^* |T_2^*(s,t)|$ be the polar decomposition of $T_2^*(s,t) = W$ and $W(s,t) = |T_2^*(s,t)|^s V_2^* |T_2^*(s,t)|^t$. Since SX = XT, we have

$$S_2 X_{21} = X_{21} T_1,$$

$$S_2 X_{22} |T_2^*|^s |T_2^*(s,t)|^s = X_{22} |T_2^*|^s |T_2^*(s,t)|^s W(s,t)^*$$

$$S_1 X_{12} = X_{12} T_2.$$

Then $X_{21}, X_{22}, X_{12} = 0$ by [4, Corollary 1] and Theorem 4.10. The rest of the proof is similar to the proof of Theorem 4.10.

Remark 4.17. Let $T^* = A$ as in Remark 4.9. Let X = P be the orthogonal projection onto $\ker T^*$ and S = 1 - P. Then SX = 0 = XT, but $0 = S^*X \neq XT^*$. Hence the kernel condition is necessary for Theorem 4.16.

REFERENCES

- [1] A. Aluthge, On p-hyponormal operators for 0 , Integr. Equat. Oper. Th., 13(1990), 307-315.
- [2] A. Aluthge and D. Wang, w-Hyponormal operators, Integr. Equat. Oper. Th., 36(2000), 1-10.
- [3] R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc., 17(1966), 413-415.
- [4] B. P. Duggal, On dominant operators, Arch. Math., 46 (1986), 353-359.
- [5] B. P. Duggal, Quasi-similar p-hyponormal operators, Integr. Equat. Oper. Th., 26(1996), 338-345.
- [6] B. Fuglede, A commutativity theorem for normal operators, Proc. Nat. Acad. Sci. U.S.A., 36(1950), 35-40.
- [7] M. Fujii, D. Jung, S.H. Lee, M.Y. Lee and R. Nakamoto, Some classes of operators related to paranormal and log-hyponormal operators, Math. Japonica, 51 (2000) 395-402.
- [8] F. Hansen, An inequality, Math. Ann., 246(1980), 249–250.
- [9] E. Heinz, Beiträge zur Störungstheorie der Spektralzerlegung, Math. Ann., 123(1951), 415–438.
- [10] M. Ito, Some classes of operators associated with generalized Aluthge transformation, SUT J. Mathematics, 1(1999), 149-165.
- [11] M. Ito and T. Yamazaki, Relations between two operator inequalities $(B^{\frac{r}{2}}A^pB^{\frac{r}{2}})^{\frac{r}{p+r}} \geq B^r$ and $A^p \geq (A^{\frac{p}{2}}B^rA^{\frac{p}{2}})^{\frac{p}{p+r}}$ and their applications, Integr. Equat. Oper. Th., 44(2002), 442-450.
- [12] I.H. Jeon, K. Tanahashi and A. Uchiyama, On quasisimilarity for log-hyponormal operators, Glasgow math. J., 46(2004), 169–176.
- [13] K. Löwner, Über monotone Matrixfunktionen, Math. Z., 38(1934), 177-216.

QUASINORMALITY, FUGLEDE-PUTNAM THEOREM FOR A(s,t) OPERATORS

- [14] S. M. Patel, A note on p-hyponormal operators for 0 , Integral Equations and Operator Theory, <math>21(1995), 498-503.
- [15] S. M. Patel, On Intertwining p-hyponormal operators, Indian J. Math., 38(1996), 287–290.
- [16] C. R. Putnam, On normal operators in Hilbert space, Amer. J. Math., 73(1951), 357–362.
- [17] K. Tanahashi, On log-hyponormal operators, Integr. Equat. Oper. Th., 34(1999), 364-372.
- [18] K. Tanahashi, Putnam's inequality for log-hyponormal operators, Integr. Equat. Oper. Th., 48(2004), 103–114.
- [19] A. Uchiyama and K. Tanahashi, On the Riesz idempotent of class A operators, Mathematical Inequalities and Applications, 5(2002), 291–298.
- [20] A. Uchiyama and K. Tanahashi, Fuglede-Putnam's theorem for p-hyponormal or log-hyponormal operators, Glasgow math. J., 44(2002), 397-410.
- [21] D. Xia, Spectral theory of hyponormal operators, Birkhäuser, Basel, 1983.
- [22] M. Yanagida, Powers of class $wA(s\ t)$ operators with generalized Aluthge transformation, J. Inequal. Appl. 7(2002), 143–168.
- [23] T. Yoshino, The p-hyponormality of the Aluthge transform, Interdisciplinary Information Sciences, 3(1997), 91–93.

S.M. PATEL

DEPARTMENT OF MATHEMATICS

SARDAR PATEL UNIVERSITY

VALLABH VIDYANAGAR 388 120, GUJARAT, INDIA

E-mail address: smpatel-32@yahoo.com

KÔTARÔ TANAHASHI

DEPARTMENT OF MATHEMATICS

TOHOKU PHARMACEUTICAL UNIVERSITY

SENDAI 981-8558, JAPAN

E-mail address: tanahasi@tohoku-pharm.ac.jp

ATSUSHI UCHIYAMA

SENDAI NATIONAL COLLEGE OF TECHNOLOGY

SENDAI 989-3128, JAPAN

E-mail address: uchiyama@cc.sendai-ct.ac.jp

MASAHIRO YANAGIDA

DEPARTMENT OF MATHEMATICAL INFORMATION SCIENCE

TOKYO UNIVERSITY OF SCIENCE

TOKYO 162-8601, JAPAN

E-mail address: yanagida@rs.kagu.tus.ac.jp

Received 2 February, 2006 Revised 12 May, 2006