
METHODS AND APPLICATIONS OF ANALYSIS. c© 2010 International Press
Vol. 17, No. 3, pp. 225–262, September 2010 001

A LIAPUNOV-SCHMIDT REDUCTION FOR TIME-PERIODIC

SOLUTIONS OF THE COMPRESSIBLE EULER EQUATIONS∗

BLAKE TEMPLE† AND ROBIN YOUNG ‡

Abstract. Following the authors’ earlier work in [8, 9], we show that the nonlinear eigenvalue
problem introduced in [9] can be recast in the language of bifurcation theory as a perturbation of
a linearized eigenvalue problem. Solutions of this nonlinear eigenvalue problem correspond to time
periodic solutions of the compressible Euler equations that exhibit the simplest possible periodic
structure identified in [8]. By a Liapunov-Schmidt reduction we establish and refine the statement of
a new infinite dimensional KAM type small divisor problem in bifurcation theory, whose solution will
imply the existence of exact time-periodic solutions of the compressible Euler equations. We then
show that solutions exist to within an arbitrarily high Fourier mode cutoff. The results introduce
a new small divisor problem of quasilinear type, and lend further strong support for the claim that
the time-periodic wave pattern described at the linearized level in [9], is physically realized in nearby
exact solutions of the fully nonlinear compressible Euler equations.
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1. Introduction. In [8] the authors derived a simplest possible periodic wave
structure1 consistent with time-periodic sound wave propagation in the 3× 3 nonlin-
ear compressible Euler equations. This wave structure requires at least three coupled
nonlinear equations to support it. The wave pattern was derived by combinatorial
considerations based on a classification of compressive and rarefactive wave inter-
actions at entropy jumps, using the starting principle that shock free periodic or
quasi-periodic solutions of compressible Euler should balance compression and rar-
efaction along every characteristic (sound wave). This starting work was followed by
the authors’ work in [9] in which we construct exact linearized solutions of Euler that
exhibit the wave structure identified in [8] for the nonlinear problem. For this we
derived a nonlinear eigenvalue problem of the form

(1) N [V ] = V,

whose solutions correspond to nonlinear periodic solutions of the compressible Euler
equations having the simplest structure identified in [8]. The nonlinear operator
N consists of compositions of nonlinear spatial evolution, entropy jumps and shift
operators, starting from time-periodic Cauchy data posed at x = 0. These are non-
commuting operators, constructed to reproduce the periodic structure identified in [8].
Trivial solutions of (1) consist of piecewise constant states separated by entropy jumps
(contact discontinuities). Linearizing around such solutions, we obtained a linearized
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1We say that a periodic or quasi-periodic wave structure is possible, at a formal level, if each
characteristic (sound wave), traverses both regions of compression and rarefaction, and that these are
formally in balance. Whether such a possible formal wave structure actually exists in a true periodic
solution of Euler is then a deep mathematical question as to whether the data can be tuned to bring
compression and rarefaction precisely into balance, so that shock wave formation is prevented.
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eigenvalue problem

(2) M[V ] = V,

whose solutions we expect will perturb to solutions of the nonlinear problem be-
cause they encode the structure identified in [8]. The linearized operator M is non-
symmetric, and consists of the composition of five elementary linear operators that
do not commute: a linear spatial evolution at the first entropy level, followed by an
entropy jump, followed by linear spatial evolution at the second entropy level, fol-
lowed by the inverse entropy jump, followed by a half period shift. The combination
of shifts and jumps ensures the mixing of compression and rarefaction along charac-
teristics under nonlinear perturbation, and highly restricts the kernel of the linearized
operator. To construct solutions in [9] we derived a condition, relating the magni-
tude of the entropy jump to the two spatial periods, that guarantees the existence
of a solution to the linear eigenvalue problem in the Fourier 1-mode. The periodic
linearized solutions of Euler were then obtained by deriving closed form expressions
for the resulting 1-mode solutions of the linearized system of PDEs.

These linearized solutions display, in closed form expression, the propagation
properties of nearby nonlinear sound waves that formally balance compression and
rarefaction along characteristics. In this sense, the solutions exhibit the simplest
possible mechanism for dissipation free transmission of sound waves in the nonlinear
problem. In [9] we went on to analyze the spectrum of the linearized operator that
expresses the eigenvalue problem corresponding to periodicity. We proved that the
linearized periodic solutions correspond to eigenvectors in the 1-mode kernel of the
associated linearized operators, and that for almost every choice of periods, the lin-
earized operator is non-resonant in the sense that it is invertible on the complement
of the 1-mode kernel, c.f. [2]. Interestingly, in [9], it emerged that the linearized oper-
ator is non-resonant only in the case when the sound speeds are incommensurate with
the periods. In the special case of symmetric periods (when the non-dimensionalized
spatial widths of constant entropy are equal), we showed that the eigenvalues are
bounded away from zero by algebraic rates in the Fourier modes.

In this paper we show that the nonlinear eigenvalue problem (1) can be recast as
a perturbation from the linear eigenvalue problem (2). We then show that the result-
ing bifurcation problem is amenable to a Liapunov-Schmidt reduction, and perform
the reduction in the case of arbitrary non-resonant periods. The Liapunov-Schmidt
method involves two applications of the implicit function theorem, one to solve the
auxiliary equation associated with the nonsingular operator defined on the orthogonal
complement of the kernel, and one to solve the bifurcation equation associated with
the kernel of (2); a solution of the second equation hinges on existence for the first,
[4]. In this paper we prove that the Liapunov-Schmidt method is valid, subject to the
existence of solutions to the auxiliary equation. This reduces the problem of existence
of time-periodic solutions of the compressible Euler equations to a KAM-type implicit
function theorem for an inverible linear operator with small divisors. As a corollary,
we prove that periodic solutions exist subject to an arbitrarily high Fourier mode
cutoff.

The search for a complete proof of existence of solutions of the KAM type implicit
function theorem posed by the auxiliary equation is the topic of the authors’ ongoing
research program. This involves an infinite dimensional space and a nonlinear nonlocal
differential operator N of quasilinear type, and so, as far as we know, is beyond
the direct application of known results. Similar problems have been resolved in the
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semilinear setting with the same estimates on the small divisors, and with weaker
results on the structure of the kernel, c.f [2, 1]. The new feature of our problem is
that the quasilinear problem reduces to an ODE in a Hilbert space, but there is no
apparent basis in which the problem becomes an infinite algebraic system as in [2, 1].

The Liapunov-Schmidt reduction that applies in the infinite dimensional case also
applies when we impose a Fourier cutoff of the nonlinear problem up to arbitrarily
high Fourier modes, a non-trivial problem in its own right. In the case of an N -Fourier
mode cutoff, N arbitrarily large, we prove that the resulting auxiliary equation has a
unique solution2. This shows that periodic solutions with the wave structure identified
in [8, 9] exist up to an arbitrary Fourier cutoff, and lends further strong support to
the claim that the wave pattern described in [8] is physically realized.

The paper is laid out as follows: in Section 2, we restate the problem of existence
as an eigenvalue problem, and recall the the linearized solutions from [9]. In Section 3,
we set notation and give the Liapunov-Schmidt reduction of the perturbation problem.
In Section 4 we study the bifurcation equation, and in Section 5, we solve the auxiliary
equation for the N -th mode Fourier cutoff problem.

2. Background and previous results.

2.1. The nonlinear equations. We are looking for periodic solutions of the
compressible Euler equations, which describe the evolution of a perfect fluid in the
absence of dissipative effects. For one-dimensional flow, this is the 3× 3 system

ρt + (ρ u)x = 0,

(ρu)t + (ρ u2 + p)x = 0,(3)

Et + [(E + p)u]x = 0,

representing conservation of mass, momentum and energy, respectively. Here x is the
Eulerian spatial coordinate and the state variables are density ρ, pressure p, velocity
u and energy density E = 1

2 ρ u
2+ρ ε, where ε is the specific internal energy. To close

the system, an equation of state is given which relates the thermodynamic variables
p, ε and ρ. We consider a polytropic gamma-law gas, described by

ε = cτ τ
−(γ−1) eS/cτ and p =

cτ
γ − 1

τ−γ eS/cτ ,(4)

where τ = 1/ρ is the specific volume, S is the specific entropy, γ > 1 is the adiabatic
gas constant, and cτ the specific heat [7]. On regions where the solution is smooth,
the energy equation is equivalent to the adiabatic constraint or entropy equation

(5) (ρ S)t + (ρ S u)x = 0,

which states that entropy is transported with the fluid [7].
In a Lagrangian frame, co-moving with the fluid, the equations are

τt − ux = 0,

ut + px = 0,(6)

E∗
t + (up)x = 0,

2Interestingly, under the Fourier cutoff assumption, we obtain periodic solutions for non-resonant
Θ as well as nearby resonant Θ, because resonant values of Θ lie arbitrarily close to non-resonant
values, and so are captured under perturbation. This then raises the interesting question as to
whether the small divisors are just an anomaly of the linearization process that go away at the next
order of approximation of the nonlinear problem, or whether they are essential for perturbation. The
authors intend to address this problem in a future paper.
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where now x is the Lagrangian material coordinate for the fluid, given by replacing
∫

ρ dx→ x ,

and E∗ = 1
2u

2 + ε(τ, S). In this Lagrangian frame, the adiabatic constraint (5) takes
on the particularly simple form

(7) St = 0,

which can be used in place of the energy equation on smooth regions [7].
We recall from [8, 9] the convenient change of variables

(8) m = eS/2cτ and z = Kz τ
−

γ−1

2 ,

so that (4) becomes

(9) ε = Kε m
2 z2 and p = Kp m

2 z
2γ

γ−1 ,

where K·’s are appropriately given constants. In these variables, on regions of smooth
solution, our equations (6), (7) reduce to the quasilinear system

zt +
c

m
ux = 0,

ut +mczx + 2
p

m
mx = 0,(10)

mt = 0,

where we have used entropy (7) in place of the energy; here c is the Lagrangian sound
speed, defined by

c(τ, S) =
√

−pτ (τ, S),

which becomes

(11) c(m, z) = Kc m zd with d ≡
γ + 1

γ − 1
.

We are interested in the particular class of piecewise smooth solutions with piece-
wise constant entropy; for this class, the 3 × 3 system (10) reduces to the 2 × 2
quasilinear system

zt +
c

m
ux = 0,

ut +mczx = 0,
(12)

which is just the p-system of isentropic gas dynamics, with z as the thermodynamic
coordinate [7, 10]. We will thus solve the simpler 2×2 system (12) in different regions,
with different entropy levels corresponding to different constantsm in the constitutive
relation (11).

The class of solutions we consider does have discontinuities, so we must treat
these correctly, namely by using the Rankine-Hugoniot jump conditions. We apply
these to the fully nonlinear system (6), to get

[u] = s [−τ ]

[p] = s [u](13)

[u p] = s [ 12u
2 + ε],
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where s is the speed of propagation of the discontinuity and [·] is the jump. For our
special class of solutions, the only discontinuities are stationary entropy jumps with
s = 0, so the jump conditions reduce to [u] = [p] = 0, or, by (9),

(14) uL = uR and m2
L z

2 γ
γ−1

L = m2
R z

2 γ
γ−1

R .

We are interested in fixed stationary entropy jumps, so that mL and mR are fixed,
and we get a diagonal linear operator (uL, zL) → (uR, zR).

2.2. The nonlinear eigenvalue problem. In our previous papers [8, 9], we
described the physical mechanism by which periodic solutions can be supported. In
short, we impose the structure of a fixed piecewise constant entropy profile, and super-
pose on this a periodic structure of nonlinear simple waves. This periodic structure
must be very carefully chosen so that across entropy jumps, which are stationary
contact discontinuities, some parts of the nonlinear simple waves change type from
rarefaction to compression (and vice versa); moreover, this must be done consistently.
This change of character of the waves is the fundamental nonlinear effect that balances
the tendency of nonlinear waves to compress and form shocks, which are incompatible
with periodic evolution.

Because we restrict to the class of solutions which are piecewise smooth with
piecewise constant entropy profiles and no other discontiunities, the nonlinear evolu-
tion for this class is given by the 2 × 2 system (12) together with (14) at the jumps.
We now reformulate the problem of existence of a periodic solution as a nonlinear
eigenvalue (fixed point) problem.

In [8, 9], we considered the simplest case which supports periodicity, namely two
entropy levels m > m of fixed width x and x, respectively, continued periodically. We
then solve (12) on top of this entropy structure, denoting the corresponding states by
U = (z, u) and U = (z, u), respectively. Thus U(x, t) ≡ (z(x, t), u(x, t)) solves

zt +
c(z)

m
ux = 0 ,

ut +m c(z)zx = 0 ,
(15)

in the interval 0 < x < x, and U(x, t) ≡ (z(x, t), u(x, t)) solves

zt +
c(z)

m
ux = 0 ,

ut +m c(z)zx = 0 ,

(16)

in x < x < x+ x, respectively. Such a solution defined on the bounded region (or tile
of the plane)

0 < x < x+ x , 0 ≤ t < 2π ,

generates a space-periodic solution of Euler provided appropriate “boundary con-
ditions” are met. Since we are interested in solving the full Euler equations, our
matching condition at each entropy jump is exactly (14), and, in order to appropri-
ately mix the simple waves, the region tiles the (x, t)-plane with a half-period time
shift.

To be more precise, we make the solution 2π-periodic in time t, and we regard x
as the evolution variable in (15), (16). That is, we consider as data the function

U̇(t) ≡ U(0+, t) = U(0, t) ,
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and evolve this data to

Ǔ(t) ≡ U(x−, t) = U(x, t) ,

where U(x, t) satisfies (15) for 0 < x < x. We then jump this by the Rankine-Hugoniot
condition (14), to

Ũ(t) ≡ U(x+, t) = U(x, t) ,

and evolve U(x, t) by (16) to

Û(t) ≡ U(x+ x−, t) = U(x+ x, t) ,

for x < x < x+x. The solution thus defined generates a periodic tile of the (x, t)-plane
if Û and some time-shift of U̇ are related by the jump condition (14). For convenience,
we impose maximal symmetry by fixing the time-shift as one-half period, π.

We describe this succinctly as follows: define the nonlinear evolution operators E
and E by evolution (in the spatial variable x) using system (15), (16) of U(t) through
x and x, respectively. In this notation,

Ǔ = EU̇ and Û = EŨ .

Next, define the jump operator J which maps UL(t) to UR(t) by the Hugoniot con-
ditions (14) with mL = m and mR = m; thus J is just the diagonal linear operator

J =

(

J1 0
0 1

)

, where J1 ≡

(

m

m

)

γ−1

γ

.

Since (14) is symmetric, the jump operator at the other entropy jump is just J −1, so
we have

Ũ = J Ǔ , and we set U∗ ≡ J −1Û ,

so that U∗ is at the same entropy level as our data U̇ . Finally, we define the shift
operator

S U(t) ≡ U(t− π) = U(t+ π)

where we have used a half-period shift to ensure maximal symmetry. Our “periodic
boundary condition” above then becomes U̇ = SU∗, and combining these relations,
we see that the existence of a periodic solution having this structure is equivalent to
the fixed point (eigenvalue) problem

(17) S · J−1 · E · J · E U̇ = U̇

having a sufficiently smooth solution. Here the data is the 2π-periodic function U̇(t),
and we regard each operator as a map from the space of smooth 2π-periodic functions
to itself.

2.3. Non-dimensionalization. Our calculations are simplified by a non-
dimensionalization which has the effect of removing all explicit references to the
entropy m. Since we will be linearizing the eigenvalue problem (17), it is natural
to identify “base states” z0 and z0, which will satisfy the jump condition, so we set
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J1 z0 = z0, u0 = u0. Letting z, u refer to either z, u or z, u in the appropriate strip,
and factoring out the base states, (12) can be written

(

z

z0

)

t

+
c(z)

c0

(

u− u0
m0z0

)

y

= 0 ,

(

u− u0
m0z0

)

t

+
c(z)

c0

(

z

z0

)

y

= 0 ,

where we have set c0 = c0(m0, z0) in (11), and we have rescaled the spatial variable
by

(18)
dy

dx
=

1

c0
, so that y − y0 =

x− x0
c0

.

We thus define the dimensionless variables

(19) w =
z

z0
and v =

u− u0
m0z0

,

and we make the spatial evolution explicit by writing the system as

wy + σ(w) vt = 0,

vy + σ(w) wt = 0,
(20)

where we have used (11) to define

(21) σ =
c(z0)

c(z)
=
zd0
zd

= w−d ≡ σ(w) .

Note that in these dimensionless variables the base state is (w0, v0) = (1, 0), and
σ(w0) = 1. Using (19) in (14), we find that, in dimensionless variables, the jump
conditions become

(22) w = w and m
d−1
d+1 v = m

d−1
d+1 v ,

and in particular, w and the speed σ(w) are continuous across the jump.
According to (18), the new widths of the entropy levels will be

(23) θ ≡
x

c(z0)
and θ ≡

x

c(z0)
,

and we note that entropy m does not appear explicitly in (19): that is, there is
only one evolution operator in these variables. Denoting the dimensionless variables
by V = (w, v), we define the evolution operator E(θ) using system (20) through a
y-interval of length θ, so that

(24) E(θ)V (0, ·) = V (θ, ·),

where V (y, t) solves (20) with Cauchy data V (0, ·). Again denoting the jump operator
by J , we have

(25) J =

(

1 0
0 J

)

, where J ≡

(

m

m

)
1
γ

=

(

m

m

)

d−1

d+1

;
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this ratio J is the only place that entropy features in the dimensionless problem. The
following restatement of the problem is proved in [9]:

Theorem 1. For fixed parameters θ, θ and J , define the nonlinear operator
N ≡ N (θ, θ, J) by

(26) N ≡ S · J−1 · E(θ) · J · E(θ),

and let V (t) = (w(t), v(t)) denote any smooth solution of

(27) N V (·) = V (·),

with averages

(28) w0 ≡
1

2π

∫ 2π

0

w(t)dt = 1, and v0 ≡
1

2π

∫ 2π

0

v(t)dt = 0,

respectively. Then given any base state U0 = (z0, u0) and entropy state m, there is a
periodic solution U(x, t) = (z(x, t), u(x, t)) of (10), determined uniquely by V (t), with
corresponding average values

(29)
1

2π

∫ 2π

0

z(0, t)dt = z0, and
1

2π

∫ 2π

0

u(0, t)dt = u0.

Note that the second base state (z0,m, u0) is determined by the given state
(z0,m, u0) and jump J , and the widths x and x of the entropy levels are determined
from (θ, θ) by (23).

2.4. Linearization. Having formulated the nonlinear eigenvalue problem, we
linearize the nonlinear operator around the base state (1, 0). The fully nonlinear op-
eratorN , given by (26), is a composition of nonlinear evolution E and linear operators;
moreover, all operators fix the state (1, 0). It follows that the linearization of N is
obtained by linearizing the evolution operator around (1, 0). This in turn is easily
found: since σ(1) = 1, the linearization of (20) is simply the system

wy + vt = 0,

vy + wt = 0,
(30)

which is just the linear wave equation.
As in (24), we define the linearized evolution operator L(θ) by

L(θ)V (0, ·) = V (θ, ·),

where now V (y, t) solves (30) with Cauchy data V (0, ·). Also, define the linear oper-
ator M ≡ M(θ, θ, J) by

(31) M ≡ S · J −1 · L(θ) · J · L(θ).

Then M is the linearization of N about the base state (1, 0), and the linearized
eigenvalue problem is

(32) MV (·) = V (·) ,

where V (·) is a smooth 2π-periodic function.
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We remark that although the base state (1, 0) is a trivial solution of the 2 × 2
evolution and eigenvalue problems, when regarded as a solution of the 3 × 3 Euler
equations, it is not a trivial solution. That is, although there are no genuinely non-
linear waves propagating, the stationary entropy jumps are nontrivial waves. Indeed,
the nonlinear effects of these jumps are seen in the (linearized) 2× 2 eigenvalue prob-
lem. In other words, the effects of the jumps are manifested as non-commuting linear
operators in (32). In particular, even though linearized waves are not rarefactive or
compressive, we can still identify the change of type of simple waves identified in [8]
at the linearized level.

Our eigenvalue problems (27), (32) are invariant under an arbitrary phase shift
t → t + t0; a natural way to remove this invariance is to observe that the systems
(20), (30) are invariant under the mapping

w(y, t) → w(y,−t) and v(y, t) → −v(y,−t),

and thus preserve the properties that w, v be even/odd, respectively. That is, if the
data w(0, t) and v(0, t) are even and odd (2π-periodic) functions of t, respectively,
then so are the solutions w(y, t) and v(y, t) for y > 0; clearly this property is also
preserved by the jumps and shift. We emphasize that this fact holds for both the
linear and nonlinear problems.

Having restricted w and v to be even/odd 2π-periodic functions of t, we thus
consider the space ∆, defined by

(33) ∆ =

{

V (·) =

[

w(·)
v(·)

]

: w, v ∈ L2[0, 2π), w even, v odd

}

.

Then it follows that

L(y) : ∆ → ∆ and E(y) : ∆ → ∆ ,

and thus also

M : ∆ → ∆ and N : ∆ → ∆ ,

and the eigenvalue problem should be posed in the space ∆. Moreover, we have a
natural orthogonal decomposition

(34) ∆ =

+∞
⊕

n=0

∆n

with respect to the L2-inner product

(35) 〈V1, V2〉 =
1

2π

∫ 2π

0

w1(t)w2(t) + v1(t) v2(t) dt ,

and where ∆n is the n-th Fourier mode,

(36) ∆n =

{

Vn(t) =

[

an cosnt
bn sinnt

]

: an, bn ∈ R

}

.

This orthogonal decomposition is simply the Fourier cosine/sine series expansion of
V (·). It is convenient to define the representation T ∗

n : R2 → ∆n of the n-th mode by

(37) T ∗
n

[

a
b

]

≡

[

a cos(nt)
b sin(nt)

]

,
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so a general V ∈ ∆ has the Fourier decomposition

(38) V =
∑

T ∗
n

[

an
bn

]

,

corresponding to

w(t) =
∑

an cosnt , v(t) =
∑

bn sinnt .

It is well known that the linear wave equation respects modes: in our notation,
this is just the statement that the restriction of L(y) to ∆n maps ∆n back to itself.
Indeed, the action of L(y) on ∆n is rotation of the coefficients through angle ny.
Also, it is clear that the operators J and S preserve the n-th mode, and we have the
following theorem from [9]:

Theorem 2. The linear operator M has the orthogonal representation

(39) M = ⊕∞
n=0Mn,

where Mn : ∆n → ∆n is given by

(40) Mn

(

T ∗
n

[

an
bn

])

= T ∗
n

(

Mn

[

an
bn

])

,

and where Mn is the 2× 2 matrix

(41) Mn = (−1)nD−1R(n θ)DR(n θ) ≡ (−1)nH(nθ, nθ, J) ;

here R(ϑ) is rotation by angle ϑ,

R(ϑ) =

(

cosϑ − sinϑ
sinϑ cosϑ

)

,

and D is the diagonal matrix

(42) D =

(

1 0
0 J

)

.

In (41), the rotations correspond to evolution, the diagonal matrix D to the jump,
and (−1)n to the shift of the n-th mode. We use the convention that script letters refer
to operators, while capital letters refer to the matrices of their 2 × 2 components on
∆n. Because of the decomposition, the linearized eigenvalue problem (32) decouples
into many 2× 2 eigenvalue problems:

Corollary 3. The function V (t) given by (38) solves the linear eigenvalue
problem (32) if and only if for all n ∈ N,

(43) (−1)n H(nθ, nθ, J)

[

an
bn

]

=

[

an
bn

]

.
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2.5. Periodic solutions to the linearized problem. Having reduced the
problem of finding (linearized) periodic solutions to many 2 × 2 matrix eigenvalue
problems (43), we now characterize these solutions. Because the matrix

(44) H(ϑ, ϑ, J) ≡ D−1(J)R(ϑ)D(J)R(ϑ)

is explicitly given, we obtain exact formulae for its eigenvalues:

Theorem 4. For J 6= 1, the eigenvalues of H(ϑ, ϑ, J) are

(45) λ = β ±
√

β2 − 1,

where

(46) β = cos(ϑ) cos(ϑ)−
J2 + 1

2J
sin(ϑ) sin(ϑ) .

It follows that in order for (43) to have a nontrivial solution, we must have
λ = β = ±1, which represents a constraint on the parameters (nθ, nθ, J). Our goal
is to find a solution to the linearized problem which perturbs: we thus ask that (43)
have a solution for n = 1 only, the parameters (θ, θ, J) remaining fixed: this is a
nonresonance condition. First, based on the structure of solutions developed in [8],
we restrict the range of parameters:

Theorem 5. Assume that J > 1, θ > 0, θ > 0 and

(47) θ + θ < π.

Then q solves the eigenvalue problem

(48) H(θ, θ, J) q = −q

if and only if

(49) J = cot(θ/2) cot(θ/2) ,

and the solution is

(50) q ∈ Span

{ [

cos(θ/2)

− sin(θ/2)

] }

.

In particular, if (49) holds, then

(51) V∗(t) ≡ T ∗
1 q =

[

cos(θ/2) cos t

− sin(θ/2) sin t

]

is a solution to the full eigenvalue problem (32).

2.6. Resonance and small divisors. We now consider the linear operator

M−I : ∆ → ∆ ,

which also admits an orthogonal decomposition as in (39). A solution of (32) is an
element of the kernel, and in order to perturb this, we’d like the kernel to be as small as
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possible. That is, we wish to minimize the number of solutions of (43). Since we have
the constraint (49), we can accomplish this by choosing the parameters appropriately.

Here we calculate the full spectrum of M − I and describe the nonresonance
condition which will ensure that M−I is invertible on higher modes. By Theorems 2
and 4, the eigenvalues of M−I are ±λ±n − 1, where

(52) λ±n ≡ βn ±
√

β2
n − 1,

with

βn ≡ βn(θ, θ) = β(nθ, nθ) , and

β(ϑ, ϑ) ≡ cos(ϑ) cos(ϑ)−
J2 + 1

2J
sin(ϑ) sin(ϑ).(53)

The conditions λn 6= ±1 and βn 6= ±1 are equivalent, and it is easier to work with
βn.

We obtain our nonresonance condition as follows. First, assuming (θ, θ) satisfies
(47), we fix J according to (49): this ensures that the kernel is nonempty. Now declare
the parameters (θ, θ) to be resonant if

(54) βn = (−1)n for some n > 1 .

It follows that at resonance, the kernel has a nontrivial component in the n-th mode,
so we cannot invert the operator in that mode. On the other hand, if the parameters
are nonresonant, then the kernel is invertible on all higher modes, and we would
expect that our solution V (t) may perturb.

Since there are countably many conditions βn 6= ±1 but we have continuous
parameters θ and θ, we expect that most choices are nonresonant. In [9], we prove
that the resonant set has measure zero:

Theorem 6. Consider the parameter set

(55) E ≡
{

Θ = (θ, θ) : θ, θ > 0, 0 < θ + θ < π
}

.

Then there exists a set of full measure E∗ ⊂ E such that, if Θ ∈ E∗, then Θ is non-
resonant in the sense that when J is given by (49), then the eigenvalues λ±n − (−1)n

of the linearized operator M−I are nonzero for all n ≥ 2.

Although M − I is invertible on higher modes, it is not bounded: if it were
bounded, we could apply the Implicit Function Theorem directly to obtain existence
of periodic solutions. Instead, we have a problem of small divisors: the differences
βn − (−1)n accumulate at 0 as n → ∞. Under the further symmetry assumption
θ = θ, in [9] we were able to get lower bounds on the size of the small divisors:

Theorem 7. Under the assumption θ = θ = θ, there is a full measure set
E∗ ⊂ (0, 2π), such that for every θ ∈ E∗, there are positive constant C and exponent
r ≥ 1 such that the eigenvalues satisfy the estimate

(56) |λ±n − (−1)n| ≥
C

nr
for all n ≥ 2 .

In particular, if θ/π is the irrational root of a quadratic algebraic equation, we can
take r = 1.
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The assumption θ = θ states that the different entropy levels have the same width
in dimensionless variables3: however, in standard variables the widths of the different
entropy levels are given by (23), and so are different, although they do scale directly
with the base sound speed.

3. Liapunov-Schmidt reduction. In this section we show that the nonlinear
eigenvalue problem (1) can be recast as a perturbation from the linear eigenvalue
problem (2). We then show that the resulting bifurcation problem is amenable to a
Liapunov-Schmidt reduction [4]. We perform the reduction in the case of arbitrary
non-resonant, non-symmetric periods Θ = (θ, θ), as in Theorem 6. This reduces the
problem of the existence of solutions of (1) to the problem of proving an implicit
function theorem for the so called auxiliary equation, an equation that asks for the
existence of nearby zeros of a nonlinear operator in a neighborhood of the zero of an
invertible linearized operator. The invertible linearized operator is the restriction of
(2) to the complement of the solution kernel, and has small divisors. The invertibility
in the case of general non-resonant, non-symmetric Θ is a direct consequence of The-
orem 6, and for symmetric Θ = (θ, θ), algebraic estimates for the small divisors for
almost every θ follow directly from Theorem 7. The implicit function theorem posed
by the auxiliary equation for (1) is a KAM type small divisor problem in an infinite
dimensional space based on a nonlinear differential operator of quasilinear type. As
far as we know, a complete mathematical proof of this implicit function theorem is
beyond the direct application of known results, although analogous results have been
obtained for similar problems of semi-linear type, c.f. [2]. The purpose of this analysis
is to prove that the (finite dimensional) implicit function theorem posed by the bifur-
cation equation is valid assuming existence of solutions for the (infinite dimensional)
implicit function theorem associated with the auxiliary equation.

In Section 5 we show that the Liapunov-Schmidt reduction that applies in the
infinite dimensional case also applies when (1) is replaced by a Fourier cutoff of the
nonlinear problem up to arbitrarily high Fourier modes. In the case of an N -Fourier
mode cutoff, N arbitrarly large, we prove that the resulting auxiliary equation has a
unique solution, confirming that the two applications of the implicit function theorem
inherent in the Liapunov-Schmidt method are both valid for every N ≥ 2. This
provides strong evidence that periodic solutions of the compressible Euler equations
exhibiting the wave structure that balances compression and rarefaction described at
the linearized level in [9] should exist.

3.1. Coordinates and notation. We now develop the pertubation problem
and establish notation and preliminary lemmas required to obtain the auxiliary and
bifurcation equations associated with the Liapunov-Schmidt reduction of the infinite
dimensional problems (1), (2).

Recall that the operators M and N map 2π-periodic functions of t (at y = 0) to
2π-periodic functions of t (at y = θ + θ),

M : ∆ → ∆ and N : ∆ → ∆,

where ∆ is the function space of real valued 2π-periodic functions that are even in w
and odd in v. By the Hs estimates for smooth solutions of conservation laws [5], it
follows that both operators M and N take sufficiently smooth and sufficiently small

3In [9], the use of one variable yields explicit formulas for βn−1 which can be directly estimated;
we expect a similar result holds for two variables, but this may require a probabilistic proof. This is
an ongoing topic of research by the authors and Roman Vershynin.
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functions in Hs ∩∆ to Hs ∩∆, for any s > 3/2, so we will not need to be concerned
about shock wave formation for sufficiently small data.

In the Liapunov-Schmidt method, bifurcation to nonlinear solutions is analyzed in
coordinates induced on the solution space by the structure of the linearized operator [4,
3]. For the full infinite dimensional problem (1) the solution space is ∆ and the
linearized operator is M−I. Also, according to (34),

∆ = ⊕n≥0 ∆n,

where ∆n is given by (36), so that ∆n is two dimensional for n ≥ 1, and one dimen-
sional in the special case n = 0. That is, for V ∈ ∆, we write

V (t) =

∞
∑

n=0

Vn(t) =

∞
∑

n=0

T ∗
n pn,

where pn = (an, bn) ∈ R
2, so Vn ∈ ∆n is given by

Vn(t) = T ∗
n pn =

[

an cosnt
bn sinnt

]

,

and T ∗
n : R2 → ∆n is defined in (37). Referring to (35), we can take the L2-inner

product on ∆ to be given by

(57) 〈V, V ′〉 =
∞
∑

n=0

pn · p′
n ≡

∞
∑

n=0

ana
′
n + bnb

′
n,

for

V =
∞
∑

n=0

T ∗
n pn ∈ ∆, V ′ =

∞
∑

n=0

T ∗
n p′

n ∈ ∆ .

We now characterize the kernel and range ofM1−I and M−I in ∆, respectively.
Referring to Thm. 5, we set

(58) q =

[

cos
(

θ/2
)

− sin
(

θ/2
)

]

, and q⊥ =

[

sin
(

θ/2
)

cos
(

θ/2
)

]

,

so that

V∗(t) = T ∗
n q .

The first lemma gives a precise characterization of the map M1 − I.

Lemma 8. The 2× 2 matrix M1 − I can be expressed as

(59) M1 − I = τ0 q⊗ q⊥ ≡ τ0 q (q⊥)t,

where the constant τ0 is given by

(60) τ0 ≡ τ0(θ), θ) = sin θ cos θ +

(

J cos2 θ/2−
1

J
sin2 θ/2

)

sin θ,



LIAPUNOV-SCHMIDT REDUCTION FOR PERIODIC EULER 239

with J = cot θ/2 cot θ/2 given by (49). Moreover, in the non-symmetric case, there
exists a set of full measure E0 ⊂ E such that

(61) τ0(θ, θ) 6= 0 for all (θ, θ) ∈ E0;

and for the symmetric case we have

(62) τ0(θ, θ) 6= 0 for all θ ∈ (0, π/2).

Proof. Since M1 − I has rank one, it is of the form p1 ⊗ p2 for some vectors
pi ∈ R

2. Since q is in the kernel, p2 = k2q
⊥, and since the range is Span{q}, we

have p2 = k1q. Thus (59) holds, and since q and q⊥ are unit vectors, we have

(63) τ0 = q · (M1 − I)q⊥ = qtM1 q
⊥.

Now by (40), we have

M1 = −D−1R(θ)DR(θ),

and using (58), we calculate

R(θ)q⊥ = R(θ + π/2)q =

[

− sin θ/2

cos θ/2

]

.

It follows that

τ0 =

[

− cos θ/2

sin θ/2

]t (
cos θ −J sin θ

sin θ/J cos θ

) [

− sin θ/2

cos θ/2

]

= cos θ (2 cos θ/2 sin θ/2) + sin θ (J cos2 θ/2−
1

J
sin2 θ/2),

which is (60).
To verify (61), substitute (49) into (60) to write τ0 as a trigonometric polynomial

in (θ, θ), which is zero on a set of measure zero, whose complement in E∗ defines
E0. For (62), set θ = θ = θ, and use J = cot2 θ/2 together with the identities
cos2 θ/2, sin2 θ/2 = 1

2 (1 ± cos θ), respectively, to obtain

τ0(θ, θ) = sin θ cos θ +
(1 + cos θ)3 − (1− cos θ)3

2 sin θ
,

which is non-zero when cos θ and sin θ are both positive.
The next lemma characterizes the kernel and range of M−I in ∆.

Lemma 9. Assume that Θ = (θ, θ) ∈ E0, so Θ is non-resonant and τ0 6= 0. Then
the kernel K of M−I in ∆ is the 2-dimensional subspace

(64) K = ∆0 ⊕ Span {T ∗
1 q} ,

and the range R of M−I is the subspace

(65) R = Span {T ∗
1 q} ⊕ {⊕∞

n=2∆n} .

In the symmetric case θ = θ = θ, both (64) and (65) hold for all θ ∈ E∗, where
E∗ ⊂ (0, 2π) is the set on which (56) holds.



240 B. TEMPLE AND R. YOUNG

Proof. By (40), it follows immediately that M0 = I, so that ∆0 ⊂ K, and by
Theorem 5,

V∗(t) = T ∗
1 q ∈ K.

By Theorem 6, Mn − I is invertible for each n > 1, so that ⊕∞
n=2∆n ⊂ R and these

contribute nothing to the kernel. To complete the proof, it thus suffices to show that
the range of the matrix M1 − I is Span {q}. But by Lemma 8, this is exactly the
condition that τ0 6= 0, which holds because we have assumed Θ ∈ E0 or θ ∈ E∗.

It is convenient to introduce refined notation for the kernel as a 1-mode subspace.
Thus let K⊥ denote the orthogonal complement of K in ∆,

K⊥ = K⊥
1 ⊕ {⊕∞

n=2∆n} ,

where the 1-mode part of the kernel is denoted by

(66) K1 ≡ K ∩∆1 = Span {T ∗
1 q} ,

and its orthogonal complement in ∆1 is

(67) K⊥
1 ≡ K⊥ ∩∆1 = Span

{

T ∗
1 q

⊥
}

.

Similarly, let R⊥ be the orthogonal complement of R,

(68) R⊥ = ∆0 ⊕K⊥
1 ,

and also define

(69) P : ∆ → ∆,

to be orthogonal projection onto the range R. The next lemma implies that the
infinite dimensional operator P(M− I), restricted to K⊥, is an invertible operator,
provided Θ is nonresonant:

Lemma 10. If Θ ∈ E0 is nonresonant then the operator

P(M−I) : K⊥ → R

admits the decomposition

P(M−I) = P1(M1 − I) ⊕ {⊕∞
n=2(Mn − I)} ,

and P(M−I) : K⊥ → R is invertible. In this case the 1-mode projection

P1(M1 − I) : K⊥
1 → K1

is multiplication by τ0 6= 0, in the sense that for any X1 ∈ R,

(70) (M1 − I)(X1 T ∗
1 q

⊥) = τ0 X1 T ∗
1 q .

Moreover, for n ≥ 2, the eigenvalues of the n-th mode decomposition are (−1)nλ±n −1,
where λ±n are given by (52).

In the symmetric case θ = θ = θ ∈ E∗ ⊂ (0, π/2), we have τ0 6= 0, and there exist
constants C = C(θ) > 0 and exponent r such that for n ≥ 2, these eigenvalues satisfy
the lower bound

(71) |(−1)nλ±n − 1| ≥
C(θ)

nr
.
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Proof. The decomposition follows directly from Lemmas 9 and 8 above. The
1-mode projection P1(M1 − I) is invertible for τ0 6= 0, and (71) holds for n = 1
provided C(θ) < |τ0|. The eigenvalues follow directly from (40) and (52), and the
estimate (71) follows from (56) of Theorem 7. Finally, by (71), each P(M − I) is
invertible (i.e. one-to-one and onto) on each of the spaces in the decomposition, so
that the full operator P(M−I) is invertible as well.

Our ultimate goal is to prove the existence of solutions of the nonlinear problem
(N − I)[V ] = 0 that bifurcate from solutions of the associated linearized problem
(M − I)[V ] = 0, where the initial data V ∈ ∆ is a 2π-periodic function of t, with
values V (t). To set this up as a perturbation problem, we will introduce a small
parameter −1 << ǫ << 1 that measures the strength of nonlinear perturbation from
the linearized problem, and which will act as the nonlinear bifurcation parameter. To
provide more flexibility in the bifurcation argument, we now also introduce additional
small parameters

α = (α, α, αJ ), with − 1 ≪ α, α, αJ ≪ 1,

that represent allowable changes in the entropy widths θ and θ and jump J for the
bifurcating solutions. This is analogous to the variation of the period when treat Hopf
bifurcations [4].

We thus define the linear and nonlinear operators

Mα ≡ S · J −1
α · L(θ + α) · Jα · L(θ + α),

Nα ≡ S · J −1
α · E(θ + α) · Jα · E(θ + α),

(72)

as well as the 2× 2 real matrix

(73) Mα = −D−1
α R(θ + α)DαR(θ + α),

used to represent Mα, in analogy with (31). Here Jα is the perturbation of the jump
operator defined in (25) with matrix Dα obtained by replacing J with J + αJ ,

(74) Dα =

(

1 0
0 J + αJ

)

, D−1
α =

(

1 0
0 1

J+αJ

)

,

so that D0 ≡ D when αJ = 0, see (42).
Now the operators Mα, Nα, as well as the operators L(·), E(·) used to define

them, all operate on initial data V ∈ ∆ in the domain of the given operator at y = 0,
and output the result V (y) of an evolution in ∆ of functions indexed by y. For such
an operator O let its domain be denoted ∆O,

O : ∆O → ∆,

and use the following notation. If the input V ∈ ∆ is given by

V : [0, 2π] → R
2, V (t) =

[

w(t)
v(t)

]

∈ R
2,

we denote the output as O[V ] ∈ ∆,

O[V ] : [0, 2π] → R
2,
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the function of t with values O[V ](t). Further, if the function O[V ] is the result of
evolution from y = y0 to y = y1, then we define

(75) O(y)[V ] ≡ O[V ](y) ∈ ∆, for y0 ≤ y ≤ y1,

as that function in ∆ determined at the value y of the evolution, with values V (y, t).
Here V (y, t) is the solution of the PDE with data V (y0, t), and O[V ] has values
V (y1, t).

Thus, in particular, the full solution of the (perturbed) linear and nonlinear partial
differential equations are described by

Mα(y)[V ] ≡







L(y)[V ], 0 ≤ y < θ + α,

L(y − θ − α) Jα L(θ + α)[V ], 0 < y − θ − α < θ + α,

S J−1
α L(θ + α) Jα L(θ + α)[V ], y = θ + α+ θ + α,

and

Nα(y)[V ] ≡







E(y)[V ], 0 ≤ y < θ + α,

E(y − θ − α) Jα E(θ + α)[V ], 0 < y − θ − α < θ + α,

S J−1
α E(θ + α) Jα E(θ + α)[V ], y = θ + α+ θ + α,

respectively, each Mα(y)[V ] and Nα(y)[V ] ∈ ∆ being a function of t. Note that the
functions have well-defined left and right limits at the discontinuity y = θ + α.

Finally, define the matrix representationMα(y) of the operator Mα(y) restricted
to the 1-mode by using the same identity as before, namely

Mα(y)[T
∗
1 p] ≡ T ∗

1 [Mα(y)p],

which leads to the explicit formula

(76) Mα(y) =







R(y), 0 ≤ y < θ + α,

R(y − θ − α) Dα R(θ + α), 0 < y − θ − α < θ + α,

− D−1
α R(θ + α) Dα R(θ + α), y = θ + α+ θ + α,

and in particular, by (73), Mα(θ + α+ θ + α) ≡Mα.

3.2. Rescaling and reduction. We now introduce the scaling parameter ǫ
into the nonlinear operator N so that the nonlinear problem (1) reduces to the linear
eigenvalue problem (2) at ǫ = 0. Without loss of generality, we linearize the system
(20) around the trivial solution consisting of the base state

w(y, t) = 1, v(y, t) = 0,

and we denote this base state by

1 ≡

(

1
0

)

∈ R
2 so that

[

w
v

]

= T ∗
0 1 .

For ǫ 6= 0, define the rescaled nonlinear operator Gǫ,α : ∆ → ∆ by

(77) Gǫ,α[V ] =
1

ǫ
{Nα [1+ ǫV ]− 1} ,

and the corresponding operator Fǫ,α : ∆ → ∆ by

Fǫ,α = Gǫ,α − I,
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so that

(78) Fǫ,α[V ] = Gǫ,α[V ]− V.

By Theorem 1, we need only construct solutions of (N − I)[V ] = 0 for V (t) =
(w(t), v(t)) satisfying the average one in w and zero in v conditions (28), respectively,
in order to obtain solutions with arbitrary averages (29) in the physical variables.

Lemma 11. The nonlinear operator Gǫ,α has the limits

lim
ǫ→0

Gǫ,α ≡ Gα = Mα,

and

lim
ǫ,α→0

Gǫ,α ≡ G0 = M,

in the sense that

Gǫ,α(y)[V ] = Mα(y)[V ] +O(|ǫ|),

Gǫ,α(y)[V ] = M(y)[V ] +O(|ǫ|+ |α|),

for all smooth, 2π-periodic initial data V ∈ ∆, which take on values V (t), and where
convergence is uniform for

(y, t) ∈ [0, θ + α+ θ + α]× [0, 2π].

We thus also have, in the same sense,

lim
ǫ→0

Fǫ,α ≡ Fα = Mα − I,

and

lim
ǫ,α→0

Fǫ,α ≡ F0 = M−I.

Proof. Since for fixed Θ and α, the operators Jα, J−1
α and S are bounded and

linear, the Lemma follows if we show that

lim
ǫ→0

1

ǫ
{E(y) [1+ ǫV ]− 1} = L(y)[V ],

uniformly in (y, t) for y in a compact interval. As ǫ→ 0, the values of the initial data

Uǫ ≡ 1+ ǫ V

tend to the constant state (w, v) = (1, 0). Thus the local existence theorem for smooth
solutions of the nonlinear problem (20) implies that for ǫ sufficiently small, the output
E(y)[Uǫ] is a well defined function, 2π-periodic in t, whose values tend to the constant
state (w, v) = (1, 0) as ǫ→ 0, uniformly for (y, t) ∈ [0, θ+α+ θ+ α]× [0, 2π], see [5].
This follows directly from the Hs estimates for smooth solutions of the nonlinear
problem (20), provided ∆ ⊂ Hs, [5]. Here, by (25), the jump operators Jα and J −1

α

fix w and scale v by a constant amount, and thus only change the constants in the
Hs estimates.
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More precisely, since Nα(y)[Uǫ] is smooth and tends uniformly to (1, 0), it fol-
lows that the wavespeed σ(wǫ,α(y, t)) → 1 uniformly as ǫ → 0, and hence that the
characteristics of the nonlinear evolution (20) differ by at most order ǫ from the char-
acteristics of the linear evolution (30) as ǫ → 0. From this it is clear that nonlinear
evolution by Nα is linear evolution by Mα to leading order in ǫ. Therefore,

Nα(y)[Uǫ] = Mα(y)[Uǫ] +O(ǫ2)

= 1+ ǫMα(y)[V ] +O(ǫ2).

The Lemma follows because everything is smooth and convergence is uniform on
compact sets.

Our goal now is to prove the existence of solutions Vǫ,α ∈ ∆ of the equation

(79) Fǫ,α[Vǫ,α] = 0,

with ǫ 6= 0, and Vǫ,α nontrivial, that is, Vǫ,α /∈ ∆0. Such a solution would clearly
satisfy

Nα [1+ ǫ Vǫ,α] = 1+ ǫ Vǫ,α ,

which by Theorem 1 (with perturbed Θ and J) yields a nontrivial periodic solution
to the Euler equations.

To obtain solutions of (79) by the Liapunov Schmidt method, we need to apply
the implicit function theorem twice to prove that solutions Vǫ,α of (79) bifurcate from
known solutions V ∈ K of

F0,0V = (M−I)V = 0.

Before establishing the requisite auxiliary and bifurcation equations carefully, we first
outline again the overall strategy in terms of our present notation. By Lemma 11, for
small ǫ (and α) we have

Fǫ,α ≈ M− I,

which is invertible on K⊥. Assuming we can invert M − I on K⊥, it follows that
because ∆ = K⊕K⊥, we need to solve dim(K) = 2 more equations to get a periodic
solution.

Our procedure, then, for analyzing the 0- and 1-modes in the kernel K is as
follows: Using the invertibility of M − I on K⊥, a first application of the implicit
function theorem (in infinite dimensions) means that there is some V = Vǫ,α such
that Fǫ,α[Vǫ,α] vanishes on K⊥. That is, we can take the n-mode of Fǫ,α[Vǫ,α] to
be zero for all n ≥ 2. This is equivalent to assuming the existence of a solution
of the auxiliary equation, as expressed in Definition 12 below. Assuming a solution
of the auxiliary equation, a second application of the implicit function theorem (in
finite dimensions) shows that among such Vǫ,α, the 1-mode of Fǫ,α[Vǫ,α] vanishes near
(ǫ, α) = 0 ∈ R

4. This occurs along a (3-d) surface ψ(ǫ, α, α, αJ ) = 0, for some smooth
function ψ : R4 → R with ψ(0) = 0. This is accomplished in Theorem 13 by solving
the bifurcation equation, and we prove this for almost every Θ, assuming the existence
of solutions of the auxiliary equation.

It then remains to prove that the zero mode of Fǫ,α[Vǫ,α] is zero. Since we are not
using a conservative form of the nonlinear equations, the zero mode is not in general
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constant for the nonlinear problem. However, we can use the conservation form of the
nonlinear equations to derive an integral that is conserved under nonlinear evolution.
We then show that if all of the modes n ≥ 1 of Fǫ,α[Vǫ,α] are zero and the integral is
conserved, then the zero mode is also necessarily zero4.

Putting these together we obtain a proof of Theorem 14, which states that if
Θ = (θ, θ) is nonresonant and an appropriate solution of the auxiliary equation exists,
then a three parameter family Vǫ,α of solutions bifurcates from the solution T ∗

1 q of
the linearized problem. In the final section we show that the assumed existence of a
solution of the auxiliary equation is valid under the N -Fourier cutoff assumption, and
the rest of the argument goes through essentially unchanged.

To make this more precise, fix a solution to the linearized problem Z ∈ K1, from
which our solution bifurcates. For convenience, we take Z ∈ K to be given by (51),

(80) Z ≡ T ∗
1 q = V∗,

and which has values

Z(t) = V∗(t) =

[

cos(θ/2) cos t

− sin(θ/2) sin t

]

.

There is no loss of generality here as any element Z1 = X1 V∗ can be scaled back to Z
by the substitution ǫ→ X1 ǫ. Also note that we have set the component of Z(t) in the
zero mode kernel ∆0 of M−I equal to zero, because the inclusion of (w, v) = (1, 0)
in the definition of F already fixes the zero mode. However, this constant 0-mode
will not be preserved under nonlinear evolution, since we are not working with a
conservative form of the nonlinear equations.

Now let Bδ ⊂ R
3 denote the ball of radius δ, and Iδ the interval (−δ, δ). We can

then restate our problem as follows: Find δ1, δ2 > 0 and smooth functions

(81) W =Wǫ,α : Iδ1 ×Bδ1 → K⊥ and α = α(ǫ) : Iδ2 → Bδ1 ⊂ R
3 ,

with α(0) = 0, W0,0 = 0, such that for ǫ < δ2, we have

(82) Fǫ,α(ǫ)[Z +Wǫ,α(ǫ)] = 0 .

The Liapunov-Schmidt method reduces (81), (82) to two sub-problems, leading to
the auxiliary equation for W and the bifurcation equation for α. In fact, since we
have three parameters α = (α, α, αJ ) and our kernel is essentially one-dimensional,
we need only solve for one of the α components, say αJ = αJ (ǫ, α, α), and we get a
three-parameter family of solutions.

To define the auxiliary equation, refer to (78), (80) and define the operator F :
Iδ ×Bδ ×K⊥ → ∆ by

(83) F(ǫ, α,W ) = Fǫ,α[Z +W ],

which makes sense for (ǫ, α) ∈ Iδ × Bδ ⊂ R
4 in some neighborhood of the origin.

Thus, recalling that P defined in (69) is projection onto R, we define the auxiliary
equation to be

(84) P F(ǫ, α,W ) = P Fǫ,α[Z +W ] = 0,

4Note that the zero mode will not be zero throughout the y-evolution Fǫ,α(y)[Vǫ,α], and so the
zero mode cannot be removed from the analysis at the start.
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so that

P F : Iδ ×Bδ ×K⊥ → R.

Based on our strategy above, we wish to solve the auxiliary equation (84) for W =
W (ǫ, α) for some ǫ 6= 0 using an infinite dimensional version of the implicit function
theorem. By Lemma 10,

P F(0, 0, ·) = P F0,0 : K⊥ → R

is linear and invertible, and so we would like to solve (84) uniquely for W , for each
(ǫ, α) in a neighborhood of (0, 0), by the implicit function theorem. However, this is
an infinite dimensional problem with small divisors, so we cannot apply the implicit
function theorem directly. To be precise, and to isolate the difficulties of obtaining
periodic solutions into the form of a classical implicit function theorem, we make
the following definition. In the next section we show that if Θ is non-resonant, then
there exist solutions of the auxiliary equation in this sense under the N -Fourier cutoff
assumption.5

Definition 12. We say that W solves the auxiliary equation in Hs, s ≥ 1, for
Θ = (θ, θ) ∈ E0, if there exists δ > 0 and a smooth map

(85) W ≡W (ǫ, α) : Iδ ×Bδ → Hs,

such that W (ǫ, α) ∈ K⊥ ⊂ ∆ satisfies

W (0, 0) = 0,

and

(86) PFǫ,α[Z +W (ǫ, α)] ≡ 0,

for all (ǫ, α) ∈ Iδ ×Bδ.

Now to define the bifurcation equation, suppose that a solutionW (ǫ, α) satisfying
Definition 12 has been found. In this case, we substitute W (ǫ, α) into (83) and apply
the projection I − P to get the function

Φ ≡ Φ(ǫ, α) : Iδ ×Bδ → R⊥

given by

Φ(ǫ, α) ≡ (I − P)F(ǫ, α,W (ǫ, α))

= (I − P)Fǫ,α[Z +W (ǫ, α)],(87)

and this yields the bifurcation equation

(88) Φ(ǫ, α) = 0 .

5This is the simplest possible way in which solutions of the auxiliary equation might exist. To
prove such an implicit function theorem by Nash-Moser type methods, it may be difficult to rule
out nearby resonances, and simpler to prove a theorem valid only for set of positive measure of
parameters ǫ, α. This would entail treating the bifurcation and auxiliary equations together at each
induction step, but we expect it would not modify the validity of the corresponding Liapunov-Schmidt
reduction, c.f. [2].
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We now wish to solve the two equations (88) for a function α = α(ǫ) by the finite
dimensional implicit function theorem. Since α ∈ R

3, we have extra parameters and
we expect many solutions. In fact, the equations (88) are degenerate and we solve only
the 1-mode by the implicit function theorem; as described above, we use conservation
to show that the 0-mode also vanishes. This is accomplished in the following theorem,
whose proof is the topic of Section 4.

Theorem 13. Assume that Θ = (θ, θ) ∈ E0 and there exists a smooth solution
W satisfying (85)-(86) of Definition 12. Then there exists δ > 0 and a function 6

(89) αJ = αJ(ǫ, α, α) : Bδ → R,

such that αJ(0, 0, 0) = 0, and, if we set

(90) α ≡ (α, α, αJ(ǫ, α, α)) ∈ R
3,

then

Φ(ǫ, α) = (I − P)Fǫ,α[Z +W (ǫ, α)] ≡ 0

for all (ǫ, α, α) ∈ Bδ.

Theorem 13 reduces existence of time periodic solutions of the compressible Euler
equations to existence of solutions W of the auxiliary equation satisfying Definition
12, as recorded in the following corollary:

Theorem 14. Assume that Θ = (θ, θ) ∈ E0 and there exists a smooth solution
W satisfying (85)-(86) of Definition 12. Then there are smooth functions αJ(ǫ, α, α)
and Vǫ,α,α ∈ ∆,

Vǫ,α,α : [0, 2π) → R
2,

such that

V0,0,0 = Z = T ∗
1 q ∈ K, αJ(0, 0, 0) = 0,

and for some positive constant δ > 0,

(Nα − I) [1+ ǫ Z + ǫWǫ,α] = 0,

for all (ǫ, α, α) ∈ Bδ, where α is given by (90). In other words, the function 1+ ǫ Z+
ǫWǫ,α is the Cauchy data (for evolution in space) for periodic solutions of compressible
Euler.

Proof. By Definition 12, W =W (ǫ, α) satisfies (84) for all (ǫ, α), and by Theorem
13, if α is given by (90), then the bifurcation equation (88) holds. Adding (84)
and(87), it follows that

Vǫ,α,α ≡ Z +W (ǫ, α(ǫ, α, α)) ∈ ∆

satisfies (79), namely

Fǫ,α(ǫ,α,α)[Z +W (ǫ, α(ǫ, α, α))] = 0.

6Here we have chosen to give αJ as a function of α and α : we could just as easily choose to solve
the bifurcation equation for α or α instead, see (112). Our choice of αJ is convenient as it allows us
to preserve the symmetry α = α if desired.
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Using (77), (78), this in turn implies

Nα(ǫ,α,α)

[

1+ ǫ Z + ǫWǫ,α(ǫ,α,α)

]

= 1+ ǫ Z + ǫWǫ,α(ǫ,α,α) ,

this being a three parameter (ǫ, α, α)-family of periodic solutions to (20) that bifurcate
from the linearized solution Z = T ∗

1 q.
Note that for the family of solutions Vǫ,α,α, the parameters (ǫ, α, α) can be

freely chosen in the neighborhood Bδ of zero, which implies the existence of peri-
odic solutions with full symmetry (α = α) and arbitrary asymmetry (α 6= α), un-
der the assumption that a solution W of the auxiliary equation exists at a single
value of Θ. Moreover, if we choose (α, α) to be O(|ǫ|), then Wǫ,α = O(|ǫ|), so that
ǫWǫ,α(ǫ,α,α) = O(ǫ2), from which it follows that the linearized solutions provide the
leading term in our nonlinear periodic solutions, as expected.

It remains to give the proof of Theorem 13, which is the topic of Section 4. That
solutions W satisfying Definition 12 exist in the case of the N -Fourier cutoff when Θ
is non-resonant is demonstrated in Section 5.

4. The bifurcation equation. In this section we give the proof of Theorem
13. We assume a fixed (non-symmetric) value of Θ = (θ, θ) ∈ E0, and assume there
exists a corresponding smooth solution W satisfying (85)-(86) of Definition 12. That
is, assume W is a smooth (at least H1) solution of the infinite-dimensional auxiliary
equation (84),

(91) W ≡Wǫ,α ≡W (ǫ, α), with PF(ǫ, α,W ) = 0, W0,0 = 0.

We wish to prove that the bifurcation equation (88) can be solved for a function
αJ(ǫ, α, α) in a neighborhood of (0, 0, 0). That such a solution always exists is the
claim of Theorem 13, and it is the purpose of this section to prove it.

The bifurcation equation (88) is given by

(92) Φ(ǫ, α) ≡ (I − P)F(ǫ, α,W (ǫ, α)) = 0,

where

Φ : Iδ ×Bδ ⊂ R
4 → R⊥,

and according to (68), R⊥ is two-dimensional, consisting of the direct sum

R⊥ = ∆0 ⊕K⊥
1 ,

of the 0-mode

∆0 = Span {T ∗
0 1}

and the one-dimensional kernel in the 1-mode

K⊥
1 ≡ Span

{

T ∗
1 q

⊥
}

.

The main difficulty here is that for ǫ 6= 0 the evolution is nonlinear, so the values of
W (ǫ, α), which are unknown, influence the values of Φ(ǫ, α).

To start, let ϕ = (ϕ0, ϕ1), where we define the real valued functions ϕ0 and ϕ1 as
the projections of Φ(ǫ, α) onto the zero-mode ∆0 and 1-mode K⊥

1 , respectively, using
the identity

(93) Φ(ǫ, α) ≡ ϕ0(ǫ, α) T
∗
0 1+ ϕ1(ǫ, α) T

∗
1 q⊥.
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Alternatively, we may rewrite the definitions as

(94) ϕ1(ǫ, α) =
〈

T ∗
1 q⊥,Φ(ǫ, α)

〉

,

and

(95) ϕ0(ǫ, α) = 〈T ∗
0 1,Φ(ǫ, α)〉 .

Our strategy for the proof of Theorem 13 is to apply the implicit function theorem
to ϕ1 to prove that the function ϕ1(ǫ, α) vanishes along a surface α = α(ǫ, α, α)
in some neighborhood Bδ of zero, (ǫ, α, α) ∈ Bδ ⊂ R

3. We then use a conserved
moment in w, an integral constant of motion for the nonlinear problem derivable from
the conservation form of the equations, to prove that on the surface α = α(ǫ, α, α),
ϕ0(ǫ, α) also vanishes. We can then conclude from (93) that Φ(ǫ, α) = 0 on the surface
α = α(ǫ, α, α), (ǫ, α, α) ∈ Bδ, the result we desire.

More precisely, to obtain α = α(ǫ, α, α), we apply the implicit function theorem
to ϕ1 in variable αJ , which means that we need to verify the zero condition

ϕ1(0, 0) = 0,

and the derivative condition

∂ϕ1

∂αJ

∣

∣

∣

∣

(0,0)

6= 0.

Together these imply the existence of δ > 0 and function

αJ = αJ(ǫ, α, α) : Bδ → R

such that

ϕ1(ǫ, α(ǫ, α, α)) = 0,

where we define

(96) α(ǫ, α, α) ≡ (α, α, αJ(ǫ, α, α)).

In the final step we use conservation of mass to prove that ϕ0 vanishes when (96)
holds. Thus we have the

Proof of Theorem 13. The proof hinges on three lemmas which are proved below.
In Lemma 19, we first show that

ϕ0(0, 0) = ϕ1(0, 0) = 0.

Next, in Lemma 20, we show that for any Θ ∈ E0, the derivatives

∂ϕ1

∂α
,

∂ϕ1

∂α
and

∂ϕ1

∂αJ

are all nonzero. It then follows by the implicit function theorem that we can solve
ϕ1 = 0 for αJ (or any parameter): that is, there is a δ > 0 and a function (89) such
that if α is given by (90), then

ϕ1(ǫ, α) = 0 for all (ǫ, α, α) ∈ Bδ.

Finally, in Lemma 21 below, we prove that, since Wǫ,α solves the auxiliary equation,
if ϕ1 = 0 in Bδ, then ϕ0(ǫ, α) = 0 there as well. We conclude that Φ(ǫ, α) = 0 on the
surface αJ = αJ (ǫ, α, α) for (ǫ, α, α) ∈ Bδ. Thus the proof is complete once we state
and prove Lemmas 19, 20 and 21.
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4.1. Expansion of the solution. In order to prove the lemmas, we need explicit
expressions for ϕ0 and ϕ1, at least for ǫ = 0. To get these we need to know the leading
order behavior of W (ǫ, α).

Lemma 15. The solution W (ǫ, α) of the auxiliary equation (86) satisfies

(97) W (ǫ, α) = cW (α) T ∗
1 q

⊥ +O(ǫ),

where cW (α) is given by

(98) cW (α) =
1− q ·Mα q

q ·Mα q⊥
,

satisfies cW (α) = O(α), and Mα is given by (73), namely

Mα = −D−1
α R(θ + α)DαR(θ + α).

Proof. Since W (ǫ, α) is the unique solution of PFǫ,α[Z +W ] = 0 in Iδ × Bδ, it
follows that for ǫ = 0, W (0, α) solves the linearized problem

(99) PMα[Z +W ] = P [Z +W ],

where P is projection onto R. Since the linearized problem preserves modes and P is
the identity on each ∆n, n ≥ 2, uniqueness of the solution implies that

W (0, α) ∈ K⊥ ∩∆1 = K⊥
1 = Span{T ∗

1 q
⊥}.

It follows that W (ǫ, α) is of the form (97), and we get cW (α) by considering the
1-mode projection of (99): as in Theorem 2, using (72), (73), we have

MαT
∗
1 = T ∗

1 Mα,

and P projects 1-modes onto Span{q}, so that (99) becomes

(100) q ·Mα

(

q+ cW (α)q⊥
)

= q ·
(

q+ cW (α)q⊥
)

= 1,

and solving for cW (α) yields (98). Finally, when α = 0, we have Mα = M1, so that
Mαq = q, while q ·M1q

⊥ 6= 0, so that cW (0) = 0 and thus also cW (α) = O(α).
We will need the derivatives of cW (α) evaluated at α = 0:

Corollary 16. For x = α, α or αJ , we have

(101)
∂

∂x
cW (α)

∣

∣

∣

∣

α=0

=
−1

τ0
q ·

∂

∂x
Mα

∣

∣

∣

∣

α=0

q,

where τ0 is given by (60).

Proof. This follows immediately by differentiating (100) and using the fact that
cW (0) = 0, together with (63).

In order to get the leading behavior of Φ(ǫ, α) given in (92), we need a description
of F(ǫ, α,W (ǫ, α)), which requires us to evaluate (to leading order) the nonlinear
evolution

Nα [1+ ǫ(Z +W )] .
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Thus let

U0 = 1+ ǫ Z + ǫW (ǫ, α) ≡ Uǫ,α(0)

be “initial data” which we evolve by the nonlinear operator Nα, giving the corre-
sponding solution Uǫ,α, and using the notation (75), we set

Uǫ,α(y) = Nα(y)[U0] ∈ ∆,

which has values

Uǫ,α(y, t) ≡ 1+ ǫ V (y, t),

where V (y, t) is the rescaled solution of the PDE. In coordinates, we write

(102) V (y) =

[

w(y)
v(y)

]

=

∞
∑

n=0

T ∗
n

[

wn(y)
vn(y)

]

,

so that, if we write

Uǫ,α(y, t) =

[

wǫ,α(y, t)
vǫ,α(y, t)

]

,

then

wǫ,α(y, t) = 1 + ǫ
∞
∑

n=0

wn(y) cosnt,

vǫ,α(y, t) = ǫ

∞
∑

n=0

vn(y) sinnt.

(103)

For 0 < y < θ + α and 0 < y − θ − α < θ + α, the functions wǫ,α(y, t) and vǫ,α(y, t)
solve the PDEs (20). Now Nα = Mα to leading order in ǫ, which implies the following
theorem:

Lemma 17. The leading order evolution for V = Z +W in the modes n ≥ 1
determined by (102) is given in the intervals

y ∈ (0, θ + α) and y ∈ (θ + α, θ + α+ θ + α),

by the equations

w′
n + n vn = O(ǫ),

v′n − nwn = O(ǫ).
(104)

Proof. Using (103) in the equations (20) and letting u′ denote differentiation of
u with respect to y, we get

∑

n≥0

w′
n cosnt+

∑

n≥1

n vn cosnt = O(ǫ),

∑

n≥0

v′n sinnt−
∑

n≥1

nwn sinnt = O(ǫ).
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Separating modes and taking n ≥ 1 directly gives (104).
The next lemma provides a formula for ϕ1(0, α).

Lemma 18. At ǫ = 0, we have the identity

ϕ1(0, α) = q⊥ · (Mα − I)
[

q+ cW (α)q⊥
]

= q⊥ ·Mα q+ cW (α) q⊥ · (Mα − I)q⊥,(105)

where cW (α) is given in (98).

Proof. From the definitions (88), (78) and (77), and (102), we have that

(106) Φ(ǫ, α) = V (θ + α+ θ + α)− V (0),

where

V (0) = Z +W (ǫ, α) and Z = T ∗
1 q.

It follows from (94), using the inner product (57), that

(107) ϕ1(ǫ, α) = q⊥ ·

{[

w1(θ + α+ θ + α)

v1(θ + α+ θ + α)

]

−

[

w1(0)
v1(0)

]}

.

Now set ǫ = 0 in (107). Then (104) becomes the linear system

V ′
1 = P V1,

where the matrix P is defined by

(108) P ≡

(

0 −1
1 0

)

.

Note that P = R(π/2) satisfies

(109) exP = R(x),

so that evolution through an interval of length x is simply rotation by x, as seen in
our earlier analysis of the linear equations. Putting in the jumps and shift, it follows
that

V1(θ + α+ θ + α) =Mα V1(0),

where

(110) V1(y) =

[

w1(y)|ǫ=0

v1(y)|ǫ=0

]

≡

[

wα(y)
vα(y)

]

gives the the solution for ǫ = 0 for y throughout the interval (0, θ+α+θ+α). Finally,
using (80) and (97), we get

V1(0) = q+ cW (α) q⊥,

and substituting into (110) and (107) gives (105).
The next lemma records the vanishing of ϕ1 and ϕ0 at the origin.

Lemma 19. The functions ϕ1 and ϕ0 vanish at the origin,

(111) ϕ1(0, 0) = ϕ0(0, 0) = 0.

Proof. That ϕ0(0, 0) = 0 follows from the fact that the evolution part of the
linearized operator M is in conservation form. On the other hand, by (73) and (41),

Mα

∣

∣

α=0
= −D−1 R(θ) D R(θ) =M1,

and, since cW (0) = 0, (105) yields ϕ1(0, 0) = q⊥ ·M1 q = 0.
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4.2. Derivative calculations. To apply the implicit function theorem to solve
ϕ1 = 0, we must show that the derivative with respect to αJ is non-zero at the origin,

dϕ1

dαJ

∣

∣

∣

∣

ǫ,α=0

6= 0.

More generally, we calculate the full gradient of ϕ1 with respect to α at the origin.

Lemma 20. We have the formulas

(112)
∂ϕ1

∂α
= 1 ,

∂ϕ1

∂α
=

sin θ

sin θ
, and

∂ϕ1

∂αJ
=

sin θ

J
,

all derivatives being evaluated at the origin (ǫ, α) = 0 ∈ R
4. In particular, none of

these derivatives vanish if Θ ∈ E0.

Proof. Referring to (105), we first note that since cW (α) = O(α) and since

(113) Range(Mα − I)
∣

∣

α=0
= Range(M1 − I) = Span{q},

we have for x = α, α or αJ ,

∂

∂x

{

cW (α) q⊥ · (Mα − I)q⊥
}

∣

∣

∣

∣

α=0

= 0,

which implies

(114)
∂

∂x
ϕ1(0, α)

∣

∣

α=0
= q⊥ ·

∂Mα

∂x

∣

∣

∣

∣

α=0

q.

We have by (73),

Mα = −D−1
α R(θ + α) Dα R(θ + α),

and also, using (108),

(115)
d

dx
R(x) =

d

dx
exP = P exP = P R(x) = R(x+ π/2).

It follows from (114) that when α = 0,

(116)
∂ϕ1

∂α
= −q⊥ ·D−1 R(θ) D R(θ) P q ,

and

(117)
∂ϕ1

∂α
= −q⊥ ·D−1 P R(θ) D R(θ) q .

Similarly,

∂ϕ1

∂αJ
= −q⊥ ·

(

0 0
0 −1

J2

)

R(θ) D R(θ) q

− q⊥ ·D−1 R(θ)

(

0 0
0 1

)

R(θ) q.(118)
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For (116), by (113), we have for any p ∈ R
2,

q⊥ · (M1 − I)p = 0, so that q⊥ ·M1 p = q⊥ · p,

so that

∂ϕ1

∂α
= q⊥ · Pq = q⊥ · q⊥ = 1 .

Next, to evaluate (117), write

D−1 P = D−1 P D D−1

and recall that Mα

∣

∣

0
q =M1 q = q, to get

∂ϕ1

∂α
= −q⊥ ·

(

D−1 P D
)

(−M1)q

= q⊥ ·D−1 P D q.(119)

Now

q =

(

cos θ/2

− sin θ/2

)

, q⊥ =

(

sin θ/2

cos θ/2

)

and D =

(

1 0
0 J

)

,

so continuing from (119) we have

∂ϕ1

∂α
=
(

sin θ/2 1
J cos θ/2

)

(

0 −1
1 0

)(

cos θ/2

−J sin θ/2

)

=
(

1
J cos θ/2 − sin θ/2

)

(

cos θ/2

−J sin θ/2

)

,

=
1

J
cos2 θ/2 + J sin2 θ/2 .

Now using (49) to eliminate J , we get

∂ϕ1

∂α
= cos θ/2 sin θ/2

(

sin θ/2

cos θ/2
+

cos θ/2

sin θ/2

)

=
cos θ/2 sin θ/2

cos θ/2 sin θ/2
=

sin θ

sin θ
,

by the double angle formula.
Finally, we use M1q = q to rewrite (118) as

∂ϕ1

∂αJ
=

−1

J
q⊥ ·

(

0 0
0 1

)

q

− q⊥ ·D−1 R(θ)

(

0 0
0 1

) [

cos θ/2

sin θ/2

]

,

which simplifies to

∂ϕ1

∂αJ
=

1

J
sin θ/2 cos θ/2

+ sin2 θ/2 sin θ −
1

J
sin θ/2 cos θ/2 cos θ .
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Now, using the double angle formulas and (49), we calculate

∂ϕ1

∂αJ
=

sin θ
2 cos θ

2

J

(

1− cos θ +
J sin θ

2

cos θ
2

sin θ

)

=
sin θ

2 J

(

1− (cos2 θ
2 − sin2 θ

2 ) +
cos θ

2

sin θ

2

2 sin θ
2 cos

θ
2

)

,

which simplifies to give the last relation in (112).

4.3. Evolution of the moment. In light of Lemmas 19 and 20, we can apply
the implicit function theorem to solve ϕ1 = 0. The proof of Theorem 13 is thus
complete once we prove that ϕ0 vanishes when ϕ1 does. Recall that we are assuming
that Wǫ,α solves the auxiliary equation.

Theorem 21. Assume that a function αJ = αJ (ǫ, α, α) : Bδ → R is given for
which

(120) ϕ1(ǫ, α) = 0 for all (ǫ, α, α) ∈ Bδ,

Then we also have

(121) ϕ0(ǫ, α) = 0 for all (ǫ, α, α) ∈ Bδ.

Proof. Assume that (ǫ, α, α) ∈ Bδ, set

α ≡ (α, α, αJ(ǫ, α, α)) ∈ R
3,

as in (90), and define

V0 ≡ Z +Wǫ,α ∈ ∆ .

Then, using (86), (87) and (120), we get

Fǫ,α[V0] = P Fǫ,α[V0] + Φ(ǫ, α)

= ϕ0(ǫ, α) T
∗
0 1 = ϕ0(ǫ, α) 1 ,

which, by (78) and (77), implies that

(122) Nα [1+ ǫ V0] = (1 + ǫ ϕ0(ǫ, α)) 1+ ǫ V0 ,

and we note that V0 has no component in ∆0. Now define

U̇(t) = (ẇ(t), v̇(t)) ≡ 1+ ǫV0(t),

and set

U# = (w#(t), v#(t)) ≡ Nα[U̇ ],

so that U# is the (shifted) spatial evolution (with jumps) of U̇ through the period.
Then by (122), we have

Proj∆n
U# = Proj∆n

U̇ for all n ≥ 1 ,
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and it follows that

(123) w#(t) = ẇ(t) + w0, and v#(t) = v̇(t),

with w0 = ǫ ϕ0(ǫ, α), a constant with respect to the nonlinear evolution. Thus to
verify (121), it remains only to show that w0 = 0.

According to (72),

Nα ≡ S · J −1
α · E(θ + α) · Jα · E(θ + α),

and so U# is obtained from U̇ by two nonlinear evolutions E(θ + α) and E(θ + α),
two linear jumps Jα, J −1

α , and a linear half period shift S. By (25), w is constant
across entropy jumps, while the two nonlinear evolutions correspond to evolution by
the nonlinear non-conservative system (20). This is equivalent, by change of variables,
to evolution by the p-system

τt − ux = 0,

ut + px = 0,

on each entropy level, since the entropy S is constant on each evolution. Since the
p-system is in conservation form, we integrate in time to get

d

dx

∫ 2π

0

p(x, t) dt = 0,

so this integral is constant in x on each entropy level. Note that this is not the usual
conserved integral as we have interchanged the roles of x and t for the evolution. Now,
by (9), (19) we have

p = Kpm
2 (z0 w)

2γ
γ−1 ,

so it follows directly using (18) that

d

dy

∫ 2π

0

w(y, t)
2γ

γ−1 dt = 0,

separately on each entropy level. Therefore, since w is preserved by the jumps and
the moment is preserved under a time-shift, this integral is constant throughout the
entire evolution. We thus conclude that

∫ 2π

0

{ẇ(t)}
2γ

γ−1 dt =

∫ 2π

0

{

w#(t)
}

2γ
γ−1 dt

which by (123) implies

(124)

∫ 2π

0

[

{w0 + ẇ(t)}
2γ

γ−1 − {ẇ(t)}
2γ

γ−1

]

dt = 0.

Since ẇ(t) > 0, (w, like τ , measures a mass density), it follows that the integrand in
(124) has the sign of the constant w0 for all values of t. But the integral vanishes,
so we must have w0 = 0. This completes the proof of the lemma, and the proof of
Theorem 13 is complete.
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5. The N-Fourier cutoff problem. In this section we show that the assump-
tion of existence of a solutionW of the auxiliary equation (84) is valid for non-resonant
Θ if we assume a cutoff of Fourier modes at arbitrarily high modes. In this case the
proof of Theorem 14, giving periodic solutions under this assumption, goes through
essentially unchanged. We take this as demonstrating that periodic solutions of the
compressible Euler equations exist to within an arbitrary Fourier cutoff.

Thus let N ≥ 2 be any positive natural number, and define the N -Fourier cutoff
associated with the operators N and M by

(125) NN [V ] ≡ 1+ PNNPN [V ],

and

(126) MN [V ] = 1+ PNMPN [V ] = 1+MPN [V ],

where PN denotes orthogonal projection onto the space ∆N defined by

(127) ∆N ≡ PN∆ = ⊕1≤n≤N ∆n ⊂ ∆,

and we restrict7

NN , MN : 1+∆N → 1+∆N .

Since Fourier modes are invariant for the linear operator M, MN is just the
restriction of M to the space ∆N , as in Theorem 2. The N -Fourier cutoff assumption
reduces the infinite dimensional nonlinear and linear eigenvalue problems (1) and (2)
to the finite dimensional problems

(128) (NN − I)[V ] = 0,

and

(129) (MN − I)[V ] = 0,

where now V ∈ ∆N . In particular, by Theorem 2, the kernel of MN − I is the
projection of the kernel of M−I on ∆N . We record this as a lemma:

Lemma 22. For N ≥ 2, the kernel and range of MN , are given by

KN ≡ PNK and RN ≡ PNR,

respectively.

The goal of this section is to prove the following theorem:

7Note that, in addition to removing the high modes n > N , we have imposed periodicity of the 0-
mode by projecting out the 0-mode of each operator and then adding back in the non-dimensionalized
0-mode base state 1 = (1, 0). The motivation for this is that the proof in Theorem 21 that perodicity
of the 0-mode is a consequence of periodicity of the 1-mode, requires the conservation law, and
the conservation law only holds approximately when high modes are neglected. However, because
Theorem 21 demonstrates that the zero mode is periodic when all the Fourier modes are included,
the failure of periodicity of the zero mode when high modes are neglected should be on the order of
the neglected modes. By this we suggest that (125), (126) are appropriate for an approximate finite
dimensional cutoff of the original infinite dimensional problems.
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Theorem 23. Let N ≥ 2 and let Θ = (θ, θ) ∈ (0, π) × (0, π) be non-resonant,
and let J be given by (49). Then there exists a three parameter family of solutions of
(128),

V ≡ Vǫ,α,α ∈ ∆N such that NN V = V ,

that bifurcate from the solution V∗ = T ∗
1 q ∈ ∆1 of the linear problem

M[V ] = V, M ≡ S · J−1 · L(θ) · J · L(θ).

As above, the parameter ǫ measures the strength of the nonlinear perturbation
from M, and (α, α) is an arbitrary small perturbation of the period vector Θ, so
that V ≡ Vǫ,α,α provides solutions of the nonlinear problem (128) for both resonant

and non-resonant periods in a neighborhood of a non-resonant Θ = (θ, θ). Since the
1-mode kernel of M−I is one dimensional, the result gives, for each non-resonant Θ,
the existence of a three parameter family of nonlinear solutions of (NN − I)[V ] = 0,
the parameters being (ǫ, α, α), say, that bifurcate from the kernel of the linearized
operator M−I.

To prove the theorem, and paralleling the development in the infinite dimensional
case, define

GN
ǫ,α = PN Gǫ,αP

N and FN
ǫ,α = PN Fǫ,αP

N ,

so that GN and FN are finite dimensional operators

GN
ǫ,α, F

N
ǫ,α : ∆N → ∆N ,

where the restriction of ∆N to Fourier modes 1 ≤ n ≤ N is just ∆N ∼ R
2N , since by

(37), the map

T N ≡ ⊕N
n=1T

∗
n : R

2N → ∆N

is an isomorphism. In analogy with (84), define the auxiliary equation for the N -
Fourier cutoff to be

(130) PFN(ǫ, α,W ) = PFN
ǫ,α[Z +W ] = 0,

so that

PFN : Iδ ×Bδ × PNK⊥ → RN .

The N -Fourier cutoff assumption directly implies the following improvements of Lem-
mas 10 and 11:

Lemma 24. Assume that N ≥ 2 and that Θ is nonresonant. Then the operator

MN − IN : PNK⊥ → RN

admits the decomposition

MN − IN = P1(M1 − I)⊕
{

⊕N
n=2(Mn − I)

}

,

and MN − IN : PNK⊥ → RN is bounded and invertible. As in the unbounded case,
the 1-mode projection

P1(M1 − I) : K⊥
1 → K1
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is multiplication by τ0 6= 0 as in (70), and we have

(131) ‖[MN − IN ]−1‖ ≤ C(Θ, N),

where

C(Θ, N) = O

(

τ−1
0 , max

2≤n≤N

{

|(−1)nλ±n − 1|−1
}

)

.

Lemma 25. We have

GN
ǫ,α[V ] =

1

ǫ

{

NN
α [1+ ǫV ]− 1

}

,

and

FN
ǫ,α = GN

ǫ,α − IN , so that FN
ǫ,α[V ] = GN

ǫ,α[V ]− V.

The nonlinear operators GN
ǫ,α and FN

ǫ,α have the limits

lim
ǫ→0

FN
ǫ,α = MN

α − IN lim
ǫ,α→0

FN
ǫ,α ≡ GN

0 = MN − IN ,

lim
ǫ→0

GN
ǫ,α = MN

α , and lim
ǫ,α→0

GN
ǫ,α = MN ,

where convergence is as matrices. Moreover, if

(132) FN
ǫ,α[Vǫ,α] = 0,

with ǫ 6= 0, then also

NN
α [1+ ǫVǫ,α] = 1+ ǫVǫ,α .

Proof. Lemma 24 follows directly by restricting the estimates of Lemma 10 to
the Fourier modes 1 ≤ n ≤ N . Lemma 25 follows directly from Lemma 11 in light of
(125), (126) and (77), (78).

Corollary 26. If Θ = (θ, θ) ∈ (0, π)× (0, π) is non-resonant, then the auxiliary
equation (130) has solutions W in the sense of Definition 12.

Proof. The corollary follows by the implicit function theorem in ∆N ∼ R
2N in

light of the estimate (131) of Lemma 24.
We now have the N -Fourier cutoff version of Theorem 13:

Theorem 27. Assume that Θ is nonresonant and let W denote the solution of
the auxiliary equation (130) satisfying Definition 12. Then there exists δ > 0 and a
function

αJ = αJ (ǫ, α, α) : Bδ → R, with αJ (0, 0, 0) = 0,

such that, if we set α = α(ǫ, α, α) ≡ (α, α, αJ (ǫ, α, α)), then

FN
ǫ,α[Z +W (ǫ, α)] = 0

for all (ǫ, α, α) ∈ Bδ.
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Proof. The theorem follows by the argument of Section 4 because that argument
depends only the properties of W identified in Definition 12, and on the structure of
the restriction of the operator M− I to the Fourier 1-mode, where it agrees with its
N -Fourier cutoff.

As a direct consequence of Theorem 27 we have the N -Fourier version of Theorem
28, from which Theorem 23 is evident:

Theorem 28. Assume that Θ is nonresonant and let W denote the solution
(130) given by Corollary 26. Then there are constant δ > 0 and smooth functions
αJ(ǫ, α, α) and Vǫ,α,α,

αJ = αJ (ǫ, α, α) : Bδ → R and V = Vǫ,α,α :: Bδ → ∆N ,

such that

V0,0,0 = Z ∈ K, and αJ (0, 0, 0) = 0,

and such that, if α is given by (90), then

FN
ǫ,α[Vǫ,α,α] = 0, that is

NN
α

[

1+ ǫ Vǫ,α,α
]

= 1+ ǫ Vǫ,α,α ,

for all (ǫ, α, α) ∈ Bδ. Here the data for the nonlinear eigenvalue problem is

Vǫ,α,α ≡ Z +Wǫ,α

where Z = T ∗
1 q and Wǫ,α solves (130).

6. Conclusion. In this paper we have used a Liapunov-Schmidt decomposition
to reduce the problem of existence of time-periodic solutions of the compressible Euler
equations to the problem of finding solutions of the auxiliary equation (86) for ǫ > 0.
The auxiliary equation is a perturbation of a linear operator that is invertible but
whose inverse is unbounded due to the presence of small divisors. This introduces
a new KAM type small divisor problem in bifurcation theory, for an operator which
is a composition of linear jump operators and quasilinear evolution operators, the
evolution being by the non-dimensionalized p-system. Although proving existence
for this implicit function theorem appears to be beyond current mathematical tech-
niques due to the quasilinear nature of the problem, analogous results are available
for semilinear problems, and we conjecture that the problem does have a solution.
To support this, we prove that the reduction goes through rigorously assuming an
arbitrarily large Fourier cutoff. Given the many successes of KAM theory in resolving
small divisor problems, one has to expect that these technical issues can be overcome
to complete the proof that solutions with the periodic structure derived in [8] solve
the compressible Euler equations exactly.
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