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SUBDIFFERENTIAL INVERSE PROBLEMS FOR
MAGNETOHYDRODYNAMICS∗

ALEXANDER CHEBOTAREV†

Abstract. The theory of solvability of an abstract evolution inequality in a Hilbert space for the
operators with the quadratic nonlinearity is presented. It is then applied for the study of an inverse
problem for MHD flows. For the three-dimensional flows the global in time existence of the weak
solutions to the inverse problem is proved. For the two-dimensional flows existence and uniqueness
of the strong solutions are proved.
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1. Inverse Problem for MHD. The flow of a homogeneous viscous incom-
pressible conducting fluid in a bounded domain Ω ⊂ R

d, where d = 2 or 3, with
connected boundary Γ = ∂Ω is described by the magnetohydrodynamic (MHD) equa-
tions in dimensionless variables:

(1) ∂u/∂t− ν∆u+ (u∇)u = −∇p+ S · rotB ×B, x ∈ Ω, t > 0,

(2) ∂B/∂t+ rotE = 0, j = rotB = 1/νm(E + u×B +

m∑

i=1

αi(t)Ei),

(3) div u = 0, divB = 0.

Here u, B, E and j are vector fields of velocity, magnetic induction, electric intensity
and current density respectively; p is a flow pressure, ν = 1/Re. νm = 1/Rm, S =
M2/ReRm, where Re,Rem and M are the Reynolds number, Reynolds magnetic
number and Hartman number. Ei = Ei(x) – the given external electric fields. The
functions αi = αi(t), i = 1, ...,m are considered as a controls.

In the two-dimensional case, the current density, electric field, and the expressions
rotB and u×B are scalar quantities; in addition,

rotB = ∂B2/∂x1 − ∂B1/∂x2, u×B = Z(u) ·B,

rotB × v = rotB Z(v), rotE = −Z(∇E).

Here Z(v) = {−v2, v1} is the rotation of the vector {v1, v2} by π/2.
We supplement equations (1)–(3) with the initial conditions

(4) u|t=0 = u0(x), B|t=0 = B0(x), x ∈ Ω

and the conditions on the boundary Γ of the flow domain,

(5) u = 0, B · n = 0, n× E = 0 (x, t) ∈ Γ× (0, T ),
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where n is the unit outward normal on the Γ.
Let us consider the following inverse problem for the model (1)–(5).
Find the functions αi = αi(t), t ∈ (0, T ), i = 1, ...,m and the corresponding

solution y = {u,B} of the (1)–(5) under additional conditions

(6) αi(t) ≥ 0,

∫

Ω

rotB ·Ei dx ≥ qi(t), αi(t)(

∫

Ω

rotB ·Ei dx− qi(t)) = 0, t ∈ (0, T ).

Here the functions qi, Ei and the initial conditions u0, B0 are given.
Note that the quantity

∫
Ω rotB ·Ei dx is proportional to the work of the external

electric field Ei on conduction currents j = rotB per unit time. In fact, the non-local
conditions (6) describe the control of electric field power by dynamic change of current
amplitudes.

Classical boundary value problems for system (1)–(3) were considered in [1]. Sub-
differential boundary value problems for hydrodynamic equations and Maxwell equa-
tions were investigated in [2]–[4]. The existence and uniqueness of the solution of
the Problem (1)–(6) will be proved on the basis of the development of the theory of
abstract evolution equations and Navier – Stokes inequalities [5]–[7].

The main results of this paper are the global in time existence theorem for the
three-dimensional inverse problem and the existence and uniqueness of the strong
solutions in the two-dimensional case.

The outline of the paper is as follows. In Section 2 the subdifferential inverse
problem for the abstract Navier – Stokes system is stated. In Section 3 we give
the functional setting for MHD equations and prove the existence and uniqueness
theorems. In Section 4 the sketch of abstract theorems proving is presented.

2. Subdifferential inverse problem for Navier–Stokes system. Let V and
H be real separable Hilbert spaces with the norms denoted by ‖ ·‖ and | · |. V is dense
in H , embedding of V in H is compact and

V ⊂ H = H ′ ⊂ V ′,

where H ′ and V ′ are dual spaces of H and V . (·, ·) denotes the pairing between V
and V ′ and the scalar product in H .

Consider a linear continuous operatorA : V → V ′ and a bilinear operator B(u, v) :
V × V → V ′ such as

(7) (Av, v) ≥ α‖v‖2, α > 0, (Av,w) = (Aw, v) ∀v, w ∈ V ;

(8) B[y] = B(y, y), (B(u, v), v) = 0 ∀u, v ∈ V ;

Let {Qi}, i = 1,m be a linearly independent system in V ′. Consider an evolution
equation

(9) y′ +Ay + B[y] = f +
m∑

i=1

αi(t)Qi, t ∈ (0, T )

under initial condition

(10) y(0) = y0.

Here y′ = dy/dt.
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Problem P. Find the functions αi = αi(t), t ∈ (0, T ), i = 1, ...,m and the
corresponding solution y of the (9)–(10) under additional conditions

(11) αi(t) ≥ 0, (Qi, y(t)) ≥ qi(t), αi(t)((Qi, y(t))−qi(t)) = 0, t ∈ (0, T ), i = 1, ...,m.

Here f ∈ V ′, the functions qi and the initial value y0 are given.

2.1. Transformation of Problem P. Let {zi}, i = 1,m be an appropriate
biorthogonal system in the space V , (Qi, zk) = δik. Now we set

r(t) =

m∑

i=1

qi(t)zi, K = {z ∈ V : (Qi, z) ≥ 0, i = 1,m }.

Denote by Φ the indicator function of K,

Φ(y) =

{
0, if y ∈ K,
+∞, otherwise .

Note that Φ is a convex on V and weakly lower semicontinuous.
Let z − r(t) ∈ K, t ∈ (0, T ). We multiply equation (9) by (y − z) and use the

conditions (11) to obtain after some calculation that

(y′ +Ay + B[y]− f, y − z) ≤ 0.

Thus, if y is a solution of Problem P then

(y′ +Ay + B[y]− f, y − z) + Φ(y − r) − Φ(z − r) ≤ 0

and we get the Cauchy Problem for evolution equation with multivalued operator
(variational inequality),

(12) f ∈ y′ +Ay + B[y] + ∂Φ(y − r), y(0) = y0.

Conversely, if for some ξ ∈ V ′ we have (−ξ) ∈ ∂Φ(y − r) then this implies [8],[9]

ξ =

m∑

1

αi(t)Qi, αi(t) = (ξ, zi),

where αi ≥ 0, (Qi, y) ≥ qi, αi(Qi, y)− qi) = 0, i = 1, ...,m.

2.2. Solvability of Problem P. Let Ls(0, T ;X), 1 ≤ s ≤ ∞ (respectively
C(0, T ;X)) denote the space of s – summable (respectively continuos) functions from
[0, T ] to X . We denote the space of distributions on (0, T ) by D′(0, T ) and the usual
Sobolev space by W l

s.
Define the functional

G(y) =

{ ∫ T

0
Φ(y(t))dt, if Φ(y(·)) ∈ L1(0, T ),

+∞ else.

Definition 1. The set of functions αi ∈ D′(0, T ), i = 1, ...,m and y ∈ L2(0, T ;V )
is called weak solution to the Problem P, if

G(y − r) < +∞, αi = (f − y′ −Ay − B[y], zi)



398 A. CHEBOTAREV

and following inequality holds

(13)

∫ T

0

(z′ +Ay + B[y]− f, y − z)dt+G(y − r)−G(z − r) ≤ |y0 − z(0)|2
2

for all z such that z ∈ L2(0, T ;V ), z′ ∈ L2(0, T ;V ′).

Definition 2. The set of functions αi ∈ L2(0, T ), i = 1, ...,m and y ∈
C([0, T ];V ) is called strong solution to the Problem P, if y(0) = y0,

y′ ∈ L2(0, T ;V ) ∩ L∞(0, T ;H), αi = (f − y′ −Ay − B[y], zi),

and

(14) f(t)− (y′(t) +Ay(t) + B[y(t)]) ∈ ∂Φ(y(t)− r(t)) a.e. on (0, T ).

We have the following results on the solvability of Problem P.

Theorem 1. Let

(15) r ∈ L2(0, T ;V ); f, r′ ∈ L2(0, T ;V ′);

(16) y0 − r(0) ∈ K
H

= closure of K in the norm of H,

and

(17) |(B(w, v), w)| ≤ k1‖w‖1+θ · |w|1−θ · ‖v‖,

where θ ∈ [0, 1), k1 > 0 are constants independent of v, w ∈ V . Then there exists a
weak solution of Problem P.

Let U and H0 be real separable Hilbert spaces, let U be continuously and densely
embedded in V , let H ⊂ H0, let the norm in H0 be equivalent to the norm in H ,
and in addition, let Az + B[z] ∈ H0 whenever z ∈ U ,

(18) |Az + B[z]| ≤ k2(1 + ‖z‖2U),

where k2 > 0 is independent of z ∈ U .

Theorem 2. Let g = f − r′ −Ar − B[r], f1 = f − r′ −Ar, and

(19)
y0 − r(0) ∈ U ∩K, g(0) ∈ H0, f, f

′ ∈ L2(0, T ;V ′),
r′ ∈ L2(0, T ;V ) ∩ L∞(0, T ;H), f ′

1 ∈ L2(0, T ;V ′);

(20) |(B(w, v), w)| ≤ k3‖w‖1+θ · |w|1−θ · ‖v‖γ · |v|1−γ ,

where θ, γ ∈ [0, 1/2] and k3 > 0 are constants independent of v, w ∈ V . Then problem
P has exactly one strong solution.

The solvability of variational inequalities associated with nonlinear boundary
value problems for equations of magnetohydrodynamics was proved in [6],[7]. In
the study of inverse problems, convex set restrictions on function y depends on time.
Theorems 1 and 2 above improve the results in [6] and [7] for the case of r 6= 0. The
sketch of the proofs of the two theorems will be given in Section 4.
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3. Solvability of Inverse MHD Problem. In the sequel, without loss of gen-
erality, we set S = 1 in the equations (1). Otherwise we can reduce to the case by
introducing new functions B :=

√
SB, E :=

√
SE, and Ei :=

√
SEi.

3.1. Spaces and operators for MHD. Consider the following spaces of vector
functions defined in a bounded domain Ω ∈ R

d with connected boundary Γ ∈ C2,
d = 2, 3:

U1 = {v ∈ C∞(Ω̄) : div v = 0, x ∈ Ω, v = 0, x ∈ Γ},

U2 = {v ∈ C∞(Ω̄) : div v = 0, x ∈ Ω, n · v = 0, x ∈ Γ}.

The Hilbert spaces V1 and V2 are defined as the closures of the spaces U1 and U2 in
the norm of W 1

2 (Ω), and the spaces H1 and H2 are defined as the closures of U1 and
U2 in the norm of L2(Ω). In fact, H1 = H2. The inner products in the spaces H1 and
H2 and in the spaces V1 and V2 are given by the relations

(u, v)0 =

∫

Ω

(u · v)dx, ((u, v)) = (rotu, rotv)0 =

∫

Ω

(rotu · rot v)dx ∀u, v ∈ V1, V2

respectively. The norm of the spaces V1 and V2 given by the inner product ((u, v)) is
equivalent to the norm of the space W 1

2 (Ω). Let

V = V1 × V2, H = H1 ×H2, V ⊂ H = H ′ ⊂ V ′.

These embeddings are dense and continuous. The norms of the spaces V and H are
denoted by ‖ · ‖ and | · |, respectively; (·, ·) is the duality between V ′ and V and the
inner product in H . If y = {u,B} and z = {v, w}, then

(y, z) = (u, v)0 + (B,w)0, (y, z)V = ((u, v)) + ((B,w)).

Navier–Stokes operators. We define mappings A : V → V ′ and B : V × V →
V ′ by the relations

(Ay, z) = ν((u, v)) + νm((B,w)),

(B(y1, y2), z) = ((u1 · ∇)u2 − rotB2 ×B1, v)0 − (u2 ×B1, rotw)0,

which are valid for arbitrary y = {u,B}, y1 = {u1, B1}, y2 = {u2, B2}, z = {v, w} in
the space V .

Note that the operator A satisfies the conditions (7). The mappings B(y, z) and
B[y] = B(y, y) satisfy the relations (B(y, z), z) = 0,

(B[y], z) = (rotu× u, v)0 − (rotB ×B, v)0 − (u×B, rotw)0.

As a consequence of the multiplicative inequality

‖f‖L4(Ω) ≤ K‖f‖d/4
W 1

2 (Ω)
· ‖f‖1−d/4

L2(Ω) ,

in the domain Ω ⊂ R
d, we have the estimate

(21) (B(y, z), y) ≤ C‖z‖ · ‖y‖1+d/4 · |y|1−d/4,
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where C > 0 is independent of y, z ∈ V . If d = 2, then we have the stronger inequality

(22) (B(y, z), y) ≤ C‖z‖1/2 · |z|1/2 · ‖y‖3/2 · |y|1/2.

Thus the defined mapping B satisfies the conditions (17) and, if d = 2, the condition
(20).

Let us consider the given vector – functions Ei ∈ W 1
2 (Ω), where n×Ei = 0 on Γ,

i = 1, 2, ...,m. We define the functionals Qi ∈ V ′ by the relations

(Qi, z) = (rotEi, w)0 = (Ei, rotw)0,

if z = {v, w} ∈ V . Now we denote by Φ(y) the indicator function of the set K, where
K = {z ∈ V : (Qi, z) ≤ 0, i = 1,m }.

3.2. An analysis of the problem (1)-(6). Let y = {u,B} be a sufficiently
smooth solution of nonlocal unilateral problem (1) – (6), and let y0 = {u0, B0}. Let
the system of functions {rotEi, i = 1,m} be linearly independent in the space H2.
We choose an arbitrary element z = {v, w} ∈ V , multiply equation (1) by (v−u) and
equation (2) by (w − B), and integrate by parts over the domain Ω with the use of
boundary conditions for the velocity, electric and magnetic fields, and test functions
v and w. By adding the resulting relations and by taking into account the condition
(6), we obtain the inequality

(23) (y′ +Ay + B[y], z − y) + Φ(z − r)− Φ(y − r) ≥ 0,

where r(t) ∈ V given by the relation r = {0,∑m
i=1 qi(t)wi}. Here the system of

functions {wi, i = 1,m} is biorthogonal to the system {−rotEi, i = 1,m} in the
space L2(Ω).

Conversely, consider an element y = {u,B} that is a sufficiently smooth solution
of the variational inequality (23). We set z = {u ± v,B}, where v ∈ C∞

0 (Ω) and
div v = 0. Then it follows from (23) that

(24) (u′, v)0 + ν(rotu, rotv)0 + ((u · ∇)u− rotB ×B, v)0 = 0.

Relation (24), together with the condition div u = 0, implies that

(25) u′ + ν∆u+ (u · ∇)u− rotB ×B = −∇p,

for some function p. The boundary conditions for u follow from the inclusion u(·, t) ∈
V1.

Next we set z = {u, w̃} in (23), where function w̃(·, t) ∈ V2 satisfy the conditions
(rotEi, w̃)0 ≥ qi(t), i = 1, ...,m. By the structure of functional Φ we obtain the
inequalities

(rotEi, B)0 ≥ qi(t), i = 1, ...,m,

(26) (B′, w̃ −B)0 + (νmrotB − u×B, rot (w̃ −B))0 ≥ 0

Then we obtain from variational inequality (26) the relation

(27) (B′, w)0 + (νmrotB − u×B, rotw)0 =

m∑

1

αi(t)(rotEi, w)0 ∀w ∈ V2.
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Here αi ≥ 0 and (rotEi, B)0 − qi(t))αi(t) = 0.
Now, we show that equality (27) still hold if w ∈ C∞

0 (Ω). Indeed, if divw 6= 0,
we consider the scalar function φ such that

∆φ = divw in Ω,
∂φ

∂n
= 0 on Γ.

Then ŵ = w − ∇φ ∈ V2 and rotw = rot ŵ. The condition divB = 0 imply that
(B,w)0 = (B, ŵ)0. Hence, for each w ∈ C∞

0 (Ω) we have the equality (27). Setting

E = νmrotB − u×B −
m∑

1

αi(t)Ei,

integrating by parts in (27) we get the equations (2). It follows from the first equation
(2) and (27) that n× E = 0 on Γ.

Thus, the Problem (1)-(6) is reduced to an abstract variational inequality (12)
which is equivalent of Problem P. Therefore, a weak (respectively, strong) solution of
Problem (1)-(6) is defined as a weak (respectively, strong) solution of the Problem P,
where spaces and operators defined in the Section 3.1.

As a consequence of the theorems 1,2, we have a following result.

Theorem 3. Let

u0 ∈ H1, B0 ∈ H2, Ei ∈ W 1
2 (Ω), n× Ei|Γ = 0, i = 1, ...,m,

and let the system of vortices {rotEi, i = 1,m} be linearly independent in the space
H2,

qi ∈ W 1
2 (0, T ),

∫

Ω

rotEi ·B0 dx ≥ qi(0), i = 1, ...,m.

Then there exists a weak solution of Problem (1)-(6). If d = 2 and, in addition,

(28) u0 ∈ W 2
2 (Ω) ∩ V1, B0 ∈ W 2

2 (Ω) ∩ V2, (n× rotB0)|Γ = 0, qi ∈ W 2
2 (0, T ),

then the weak solution is strong and unique.

Proof. Let us verify the validity of the assumptions of Theorems 1 and 2 for
Problem (1)-(6). Just now we note that the operators A and B defined in Section
3.1 satisfy conditions (7), (8), f = 0, and the estimates (21) and (22) imply that
conditions (17) and (20) hold. In addition, to prove the existence of a unique strong
solution, we set U = W 2

2 (Ω) ∩ V . Then B[g] ∈ H0 = L2(Ω)× L2(Ω) for all g ∈ U . If
z = {v, w} ∈ H and y0 = {u0, B0} satisfies condition (28), then

(Ay0, z) = −ν(∆u0, v)0 − νm(∆B0, w)0 − νm

∫

Γ

(n× rotB0)wdΓ.

Therefore, it follows from (28) that condition (19) is valid for Theorem 2.

4. Proof of Theorems 1 and 2. In this section we will prove two solvability
theorems. Note that the proof is valid for the variational inequality (12) with arbitrary
convex lower semicontinuous functional Φ, Φ 6≡ +∞, with an effective domain K on
which Φ is continuous.
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Proof of Theorem 1. Let

Φλ(u) = inf{‖u− v‖2
2λ

+Φ(v); v ∈ V }, u ∈ V, λ > 0.

The Fréchet derivative of Φλ coincides with the Yosida approximation to the mul-
timapping u → ∂Φ(u),

∇Φλ =
1

λ
J(I − Jλ); Jλ = (I + λJ−1∂Φ)−1.

Here I is the identity operator, J : V → V ′ is the duality mapping, and v∗ = Jv, if
(v∗, v) = ‖v‖2. In addition, we have the relations [9]
(29)

Φλ(w) =
1

2λ
‖w − Jλw‖2 +Φ(Jλw); Φ(Jλw) ≤ Φλ(w) ≤ Φ(w); lim

λ→0
Φλ(w) = Φ(w).

Throughout the following, without loss of generality, we assume that w0 = y0−r(0) ∈
K and

(30) Φ(w) ≥ Φ(w0) ∀w ∈ V.

Indeed, in this case, if inequality (30) fails, then one can always replace the func-
tional Φ by the functional Φ1(w) = Φ(w) − (χ,w − w0), χ ∈ ∂Φ(w0), by adding the
subgradient χ to the right-hand side of the inclusion (12).

In V we choose a complete system of elements {v1, v2, ...}, V =
⋃
Vm. Here Vm

is the subspace spanned by the system {v1, ..., vm}. For now, we suppose that

(31) w0 ∈ Vm0 , w0 =

m0∑

1

g0j vj , r(t) ∈ Vm0 , r(t) =

m0∑

1

hj(t)vj .

Consider the Galerkin approximation wm(t) to the function w = y − r, where y is a
solution of inequality (12),

wm(t) =

m∑

1

gjm(t)vj , m = 1, 2, ... ,

(32) (w′
m +Awm + B(wm, r) + B(wm + r, wm) +∇Φλ(wm)− g, vj) = 0,

j = 1,m, wm(0) = w0.

Here g = f − r′ −Ar − B[r].
We obtain estimates for a solution of the system of ordinary differential equations

(32), which permits one to obtain the variational inequality (12) from (32) in the
limit as m → +∞ and λ → 0. We multiply (32) by (gjm − g0j ) and sum the resulting
relation with respect to j from 1 to m > m0. Then

1

2
· d

dt
|wm − w0|2 + (Awm + B(wm, r) + B(wm + r, wm)+

(33) +∇Φλ(wm)− g, wm − w0) = 0.
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By taking into account relations (7), (8), and (17), the monotonicity of the gradient
∇Φλ and condition (30), from (33), one can readily obtain the inequality

(34)
d

dt
|wm − w0|2 + ν‖wm − w0‖2 ≤ C1(1 + |wm − w0|2).

Here and throughout the following, C1, C2, ... are positive constants independent of
m and λ. The estimates

(35) |wm|2 ≤ C2,

∫ T

0

‖wm(t)‖2dt ≤ C3.

are a consequence of inequality (34) and the Gronwall inequality. These estimates,
together with (33) and the relation

Φλ(w0)− Φλ(wm) ≥ (∇Φλ(wm), w0 − wm) ,

imply that

T∫

0

(Φλ(wm)− Φ(w0))dt ≤
T∫

0

(Φλ(wm)− Φλ(w0))dt ≤ C4.

Then, on the basis of the regularization properties (32), we have the estimates

(36)

T∫

0

‖wm − Jλwm‖2dt ≤ C5λ,

T∫

0

Φλ(wm)dt ≤ C6,

T∫

0

Φ(Jλwm)dt ≤ C7.

Let us show that wm is compact in L2(0, T ;H). By multiplying (32) by (gjm(t) −
gjm(s)), s ∈ (0, T ) and by summing the resulting relation with respect to j = 1, ...,m,
we obtain

1

2
· d

dt
|wm(t)− wm(s)|2 + (Awm(t) +B(wm(t), z(t))+

+B(wm(t) + z(t), wm(t)) − g(t), wm(t)− wm(s)) =

= (∇Φλ(wm(t)), wm(s)− wm(t)) ≤ Φλ(wm(s))− Φλ(wm(t)) ≤

≤ Φλ(wm(s))− Φ(Jλwm(s)) ≤ Φλ(wm(s))− Φ(w0).

By integrating the last inequality with respect to t on the interval (s, s+ h) and with
respect to s on (0, T −h) and by using the estimates (35) and (36) and condition (30),
we estimate the equicontinuity of the sequence wm(t) as

(37)

T−h∫

0

|wm(s+ h)− wm(s)|2ds ≤ C8h
1−θ
2 .

It follows from the estimates (35)-(37) that there exists an element w ∈ L2(0, T ;V ) ∩
L∞(0, T ;H) and a subsequence wm′ , λ′ → 0, such that wm′ → w weakly in
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L2(0, T ;V ), ∗ - weakly in L∞(0, T ;H), strongly in L2(0, T ;H) as m′ → ∞, λ′ → 0.
From the last, we find that Jλ′wm′ → w weakly in L2(0, T ;V ); therefore, G(w) <
+∞.

We take z(t) =
∑M

1 cj(t)vj , where M > 0 is a fixed number, and cj(t) ∈ C1[0, T ].
By multiplying (32) by (gjm(t)+hj(t)−cj(t)) and by integrating the resulting relation
by parts on (0, T ), we obtain the inequality

(38)

∫ T

0

{(z′ +Aym + B[ym]− f, ym − z) + Φλ(wm)− Φλ(z − r)}dt ≤ |y0 − z(0)|2
2

.

Here ym = wm + r. Let y = w + r. Results of convergence for sequence wm and
properties (29) permit one to obtain from (38) the variational inequality (13), which
is valid for an arbitrary function z such that z ∈ L2(0, T ;V ), z′ ∈ L2(0, T ;V ′) since the

system {∑M
1 cj(t)vj ,M ∈ N} is dense in the above-mentioned space. For an arbitrary

element w0 ∈ K
H

and for function r ∈ L2(0, T ;V ), r′ ∈ L2(0, T ;V ′) one can consider
their approximations by elements wl

0 ∈ K and by functions rl(t) =
∑m0

1 hl
j(t)vj .

In this case, condition (31) is valid, for example, if the abovementioned element wl
0

is chosen as v1. Having obtained solutions yl of inequality (13) for the data thus
regularized, we pass to the limit as l → ∞ on the basis of estimates of the form
(35),(37) for yl. Then we obtain the assertion of the theorem.

Proof of Theorem 2. First, let us prove the uniqueness of a strong solution of
the problem. Let y1 and y2 be solutions of inclusion (14), and let y = y1 − y2 and
y(0) = 0. Then

(y′i(t)+Ayi+B[yi]− f, yi(t)− z)+Φ(yi− r)−Φ(z− r) ≤ 0 ∀z ∈ L2(0, T ;V ), i = 1, 2.

We set z = y2 in the inequality for y1 and z = y1 in the inequality for y2. By adding
these inequalities, by integrating the resulting relation with respect to time from 0 to
t, and by taking into account condition (20), we obtain

(39) |y(t)|2 + 2ν

∫ t

0

‖y(τ)‖2dτ ≤ 2K3

∫ t

0

‖y‖1+θ · |y|1−θ · ‖y2‖γ · |y2|1−γdτ.

Note that y2 ∈ L∞(0, T ;H), and therefore,

(40) |y(t)|2 + 2ν

∫ t

0

‖y(s)‖2ds ≤ ε

∫ t

0

‖y(s)‖2ds+ Cε

∫ t

0

‖y2‖
2γ

(1−θ) · |y|2ds.

The function t → ‖y2(t)‖
2γ

1−θ is integrable if θ, γ ∈ [0, 12 ]. Therefore, by the Gronwall
inequality, we obtain y(t) = 0, t ∈ (0, T ).

To prove the existence, we use the fact that the space U is dense in the space
V . Therefore, we suppose that the basis elements vj belong to the space U . We
obtain additional a priori estimates for the approximate solution ym, which provide
the desired regularity of the limit element y. By multiplying (32) by g′jm(t) and by
summing the resulting relation over j = 1, ...,m, we obtain

(41) |w′
m(t)|2+(Awm+B(r+wm, wm)+B(wm, r), w′

m)+(∇Φλ(wm), w′
m) = (g, w′

m).

Condition (19) describing the coordination and regularity of the original data permits
one to find from (41) that

(42) {w′
m(0)} is a bounded sequence in the space H0.
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We differentiate relation (32) with respect to t, multiply the resulting relation by
g′jm(t), and sum with respect to j = 1, ...,m. Since ∇Φλ is monotone, we have

(43)
1

2

d

dt
|w′

m(t)|2 + (Aw′
m, w′

m) + (B(y′m, ym), w′
m) + (B(ym, r′), w′

m) ≤ (f ′
1, w

′
m),

where ym = r + wm, f1 = f − r′ −Ar.
From the estimate (35), condition (20), and the Holder inequality, we obtain

(44)

|B(y′m, ym), w′
m)| ≤ k3‖w′

m‖1+θ · |w′
m|1−θ · ‖ym‖γ · |ym|1−γ+

+C5‖z′‖ · ‖ym‖ · ‖w′
m‖ ≤ ν

2‖w′
m‖2 + C6‖ym‖

2γ
(1−θ) |w′

m|2 + C7‖y′m‖2.

By substituting this estimate into (43), we obtain

(45)
1

2

d

dt
|w′

m(t)|2 + α

2
‖w′

m‖2 ≤ C8(‖ym‖2 + ‖ym‖
2γ

(1−θ) |w′
m|2 + ‖f ′

1‖∗).

Note also that

(46)

∫ T

0

‖ym‖
2γ

(1−θ) dt ≤ C9(

∫ T

0

‖ym‖2dt)
γ

1−θ .

By virtue of the estimates (35), (42), (44), and (46) and the Gronwall inequality,
we find that {w′

m} is bounded in L2(0, T ;V ) ∩ L∞(0, T ;H). This, together with the
estimates obtained in the proof of Theorem 1, is sufficient to pass to the limit in
system (32) and obtain conditions imposed on the function y(t) = w(t) + r so as to
provide the existence of a strong solution.
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