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LOCAL TIME DECAY FOR A QUASILINEAR SCHRODINGER
EQUATION*

J. E. LINT

Abstract. We study the solutions of a quasilinear Schrédinger equation which has been derived
in many areas of physical modeling. Using the Morawetz Radial Identity, we show that the local
energy of a solution is integrable in time and the local L2 norm of the solution approaches zero as
time approaches the infinity.
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1. Introduction. Consider the equation
iug + alu + q([ul*)u — b(A(R(|ul*))H ([u*)u =0 (1)

where u = u(z,t) is a complex-valued function, z = (x1,22,...,2,) is in the n-
dimensional Euclidean space R",t > 0,1 = (—1)1/ 2_ A is the n-dimensional Laplacian
in x, g and h are real-valued functions, and a and b are real constants.

The equation (1) has appeared in several areas of physical modeling including
plasma physics, Heisenberg ferromagnets and magnons, dissipative quantum mechan-
ics, nanotubes and fullerenes, and condensed matter theory [2, 5, 6, 13, 16-21, 23, 26,
30, 35-37, 39].

Recently, there have been many studies about the local and the global well-
posedness problems for equation (1), see, for example, [3, 4, 9 -11, 12, 14, 15, 22,
32-34, 40] as well as its localized solutions, see, for example, [1, 7, 8, 24, 25, 27, 31,
38] . In this article, we shall show the following property for the equation (1).

THEOREM. Assume the following conditions for the equation (1):
(A1) the solution u is a global smooth function that vanishes sufficiently fast at the
spatial infinity,
(A2) the spatial dimension n > 3,
(A3) a<0,b>0,
(A4) g satisfies the relation g(s)s > (1 4+ ¢o/(n — 1))Q(s) > 0, for some constant
Co Z 1/3,
where Q'(s) = ¢(s) and Q(0) =0, and
(A5) W/ (s)h''(s) > 0 for all s > 0.
Then, the local energy, which is defined as

Eg(t) = / n [—alVul® + Q([u*) + (b/2)|V (h(Jul*))|*] (z, t)dz for R >0,

is integrable in time from 0 to co and the local L? norm of the solution goes to zero
as t approaches the infinity.

As usual, Vu denotes the gradient of u, V - u denotes the divergence of u, and
r = |x|. Also the subscript denotes the partial derivative, thus u; = du/dt, etc.. We
also use the notation u, = (z/r) - Vu. The complex conjugate of u is denoted by u*.
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2. Conservation laws. Multiplying the equation (1) by u*, taking the imagi-
nary part, and integrating over the whole space R", we get a conservation law,

/ |u|?(x,t)dz = constant = L,

where L = [, |ul?*(x,0)dz.
Multiplying the equation by wujy, taking the real part, and integrating over the
whole space R", we get another conservation law,

E(t) :/ [—a|Vul® + Q(Jul?) + (b/2)|V (h(Ju|*)|?] (z,t)dz = constant.
E(t) will be called the energy. By the assumptions (A3) and (A4), @ >0, a < 0, and

b > 0. Thus E(t) is a nonnegative constant. Let E = E(0).

3. Morawetz’ Radial Identity. Let ¢ = {(|z|) = {(r) be a smooth real-valued
function that depends only on the spatial variables. Following [28], we multiply the
equation (1) by ¢(ur + ((n —1)/(2r))u*), take the real part, and get

OX/ot+V - Y+Z=0 (2)

where
X = —Cwv, — ¢((n —1)/(2r))wv — (1/2)¢"wov
Y = a function which depends on u, u,, Vu, us, Q(|ul?), ¢, ¢, V(h(|u|?)), a, and b.
Z = —a{(1/2)(¢" + {'((n = 1)/r))(ww, +vv.) + (¢/r = V([ Vul* = |ur]?) + | Vul?

+(¢(n = 1)(n = 3)/(4r®) + ' (n — 1)/ (4r?))|ul?}

—(1/2)¢'Q([ul*) + ¢((n — 1)/(2r)) (a(ul*)[ul* — Q(|ul?))

+(b/2) {(¢/r = YV (R(|u))[* = ((R(luf*))r)?)

+(1/2)((n = 1)¢/r + OV ((|ul*)?

—(1/r)((n = 1)¢" + (n = 1)(n = 3)(¢" /r = ¢/r*))G(|ul*)

+(n = 1)(C/T)N ([ulYR" () [V (Jul*)? }
where v and w are the real part and the imaginary part of u, respectively, and G'(s) =

(1 (s))?s with G(0) = 0.
Integrating both sides with respect to  in R™ and ¢ from 0 to T', we get

T
/ / Zdxdt
0 n

Assuming |¢] and || are < 1, we get
| X] = | = Cwvr = (((n = 1)/ (2r))wv — (1/2)¢"wo|
< [w(or + (n = 1)v/(2r))[ + (1/2)|wo]
< (1/2)[w? + (v + (n = /(2r))?] + (1/4) (v* + w?)
= (1/2)[w® + (v:)* + ((n = 1) /r)vor + ((n — 1)/ (4r?))v?] + (1/4)[ul*.
Since ((n —1)/r)vv, = V - [((n — 1)x/(2r?))v?] — ((n — 1)(n — 2)/(2r?))v?,
1X] < B/Dul* + (1/2)(vr)? = (n = 1)(n = 3)/(8r*))v* + V- [((n — 1)a/(4r*))v?]
< (3/4)ul* + (1/2)(v,)* + V- [((n = D)2/ (47%))0°].

_|_

<

X (x,0)dx
R’Vl

X(x,T)dz
Rn
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Thus

X (x,0)dx| + X (z,T)dx

Rn

< [ 16D+ (fur)?) da
< /R B2l + (Vul)?) da

Rn

and we have

X (x,0)dx| + X (x,T)dx

Rn

< ¢1, where ¢; depends on E, |a|, b, and L.

R’n
Hence, for all T' > 0,

Zdxdt| < cy.

n

Let ¢(r) = 1. We get

/ [ A=ala/ 9l = )
(

+((n = 1)(n = 3)/ () [uf2] + (0 = 1)/@)) g(uP)lul® — Q(uf2)
+b/2)[1/P) (VAP = (alul?)))?) + (0 = 1)/ @)V <|u|2>>|2>
+(n = 1)(n = 3) /)G (ul?) + (= 1)/r) () () a2V ()]} dedt < ci,

for all T' > 0.

Note that all the terms in the integrand on the left-hand side are nonnegative by
the assumptions (A3), (A4), and (A5).

Thus

[7 [ v < o,
[ [ = vt - @uf st < e

/OOO / (= )/N)IV (h(Jul*)) Pdadt < c,
Aoo /n((n - 1)(71 - 3)/r3)G(|U|2)dxdt <o,
/ooo [ = 0 P P 9 )Pt < e,

where ¢y depends only on FE, |al, b, and L.

4. Integrability of the local energy. In what follows, we let {(r) = 1 —
(1/(2(1+))). Thus,

0<(¢<1,0<(¢ <1, and ¢ </r
Let us consider the case n = 3 first. From (2), using the assumption (A4) and
the inequality
(€ + ¢@/r)(wwr +vvr) = (r¢"” +2¢) (w/r)wr + (v/r)v;)
=(1/2)Ir¢" + 20| ([uf? /r* + [ur[?)
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we get

Z 2 —a{(=1/4) r¢" +2¢| (ul/r? + |Vul?) + (/1 = ) (Vul = [u, )
+C'Vul? + (¢ /(2r%) M}+cwuqm ¢2)Q(ful)
+(b/2) {(¢/r = )V (R(u)[* = (Auf2)r)?) + (1/2)(¢/r +¢) [V (A(ul2)]
—@cvmeum%+a«ynwum>w%m|hA\V|m%f}

=—a{(¢'/2= (W/DIr¢" + 20 NA/r)ul* + (¢'/2 = (1/4)]r¢” + 20| Vul?
+(/2) IVl + (¢ = IVl = )}

+((co/2)(¢/7) = ¢'/2)Q(uf?)
+(b/2) {(¢/r = VIV Ru) = ((R(lu*))r)?) + (1/2)(2¢/r + )V (R(|ul*))?
—(2¢" /)G ([ul?) + 2(¢/r) (lu*) " (Jul*)[ul*[V (Ju*)[* }

2

Using ¢(r) =1— (1/(2(1 +1))), we get

Z > —a{(1/(4r@+r?®)|ul>+ (r/(4Q +7)%)|[Vul* + (1/(4(1 + r)*)|Vul?}
+(r/(6(1+7)*)Q(Jul?)
+(0/2) {1/ A+ DIV R(ul*) P + 2/ (r(1 + 7)) G(Juf?)
(2 + 1)/ (L + )R ()R (Jul?) ul?[V ([u]*)] }

Hence

(1/(r(1 4+ 7)) |u|?dzdt < c3

(1/(1 +7))|Vul*drdt < c3

(1/ (L +r)IV(h(jul*) Pdzdt < cs

(1/(r(1 +7)*)G(jul*)dzdt < c3

I
I
/Ooo /R (r/ (14 1)?)Qlul)dadt < cs
I
I

/ / (L/ (L4 ) (YR ([uf?) ful? |V ()| dadt < s

where ¢35 depends on |al, b, F, and L.
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Thus, for R > 0,

/ / lul?dzdt < ¢4 (3a)
0 JizI<R

/ / |Vul?dzdt < c4 (3b)
0 |lz|<R

/ / Qlul?)dwdt < cs (3¢)
o Jiz|<R

/ / h(|ul?) | dzdt < ¢y (3d)
0 \z\<R

/ / G(|u|*)dzdt < cq (3e)
o Jiz|<R

/ / W (Y (Pl |V (uf?) [ dedt < cs (30)
2|<R

where ¢4 depends on |a], b, R, E, and L.
For the case n > 3, we can get the same result as (3a) — (3f) by rewriting

¢ (wwy + o) = V- [(2/(2r)¢" [ul?] = (1/2)¢" [uf? = ((n = 1)/(2r))¢" |uf?
and using ¢'((n — 1)/r)(ww, +vor) = =¢'(((n = 1)/ (472)) [l + [u,[*).

The ¢4 in this case would depend on n as well.
Thus, forn > 3 and R > 0,

/OOO ER(t)dt:/oo /WR [~alVul + QUIuf) + (/2 [V ()] (2. ) < 5,

where ¢5 depends on |al, b, R, n, E, and L.

Hence the local energy is integrable in time from 0 to co.

5. Local L?-norm decay. Let R > 0, and ¢ be a C* real-valued function such
that ¢(z) = 0 for |z| > 2R, ¢(x) = 1 for |z] < R, and 0 < ¢(x) < 1 for all z in R™.
Multiplying equation (2) by ¢u* and taking the imaginary part of it, we get

d(Ju?)s = iaV - (p((Vu)u* — (Vu*)u)) —iaVe - (Vu)u* — (Vu*)u).

Hence,

<M (Jul? + |Vul?)dz
|z|<2R

/ 6(2) (ju]? )
|z|<2R

where M depends on |a| and the maximum value of |V¢|.
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Thus

/ |u|?(z, t)dx
|z|<R
< /|x|<m¢’(““’)('“' (&, t)da

:/ttl(T—t—i-l) /IQR (@) (Jul2(z, 7)) dz d7+/t 1/I<QR 2)([ul?)dzdr
S/1:1 ~/|w|§2R #)(juf")r da dT+/t 1/|m|<2R 2)(ul*)dedr

t
g(M+1)// (Jul? + |Vul?)dedr
t—1J|z|<2R

Hence
/ |u|?(z,t)dz — 0 as t — oo
|z|<R

by (3a) and (3b).
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