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STRONGLY GENERALIZED DIFFERENCE
[VA,AM, P]-SUMMABLE SEQUENCE SPACES DEFINED
BY A SEQUENCE OF MODULI

AYHAN ESI

ABSTRACT. We introduce the strongly generalized difference [V’\,Am,p]—
summable sequences and give the relation between the spaces of strongly
generalized difference [V)‘, A™ p] -summable sequences and strongly general-
ized difference [V’\,Am,p] -summable sequences with respect to a sequence
of moduli. Also we give natural relationship between strongly generalized
difference [VA, A™, p] -convergence with respect to a sequence of moduli and
strongly generalized difference S* (A™)-statistical convergence.

1. Introduction

Let |, c and ¢, denote the Banach spaces of bounded, convergent and null sequences
x = (xy), normed by ||x|| = supy, |zx|, respectively.

Let A = (\,) be a non-decreasing sequence of positive numbers tending to infinity
and A\.y1 < A + 1, Ay = 1. The generalized de la Vallee-Poussin mean is defined
by t,(x) = N> e x I = [r= A+ 1,r]. A sequence z = (z3) is said to
be (V,A)-summable to a number L if ¢, (x) — L as r — oo, [10]. If \, = 7,
then the (V) \)-summability is reduced to (C,1)-summability. We write [V, \] =
{o = (zk)  limyo A7 Y 4c; |2e — L| = 0, for someL} for set of sequences © = ()
which are strongly (V, A)-summable to L.

The notion of modulus function was introduced by Nakano [15]. The notion was
further investigated by Ruckle [13] and many others. We recall that a modulus f
is a function from [0, 00) to [0, 00) such that (i) f () = 0 if and only if z = 0, (ii)
fx+y) < f(x)+ f(y) for x,y >0, (iii) f is increasing, (iv) f is continuous from
the right at 0. It is immediate from (ii) and (iv) that f must be continuous on [0, o).
Also from condition (ii), we have f (nx) < nf (z) for alln € N. A modulus function
may be bounded or unbounded. Ruckle [13], Connor [1], Maddox [12], Esi [2], Esi
and Tripathy [3] and several authors used a modulus f to contruct some sequence
spaces. For a sequence of moduli F' = (f;) we give the following conditions: (C1)
supy, fir (t) < oo for all t > 0, (C2) limy_ fi (t) = 0, uniformly in k£ > 1. We remark
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that in case fr = f (k> 1), where f is a modulus, the conditions (C'1) and (C2)
are automatically fulfilled.

The difference sequence space X (A) was introduced by Kizmaz [8] as follows:
X (A) = {x=(xp): (Axg) € X}, for X = I, c and ¢,, where Axy = xp — Tp4q
for all £ € N. Later, these difference sequence spaces were generalized by Et and
Colak [6] as follows: Let n € N be fixed, then X (A™) = {x = (zy) : (A"xy) € X},
for X = Iy, ¢ and ¢,, where A"z, = A" 'z, — A" 1z, and Az, = z; for
all k € N. The generalized difference has the following binomial representation:
Arzy, =" (=1)" (7) @y for each k € N.

Let X be a sequence space. Then X is called solid (or normal) if (agzy) € X
whenever () € X for all sequences (o) of scalars with |ag| < 1, for all k € N. A
sequence space X is called monotone if X contains preimages of all its step spaces.
If X is normal, then it is monotone.

In the present note we introduce the new definitions of strongly generalized dif-
ference [V’\, A™, p] -summable sequences and give the relation between the spaces of
strongly generalized difference [V’\, Am,p} -summable sequences and strongly gen-
eralized difference [V)‘, A™ p} -summable sequences with respect to a sequence of
moduli. Also we give natural relationship between strongly generalized difference
[VA, A™, p} -convergence with respect to a sequence of moduli and strongly general-
ized difference S* (A™)-statistical convergence.

The following inequality will be used throughout the paper:

|2+ g™ < K (lzel™ + lyal™) (1.1)

where x;, and y; are complex numbers, K = max (1, 2H_1) and H = sup;, pr < o0,
[11].

2. Strongly generalized difference [V/\,Am,p}—summable se-
quences

Let u = (ug) is any sequence such that u, # 0 (k = 0,1,2,...) and p = (px) be a

bounded sequence of positive real numbers (0 < h = infy pp < pp <sup,pr = H <

o0) and F' = (fx) be a sequence of moduli and m > 0 be fixed integer then, we
define

lim A [fr(lusA™ s — L) =0

[VA, Fv Amvp] = Tr = ('Ik) e kel )
uniformly in s, for some L

lim A7) [fe(Jur A"z )]™ =0

[VA>Fa Amap]o = T = ($k) e kel >

uniformly in s

sup A [l A | < oo} :

7s8 kel,

[VA,F,Am,p}OO = {x:(xk)
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fu=e=(1,1,1,...),s=0, Axpy =x%, fr=f andpy=1forallk e N
then the sequence space [V, F, A™, p] reduce to well-known sequence space [V, A].

fu=e=(1,1,1,...) , s =0, fr = f forall k € N then the sequence spaces
[V’\,F, Am,p], [V*,F, Am,p}o and [V’\,F, Am,p}oo reduce to

VoA f ol (A™) [VUA, foplo (A™), and [V A, f,pl, (A™)
which were defined and studied by Et, Altin, and Altinok [5].

Theorem 2.1 Let F' = (fx) be a sequence of moduli then the sequence spaces
[V)‘, F, Am,p} , [VA, F, Am,p]o and [V’\, F, Am,p}oO are linear spaces over the com-
plex field C.

Proof. We give the proof only for [VA,F , Am,p}o. Since the proof is analogous
for the spaces [V*, F, Am,p} and [VA, F, Am,p}oo , we omit the details. Let z,y €

[VAF, Am,p}o and a, # € C. Then there exist integers T}, and T3 such that |a| < T,
and || < Ts. We therefore have

A [ (™ (s + B )

kel

= At Z [fr (lour A" 2y s + Bug A"y )]

kel

K [T [ (lueA ey )P + K [T A [ (JunA g o )
kel, kel,
— 0 as r — oo, uniformly in s.

IN

This proves that the sequence space [VA, F,A™ p} o 18 linear. U

Theorem 2.2 Let F' = (fy) be a sequence of moduli then the inclusions
(VA E,A™ p], C [V} F,A™ p] C [VAF,A™ p]
hold.
Proof. The inclusion [V’\,F, A™, p} o C [V’\,F, A™, p] is obvious. Now let =z €
[V F,A™ p|. By using (1.1), we have

sup A Z U (Jur A g o))

r,s

kel,
— sup A Y (e (A g — L+ L)
s kel,
< Ksup A [fi ([urAm s — LD+ Ksup A0S [fi (IL)*
s kel ™8 kel

< Ksup A (e (e e — LD+ K max (£ (LD fu (1))
e kel,
< Q.
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Hence = € [V’\,F, Am,p}oo, which shows that [V’\,F, Am,p} C {V’\,F, Am,p]oo.
This completes the proof. U

Theorem 2.3 The sequence spaces

[VAaFa Amyp} ) [VA7F7 Amap} and [VA7Fa Amvp]oo

0’

are solid and hence monotone.

Proof. Let (ay) be a sequence of scalars such that |ay| < 1, for all k£ € N. Since fj
is monotone for all £ € N, we get
Pi
|UkAmek+s|)}

el

AU e (uA™ gz )P < SUP Oprs
kel, kel, k,s
S /\r_l Z [fk (|ukAmxk+sD]pk )
kel
which leads us to the desired result. O

Now we give the relation between strongly generalized difference [V)‘,Am,p}—
convergence and strongly generalized difference [VA,Am,p] -convergence with re-
spect to a sequence of moduli.

Theorem 2.4 Let F' = (fy) be a sequence of moduli then
|:v>\7Am7p} C [VA,F, Amap] ) [V)\a Am7p}0 C [VA,F, Amap]o

and

[V} A™ p| C [VYFA™ p]

oo’

Proof. We consider only the case [VA, Am,p]o C [V’\, F, Am,p}o.
Let z € [VA,Am,p]O and € > 0. We choose 0 < § < 1 such that fi(t) < e for
every t with 0 <t < 9. We can write

At Z [fr (Jup A" w7

kel

= A U (e 2 )P+ A7) [ fie ([un A ])]
1

2
< max (", ") + max (1, (2 (1)) AT upA" o[
2

where the summation ), is over |uyA™z)1s] < ¢ and the summation ), is over
|upg A"z, s| > 0. Hence we obtain z € [V’\, F, Am,p}o. d
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Theorem 2.5 Let F' = (fx) be a sequence of moduli. If limy_, ., f‘“T(t) =p3>0, for
all k € N, then [V*,A™ p|] = [VA F,A™ p], [V} A™ p|, = [V} F,A™ p], and
I:V)\7 Am7pj|oo = |:V>\7 F7 Am?p]

Proof. For any modulus function, the existence of a positive limit given with 3
was introduced by Maddox [2]. Let § > 0 and z € [V’\,F, Am,p}o . Since § > 0,
we have f’“T(t) > ( forallt > 0 and all £k € N. From this inequality, it is easy to
see that = € [V’\,F, Am,p}o. In Theorem 2.4, it was shown that [V’\,Am,p}o C
[VA, F, Am,p}o. This completes the proof. O

Theorem 2.6 If m > 1, then the inclusions [V’\,F, Am’l,p} - [V’\,F, Am,p],
(VX E A pl o [VAF,A™ pl, and [VA F,A™ p] C [VMF,A™ p|_ are
strict. In general, [V}, F, A", p| C [V} F,A™ p], [V} F, A% p], C [V} F,A™ p],
and [VA F, A" p] C [VAF,A™ p|_ foralli=1,2,3,...,m—1 and the inclusions
are strict.

o0

Proof. We give the proof for [V* F,A™' p| ~c [V* F,A™ p| . The oth-

ers can be proved in a similar way. Let x € [VA,F, AL p}oo. Then we have

sup, , A D per Lk (Jur A g ])]™ < oo, By definition of fy for all k € N, from
(1.1) we have

At Z Ui (Jur A g s|)]7

kel
< BN [ (e )7 4 KNS [ ()]
kel kel,
< o0

for all s € N. Thus [V)‘,F, Am’l,p}m C [V)‘,F, Am,p}oo .Proceeding in this way
one will have [V)‘,F, Ai,p}oo C [V’\,F, Am,p}oo foralli =1,2,3,...,m — 1. Now
let A, =n for each n € N. Then the sequence = = (k™) (A™zy = (—1)"m! and
A"y = (—1)erl m! (k + m74)> for example, belongs to [V)‘, F, Am,p}oo, but it
does not belong to [V’\,F, Am_l,p]oo for fp =id , pr =1forall k € N and u = e.
O

We consider that (py) and (gx) are any bounded sequences of strictly positive
real numbers. We are able to prove [V)‘,Am,q} - [V)‘,F, Am,p} ) [VA,Am,q}O C
[VAF,A™ p] and [V A™ g] C [V} F,A™ p]_ only under additional condi-
tions.

Theorem 2.7 Let 0 < pp < qx for all k € N and let (Z—’;) be bounded. Then

[V)‘,Am,q} C [V*,F, Am,p}, [V’\,Am,q}o C [V’\,F, Am,p]o and [V’\,Am,q]m C
[V)\7F7 Am7p}

oo’
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Proof. 1If we take t s = [fi (|ugA™zgis|)]* for all k,s € N, then using the same
technique of Theorem 2 of Nanda [16], the proof is easy. O

Corollary 2.1 The following statements are valid:
(i) If 0 <infypr <1 for all k € N, then
[VAaAm} C [V)\>F7 Amap] ’ [VAaAm]O C |:V)\7F7 Am7p:|0

and
[V A™ _c [VAF,A™ p]_ .

(i) If 1 < p; <sup,p; = H < oo, then

(VA A™ pl C [VAF,A™, [VAA™ p] C [V, F,A™],

and
|:V)\’ AWl’p]oo C |:v)\’ F’ ATn]oo :

Proof. (i) follows from Theorem 2.7 with g, = 1 for all £ € N, and (ii) follows from
the same theorem with p, =1 for all k € N. 0

Theorem 2.8 [V’\, F, Am,p]o 1 a paranormed space with

M
ham(x) = sup ()\Tl Z Jr (!ukAm$k+s|)pk) ;

kel,
where M = max (1, sup, p) < oc.

Proof. Clearly ham () = ham (—x). It is trivial that A™z, = 0 for = 0.Since
fe(0) =0 for all k € N, we get ham (z) = 0 for z = 0. Since 22 < 1 and M > 1,
using the Minkowski’s inequality and definition of fi, for each r,s > 1, we have

1

()\Tl Z [fr (Juk (A™zpys + Amykﬂ)mpk)

kel
L

< <Ar1 D1 (unA g ]) + fi (lu (Amxk+s)|))]p’“>

kel
1

< <>\F12[fk(|ukﬁml‘k+smpk> +(/\ZIZ[fk(WkAmykJrsD]pk) :

kel kel
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Hence ham is subadditive. Finally, to check the continuity of multiplication, let us
take any complex number «. By definition of f; , we have

L

M
ham (ax) = sup (Arl Z [fx (!OéukAm:ckJrS])]p‘“) < T ham (x)

kel

where T is a positive integer such that |a] < T . Now, let &« — 0 for any fixed x
with ham () # 0. By definition of f; for |o| < 1, we have

P Z [ (loug A"z ))F < e for r >, (2.2)

kel

Also, for 1 < r < r,, taking o small enough, since f; is continuous for all £ € N,
we have

A e (loup A g )P < e (2.3)

kelr
Conditions (2.2) and (2.3) together imply that ham (az) — 0 as & — 0. This
completes the proof. O

3. Strongly generalized difference S* (A™)-statistical conver-
gence

In this section, we introduce natural relationship between strongly generalized dif-
ference [VA, A™, p]—convergence with respect to a sequence of moduli and strongly
generalized difference S* (A™)-statistical convergence. Fast [7] introduced the idea
of statistical convergence. This idea was later studied by Connor [1], Salat [18],
Savag [19], Tripathy [17], Esi and Tripathy [4] and many others.

A sequence x = (zj) is said to be statistically convergent to the number L if

for every ¢ > 0, lim, %‘ = 0, where |A(¢)| denotes the number of elements in

Ae) ={k e N: |zp—L| > e}

In [9], Et and Nuray defined a sequence x = (zy,) is A™-statisticaly convergent

to the number if for every ¢ > 0, lim, ‘%a) = 0, where |K(¢)| denotes the num-

ber of elements in K(¢) = {k € N: |A™zy — L| > e}. The set of A™-statisticaly
convergent sequences is denoted by S(A™).

Mursaleen [14] introduced the concept of A-statistical convergence as follows:
A sequence z = (xj) is said to be A-statistically convergent to L if for every
e >0, lim, A\ 1 |C(g)| = 0, where |C(e)| denotes the number of elements in C'(g) =
{kel : |z, — L| >e}. The set of all A-statistically convergent sequences is de-
noted by S*.

A sequence x = (x3) is said to be strongly generalized difference S* (A™)-
statistically convergent to the number L if for any ¢ > 0, lim, A\ 1 |C(e,s)| =
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0, uniformly in s, where |C(e,s)| denotes the number of elements in C(e,s) =
{kel : |upA"xpys — L] > €}. The set of all strongly generalized difference gen-
eralized statistically convergent sequences is denoted by S* (A™, s).

If uy = e forall k € N, s =0, and A\, = 7 for r > 1, then the space S* (A™, s)
reduces to the space S (A™), which was defined and studied by Et and Nuray [9]. If
up =eforallk € N,s=0,m=0and \. =r for r > 1, then the space S* (A™,s)
reduces to the space of ordinary statistical convergence. If up = e for all £ € N,
s = 0, m = 0 and then the space S* (A™,s) reduces to the space of A-statistical
convergence which was defined and studied by Mursaleen [14].

Now we give the relation between strongly generalized difference S* (A™)-statisti-
cal convergence and strongly generalized difference [VA,Am,p}—Convergence with
respect to a sequence of moduli.

Theorem 3.1 Let F = (f;) be a sequence of moduli then [V*, F, A™, p| C S* (A™,s).

Proof. Let x € [V)‘,F, Am,p}. Then

)\;1 Z [fi (Jug A" @ g — L))

kel

> )\,Tl Z [fr (lux A" x4y s — L|)]P*
> A Y [P
> A min (file)", fil(e)")

> M1k el |upA™2) s — L| > €} min (fk(s)h, fk(s)H) ,

where the summation ), is over |uyA™zpys — L| > . Hence we obtain = €
S* (A™ s). This completes the proof. O

Theorem 3.2 Let F' = (fx) be a uniformly bounded sequence of moduli on the
interval [0,00) . Then [V* F,A™ p| = S*(A™,s).

Proof. By Theorem 3.1, it is sufficient to show that [VA,F, Am,p] D S*MA™, 5).
Let z € S*(A™). Since F' = (f;) is uniformly bounded on the interval [0, 00), so
there exists an integer B > 0 such that fy (JusA"xks — L) < B for all k € N.
Then for a given € > 0, we have

A S U (™, — L)

kel

= N Ui (lueA s — LD + A7 Y [ (lunA™ 2y, — L™
1 2

> BNk €L upA" 2y — L) > e} 4+ max (fi(e)", fi(e)?),
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where the summation ), is over |upA™zy.s] < ¢ and the summation ), is over
lupg A"z s| > . Taking the limit as ¢ — 0 and r — oo, uniformly in s, we get
T € [V’\, F, Am,p}. This completes the proof. 0

Theorem 3.3 If liminf, 2= > 0, then S (A™,s) C S* (A™,s), where

T T

1 N
S(Am,s):{x:(xk) lim =~ [{k <7 Jup A" gy — L] > e} = 0, }

uniformly in s, for some L
Proof. Let x € S(A™, s). For given ¢ > 0, we get
{k <r:|ugAmzpes — L] > e} D Cle, s).

Thus
1 - 1 A1
- {k <r:|upA"zpes — L = e}| = - C(e,s)| = oW C(e,5)]-

Taking limit as r — oo and using liminfr% > 0, we get € S*(A™,s). This
completes the proof. 0
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