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SCALAR CONSERVATION LAWS WITH BOUNDARY CONDITIONS

AND ROUGH DATA MEASURE SOLUTIONS ∗

BACHIR BEN MOUSSA† AND ANDERS SZEPESSY‡

Abstract. Uniqueness and existence of L
∞ solutions to initial boundary value problems for

scalar conservation laws, with continuous flux functions, is derived by L
1 contraction of Young

measure solutions. The classical Kruzkov entropies, extended in Bardos, LeRoux and Nedelec’s
sense to boundary value problems, are sufficient for the contraction. The uniqueness proof uses
the essence of Kruzkov’s idea with his symmetric entropy and entropy flux functions, but the usual
doubling of variables technique is replaced by the simpler fact that mollified measure solutions are
in fact smooth solutions. The mollified measures turn out to have not only weak but also strong
boundary entropy flux traces. Another advantage with the Young measure analysis is that the usual
assumption of Lipschitz continuous flux functions can be relaxed to continuous fluxes, with little
additional work.

1. Background to Scalar Conservation Laws with Boundary Condi-

tions. DiPerna [11] showed that measure valued solutions are useful to prove conver-
gence of approximations to scalar conservation laws: convergence follows by verifying
that the approximations are uniformly bounded in L∞, weakly consistent with all en-
tropy inequalities and consistent with the inititial data, cf. also [3], [4], [10], [15] and
[19]. The work [18] extended DiPerna’s result to include boundary conditions based
on Bardos, LeRoux and Nedelec’s boundary conditions for the Kruzkov entropies, de-
rived in [2] to establish uniqueness and existence of solutions with bounded variation.
Here we derive a uniqueness result for the initial boundary value problem of scalar
conservation laws with continuous flux functions and initial-boundary data in L∞.
The analysis is a combination of the existence and uniqueness result for the initial
value problems of scalar conservation laws in [20], based on measure valued solutions
in Lp, and the initial boundary value conditions for Young measures in [18], using
weak entropy flux traces. The existence and uniqueness for L∞ solutions by Otto
[16], with Lipschitz continuous fluxes, uses boundary entropy flux pairs related to
Bardos, LeRoux and Nedelec’s boundary entropy inequalities for all convex entropies.
The present work, with continuous flux functions shows that the Kruzkov entropies,
in Bardos, LeRoux and Nedelec’s sense, are sufficient for L1 contraction of Young
measure solutions, which in turn implies uniqueness of L∞ solutions. The uniqueness
proof uses the essence of Kruzkov’s idea with his symmetric entropy and entropy flux
functions, but the usual doubling of variables technique is replaced by the simpler fact
that mollified measure solutions are in fact smooth solutions. The mollified measures
turn out to also have strong boundary entropy flux traces. Existence and uniqueness
for the pure initial value problem, with continuous flux functions, was established by
semi group methods in [9] and by measure solutions in [20].

At the hart of the matter of initial boundary value problems to scalar conservation
laws is the trace of entropy fluxes, which define the boundary condition. The first
study [2] used solutions with bounded variation and hence their trace exist directly.
The work [18] used the equation in the interior domain to show that the entropy flux,
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for measure solutions, has a trace on the boundary. Otto [16] derived traces of entropy
fluxes for L∞ solutions. Vasseur showed in [22] that also the solution itself has a trace,
provided the flux is smooth and satisfies a certain non-degeneracy condition required
by the Averging Lemma technique. The corresponding conditions of the trace for the
initial data was derived in [11] and further studied in [8], [22]. Young measures have
been used also to study the behavior of solutions to initial boundary value problems
of some hyperbolic systems of conservation laws, see [7], [13].

The plan of the paper is: Section 2 gives an introduction to Young measure
solutions, the statements of the contraction of measure solutions and the uniqueness
and existence of L∞ solutions and its relation to the work by Otto [16]. Section 3
proves the uniqueness result and Section 4 derives the existence part.

2. Measure Valued Solutions and the Results. Let Ω be a bounded open
set in IRd with smooth boundary ∂Ω and outward unit normal vector n. Consider for
u : Ω × IR+ → IR the scalar nonlinear conservation law

∂tu + divxf(u) = 0, on Ω × IR+, (1)

with the Bardos, LeRoux and Nedelec [2], [12] boundary condition on ∂Ω × IR+, for
all k ∈ IR,

sgn((u(x̂, t) − k) − sgn(a(x̂, t) − k))(f(u(x̂, t)) − f(k)) · n(x̂) ≥ 0, (2)

and the initial condition

u(·, 0) = u0, on Ω, (3)

where f = (f1, ..., fd) : IR → IRd, divxf(u(x, t)) =

d∑

i=1

∂fi(u(x, t)/∂xi and IR+ ≡

(0,∞).
Young measure solutions can be constructed from the weak limit of approximate

solutions to (1), cf. [3], [4], [10], [15] and [19]. Consider for instance vanishing viscosity
solutions uh satisfying

∂tuh + divf(uh) =h∆uh, in Ω × IR+,

uh = a, on ∂Ω × IR+,

uh = u0, on Ω × {0},

Provided the data has bounded variation, [2] shows that uh converge a.e. to a function
satisfying (1-3) with the uniform bound

‖uh(·, t)‖L∞(Ω×IR+) ≤ K.

Following [21] and [11], one can therefore extract a subsequence {uhj
} with an asso-

ciated Young measure valued mapping ν(·) : Ω× IR+ → Prob([−K,K]), such that for
any g ∈ C(IR) and all φ ∈ L1(Ω × IR+)

lim
j→∞

∫

Ω×IR+

g(uhj
(y))φ(y)dy =

∫

Ω×IR+

∫

IR

g(λ)dνy(λ) φ(y)dy

≡

∫

Ω×IR+

〈νy, g(λ)〉φ(y)dy.
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The work [18] formulated conditions for Young measure solutions to the initial
boundary value problem. The definition is based on transversally averaged traces, on
∂Ω× IR+, of Young measures. To define this trace introduce first, in a neighborhood
of ∂Ω, the change of coordinates

Ω ∋ x → (x̂, x⊥) ∈ ∂Ω × (0, κ)

x̂ = x − x⊥n(x̂) (4)

for some κ > 0, then we have from [18]

Lemma 2.1. Suppose ν : Ω×IR+ → Prob([−K,K]) is a Young measure associated
to a uniformly L∞ bounded sequence of functions,

‖un‖L∞(Ω×IR+) ≤ K, n ∈ IN,

then there is a sequence of positive real numbers, x⊥
j → 0, and a Young measure γν :

∂Ω × IR+ → Prob([−K,K]) such that, for every g ∈ C([−K,K]), the L∞(∂Ω × IR+)
weak star limit

lim
j→∞

∫

∂Ω×IR+

〈ν(x(x̂,x⊥

j
),t), g(λ)〉φ(x̂, t)dx̂dt

=

∫

∂Ω×IR+

〈γν(x̂,t), g(λ)〉φ(x̂, t)dx̂dt, ∀φ ∈ L1(∂Ω × IR+)

(5)

holds, where dx̂ is the Lebesgue measure on ∂Ω.

Based on this trace and the measure valued solutions for initial value problems
introduced by DiPerna [11], the work [18] defines

Definition 2.2. A Young measure, ν, with its trace, γν, satisfying the assump-
tions in Lemma 2.1 is a measure solution to problem (1-3) if for all non negative test
functions ϕ ∈ C1

c (Ω × IR+) and for all k ∈ IR
∫

Ω×IR+

(

〈νx,t(λ), |λ − k|〉∂tϕ(x, t)

+〈νx,t(λ), sgn(λ − k)(f(λ) − f(k))〉 · ∇xϕ(x, t)
)

dxdt

−

∫

∂Ω×IR+

〈γνx,t(λ), (f(λ) − f(k))〉 · n(x)sgn(a − k)ϕ(x, t)dx̂dt ≥ 0,

(6)

and

lim
t→0+

∫

Ω

〈ν(x,t)(λ), |λ − u0(x)|〉dx = 0. (7)

The strong convergence (7) can often be verified by a standard combination of
weak convergence and convexity, see [11] and (55).

Remark 2.3. The Young trace measure γν satisfying the limit (5) is not uniquely
determined by ν. However, the equation (6) implies that the trace of the fluxes for
measure solutions

〈γνx,t(λ), sgn(λ − k)(f(λ) − f(k))〉 and 〈γνx,t(λ), f(λ) − f(k)〉 ∀k ∈ IR
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are in fact uniquely defined on L1(∂Ω × IR+), see [18] and Section 3.

The main results of this paper are

Theorem 2.4. Assume that u0 ∈ L∞(Ω), a ∈ L∞(∂Ω × IR+), f ∈ [C(IR)]d and
that ν and σ are Young measure solutions to (1-3), in the sense of Definition 2.2,
then the contraction

∂t

∫

Ω

〈νx,t(λ) ⊗ σx,t(µ), |λ − µ|〉dx ≤ 0,

holds in the distribution sense on IR+. If in addition ν and σ satisfy the same initial
condition (7), then there exists a unique solution u ∈ L∞(Ω × IR+) such that

νy = σy = δu(y), for a.e. y ∈ Ω × IR+.

Theorem 2.5. Suppose that the data u0, a and f satisfy the assumptions in
Theorem 2.4. Then there exist an L∞ solution u ∈ L∞(Ω × IR+), with ν· = δu(·)

satisfying (6-7).

The measure tensor product νy ⊗ σy is defined for all g ∈ C(IR2) by

〈νy ⊗ σy, g(λ, µ)〉 ≡

∫

IR

∫

IR

g(λ, µ)dνy(λ)dσy(µ).

We will often omit the integration variables λ and µ and write νy and σy instead of
νy(λ) and σy(µ). Let us for k ∈ IR denote the Kruzkov entropy pairs by

(
|λ − k|, q(λ, k)

)
≡

(
|λ − k|, sgn(λ − k)(f(λ) − f(k))

)
.

Remark 2.6. Definition 2.2 is equivalent, cf. (39), to the distribution formula-
tions for all k ∈ IR

∂t〈νx,t, |λ − k|〉 + divx〈νx,t, q(λ, k)〉 ≤ 0, in D′(Ω × IR+), (8)

〈γνx,t,
(
sgn(λ − k) − (sgn(a − k)

)(
f(λ) − f(k)

)
〉 · n ≥ 0, in D′(∂Ω × IR+). (9)

The two inequalities (8-9) are the Young measure form of the Bardos, LeRoux and
Nedelec [2] entropy condition and boundary entropy flux condition for uniqueness and
existence of BV solutions. These conditions, based on the Kruzkov entropies in the
interior and on the boundary, are a subset of the conditions Otto uses for uniqueness
and existence of L∞ solutions. Therefore the unique solution u ∈ L∞(Ω × IR+) in
Theorem 2.4 is the unique solution constructed by Otto in [16].

There is a related formulation of (6) for measure solutions introduced in [6],[5]
to study convergence of the SPH (Smoothed Particle Hydrodynamics) method. This
formulation turns out to be well suited for the convergence of approximate solutions
of (1) and requires somewhat less than Definition 2.2 for the boundary integral term.
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3. The Proof of the Uniqueness Theorem 2.4. An attractive surprise of
measure valued solutions is that a standard regularization of a non smooth measure
valued solution remains a measure valued solution in the interior domain, also for a
nonlinear problem, as first shown in [11]: let, for ε > 0, the function ωε be a standard
mollifier on IRd+1

ωε(y) = ε−(d+1)ω(y/ε) ∀y ∈ IRd+1, (10)

satisfying ω ∈ C∞
c (IRd+1), supp ω ⊂ {y ∈ IRd+1 : |y| ≤ 1} and

ω ≥ 0,

∫

IRd+1

ω(y)dy = 1. (11)

Then the positive measure νε defined by

〈νε
y , g〉 =

∫

Ω×IR+

〈νz, g〉ωε(z − y)dz ∀g ∈ C(IR), ∀y ∈ Ω × IR+

is a Young measure in the interior domain

Ωδ
+ ≡ {y ∈ Ω × IR+ : distance (y, ∂(Ω × IR+)) > δ},

for ε ≤ δ, and νε
y depends smoothly on y.

The choise (x, t) ∈ Ωε
+ implies 0 ≤ ωε(·−(x, t)) ∈ C∞

c (Ω×IR+) and ∂yi
ωε(z−y) =

−∂zi
ωε(z − y). Consequently (6) with test function ωε(· − (x, t)) establishes that νε

is also a measure valued solution in the interior domain Ωε
+, i.e.

∂t〈ν
ε
(x,t), |λ − k|〉 + divx〈ν

ε
(x,t), q(λ, k)〉

=

∫

Ω×IR+

(

〈ν(x′,t′), |λ − k|〉∂tωε((x
′, t′) − (x, t))

+〈ν(x′,t′), q(λ, k)〉 · ∇xωε((x
′, t′) − (x, t))

)

dx′dt′

= −

∫

Ω×IR+

(

〈ν(x′,t′), |λ − k|〉∂t′ωε((x
′, t′) − (x, t))

+〈ν(x′,t′), q(λ, k)〉 · ∇x′ωε((x
′, t′) − (x, t))

)

dx′dt′

≤ 0, for (x, t) ∈ Ωε
+. (12)

Note that νε is defined as a positive measure on Ω × IR+, however as Young
measure solution of (1) it is well defined only on Ωε

+ and therefore its behavoir in the
boundary layer is crucial, which is the focus of this paper. To analyze the behavior
near the boundary we shall in Step 2 below slightly modify the mollifier.

The proof of the theorem has four steps, based on six claims proved below:

Step 1 (the interior domain). The regularized measures νε
(x,t) and σε

(x,t), which by

(12-12) are smooth Young measure solutions away from the boundary, satisfy Claim

1a:

∂t〈ν
ε
(x,t) ⊗ σε

(x,t), |λ − µ|〉 + divx〈ν
ε
(x,t) ⊗ σε

(x,t), q(λ, µ)〉 ≤ 0, (x, t) ∈ Ωε
+. (13)
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Step 2 (the boundary contribution). Our analysis near the boundary uses a mol-
lifier which depends on two parameters providing different mollification in a surface
related to ∂Ω × IR+ and its normal direction. As a sub step for a general smooth
curved boundary we consider first the simpler special case when the boundary of Ω
is the plane x1 = 0, so that x⊥ ≡ x1 and x̂ ≡ (x2, . . . , xd); Claim 2b then treats
the general case with a smoothly curved boundary by local transformations to coor-
dinates with planar boundary. In the planar boundary case, x1 = 0, let the mollifiers
ωε⊥ ∈ C∞

c (IR) and ωε̂ ∈ C∞
c (IRd) satisfy (10-11) with d + 1 replaced by 1 and d,

respectively. Define for (x, t) =
(

(x1, x̂), t
)

∈ Ω× IR+ and ε⊥ > 0, ε̂ > 0 the mollifier

more precisely by

ωε(x, t) ≡ ωε⊥(x1)ωε̂(x̂, t). (14)

This new mollifier with the two dimensional mollifier parameter ε = (ε⊥, ε̂) defines by
(12) again measure solutions νε and σε in the interior domain and we use the notation

νε⊥,ε̂ ≡ νε, σε⊥,ε̂ ≡ σε,

ν ε̂ ≡ ν0,ε̂, σε̂ ≡ σ0,ε̂. (15)

Note that the new νε and σε satisfy (13) in Ωδ
+, for δ ≥ ε⊥, since with a two di-

mensional mollification parameter ε = (ε⊥, ε̂, ) and a planar boundary only the x⊥-
convolution part, ωε⊥ , of the mollification interfere with the boundary. Take the limit
ε⊥ → 0+ in this version of (13) to obtain Claim 1b:

∂t〈ν
ε̂
(x,t) ⊗ σε̂

(x,t), |λ − µ|〉 + divx〈ν
ε̂
(x,t) ⊗ σε̂

(x,t), q(λ, µ)〉 ≤ 0, in D′(Ω × IR+). (16)

Define, for any non negative θ ∈ C1
c (IR+), the L∞(0, κ) function

A(x⊥) ≡

∫

∂Ω×IR+

〈ν ε̂
(x(x̂,x⊥),t) ⊗ σε̂

(x(x̂,x⊥),t), q(λ, µ)〉 · n(x̂)θ(t)dx̂dt,

then equation (16) and (4) imply A′ ≥ B in D′(0, κ) for some κ > 0, where ‖B‖L∞(0,κ)

is bounded. Consequently, the function A has bounded variation and therefore the
limit

lim
x⊥→0+

A(x⊥) exists. (17)

Combine this limit and (16), with test functions approaching θ(t)1Ω(x), to obtain

∂t

∫

Ω

〈ν ε̂
(x,t) ⊗ σε̂

(x,t), |λ − µ|〉dx

≤ − lim
x⊥→0+

∫

∂Ω

〈ν ε̂
(x(x̂,x⊥),t) ⊗ σε̂

(x(x̂,x⊥),t), q(λ, µ)〉 · n(x̂)dx̂

=
︸︷︷︸

by (17)

− lim
j→∞

∫

∂Ω

〈ν ε̂
(x(x̂,x⊥

j
),t) ⊗ σε̂

(x(x̂,x⊥

j
),t), q(λ, µ)〉 · n(x̂)dx̂ (18)

=
︸︷︷︸

Claim 2a

−

∫

∂Ω

〈γν ε̂
(x(x̂,0),t) ⊗ γσε̂

(x(x̂,0),t), q(λ, µ)〉 · n(x̂)dx̂, in D′(IR+).
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The proof of the last equality, Claim 2a, is based on polynomial approximation of
q and the weak convergence in Lemma 2.1. Let ε̂ → 0+ in (18) as in Claim 1b to
conclude

∂t

∫

Ω

〈ν(x,t) ⊗ σ(x,t), |λ − µ|〉dx

≤ −

∫

∂Ω

〈γν(x,t) ⊗ γσ(x,t), q(λ, µ)〉 · n(x̂)dx̂, in D′(IR+). (19)

Step 3 (the boundary term provides a contraction). The boundary term in (19)
has the right sign for a contraction:

Claim 3:

〈γν(x̂,t) ⊗ γσ(x̂,t), q(λ, µ)〉 · n(x̂) ≥ 0, a.e. on ∂Ω × IR+.

Step 4 (reduction to a point mass). Steps 1-3 yield the contraction

∂t

∫

Ω

〈ν(x,t) ⊗ σ(x,t), |λ − µ|〉dx ≤ 0. (20)

The initial conditions imply

lim sup
t→0

∫

Ω

〈ν(x,t) ⊗ σ(x,t), |λ − µ|〉dx

≤ lim sup
t→0

∫

Ω

〈ν(x,t) ⊗ σ(x,t), |λ − u0| + |u0 − µ|〉dx

= lim sup
t→0

∫

Ω

〈ν(x,t), |λ − u0|〉dx

+ lim sup
t→0

∫

Ω

〈σ(x,t), |u0 − µ|〉dx = 0,

and we conclude by (20) that for a.e. y ∈ Ω × IR+

〈νy ⊗ σy, |λ − µ|〉 = 0. (21)

Therefore the support of νy ⊗ σy is on the line λ = µ and, since the measure is a
tensor product, the support of νy and σy must be a common single point, say u(y),
i.e. Claim 4: νy = σy = δu(y). Since νy and σy have support in [−K,K] and are
measurable in y, the function u belongs to L∞(Ω × IR+).

Proof of Claim 1a. Since the measures νε
y and σε

y depend smoothly on y, we can
directly compute the derivatives by the chain rule

∂t〈ν
ε
(x,t) ⊗ σε

(x,t), |λ − µ|〉 + divx〈ν
ε
(x,t) ⊗ σε

(x,t), q(λ, µ)〉

=
(

〈∂tν
ε
(x,t) ⊗ σε

(x,t), |λ − µ|〉 + 〈∇x νε
(x,t) ⊗ σε

(x,t), q(λ, µ)〉
)

+
(

〈νε
(x,t) ⊗ ∂tσ

ε
(x,t), |λ − µ|〉 + 〈νε

(x,t) ⊗∇x σε
(x,t), q(λ, µ)〉

)

≡ I + II.

The fact that νε is a Young measure solution in the sense of (12) implies I ≤ 0 on
Ωε

+. Similarly, the measure σε is also a solution and the symmetry q(λ, µ) = q(µ, λ)
imply II ≤ 0, on Ωε

+, which proves (13).
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Proof of Claim 1b. Let

PM (λ, µ) ≡
M∑

n=0

M∑

m=0

pnmλnµm

be polynomials approximating the Kruzkov flux q(λ, µ) (or entropy |λ−µ|) such that

‖q − PM‖[C([−K,K]2)]d → 0, as M → ∞. (22)

The approximation to the identity property of ωε⊥ , cf. [17], yields for any φ ∈
Cc(Ω × IR+)

lim
ε⊥→0+

∫

Ω×IR+

〈νε
(x,t) ⊗ σε

(x,t), q(λ, µ)〉φ(x, t)dxdt

=
∑

n,m≤M

lim
ε⊥→0+

∫

Ω×IR+

pnm〈νε
(x,t), λ

n〉〈σε
(x,t), µ

m〉φ(x, t)dxdt

+ lim
ε⊥→0+

∫

Ω×IR+

〈νε
(x,t) ⊗ σε

(x,t), q − PM 〉φ(x, t)dxdt

=

∫

Ω×IR+

〈ν ε̂
(x,t) ⊗ σε̂

(x,t), PM (λ, µ)〉φ(x, t)dxdt

+ lim
ε⊥→0+

∫

Ω×IR+

〈νε
(x,t) ⊗ σε

(x,t), q − PM 〉φ(x, t)dxdt

The norm of the Young measures are uniformly bounded by 1. Therefore the conver-
gence

|

∫

Ω×IR+

〈νε
(x,t) ⊗ σε

(x,t), PM − q〉φ(x, t)dxdt| ≤ ‖PM − q‖[Cc]d‖φ‖L1(Ω×IR+) → 0,

as M → ∞, is uniform in ε, which together with analogous estimates for the entropy
|λ − µ| proves Claim 1b.

Proof of Claim 2a. Let as in Claim 1b

PM (λ, µ) ≡
M∑

n=0

M∑

m=0

pnmλnµm

be polynomials approximating the Kruzkov flux q(λ, µ) with

‖q − PM‖[C([−K,K]2)]d → 0, as M → ∞. (23)

Then the function q can be replaced by the polynomial PM with neglicable errors in
the integrals of (18) for sufficiently large M , since norm of the measures νε

y , σε
y, γνε

y

and γσε
y are uniformly bounded in ε and y. A combination of Fubinis theorem (a),

dominated convergence (b) and the weak limits (c) in Lemma 2.1 with test function
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ωε̂ verifies Claim 2a:

lim
j→∞

∫

∂Ω

〈ν ε̂
(x(x̂,x⊥

j
),t) ⊗ σε̂

(x(x̂,x⊥

j
),t), PM (λ, µ)〉 · n(x̂)dx̂

=
︸︷︷︸

(a)

∑

n,m≤M

lim
j→∞

∫

∂Ω

〈ν ε̂
(x(x̂,x⊥

j
),t), λ

n〉〈σε̂
(x(x̂,x⊥

j
),t), µ

m〉pnm · n(x̂)dx̂

=
∑

n,m≤M

lim
j→∞

∫

∂Ω

( ∫

∂Ω×IR+

〈ν(x⊥

j
,y), λ

n〉ωε̂(y − (x̂, t))dy

×

∫

∂Ω×IR+

〈σ(x⊥

j
,y), µ

m〉ωε̂(y − (x̂, t))dy
)

pnm · n(x̂)dx̂

=
︸︷︷︸

(b,c)

∑

n,m≤M

∫

∂Ω

( ∫

∂Ω×IR+

〈γνy, λn〉ωε̂(y − (x̂, t))dy

×

∫

∂Ω×IR+

〈γσy, µm〉ωε̂(y − (x̂, t))dy
)

pnm · n(x̂)dx̂

=

∫

∂Ω

〈γν ε̂
(x(x̂,0),t) ⊗ γσε̂

(x(x̂,0),t), PM (λ, µ)〉 · n(x̂)dx̂.

Proof of Claim 2b. In the case of a smoothly curved boundary ∂Ω we will change
to local coordinates where the boundary is a plane, to mollify tangent to the plane
in a neighborhood of the boundary. In an interior domain we use Claim 1a with the
standard mollifier (10-11).

Partition ∂Ω into a finite set of overlapping patches Pn of open sub sets of ∂Ω
of sufficiently small diameter. For any patch introduce a coordinate system tangent
to some point xPn

in Pn and let x̂′ be the orthogonal projection of x̂ ∈ Pn onto the
tangent plane. Extend the flattening coordinates x̂′ to Ω by

x′ = (x⊥, x̂′) where x = x⊥n(x̂) + x̂, 0 ≤ x⊥ ≤ κ, x̂ ∈ Pn.

Introduce also the notation x′ = (x′
1, x̂

′) with x′
1 = x⊥ and x̂′ = (x̂′

2, . . . , x̂
′
d) and

write formally ∂Ω′ ≡ ∪nx̂′(Pn) and Ω′ ≡ ∪nx′((0, κ) × Pn). Let Ωδ ≡ {y ∈ Ω :
distance (y, ∂Ω) > δ}. We will use a partition of unity subordinate to the patches Pn

1∂Ω =
∑

n

χn, 0 ≤ χn ∈ C∞(∂Ω) and suppχn ⊂ Pn.

Let the mollifiers ω⊥
ε ∈ C∞

c (IR) and ω̂ε ∈ C∞
c (IRd) satisfy (10-11) with d + 1 replaced

by 1 and d, respectively, where in addition suppω⊥
ε ⊂ [0, ε]. Define for ε > 0 and

(x⊥, x̂, t) ∈ [0, κ] × Pn × IR+ a mollifier tangential to ∂Ω by

ωn
ε (x′(x), t) ≡ ω⊥

ε (x′
1(x))ω̂ε(x̂

′(x), t). (24)

Write the gradient and the volume measure in the local coordinates as

∂xi
=

∑

j

∂x′
j

∂xi

∂x′

j
≡

∑

j

Xi
j(x

′)∂x′

j
,

dx′ = |det(
∂x′

∂x
)|dx ≡ J(x)dx.
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Use Riesz representation theorem to define the Young measure νǫ, for all g ∈ C(IR)
and for x⊥(y′) ≤ κ − ε, by

〈νε
(x(y′),t), g〉 =

=
∑

n

∫

([0,κ]×x̂′(Pn))×IR+

〈ν(x(z′),t′), g〉ω
n
ε

(

(z′, t′) − (y′, t)
)

χn(x(y′))dz′dt′

≡

∫

Ω′×IR+

〈ν(x(z′),t′), g〉ωε

(

(z′, t′) − (y′, t); y′
)

dz′dt′. (25)

The last identity is used only as a notation to avoid writing the sum over all χn when
the partition is not crucial. The partition is important when νε is differentiated below.
To prepare for this differentiation define also mν

ε ∈ L∞(Ω × IR+) by

mν
ε (x(y′), t) =

∑

ijn

∫

Ω′×IR+

〈ν(x(z′),t′), qi〉

(

Xi
j(y

′) − Xi
j(z

′)
)

∂y′

j
ωn

ε

(

(z′, t′) − (y′, t)
)

χn(x(y′))dz′dt′

+
∑

ijn

∫

Ω×IR+

〈ν(x(z′),t′), qi〉 (26)

Xi
j(z

′)∂y′

j
ωn

ε

(

(z′, t′) − (y′, t)
)

χn(x(y′))
(

J(x(z′)) − J(x(y′))
)

dx(z′)dt′

+
∑

ijn

∫

Ω′×IR+

〈ν(x(z′),t′), qi〉ω
n
ε

(

(z′, t′) − (y′, t)
)

∇xχn(x(y′))dz′dt′.

Following (12), the facts

ωn
ε (z′(·) − (y′, t)) ∈ C1

c (Ω × IR+) for x(y′) ∈ (Ω − Ωκ−ε) × IR+,

∂y′

j
ωn

ε (z′ − y′) = −∂z′

j
ωn

ε (z′ − y′),

imply together with (6), for the test function
∑

n

ωn
ε ((z′(·), t′) − (y′, t))χn(x(y′))J(x(y′)),

that
∫

Ω×IR+

〈ν(x(z′),t′), |λ − µ|〉 (27)

∑

n

∂t
︸︷︷︸

−∂t′

ωn
ε

(

(z′, t′) − (y′, t)
)

χn(x(y′))J(x(y′))dx(z′)dt′

+
∑

i

∫

Ω×IR+

〈ν(x(z′),t′), qi〉

∑

n

∑

j

Xi
j(z

′)∂y′

j

︸ ︷︷ ︸

−∂x(z′)i

ωn
ε

(

(z′, t′) − (y′, t)
)

χn(x(y′))J(x(y′))dx(z′)dt′ ≤ 0.

The next step is to combine (25-27) to verify that νε is approximately a measure
solution, for (x⊥(y′), x̂(y′), t) ∈ (0, κ − ε] × ∂Ω × IR+,

∂t〈ν
ε
(x(y′),t), |λ − k|〉 + divx〈ν

ε
(x(y′),t), q(λ, k)〉 ≤ mν

ε (x(y′), t), (28)
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as follows. In this left hand side, write the gradient ∂xi(y′) =
∑

j Xi
j(y

′)∂y′

j
in the local

coordinates and the volume measure dz′ = J(x(z′))dx(z′) in the global coordinates.
The remainder m′

ε is constructed from the splitting

J(x(z′))
∑

j

Xi
j(y

′)∂y′

j
= J(x(y′))

∑

j

Xi
j(z

′)∂y′

j

+J(x(z′))
∑

j

(

Xi
j(y

′) − Xi
j(z

′)
)

∂y′

j

+
(

J(x(z′)) − J(x(y′))
) ∑

j

Xi
j(z

′)∂y′

j
,

where the first term in this right hand side yields, by (27), a contribution to (28) with
the right sign. The other terms in the splitting gives the remainder m′

ε.
For two Young measure solutions νε1 and σε2 we then obtain as in Claim 1a for

(x, t) ∈ (Ω − Ωκ−max(ε1,ε2)) × IR+

∂t〈ν
ε1

(x,t) ⊗ σε2

(x,t), |λ − µ|〉 + divx〈ν
ε1

(x,t) ⊗ σε2

(x,t), q(λ, µ)〉

≤ 〈σε2

(x,t),m
ν
ε1
〉 + 〈νε1

(x,t),m
σ
ε2
〉 ≡ m′

ε(x, t), (29)

where the function m′
ε satisfies

Lemma 3.1. There is a constant C, depending only on Ω, K, f , and the partition
{Pn}, such that

|m′
ε(x, t)| ≤ C.

Proof of the lemma. Let g(x, y) ≡ 〈ν(x,t) ⊗ σ(y,t), q〉 ∈ [L∞(Ω × Ω)]d. We have

m′
ε(x(z′), t) =

∑

jn1n2

∫

Ω′2

g(x(x′), x(y′))

·(Xj(x
′) − Xj(z

′))∂x′

j
ωn1

ε1
(x′ − z′)ωn2

ε2
(y′ − z′)χn1

(x(z′))χn2
(x(z′))dx′dy′

+
∑

jn1n2

∫

Ω′2

g(x(x′), x(y′))

·(Xj(y
′) − Xj(z

′))∂y′

j
ωn2

ε2
(y′ − z′)ωn1

ε1
(x′ − z′)χn1

(x(z′))χn2
(x(z′))dx′dy′

+
∑

jn1n2

∫

Ω′2

g(x(x′), x(y′)) · Xj(x
′)∂x′

j
ωn1

ε1
(x′ − z′)ωn2

ε2
(y′ − z′)

χn1
(x(z′))χn2

(x(z′))
(

J(x(x′)) − J(x(z′))
)

dx′dy′

+
∑

jn1n2

∫

Ω′2

g(x(x′), x(y′)) · Xj(y
′)∂y′

j
ωn2

ε2
(y′ − z′)ωn1

ε1
(x′ − z′)

χn1
(x(z′))χn2

(x(z′))
(

J(x(y′)) − J(x(z′))
)

dx′dy′

+
∑

jn1n2

∫

Ω′2

g(x(x′), x(y′))

·ωn2
ε2

(y′ − z′)ωn1
ε1

(x′ − z′)∇x

(

χn1
(x(z′))χn2

(x(z′))
)

dx′dy′.
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Use that ‖g‖L∞ is bounded, X ∈ C1 and J ∈ C1, and the ωε approximation to the
identity to obtain the uniform bound

|m′
ε(x, t)| ≤ C for (x, t) ∈ Ω × IR+. (30)

To finish the proof of Claim 2b, let now ε1 → 0+ in (29) and use polynomial
approximation of q and |λ − µ| as in Claim 1b to conclude that for any non negative
φ ∈ C1

c ((Ω − Ω)κ−ε2 × IR+)

∫

Ω×IR+

(

〈ν(x,t) ⊗ σε2

(x,t), |λ − µ|〉∂tφ + m′
εφ

+〈ν(x,t) ⊗ σε2

(x,t), q(λ, µ)〉 · ∇xφ
)

dxdt ≥ 0. (31)

This equation implies as in (17) that

lim
x⊥→0+

∫

∂Ω×IR+

〈ν(x,t) ⊗ σε2

(x,t), q(λ, µ)〉 · n(x̂) dx̂dt exists. (32)

Define the non negative cut off function φδ ∈ C1(IR) with 0 ≤ φδ(x
⊥) ≤ 1 and

φδ(x
⊥) = 0 for x⊥ ≥ δ and φδ(x

⊥) = 1 for x⊥ ≤ δ/2. Test functions approach-
ing 1Ω(x)φδ(x

⊥)θ(t) in (31) yield as in (18) by Fubinis theorem, (32), dominated
convergence, Lemma 2.1 and the factorization (24) of ωε

∂t

∫

Ω

〈ν(x,t) ⊗ σε2

(x,t), |λ − µ|〉φδ(x
⊥)dx

−

∫

Ω

m′
ε(x, t)φδ(x

⊥)dx −

∫

Ω

〈ν(x,t) ⊗ σε2

(x,t), q(λ, µ)〉 · ∇xφδ(x
⊥)dx

≤ − lim
x⊥→0+

∫

∂Ω

〈ν(x,t) ⊗ σε2

(x,t), q(λ, µ)〉 · n(x̂)dx̂

= − lim
j→∞

∫

Ω′

( ∫

∂Ω

〈ν(x(x⊥

j
,x̂),t) ⊗ σ(x(y′

1,ŷ′),t), q(λ, µ)〉 · n(x̂)

ωε2
(y′ − (x⊥

j , x̂′); x̂)dx̂
)

dy′

= −

∫

∂Ω

〈γν(x(0,x̂),t) ⊗ σε2

(x(0,x̂),t), q(λ, µ)〉dx̂ in D′(IR+). (33)

Similarly the four results (a) Fubinis theorem, (b) dominated convergence, (c) the
uniform convergence

∫

∂Ω′

ω̂ε0
(ẑ′ − x̂′)ω̂ε2

(ŷ′ − x̂′)dx̂′ → ω̂ε0
(ẑ′ − ŷ′) as ε2 → 0+

and (d) the function

a(ẑ′, ·) ≡

∫

∂Ω′

〈γν(x(0,ẑ′),t) ⊗ σ(x(·,ŷ′),t), q(λ, µ) · n(ŷ′)〉ω̂ε0
(ẑ′ − ŷ′)dŷ′



MEASURE-VALUED SOLUTIONS 591

having bounded variation as a function of y′
1, for fixed ẑ′, imply in D′(IR+)

lim
ε2→0+

∫

∂Ω

〈γνε0

(x(0,x̂),t) ⊗ σε2

(x(0,x̂),t), q(λ, µ)〉 · n(x̂)dx̂

=
︸︷︷︸

(a,b)

∫

∂Ω′

lim
ε2→0+

∫

IR+

∫

∂Ω′

〈γν(x(0,ẑ′),t) ⊗ σ(x(y′

1,ŷ′),t), q(λ, µ)〉 ·

·
( ∫

∂Ω

n(x̂)ω̂ε0
(ẑ′ − x̂′; x̂′)ω̂ε2

(ŷ′ − x̂′; x̂′)dx̂
)

dŷ′ω⊥
ε2

(y′
1)dy′

1dẑ′

=
︸︷︷︸

(a,c,d), Lemma 2.1

∫

∂Ω

〈γνε0

(x(0,x̂),t) ⊗ γσ(x(0,x̂),t), q(λ, µ)〉 · n(x̂)dx̂. (34)

Approximation of q by polynomials as in Claim 1b shows the uniform, in ε2, conver-
gence

lim
ε0→0+

∫

∂Ω

〈(γνε0 − γν)(x(0,x̂),t) ⊗ σε2

(x(0,x̂),t), q(λ, µ)〉 · n(x̂)dx̂ = 0, (35)

lim
ε0→0+

∫

∂Ω

〈(γνε0 − γν)(x(0,x̂),t) ⊗ γσ(x(0,x̂),t), q(λ, µ)〉 · n(x̂)dx̂ = 0. (36)

Finally, let ε2 → 0+ in (33) and use (34-36) to conclude

∂t

∫

Ω

〈ν(x,t) ⊗ σ(x,t), |λ − µ|〉φδ(x
⊥)dx − lim sup

ε→0+

∫

Ω

m′
ε(x, t)φδ(x

⊥)dx

−

∫

Ω

〈ν(x,t) ⊗ σ(x,t), q(λ, µ)〉 · ∇φδ(x
⊥)dx

≤ −

∫

∂Ω

〈γν(x(0,x̂),t) ⊗ γσ(x(0,x̂),t), q(λ, µ)〉 · n(x̂)dx̂. (37)

We have 0 ≤ φδ ≤ 1. Consequently 0 ≤ 1 − φδ ∈ C∞
c (Ω) and the limit ε → 0+ of

(13), obtained as in Claim 1b, therefore implies

∂t

∫

Ω

〈ν(x,t) ⊗ σ(x,t), |λ − µ|〉(1 − φδ(x
⊥))dx

−

∫

Ω

〈ν(x,t) ⊗ σ(x,t), q(λ, µ)〉 · ∇(1 − φδ(x
⊥))dx ≤ 0. (38)

Use Lemma 3.1 to obtain the uniform bound
∫

Ω

m′
ε(x, t)φδ(x

⊥)dx = O(δ),

and add (37) and (38) with δ → 0+ to prove the claim

∂t

∫

Ω

〈ν(x,t) ⊗ σ(x,t), |λ − µ|〉dx

≤ −

∫

∂Ω

〈γν(x(0,x̂),t) ⊗ γσ(x(0,x̂),t), q(λ, µ)〉 · n(x̂)dx̂.
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Proof of Claim 3. Take the test function ϕ(x, t) = φ(x̂, t)χκ(x⊥) in (6), with

χκ(x⊥) =







(1 − x⊥

κ
)2, 0 ≤ x⊥ < κ

0 x⊥ ≥ κ,

and let κ → 0. Lemma 2.1 and the fact that the L∞(0, κ) function

∫

∂Ω×IR+

〈ν(x(x̂,·),t), q(λ, k)〉 · n(x̂)φ(x̂, t)dx̂dt

has bounded variation on (0, κ), cf. (17), imply that for all k ∈ IR

∫

∂Ω×IR+

〈γν(x̂,t), (sgn(λ − k) − sgn(a − k))(f(λ) − f(k))〉 (39)

·n(x̂)φ(x̂, t)dx̂dt ≥ 0.

This inequality shows that a.e. on ∂Ω × IR+ for all k ∈ IR

〈γν(x̂,t), (sgn(λ − k) − sgn(a − k))(f(λ) − f(k))〉 · n(x̂) ≥ 0. (40)

We similarly obtain a.e. on ∂Ω × IR+ for all k ∈ IR

〈γσ(x̂,t), (sgn(µ − k) − sgn(a − k))(f(µ) − f(k))〉 · n(x̂) ≥ 0. (41)

To verify Claim 3 we will divide the integration

∫

IR2

q(λ, µ)d(γν(λ))d(γσ(µ)) (42)

into six disjoint domains and their boundaries, described by the figure below,

IR2 = {µ < a, λ < µ} ∪ {µ > a, λ > µ} ∪ {µ = a}

∪{λ < a, µ < λ} ∪ {λ > a, µ > λ} ∪ {λ = a} (43)

∪{µ < a, λ > a} ∪ {µ > a, λ < a} ∪ {µ = λ}

and check the sign of the integrals

∫

qd(γν)d(γσ) over each domain.

The boundaries: Take first k = a(x̂, t) in (40) and (41) to get

〈γν, q(λ, a)〉 · n ≥ 0,
〈γσ, q(µ, a)〉 · n ≥ 0,

which together with q(µ, µ) = 0 imply

∫

µ=a

qd(γν)d(γσ) ≥ 0,

∫

λ=a

qd(γν)d(γσ) ≥ 0, (44)

∫

µ=λ

qd(γν)d(γσ) = 0.
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a

Ι

ΙΙΙ

ΙΙ

IV

VI

λ

V

µ
λ = µ

µ = 

λ =

a

Fig. 1. Spliting of the domain

The domains I&II: Take k = µ in (40) to get

∫

IR

(sgn(λ − µ) − sgn(a − µ)) (f(λ) − f(µ)) · n dγν(λ) ≥ 0.

Use the representation

sgn(λ − µ) − sgn(a − µ) =







0 if λ > µ and µ < a

2 sgn(λ − µ) if λ < µ and µ < a,

0 if λ < µ and µ > a

2 sgn(µ − λ) if λ > µ and µ > a,

to obtain
∫

λ<µ<a

q(µ, λ) · n dγν(λ) ≥ 0, and

∫

λ>µ>a

q(µ, λ) · n dγν(λ) ≥ 0, (45)

which after integration with respect to dγσ(µ) on the two sets (−∞, a) and (a,∞),
respectivly, imply

∫

µ<a

∫

λ<µ

q(µ, λ) · n dγν(λ)dγσ(µ) ≥ 0, (46)

∫

µ>a

∫

λ>µ

q(µ, λ) · n dγν(λ)dγσ(µ) ≥ 0.
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The domains III&IV : Let us similarly take k = λ in (41) and integrate it with
respect to dγν(x̂,t)(λ) over the sets (−∞, a) and (a,∞), respectivly, to obtain

∫

λ<a

∫

µ<λ

q(µ, λ) · n dγσdγν ≥ 0, and

∫

λ>a

∫

µ>λ

q(µ, λ) · n dγσdγν ≥ 0. (47)

The domains V &V I: The limit µ → a+ in (45) gives

∫

λ>a

q(λ, a) · n dγν ≥ 0,

and similarly

∫

µ<a

q(µ, a) · n dγσ ≥ 0,

which by the splitting f(λ) − f(µ) = f(λ) − f(a) + f(a) − f(µ) imply

∫

µ<a

∫

λ>a

q(λ, µ) · n dγνdγσ (48)

= γσ(µ < a)

∫

λ>a

q(λ, a) · n dγν + γν(λ > a)

∫

µ<a

q(a, µ) · n dγσ ≥ 0,

and analogously

∫

µ>a

∫

λ<a

q(λ, µ) · n dγνdγσ (49)

= γσ(µ > a)

∫

λ<a

q(λ, a) · n dγν + γν(λ < a)

∫

µ>a

q(a, µ) · n dγσ ≥ 0.

The combinination of (42-44), (46-49) proves the claim.

Proof of Claim 4 . Suppose the contrary, that λ1 6= λ2 and λ1 ∈ supp νy, λ2 ∈
supp σy. Then there are bounded continuous non negative functions Ψi on IR with
λi ∈ supp Ψi, i = 1, 2, supp Ψ1 ∩ supp Ψ2 = ∅ and 〈νy,Ψ1〉 > 0 and 〈σy,Ψ2〉 > 0.
Thus by Fubinis theorem and (21)

0 <

∫

IR×IR

Ψ1(λ)Ψ2(µ)dνy(λ)dσy(µ)

≤ ‖
Ψ1(λ)Ψ2(µ)

|λ − µ|
‖L∞

∫

IR×IR

|λ − µ|dνy(λ)dσy(µ) = 0,

which is a contradiction. Therefore νy = σy = δu(y) for a.e. y.

4. Proof of the Existence Theorem 2.5. Approximate in C(IR) the flux f ,
in (6), by fδ ∈ C1(IR) and use Otto’s existence result [16] for the problems with
smooth fluxes fδ ( or alternatively, approximate also the initial and the boundary
data uniformly by functions with bounded varitation and use the existence in [2]).
This approximation shows that the corresponding solutions uδ ∈ L∞(Ω× IR+) satisfy
the uniform bound

‖uδ‖L∞ ≤ K.
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Therefore there is a Young measure ν associated to a sub sequence, {uδ}. We shall
verify that ν is a measure solutions with L∞ initial and boundary data, so that by
the Uniqueness Theorem 2.4 the Young measure is in fact an L∞ solution.

Solution in the interior. Let

qδ(λ, k) ≡ sgn(λ − k)(fδ(λ) − fδ(k)).

In the interior domain the solution uδ satisfies

∂t|u
δ − k| + divxqδ(uδ, k) ≤ 0, in D′(Ω × IR+) (50)

and we obtain directly the distribution limit

0 ≥ d-limδ→0

(
∂t|u

δ − k| + divxqδ(uδ, k)
)

= ∂t〈ν, |λ − k|〉 + divx〈ν, q(λ, k)〉

+d-limδ→0 divx(qδ
(
uδ, k) − q(uδ, k)

)

︸ ︷︷ ︸

= 0

so that (8) holds, i.e. ν is a measure solution in the interior domain. It remains to
verify that ν also satisfies the boundary conditions (9) and the initial condition (7).

The boundary condition. Define for any φ ∈ C1(∂Ω × IR+)

Aδ(x
⊥) ≡

∫

∂Ω×IR+

qδ
(
uδ

(
x(x̂, x⊥), t

)
, k

)
· n(x̂)φ(x̂, t)dx̂dt,

Cδ(x
⊥) ≡

∫

∂Ω×IR+

fδ
(
uδ

(
x(x̂, x⊥), t

))
· n(x̂)φ(x̂, t)dx̂dt.

Then by equation (50) we have

A′
δ ≥ Bδ (51)

in the distribution sense on (0, κ), for 0 < κ independent of δ, where Bδ ∈ L∞(0, κ)
are uniformly bounded, ‖Bδ‖L∞ = O(1). Similarly, the equation

∂tu
δ + divxfδ(uδ) = 0, in D′(Ω × IR+)

shows that C ′
δ = Dδ in D′(0, κ), where Dδ,∈ L∞(0, κ) are uniformly bounded,

‖Dδ‖L∞ = O(1). Therefore Aδ and Cδ have bounded variation and the limits
limx⊥→0+ Aδ(x

⊥) and limx⊥→0+ Cδ(x
⊥) exist. Consequently, using the notation

w(0+) ≡ limx⊥→0+ w(x⊥), we have

0 = lim
κ→0+

lim
δ→0+

1

κ

∫ κ

0

∫ x⊥

0

Dδ(z)dzdx⊥

= lim
κ→0+

lim
δ→0+

1

κ

∫ κ

0

(
Cδ(x

⊥) − Cδ(0+)
)
dx⊥

= lim
κ→0+

1

κ

∫ κ

0

∫

∂Ω×IR+

〈ν, f(λ)〉 · nφ(x̂, t)dx̂dtdx⊥

− lim
δ→0+

∫

∂Ω×IR+

fδ(uδ (x(x̂, 0+), t)) · n(x̂)φ(x̂, t)dx̂dt

=

∫

∂Ω×IR+

〈γν, f(λ)〉 · nφ(x̂, t)dx̂dt

− lim
δ→0+

∫

∂Ω×IR+

fδ(uδ (x(x̂, 0+), t)) · n(x̂)φ(x̂, t)dx̂dt. (52)
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Since uδ is a solution satisfying the boundary inequalities (6), we also know that

Aδ(0+) ≥

∫

∂Ω×IR+

sgn(a − k)
(
fδ

(
uδ (x(x̂, 0+), t)

)
− fδ(k)

)
· n(x̂)φ(x̂, t)dx̂dt

so that by the last equality in (52)

lim inf
δ→0+

Aδ(0+) ≥

∫

∂Ω×IR+

sgn(a − k)〈γν, f(λ) − f(k)〉 · n(x̂)φ(x̂, t)dx̂dt.

This and (51) show that

0 = lim
κ→0+

lim
δ→0+

1

κ

∫ κ

0

∫ x⊥

0

Bδ(z)dzdx⊥ (53)

≤ lim
κ→0+

lim inf
δ→0+

1

κ

∫ κ

0

(Aδ(x
⊥) − Aδ(0+))dx⊥

≤ lim
κ→0+

1

κ

∫ κ

0

∫

∂Ω×IR+

〈ν, q(λ, k)〉 · nφ(x̂, t)dx̂dtdx⊥

−

∫

∂Ω×IR+

sgn(a − k)〈γν, f(λ) − f(k)〉 · n(x̂)φ(x̂, t)dx̂dt

=

∫

∂Ω×IR+

〈γν, q(λ, k)〉 · nφ(x̂, t)dx̂dt

−

∫

∂Ω×IR+

sgn(a − k)〈γν, f(λ) − f(k)〉 · n(x̂)φ(x̂, t)dx̂dt (54)

which proves that the boundary condition (9) is satisfied, cf. Remark (2.6).
The initial condition. The initial condition (7) follows from a standard combina-

tion, cf. [11] or Claim 5 below, of the following weak convergence and convexity

(i) lim
t→0+

∫

Ω

〈νx,t, λ − u0(x)〉φ(x)dx = 0, ∀φ ∈ C1(Ω),

(ii)

∫

Ω

〈νx,t, λ
2〉dx ≤

∫

Ω

u2
0(x)dx.

(55)

To prove the estimates (i) and (ii), use first that the equation for uδ implies the
uniform bounds

∫

Ω

(
uδ(x, t) − u0(x)

)
φ(x)dx = O(t),

∫

Ω

(uδ(x, t))2dx ≤

∫

Ω

(u0(x))2dx,

and take their limits as δ → 0+ to obtain (55).

Claim 5. The estimates (i) and (ii) in (55) imply the initial condition.

Proof. Let φn ∈ C1(Ω) approximate u0 in L1(Ω), so that ‖u0 − φn‖L1 → 0, then
the weak limit (i) in (55) shows that

lim
t→0+

∫

Ω

〈νx,t, λ〉u0(x)dx =

∫

Ω

(u0(x))2dx,
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and consequently Jensen’s inequality and the convexity (ii) in (55) imply

1
∫

Ω
dx

( lim
t→0+

∫

Ω

〈νx,t, |λ − u0(x)|〉dx)2

≤ lim
t→0+

∫

Ω

〈νx,t, (λ − u0(x))2〉dx

= lim
t→0+

∫

Ω

〈νx,t, λ
2〉dx +

∫

Ω

u2
0dx − 2 lim

t→0+

∫

Ω

〈νx,t, λ〉u0dx ≤ 0,

so that

lim
t→0+

∫

Ω

〈νx,t, |λ − u0|〉dx = 0.
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