SUBDIFFERENTIAL INVERSE PROBLEMS FOR MAGNETOHYDRODYNAMICS*

ALEXANDER CHEBOTAREV ${ }^{\dagger}$

Abstract

The theory of solvability of an abstract evolution inequality in a Hilbert space for the operators with the quadratic nonlinearity is presented. It is then applied for the study of an inverse problem for MHD flows. For the three-dimensional flows the global in time existence of the weak solutions to the inverse problem is proved. For the two-dimensional flows existence and uniqueness of the strong solutions are proved.

Key words. Equations of magnetohydrodynamics, variational inequalities, inverse problems.
AMS subject classifications. 35Q30, 35Q35, 49 J 40.

1. Inverse Problem for MHD. The flow of a homogeneous viscous incompressible conducting fluid in a bounded domain $\Omega \subset \mathbb{R}^{d}$, where $d=2$ or 3 , with connected boundary $\Gamma=\partial \Omega$ is described by the magnetohydrodynamic (MHD) equations in dimensionless variables:

$$
\begin{equation*}
\partial u / \partial t-\nu \Delta u+(u \nabla) u=-\nabla p+S \cdot \operatorname{rot} B \times B, x \in \Omega, t>0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\partial B / \partial t+\operatorname{rot} E=0, j=\operatorname{rot} B=1 / \nu_{m}\left(E+u \times B+\sum_{i=1}^{m} \alpha_{i}(t) E_{i}\right) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{div} u=0, \quad \operatorname{div} B=0 \tag{3}
\end{equation*}
$$

Here u, B, E and j are vector fields of velocity, magnetic induction, electric intensity and current density respectively; p is a flow pressure, $\nu=1 / R e . \nu_{m}=1 / R_{m}, S=$ $M^{2} / R e R_{m}$, where $R e, R e_{m}$ and M are the Reynolds number, Reynolds magnetic number and Hartman number. $E_{i}=E_{i}(x)$ - the given external electric fields. The functions $\alpha_{i}=\alpha_{i}(t), i=1, \ldots, m$ are considered as a controls.

In the two-dimensional case, the current density, electric field, and the expressions rot B and $u \times B$ are scalar quantities; in addition,

$$
\begin{gathered}
\operatorname{rot} B=\partial B_{2} / \partial x_{1}-\partial B_{1} / \partial x_{2}, \quad u \times B=Z(u) \cdot B \\
\operatorname{rot} B \times v=\operatorname{rot} B Z(v), \operatorname{rot} E=-Z(\nabla E)
\end{gathered}
$$

Here $Z(v)=\left\{-v_{2}, v_{1}\right\}$ is the rotation of the vector $\left\{v_{1}, v_{2}\right\}$ by $\pi / 2$.
We supplement equations (1)-(3) with the initial conditions

$$
\begin{equation*}
\left.u\right|_{t=0}=u_{0}(x),\left.B\right|_{t=0}=B_{0}(x), x \in \Omega \tag{4}
\end{equation*}
$$

and the conditions on the boundary Γ of the flow domain,

$$
\begin{equation*}
u=0, B \cdot n=0, n \times E=0(x, t) \in \Gamma \times(0, T) \tag{5}
\end{equation*}
$$

[^0]where n is the unit outward normal on the Γ.
Let us consider the following inverse problem for the model (1)-(5).
Find the functions $\alpha_{i}=\alpha_{i}(t), t \in(0, T), i=1, \ldots, m$ and the corresponding solution $y=\{u, B\}$ of the (1)-(5) under additional conditions
(6) $\alpha_{i}(t) \geq 0, \int_{\Omega} \operatorname{rot} B \cdot E_{i} d x \geq q_{i}(t), \alpha_{i}(t)\left(\int_{\Omega} \operatorname{rot} B \cdot E_{i} d x-q_{i}(t)\right)=0, t \in(0, T)$.

Here the functions q_{i}, E_{i} and the initial conditions u_{0}, B_{0} are given.
Note that the quantity $\int_{\Omega} \operatorname{rot} B \cdot E_{i} d x$ is proportional to the work of the external electric field E_{i} on conduction currents $j=\operatorname{rot} B$ per unit time. In fact, the non-local conditions (6) describe the control of electric field power by dynamic change of current amplitudes.

Classical boundary value problems for system (1)-(3) were considered in [1]. Subdifferential boundary value problems for hydrodynamic equations and Maxwell equations were investigated in [2]-[4]. The existence and uniqueness of the solution of the Problem (1)-(6) will be proved on the basis of the development of the theory of abstract evolution equations and Navier - Stokes inequalities [5]-[7].

The main results of this paper are the global in time existence theorem for the three-dimensional inverse problem and the existence and uniqueness of the strong solutions in the two-dimensional case.

The outline of the paper is as follows. In Section 2 the subdifferential inverse problem for the abstract Navier - Stokes system is stated. In Section 3 we give the functional setting for MHD equations and prove the existence and uniqueness theorems. In Section 4 the sketch of abstract theorems proving is presented.
2. Subdifferential inverse problem for Navier-Stokes system. Let V and H be real separable Hilbert spaces with the norms denoted by $\|\cdot\|$ and $|\cdot| . V$ is dense in H, embedding of V in H is compact and

$$
V \subset H=H^{\prime} \subset V^{\prime}
$$

where H^{\prime} and V^{\prime} are dual spaces of H and $V .(\cdot, \cdot)$ denotes the pairing between V and V^{\prime} and the scalar product in H.

Consider a linear continuous operator $A: V \rightarrow V^{\prime}$ and a bilinear operator $\mathcal{B}(u, v)$: $V \times V \rightarrow V^{\prime}$ such as

$$
\begin{gather*}
(A v, v) \geq \alpha\|v\|^{2}, \alpha>0, \quad(A v, w)=(A w, v) \quad \forall v, w \in V \tag{7}\\
\mathcal{B}[y]=\mathcal{B}(y, y), \quad(\mathcal{B}(u, v), v)=0 \forall u, v \in V
\end{gather*}
$$

Let $\left\{Q_{i}\right\}, i=\overline{1, m}$ be a linearly independent system in V^{\prime}. Consider an evolution equation

$$
\begin{equation*}
y^{\prime}+A y+\mathcal{B}[y]=f+\sum_{i=1}^{m} \alpha_{i}(t) Q_{i}, \quad t \in(0, T) \tag{9}
\end{equation*}
$$

under initial condition

$$
\begin{equation*}
y(0)=y_{0} \tag{10}
\end{equation*}
$$

Here $y^{\prime}=d y / d t$.

Problem P. Find the functions $\alpha_{i}=\alpha_{i}(t), t \in(0, T), i=1, \ldots, m$ and the corresponding solution y of the (9)-(10) under additional conditions
(11) $\alpha_{i}(t) \geq 0,\left(Q_{i}, y(t)\right) \geq q_{i}(t), \alpha_{i}(t)\left(\left(Q_{i}, y(t)\right)-q_{i}(t)\right)=0, t \in(0, T), i=1, \ldots, m$.

Here $f \in V^{\prime}$, the functions q_{i} and the initial value y_{0} are given.
2.1. Transformation of Problem P. Let $\left\{z_{i}\right\}, i=\overline{1, m}$ be an appropriate biorthogonal system in the space $V,\left(Q_{i}, z_{k}\right)=\delta_{i k}$. Now we set

$$
r(t)=\sum_{i=1}^{m} q_{i}(t) z_{i}, \quad K=\left\{z \in V:\left(Q_{i}, z\right) \geq 0, \quad i=\overline{1, m}\right\} .
$$

Denote by Φ the indicator function of K,

$$
\Phi(y)= \begin{cases}0, & \text { if } y \in K \\ +\infty, & \text { otherwise }\end{cases}
$$

Note that Φ is a convex on V and weakly lower semicontinuous.
Let $z-r(t) \in K, t \in(0, T)$. We multiply equation (9) by $(y-z)$ and use the conditions (11) to obtain after some calculation that

$$
\left(y^{\prime}+A y+\mathcal{B}[y]-f, y-z\right) \leq 0
$$

Thus, if y is a solution of Problem P then

$$
\left(y^{\prime}+A y+\mathcal{B}[y]-f, y-z\right)+\Phi(y-r)-\Phi(z-r) \leq 0
$$

and we get the Cauchy Problem for evolution equation with multivalued operator (variational inequality),

$$
\begin{equation*}
f \in y^{\prime}+A y+\mathcal{B}[y]+\partial \Phi(y-r), \quad y(0)=y_{0} \tag{12}
\end{equation*}
$$

Conversely, if for some $\xi \in V^{\prime}$ we have $(-\xi) \in \partial \Phi(y-r)$ then this implies [8], [9]

$$
\xi=\sum_{1}^{m} \alpha_{i}(t) Q_{i}, \quad \alpha_{i}(t)=\left(\xi, z_{i}\right)
$$

where $\left.\alpha_{i} \geq 0,\left(Q_{i}, y\right) \geq q_{i}, \quad \alpha_{i}\left(Q_{i}, y\right)-q_{i}\right)=0, i=1, \ldots, m$.
2.2. Solvability of Problem P. Let $L^{s}(0, T ; X), \quad 1 \leq s \leq \infty$ (respectively $C(0, T ; X))$ denote the space of s - summable (respectively continuos) functions from $[0, T]$ to X. We denote the space of distributions on $(0, T)$ by $\mathcal{D}^{\prime}(0, T)$ and the usual Sobolev space by W_{s}^{l}.

Define the functional

$$
G(y)= \begin{cases}\int_{0}^{T} \Phi(y(t)) d t, & \text { if } \Phi(y(\cdot)) \in L^{1}(0, T) \\ +\infty & \text { else }\end{cases}
$$

Definition 1. The set of functions $\alpha_{i} \in \mathcal{D}^{\prime}(0, T), i=1, \ldots, m$ and $y \in L^{2}(0, T ; V)$ is called weak solution to the Problem P, if

$$
G(y-r)<+\infty, \alpha_{i}=\left(f-y^{\prime}-A y-\mathcal{B}[y], z_{i}\right)
$$

and following inequality holds

$$
\begin{equation*}
\int_{0}^{T}\left(z^{\prime}+A y+\mathcal{B}[y]-f, y-z\right) d t+G(y-r)-G(z-r) \leq \frac{\left|y_{0}-z(0)\right|^{2}}{2} \tag{13}
\end{equation*}
$$

for all z such that $z \in L^{2}(0, T ; V), z^{\prime} \in L^{2}\left(0, T ; V^{\prime}\right)$.
Definition 2. The set of functions $\alpha_{i} \in L^{2}(0, T), i=1, \ldots, m$ and $y \in$ $C([0, T] ; V)$ is called strong solution to the Problem P, if $y(0)=y_{0}$,

$$
y^{\prime} \in L^{2}(0, T ; V) \cap L^{\infty}(0, T ; H), \quad \alpha_{i}=\left(f-y^{\prime}-A y-\mathcal{B}[y], z_{i}\right)
$$

and

$$
\begin{equation*}
f(t)-\left(y^{\prime}(t)+A y(t)+\mathcal{B}[y(t)]\right) \in \partial \Phi(y(t)-r(t)) \text { a.e. on }(0, T) . \tag{14}
\end{equation*}
$$

We have the following results on the solvability of Problem P.
Theorem 1. Let

$$
\begin{gather*}
r \in L^{2}(0, T ; V) ; f, r^{\prime} \in L^{2}\left(0, T ; V^{\prime}\right) \tag{15}\\
y_{0}-r(0) \in \bar{K}^{H}=\text { closure of } K \text { in the norm of } H, \tag{16}
\end{gather*}
$$

and

$$
\begin{equation*}
|(\mathcal{B}(w, v), w)| \leq k_{1}\|w\|^{1+\theta} \cdot|w|^{1-\theta} \cdot\|v\| \tag{17}
\end{equation*}
$$

where $\theta \in[0,1), k_{1}>0$ are constants independent of $v, w \in V$. Then there exists a weak solution of Problem P.

Let U and H_{0} be real separable Hilbert spaces, let U be continuously and densely embedded in V, let $H \subset H_{0}$, let the norm in H_{0} be equivalent to the norm in H, and in addition, let $A z+\mathcal{B}[z] \in H_{0}$ whenever $z \in U$,

$$
\begin{equation*}
|A z+\mathcal{B}[z]| \leq k_{2}\left(1+\|z\|_{U}^{2}\right) \tag{18}
\end{equation*}
$$

where $k_{2}>0$ is independent of $z \in U$.
Theorem 2. Let $g=f-r^{\prime}-A r-\mathcal{B}[r], f_{1}=f-r^{\prime}-A r$, and

$$
\begin{align*}
& y_{0}-r(0) \in U \cap K, g(0) \in H_{0}, f, f^{\prime} \in L^{2}\left(0, T ; V^{\prime}\right), \tag{19}\\
& r^{\prime} \in L^{2}(0, T ; V) \cap L^{\infty}(0, T ; H), f_{1}^{\prime} \in L^{2}\left(0, T ; V^{\prime}\right)
\end{align*}
$$

$$
\begin{equation*}
|(B(w, v), w)| \leq k_{3}\|w\|^{1+\theta} \cdot|w|^{1-\theta} \cdot\|v\|^{\gamma} \cdot|v|^{1-\gamma} \tag{20}
\end{equation*}
$$

where $\theta, \gamma \in[0,1 / 2]$ and $k_{3}>0$ are constants independent of $v, w \in V$. Then problem P has exactly one strong solution.

The solvability of variational inequalities associated with nonlinear boundary value problems for equations of magnetohydrodynamics was proved in [6], [7]. In the study of inverse problems, convex set restrictions on function y depends on time. Theorems 1 and 2 above improve the results in [6] and [7] for the case of $r \neq 0$. The sketch of the proofs of the two theorems will be given in Section 4.
3. Solvability of Inverse MHD Problem. In the sequel, without loss of generality, we set $S=1$ in the equations (1). Otherwise we can reduce to the case by introducing new functions $B:=\sqrt{S} B, E:=\sqrt{S} E$, and $E_{i}:=\sqrt{S} E_{i}$.
3.1. Spaces and operators for MHD. Consider the following spaces of vector functions defined in a bounded domain $\Omega \in \mathbb{R}^{d}$ with connected boundary $\Gamma \in C^{2}$, $d=2,3$:

$$
\begin{gathered}
\mathcal{U}_{1}=\left\{v \in C^{\infty}(\bar{\Omega}): \operatorname{div} v=0, x \in \Omega, v=0, x \in \Gamma\right\} \\
\mathcal{U}_{2}=\left\{v \in C^{\infty}(\bar{\Omega}): \operatorname{div} v=0, x \in \Omega, n \cdot v=0, x \in \Gamma\right\}
\end{gathered}
$$

The Hilbert spaces V_{1} and V_{2} are defined as the closures of the spaces \mathcal{U}_{1} and \mathcal{U}_{2} in the norm of $W_{2}^{1}(\Omega)$, and the spaces H_{1} and H_{2} are defined as the closures of \mathcal{U}_{1} and \mathcal{U}_{2} in the norm of $L^{2}(\Omega)$. In fact, $H_{1}=H_{2}$. The inner products in the spaces H_{1} and H_{2} and in the spaces V_{1} and V_{2} are given by the relations

$$
(u, v)_{0}=\int_{\Omega}(u \cdot v) d x,((u, v))=(\operatorname{rot} u, \operatorname{rot} v)_{0}=\int_{\Omega}(\operatorname{rot} u \cdot \operatorname{rot} v) d x \quad \forall u, v \in V_{1}, V_{2}
$$

respectively. The norm of the spaces V_{1} and V_{2} given by the inner product $((u, v))$ is equivalent to the norm of the space $W_{2}^{1}(\Omega)$. Let

$$
V=V_{1} \times V_{2}, \quad H=H_{1} \times H_{2}, \quad V \subset H=H^{\prime} \subset V^{\prime}
$$

These embeddings are dense and continuous. The norms of the spaces V and H are denoted by $\|\cdot\|$ and $|\cdot|$, respectively; (\cdot, \cdot) is the duality between V^{\prime} and V and the inner product in H. If $y=\{u, B\}$ and $z=\{v, w\}$, then

$$
(y, z)=(u, v)_{0}+(B, w)_{0},(y, z)_{V}=((u, v))+((B, w))
$$

Navier-Stokes operators. We define mappings $A: V \rightarrow V^{\prime}$ and $\mathcal{B}: V \times V \rightarrow$ V^{\prime} by the relations

$$
(A y, z)=\nu((u, v))+\nu_{m}((B, w))
$$

$$
\left(\mathcal{B}\left(y_{1}, y_{2}\right), z\right)=\left(\left(u_{1} \cdot \nabla\right) u_{2}-\operatorname{rot} B_{2} \times B_{1}, v\right)_{0}-\left(u_{2} \times B_{1}, \operatorname{rot} w\right)_{0}
$$

which are valid for arbitrary $y=\{u, B\}, y_{1}=\left\{u_{1}, B_{1}\right\}, y_{2}=\left\{u_{2}, B_{2}\right\}, z=\{v, w\}$ in the space V.

Note that the operator A satisfies the conditions (7). The mappings $\mathcal{B}(y, z)$ and $\mathcal{B}[y]=\mathcal{B}(y, y)$ satisfy the relations $(\mathcal{B}(y, z), z)=0$,

$$
(\mathcal{B}[y], z)=(\operatorname{rot} u \times u, v)_{0}-(\operatorname{rot} B \times B, v)_{0}-(u \times B, \operatorname{rot} w)_{0}
$$

As a consequence of the multiplicative inequality

$$
\|f\|_{L^{4}(\Omega)} \leq K\|f\|_{W_{2}^{1}(\Omega)}^{d / 4} \cdot\|f\|_{L^{2}(\Omega)}^{1-d / 4}
$$

in the domain $\Omega \subset \mathbb{R}^{d}$, we have the estimate

$$
\begin{equation*}
(\mathcal{B}(y, z), y) \leq C\|z\| \cdot\|y\|^{1+d / 4} \cdot|y|^{1-d / 4} \tag{21}
\end{equation*}
$$

where $C>0$ is independent of $y, z \in V$. If $d=2$, then we have the stronger inequality

$$
\begin{equation*}
(\mathcal{B}(y, z), y) \leq C\|z\|^{1 / 2} \cdot|z|^{1 / 2} \cdot\|y\|^{3 / 2} \cdot|y|^{1 / 2} \tag{22}
\end{equation*}
$$

Thus the defined mapping \mathcal{B} satisfies the conditions (17) and, if $d=2$, the condition (20).

Let us consider the given vector - functions $E_{i} \in W_{2}^{1}(\Omega)$, where $n \times E_{i}=0$ on Γ, $i=1,2, \ldots, m$. We define the functionals $Q_{i} \in V^{\prime}$ by the relations

$$
\left(Q_{i}, z\right)=\left(\operatorname{rot} E_{i}, w\right)_{0}=\left(E_{i}, \operatorname{rot} w\right)_{0}
$$

if $z=\{v, w\} \in V$. Now we denote by $\Phi(y)$ the indicator function of the set K, where $K=\left\{z \in V:\left(Q_{i}, z\right) \leq 0, \quad i=\overline{1, m}\right\}$.
3.2. An analysis of the problem (1)-(6). Let $y=\{u, B\}$ be a sufficiently smooth solution of nonlocal unilateral problem (1) - (6), and let $y_{0}=\left\{u^{0}, B^{0}\right\}$. Let the system of functions $\left\{\operatorname{rot} E_{i}, i=\overline{1, m}\right\}$ be linearly independent in the space H_{2}. We choose an arbitrary element $z=\{v, w\} \in V$, multiply equation (1) by $(v-u)$ and equation (2) by ($w-B$), and integrate by parts over the domain Ω with the use of boundary conditions for the velocity, electric and magnetic fields, and test functions v and w. By adding the resulting relations and by taking into account the condition (6), we obtain the inequality

$$
\begin{equation*}
\left(y^{\prime}+A y+\mathcal{B}[y], z-y\right)+\Phi(z-r)-\Phi(y-r) \geq 0 \tag{23}
\end{equation*}
$$

where $r(t) \in V$ given by the relation $r=\left\{0, \sum_{i=1}^{m} q_{i}(t) w_{i}\right\}$. Here the system of functions $\left\{w_{i}, i=\overline{1, m}\right\}$ is biorthogonal to the system $\left\{-\operatorname{rot} E_{i}, i=\overline{1, m}\right\}$ in the space $L^{2}(\Omega)$.

Conversely, consider an element $y=\{u, B\}$ that is a sufficiently smooth solution of the variational inequality (23). We set $z=\{u \pm v, B\}$, where $v \in C_{0}^{\infty}(\Omega)$ and $\operatorname{div} v=0$. Then it follows from (23) that

$$
\begin{equation*}
\left(u^{\prime}, v\right)_{0}+\nu(\operatorname{rot} u, \operatorname{rot} v)_{0}+((u \cdot \nabla) u-\operatorname{rot} B \times B, v)_{0}=0 . \tag{24}
\end{equation*}
$$

Relation (24), together with the condition $\operatorname{div} u=0$, implies that

$$
\begin{equation*}
u^{\prime}+\nu \Delta u+(u \cdot \nabla) u-\operatorname{rot} B \times B=-\nabla p \tag{25}
\end{equation*}
$$

for some function p. The boundary conditions for u follow from the inclusion $u(\cdot, t) \in$ V_{1}.

Next we set $z=\{u, \widetilde{w}\}$ in (23), where function $\widetilde{w}(\cdot, t) \in V_{2}$ satisfy the conditions $\left(\operatorname{rot} E_{i}, \widetilde{w}\right)_{0} \geq q_{i}(t), \quad i=1, \ldots, m$. By the structure of functional Φ we obtain the inequalities

$$
\begin{equation*}
\left(B^{\prime}, \widetilde{w}-B\right)_{0}+\left(\nu_{m} \operatorname{rot} B-u \times B, \operatorname{rot}(\widetilde{w}-B)\right)_{0} \geq 0 \tag{26}
\end{equation*}
$$

Then we obtain from variational inequality (26) the relation

$$
\begin{equation*}
\left(B^{\prime}, w\right)_{0}+\left(\nu_{m} \operatorname{rot} B-u \times B, \operatorname{rot} w\right)_{0}=\sum_{1}^{m} \alpha_{i}(t)\left(\operatorname{rot} E_{i}, w\right)_{0} \quad \forall w \in V_{2} \tag{27}
\end{equation*}
$$

Here $\alpha_{i} \geq 0$ and $\left.\left(\operatorname{rot} E_{i}, B\right)_{0}-q_{i}(t)\right) \alpha_{i}(t)=0$.
Now, we show that equality (27) still hold if $w \in C_{0}^{\infty}(\Omega)$. Indeed, if $\operatorname{div} w \neq 0$, we consider the scalar function ϕ such that

$$
\Delta \phi=\operatorname{div} w \text { in } \Omega, \quad \frac{\partial \phi}{\partial n}=0 \text { on } \Gamma .
$$

Then $\widehat{w}=w-\nabla \phi \in V_{2}$ and $\operatorname{rot} w=\operatorname{rot} \widehat{w}$. The condition $\operatorname{div} B=0$ imply that $(B, w)_{0}=(B, \widehat{w})_{0}$. Hence, for each $w \in C_{0}^{\infty}(\Omega)$ we have the equality (27). Setting

$$
E=\nu_{m} \operatorname{rot} B-u \times B-\sum_{1}^{m} \alpha_{i}(t) E_{i}
$$

integrating by parts in (27) we get the equations (2). It follows from the first equation (2) and (27) that $n \times E=0$ on Γ.

Thus, the Problem (1)-(6) is reduced to an abstract variational inequality (12) which is equivalent of Problem P. Therefore, a weak (respectively, strong) solution of Problem (1)-(6) is defined as a weak (respectively, strong) solution of the Problem P, where spaces and operators defined in the Section 3.1.

As a consequence of the theorems 1,2 , we have a following result.
Theorem 3. Let

$$
u_{0} \in H_{1}, B_{0} \in H_{2}, E_{i} \in W_{2}^{1}(\Omega), n \times\left. E_{i}\right|_{\Gamma}=0, i=1, \ldots, m
$$

and let the system of vortices $\left\{\operatorname{rot} E_{i}, i=\overline{1, m}\right\}$ be linearly independent in the space H_{2},

$$
q_{i} \in W_{2}^{1}(0, T), \int_{\Omega} \operatorname{rot} E_{i} \cdot B_{0} d x \geq q_{i}(0), i=1, \ldots, m
$$

Then there exists a weak solution of Problem (1)-(6). If $d=2$ and, in addition,

$$
\begin{equation*}
u_{0} \in W_{2}^{2}(\Omega) \cap V_{1}, B_{0} \in W_{2}^{2}(\Omega) \cap V_{2},\left.\left(n \times \operatorname{rot} B_{0}\right)\right|_{\Gamma}=0, q_{i} \in W_{2}^{2}(0, T) \tag{28}
\end{equation*}
$$

then the weak solution is strong and unique.
Proof. Let us verify the validity of the assumptions of Theorems 1 and 2 for Problem (1)-(6). Just now we note that the operators A and \mathcal{B} defined in Section 3.1 satisfy conditions (7), (8), $\mathrm{f}=0$, and the estimates (21) and (22) imply that conditions (17) and (20) hold. In addition, to prove the existence of a unique strong solution, we set $U=W_{2}^{2}(\Omega) \cap V$. Then $\mathcal{B}[g] \in H_{0}=L^{2}(\Omega) \times L^{2}(\Omega)$ for all $g \in U$. If $z=\{v, w\} \in H$ and $y_{0}=\left\{u_{0}, B_{0}\right\}$ satisfies condition (28), then

$$
\left(A y_{0}, z\right)=-\nu\left(\Delta u_{0}, v\right)_{0}-\nu_{m}\left(\Delta B_{0}, w\right)_{0}-\nu_{m} \int_{\Gamma}\left(n \times \operatorname{rot} B_{0}\right) w d \Gamma
$$

Therefore, it follows from (28) that condition (19) is valid for Theorem 2.
4. Proof of Theorems 1 and 2. In this section we will prove two solvability theorems. Note that the proof is valid for the variational inequality (12) with arbitrary convex lower semicontinuous functional $\Phi, \Phi \not \equiv+\infty$, with an effective domain K on which Φ is continuous.

Proof of Theorem 1. Let

$$
\Phi_{\lambda}(u)=\inf \left\{\frac{\|u-v\|^{2}}{2 \lambda}+\Phi(v) ; v \in V\right\}, u \in V, \lambda>0
$$

The Fréchet derivative of Φ_{λ} coincides with the Yosida approximation to the multimapping $u \rightarrow \partial \Phi(u)$,

$$
\nabla \Phi_{\lambda}=\frac{1}{\lambda} J\left(I-J_{\lambda}\right) ; \quad J_{\lambda}=\left(I+\lambda J^{-1} \partial \Phi\right)^{-1}
$$

Here I is the identity operator, $J: V \rightarrow V^{\prime}$ is the duality mapping, and $v^{*}=J v$, if $\left(v^{*}, v\right)=\|v\|^{2}$. In addition, we have the relations [9]

$$
\begin{equation*}
\Phi_{\lambda}(w)=\frac{1}{2 \lambda}\left\|w-J_{\lambda} w\right\|^{2}+\Phi\left(J_{\lambda} w\right) ; \Phi\left(J_{\lambda} w\right) \leq \Phi_{\lambda}(w) \leq \Phi(w) ; \lim _{\lambda \rightarrow 0} \Phi_{\lambda}(w)=\Phi(w) \tag{29}
\end{equation*}
$$

Throughout the following, without loss of generality, we assume that $w_{0}=y_{0}-r(0) \in$ K and

$$
\begin{equation*}
\Phi(w) \geq \Phi\left(w_{0}\right) \quad \forall w \in V \tag{30}
\end{equation*}
$$

Indeed, in this case, if inequality (30) fails, then one can always replace the functional Φ by the functional $\Phi_{1}(w)=\Phi(w)-\left(\chi, w-w_{0}\right), \chi \in \partial \Phi\left(w_{0}\right)$, by adding the subgradient χ to the right-hand side of the inclusion (12).

In V we choose a complete system of elements $\left\{v_{1}, v_{2}, \ldots\right\}, V=\overline{\bigcup V_{m}}$. Here V_{m} is the subspace spanned by the system $\left\{v_{1}, \ldots, v_{m}\right\}$. For now, we suppose that

$$
\begin{equation*}
w_{0} \in V_{m_{0}}, w_{0}=\sum_{1}^{m_{0}} g_{j}^{0} v_{j}, \quad r(t) \in V_{m_{0}}, r(t)=\sum_{1}^{m_{0}} h_{j}(t) v_{j} \tag{31}
\end{equation*}
$$

Consider the Galerkin approximation $w_{m}(t)$ to the function $w=y-r$, where y is a solution of inequality (12),

$$
\begin{gather*}
w_{m}(t)=\sum_{1}^{m} g_{j m}(t) v_{j}, \quad m=1,2, \ldots \\
\left(w_{m}^{\prime}+A w_{m}+\mathcal{B}\left(w_{m}, r\right)+\mathcal{B}\left(w_{m}+r, w_{m}\right)+\nabla \Phi_{\lambda}\left(w_{m}\right)-g, v_{j}\right)=0 \tag{32}\\
j=\overline{1, m}, \quad w_{m}(0)=w_{0}
\end{gather*}
$$

Here $g=f-r^{\prime}-A r-\mathcal{B}[r]$.
We obtain estimates for a solution of the system of ordinary differential equations (32), which permits one to obtain the variational inequality (12) from (32) in the limit as $m \rightarrow+\infty$ and $\lambda \rightarrow 0$. We multiply (32) by $\left(g_{j m}-g_{j}^{0}\right)$ and sum the resulting relation with respect to j from 1 to $m>m_{0}$. Then

$$
\frac{1}{2} \cdot \frac{d}{d t}\left|w_{m}-w_{0}\right|^{2}+\left(A w_{m}+\mathcal{B}\left(w_{m}, r\right)+\mathcal{B}\left(w_{m}+r, w_{m}\right)+\right.
$$

$$
\begin{equation*}
\left.+\nabla \Phi_{\lambda}\left(w_{m}\right)-g, w_{m}-w_{0}\right)=0 \tag{33}
\end{equation*}
$$

By taking into account relations (7), (8), and (17), the monotonicity of the gradient $\nabla \Phi_{\lambda}$ and condition (30), from (33), one can readily obtain the inequality

$$
\begin{equation*}
\frac{d}{d t}\left|w_{m}-w_{0}\right|^{2}+\nu\left\|w_{m}-w_{0}\right\|^{2} \leq C_{1}\left(1+\left|w_{m}-w_{0}\right|^{2}\right) \tag{34}
\end{equation*}
$$

Here and throughout the following, C_{1}, C_{2}, \ldots are positive constants independent of m and λ. The estimates

$$
\begin{equation*}
\left|w_{m}\right|^{2} \leq C_{2}, \quad \int_{0}^{T}\left\|w_{m}(t)\right\|^{2} d t \leq C_{3} \tag{35}
\end{equation*}
$$

are a consequence of inequality (34) and the Gronwall inequality. These estimates, together with (33) and the relation

$$
\Phi_{\lambda}\left(w_{0}\right)-\Phi_{\lambda}\left(w_{m}\right) \geq\left(\nabla \Phi_{\lambda}\left(w_{m}\right), w_{0}-w_{m}\right)
$$

imply that

$$
\int_{0}^{T}\left(\Phi_{\lambda}\left(w_{m}\right)-\Phi\left(w_{0}\right)\right) d t \leq \int_{0}^{T}\left(\Phi_{\lambda}\left(w_{m}\right)-\Phi_{\lambda}\left(w_{0}\right)\right) d t \leq C_{4}
$$

Then, on the basis of the regularization properties (32), we have the estimates

$$
\begin{equation*}
\int_{0}^{T}\left\|w_{m}-J_{\lambda} w_{m}\right\|^{2} d t \leq C_{5} \lambda, \quad \int_{0}^{T} \Phi_{\lambda}\left(w_{m}\right) d t \leq C_{6}, \quad \int_{0}^{T} \Phi\left(J_{\lambda} w_{m}\right) d t \leq C_{7} \tag{36}
\end{equation*}
$$

Let us show that w_{m} is compact in $L^{2}(0, T ; H)$. By multiplying (32) by $\left(g_{j m}(t)-\right.$ $\left.g_{j m}(s)\right), s \in(0, T)$ and by summing the resulting relation with respect to $j=1, \ldots, m$, we obtain

$$
\begin{gathered}
\frac{1}{2} \cdot \frac{d}{d t}\left|w_{m}(t)-w_{m}(s)\right|^{2}+\left(A w_{m}(t)+B\left(w_{m}(t), z(t)\right)+\right. \\
\left.+B\left(w_{m}(t)+z(t), w_{m}(t)\right)-g(t), w_{m}(t)-w_{m}(s)\right)= \\
=\left(\nabla \Phi_{\lambda}\left(w_{m}(t)\right), w_{m}(s)-w_{m}(t)\right) \leq \Phi_{\lambda}\left(w_{m}(s)\right)-\Phi_{\lambda}\left(w_{m}(t)\right) \leq \\
\leq \Phi_{\lambda}\left(w_{m}(s)\right)-\Phi\left(J_{\lambda} w_{m}(s)\right) \leq \Phi_{\lambda}\left(w_{m}(s)\right)-\Phi\left(w_{0}\right) .
\end{gathered}
$$

By integrating the last inequality with respect to t on the interval $(s, s+h)$ and with respect to s on $(0, T-h)$ and by using the estimates (35) and (36) and condition (30), we estimate the equicontinuity of the sequence $w_{m}(t)$ as

$$
\begin{equation*}
\int_{0}^{T-h}\left|w_{m}(s+h)-w_{m}(s)\right|^{2} d s \leq C_{8} h^{\frac{1-\theta}{2}} . \tag{37}
\end{equation*}
$$

It follows from the estimates (35)-(37) that there exists an element $w \in L^{2}(0, T ; V) \cap$ $L^{\infty}(0, T ; H)$ and a subsequence $w_{m^{\prime}}, \lambda^{\prime} \rightarrow 0$, such that $w_{m^{\prime}} \rightarrow w$ weakly in
$L^{2}(0, T ; V), *$ - weakly in $L^{\infty}(0, T ; H)$, strongly in $L^{2}(0, T ; H)$ as $m^{\prime} \rightarrow \infty, \lambda^{\prime} \rightarrow 0$. From the last, we find that $J_{\lambda^{\prime}} w_{m^{\prime}} \rightarrow w$ weakly in $L^{2}(0, T ; V)$; therefore, $G(w)<$ $+\infty$.

We take $z(t)=\sum_{1}^{M} c_{j}(t) v_{j}$, where $M>0$ is a fixed number, and $c_{j}(t) \in C^{1}[0, T]$. By multiplying (32) by $\left(g_{j m}(t)+h_{j}(t)-c_{j}(t)\right)$ and by integrating the resulting relation by parts on $(0, T)$, we obtain the inequality
(38) $\int_{0}^{T}\left\{\left(z^{\prime}+A y_{m}+\mathcal{B}\left[y_{m}\right]-f, y_{m}-z\right)+\Phi_{\lambda}\left(w_{m}\right)-\Phi_{\lambda}(z-r)\right\} d t \leq \frac{\left|y_{0}-z(0)\right|^{2}}{2}$.

Here $y_{m}=w_{m}+r$. Let $y=w+r$. Results of convergence for sequence w_{m} and properties (29) permit one to obtain from (38) the variational inequality (13), which is valid for an arbitrary function z such that $z \in L^{2}(0, T ; V), z^{\prime} \in L^{2}\left(0, T ; V^{\prime}\right)$ since the system $\left\{\sum_{1}^{M} c_{j}(t) v_{j}, M \in \mathbb{N}\right\}$ is dense in the above-mentioned space. For an arbitrary element $w_{0} \in \bar{K}^{H}$ and for function $r \in L^{2}(0, T ; V), r^{\prime} \in L^{2}\left(0, T ; V^{\prime}\right)$ one can consider their approximations by elements $w_{0}^{l} \in K$ and by functions $r_{l}(t)=\sum_{1}^{m_{0}} h_{j}^{l}(t) v_{j}$. In this case, condition (31) is valid, for example, if the abovementioned element w_{0}^{l} is chosen as v_{1}. Having obtained solutions y_{l} of inequality (13) for the data thus regularized, we pass to the limit as $l \rightarrow \infty$ on the basis of estimates of the form $(35),(37)$ for y_{l}. Then we obtain the assertion of the theorem.

Proof of Theorem 2. First, let us prove the uniqueness of a strong solution of the problem. Let y_{1} and y_{2} be solutions of inclusion (14), and let $y=y_{1}-y_{2}$ and $y(0)=0$. Then
$\left(y_{i}^{\prime}(t)+A y_{i}+\mathcal{B}\left[y_{i}\right]-f, y_{i}(t)-z\right)+\Phi\left(y_{i}-r\right)-\Phi(z-r) \leq 0 \quad \forall z \in L^{2}(0, T ; V), i=1,2$.
We set $z=y_{2}$ in the inequality for y_{1} and $z=y_{1}$ in the inequality for y_{2}. By adding these inequalities, by integrating the resulting relation with respect to time from 0 to t , and by taking into account condition (20), we obtain

$$
\begin{equation*}
|y(t)|^{2}+2 \nu \int_{0}^{t}\|y(\tau)\|^{2} d \tau \leq 2 K_{3} \int_{0}^{t}\|y\|^{1+\theta} \cdot|y|^{1-\theta} \cdot\left\|y_{2}\right\|^{\gamma} \cdot\left|y_{2}\right|^{1-\gamma} d \tau \tag{39}
\end{equation*}
$$

Note that $y_{2} \in L^{\infty}(0, T ; H)$, and therefore,

$$
\begin{equation*}
|y(t)|^{2}+2 \nu \int_{0}^{t}\|y(s)\|^{2} d s \leq \varepsilon \int_{0}^{t}\|y(s)\|^{2} d s+C_{\varepsilon} \int_{0}^{t}\left\|y_{2}\right\|^{\frac{2 \gamma}{(1-\theta)}} \cdot|y|^{2} d s \tag{40}
\end{equation*}
$$

The function $t \rightarrow\left\|y_{2}(t)\right\|^{\frac{2 \gamma}{1-\theta}}$ is integrable if $\theta, \gamma \in\left[0, \frac{1}{2}\right]$. Therefore, by the Gronwall inequality, we obtain $y(t)=0, t \in(0, T)$.

To prove the existence, we use the fact that the space U is dense in the space V. Therefore, we suppose that the basis elements v_{j} belong to the space U. We obtain additional a priori estimates for the approximate solution y_{m}, which provide the desired regularity of the limit element y. By multiplying (32) by $g_{j m}^{\prime}(t)$ and by summing the resulting relation over $j=1, \ldots, m$, we obtain
(41) $\left|w_{m}^{\prime}(t)\right|^{2}+\left(A w_{m}+\mathcal{B}\left(r+w_{m}, w_{m}\right)+\mathcal{B}\left(w_{m}, r\right), w_{m}^{\prime}\right)+\left(\nabla \Phi_{\lambda}\left(w_{m}\right), w_{m}^{\prime}\right)=\left(g, w_{m}^{\prime}\right)$.

Condition (19) describing the coordination and regularity of the original data permits one to find from (41) that

$$
\begin{equation*}
\left\{w_{m}^{\prime}(0)\right\} \text { is a bounded sequence in the space } H_{0} \tag{42}
\end{equation*}
$$

We differentiate relation (32) with respect to t, multiply the resulting relation by $g_{j m}^{\prime}(t)$, and sum with respect to $j=1, \ldots, m$. Since $\nabla \Phi_{\lambda}$ is monotone, we have
(43) $\frac{1}{2} \frac{d}{d t}\left|w_{m}^{\prime}(t)\right|^{2}+\left(A w_{m}^{\prime}, w_{m}^{\prime}\right)+\left(\mathcal{B}\left(y_{m}^{\prime}, y_{m}\right), w_{m}^{\prime}\right)+\left(\mathcal{B}\left(y_{m}, r^{\prime}\right), w_{m}^{\prime}\right) \leq\left(f_{1}^{\prime}, w_{m}^{\prime}\right)$, where $y_{m}=r+w_{m}, f_{1}=f-r^{\prime}-A r$.

From the estimate (35), condition (20), and the Holder inequality, we obtain

$$
\begin{align*}
& \left.\mid B\left(y_{m}^{\prime}, y_{m}\right), w_{m}^{\prime}\right)\left.\left|\leq k_{3}\left\|w_{m}^{\prime}\right\|^{1+\theta} \cdot\right| w_{m}^{\prime}\right|^{1-\theta} \cdot\left\|y_{m}\right\|^{\gamma} \cdot\left|y_{m}\right|^{1-\gamma}+ \\
& +C_{5}\left\|z^{\prime}\right\| \cdot\left\|y_{m}\right\| \cdot\left\|w_{m}^{\prime}\right\| \leq \frac{\nu}{2}\left\|w_{m}^{\prime}\right\|^{2}+C_{6}\left\|y_{m}\right\|^{\frac{2 \gamma}{(1-\theta)}}\left|w_{m}^{\prime}\right|^{2}+C_{7}\left\|y_{m}^{\prime}\right\|^{2} \tag{44}
\end{align*}
$$

By substituting this estimate into (43), we obtain

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left|w_{m}^{\prime}(t)\right|^{2}+\frac{\alpha}{2}\left\|w_{m}^{\prime}\right\|^{2} \leq C_{8}\left(\left\|y_{m}\right\|^{2}+\left\|y_{m}\right\|\left\|^{\frac{2 \gamma}{(1-\theta)}}\left|w_{m}^{\prime}\right|^{2}+\right\| f_{1}^{\prime} \|_{*}\right) \tag{45}
\end{equation*}
$$

Note also that

$$
\begin{equation*}
\int_{0}^{T}\left\|y_{m}\right\|^{\frac{2 \gamma}{(1-\theta)}} d t \leq C_{9}\left(\int_{0}^{T}\left\|y_{m}\right\|^{2} d t\right)^{\frac{\gamma}{1-\theta}} \tag{46}
\end{equation*}
$$

By virtue of the estimates (35), (42), (44), and (46) and the Gronwall inequality, we find that $\left\{w_{m}^{\prime}\right\}$ is bounded in $L^{2}(0, T ; V) \cap L^{\infty}(0, T ; H)$. This, together with the estimates obtained in the proof of Theorem 1, is sufficient to pass to the limit in system (32) and obtain conditions imposed on the function $y(t)=w(t)+r$ so as to provide the existence of a strong solution.

Acknowledgment. The author acknowledges the support of Russian Ministry of Education and Science grant during this research.

REFERENCES

[1] M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Comm. on Pure and Applied Math., 36 (1983), pp. 635-664.
[2] G. Duvaut and J. L. Lions, Inequalities In Mechanics and Physics, Springer-Verlag. 1976.
[3] T. V. Bespalova and A. Yu Chebotarev, Variational inequalities and inverse subdifferential problems for the Maxwell equations in a harmonic regime, Translation in Differ. Equ., 36:6 (2000), pp. 825-832.
[4] A. Yu Chebotarev, Subdifferential inverse problems for evolution Navier-Stokes systems, J. Inverse and Ill Posed Problems, 8:3 (2000), pp. 275-287.
[5] A. Yu Chebotarev, Variational inequalities for an operator of Navier-Stokes type, and onesided problems for equations of a viscous heat-conducting fluid, Translation in Math. Notes, 70:1-2 (2001), pp. 264-274.
[6] A. Yu Chebotarev and A. S. Savenkova, Variational inequalities in the magnetohydrodynamics, Mat. Notes, 82:1 (2007), pp. 135-149.
[7] A. Yu Chebotarev, Subdifferential Boundary Value Problems of Magnetohydrodynamics, Differential Equations, 43:12 (2007), pp. 1742-1752.
[8] V. Barbu, Analysis and control of nonlinear infinite dimensional systems, Academic Press, 1993.
[9] J. P. Aubin, Optimal and Equilibria, Springer-Verlag, 1993.

[^0]: *Received October 12, 2010; accepted for publication March 24, 2011.
 ${ }^{\dagger}$ Department of Mathematics and Computer Sciences, Far East Federal University, Vladivostok, Russia (cheb@iam.dvo.ru). Current address: Institute for Applied Mathematics, 690041, Vladivostok, Russia.

