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EXISTENCE OF POSITIVE SOLUTIONS DUE TO NON-LOCAL

INTERACTIONS IN A CLASS OF NONLINEAR BOUNDARY VALUE

PROBLEMS∗

FORDYCE A. DAVIDSON† AND NIALL DODDS‡

Abstract. We consider a class of non-local boundary value problems of the type used to model
a variety of physical and biological processes, from Ohmic heating to population dynamics. Of
particular relevance therefore is the existence of positive solutions. We are interested in the existence
of such solutions that arise as a direct consequence of the non-local interactions in the problem.
Conditions are therefore imposed that preclude the existence of a positive solution for the related
local problem. Under these conditions, we prove that there exists a unique positive solution to the
boundary value problem for all sufficiently strong non-local interactions and no positive solutions
exists otherwise.
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1. Introduction. In this paper we study the steady states of a class of non-local

differential equations of the form

ut(x, t) =
n

∑

i=1

(ai(x)uxi
(x, t))xi

+b(x)u(x, t)+ǫũ(t)+n(x, ǫ, u(x, t), ũ(t)) x ∈ U, t > 0;

u(x, t) = 0 for x on ∂U, t ≥ 0; u(x, 0) = u0(x), (1)

where U is a bounded connected subset of R
n, n = 1, 2, 3 with a suitably smooth

boundary, ∂U , ǫ ∈ R
+, ũ(t) :=

∫

U
u(x, t)dx, and n : U × R × R × R → R with

n(x, ǫ, ζ, ζ̃) = o(ζ) for ζ near zero, uniformly in bounded ǫ intervals. Moreover, we
assume that n(x, 0, u, ũ) = f(x, u) for some suitable function f .

Equation (1) is referred to as a non-local differential equation, as it contains the
functional ũ, the value of which depends upon the value of u(x) the domain U . The
parameter ǫ can be considered as a measure of the strength of the non-local effects in
the equation: for ǫ = 0, the final condition on n given above, ensures that (1) reduces
to a local differential equation.

Non-local equations of the type given in (1) arise in the study of a wide variety
of applications, including Ohmic heating [21, 28, 30], the formation of shear bands
in materials [2], heat transfer in thermistors [19], combustion theory [32], the electric
ballast resistor [8], microwave heating of ceramic materials [6, 29], and population
dynamics [25]. An extensive survey of results, techniques and applications of non-
local reaction-diffusion equations of the form studied here is given in [22].

Steady state solutions of (1) must clearly satisfy the system

n
∑

i=1

(ai(x)uxi
(x))xi

+ b(x)u+ ǫũ+ n(x, ǫ, u(x), ũ) = 0, x ∈ U ;

u(x) = 0 for x on ∂U. (2)
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Our aim in this paper is to establish the existence of positive solutions to (2). As
we are interested in the existence of positive solutions to (2) that arise as a direct
consequence of the non-local interactions in the equation, conditions will be imposed
that preclude the existence of a positive solution for ǫ = 0, i.e. in the local case.

Existence of positive steady state solutions of non-local differential equations has
been studied previously by many authors (e.g. [1, 6, 8, 9, 21, 23, 25, 29]). However,
the effect of the non-local terms, in isolation, on the existence of positive solutions
been not been previously considered.

The conditions on n given above ensure that (2) has the trivial solution u ≡ 0 for
all values of the strength parameter ǫ. We will show that on increasing ǫ through a
critical value, a continuum of positive steady state solutions bifurcates from this trivial
solution branch. The behaviour of this continuum is investigated and conditions are
given under which it can be guaranteed that (2) has a unique positive solution for all
values of the strength parameter above the critical value. In order to best illustrate
these results, we will first formulate them by considering a specific example, which
arises in the study of population dynamics. These results are of interest in their own
right but we will also return to the more generic form given in (2) and give conditions
under which the various result continue to hold. The specific example we will consider
is related to a class of local problems said to be of diffusive-Fisher-type:

ut(x, t) = ∆u(x, t) + u(x, t)b(x) − u(x, t)f(x, u(x, t)) x ∈ U, t > 0, (3)

where f is normally assumed to at most quadratic. System (3), with b(x) ≡ b0 and
f(u) = u/K for constants b0 and K was first proposed by Fisher as a deterministic
approximation to a stochastic model for the advancement of an advantageous gene
through a population. System (3) is also a natural spatial extension of the logistic
equation of population dynamics and and its use is commonplace in mathematical
biology as a prototype model (see e.g. [7] and [18]). We will consider the steady
states of a non-local extension of this model as given by (2) with

n(x, ǫ, u, ũ) = −u[ρu+ βu2 + γǫũ+ δǫũ2], ρ, γ > 0, β, δ ≥ 0, (4)

where ρ, β, γ and δ are continuously differentiable, real-valued functions on U . From
hereon we assume that the conditions given in (4) are satisfied.

The inclusion of the linear and nonlinear non-local terms in (2) represent, re-
spectively, a contribution to the net birth rate (through e.g. dispersal of seeds or
spores) and additional competition effects for a common resource such as water. For
the derivation and analysis of a similar model see [25], where non-local effects are
assumed to only contribute to the competition terms and the focus is on changes in
system behaviour with domain size.

The approach we take is to rewrite (2) as an operator equation between appro-
priate function spaces. In this way, solutions to (2) can be shown to be equivalent to
solutions of an associated nonlinear eigenvalue problem.

In Section 2 we precisely define the operator formulation of the problem and
present some results regarding these non-local operators and relevant spectral prop-
erties. The main results of this paper are presented in Sections 3, 4 and 5. Sections
3 and 4 consider (2) when n is of the form given in (4). In Section 3 the existence of
non-trivial solutions to (2) is established using bifurcation theory, and in Section 4,
by first developing appropriate a priori bounds, it is shown via the implicit function
theorem that a unique positive solution of (2) exists for all values of the parameter ǫ
above a critical value, whilst no positive solution exists for ǫ less than this value. In
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Section 5 we discuss the stability of positive solutions. Finally, in Section 6 we con-
clude by discussing how our results can be generalized to a wider class of non-local
problems and briefly discuss some qualitative properties and open questions.

2. Preliminaries. Let U be a bounded connected subset of R
n, with boundary

∂U ∈ Ck+1, where k = ⌊n+4
2 ⌋, and define

X := {u ∈ C2,α(Ū) | u = 0 on ∂U},

for some α > 0. Then define the operators A,L(ǫ) : X → Cα(Ū), B : X → R by

[Au](x) =

n
∑

i=1

(ai(x)uxi
(x))xi

+ b(x)u(x), Bu =

∫

U

u(x)dx,

and L(ǫ) = A+ ǫB, (5)

where ai, b ∈ Ck(Ū) and ǫ ∈ R. We assume throughout that −A is uniformly elliptic.
We will also assume that −A is positive definite.

Let N : R × Cα(Ū) → Cα(Ū) be defined by

[N(ǫ, u)](x) := n(x, ǫ, u(x), ũ),

where n : U × R × R × R → R is defined in (4) above. The equation that we will
consider throughout this paper is

F (ǫ, u) := L(ǫ)u+N(ǫ, u) = 0. (6)

Note that standard regularity arguments, the choice of k and the conditions on the
coefficients and on the domain U are sufficient to ensure that u ∈ X is a solution of
(6) iff u(x) satisfies the boundary value problem (2). Henceforth we shall therefore
only refer to equation (6).

By (4), it follows that N(ǫ, u) = o(|u|α) as |u|α → 0 uniformly in bounded ǫ
intervals and that u ≡ 0 is a solution of (6) for all ǫ ∈ R. Here |u|α is the standard
norm in Cα(Ū). Moreover, L(ǫ)u = 0 is the linearization of (6) about the trivial
solution of (6).

The operator L(ǫ) is closable by extension to an operator L̃(ǫ) : H2(U)∩H1
0 (U) ⊂

L2(U) → L2(U). The spectral properties of this non-local operator have been exten-
sively studied in certain cases: see [4, 5, 14, 20] for the case n = 1; [23] for n ≥ 3,
and; [1, 15, 16, 24] for general n. It is shown in these papers that the eigenvalues,
corresponding eigenfunctions and other spectral properties of the operator L(ǫ) are
precisely those of its closed extension L̃(ǫ) and hence in the following, we simply refer
to the operator L(ǫ) as defined in (5).

When ǫ = 0, L(ǫ) reduces to the local operator A. With the above assumptions on
A in place, the spectral properties of this operator are well-known. The spectrum of A
consists entirely of isolated eigenvalues of finite multiplicity, which form a decreasing
sequence of real numbers, tending to −∞. The largest eigenvalue of A is simple, is
negative as −A is positive definite, and has a corresponding eigenfunction, which is
positive on U . Furthermore this is the only eigenvalue of A to which there corresponds
a positive eigenfunction. We denote the eigenvalues of A by γk, ∀k ∈ N, such that
0 > γ1 > γ2 ≥ ... ≥ γk ≥ γk+1 ≥ ... The general approach to establishing properties
of the nonlocal operator L(ǫ) is to view ǫ as a homotopy parameter and use the
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perturbation theory of Kato [27]. In particular it can be shown that the spectrum
of L(ǫ) consists of entirely of isolated eigenvalues {λj(ǫ)}∞j=1, which are continuous
functions of ǫ and for which λk(0) = γk (when indexed appropriately). It can be shown
that under certain conditions, L(ǫ) has a principal eigenvalue, i.e. an eigenvalue for
which corresponding eigenfunctions can be chosen to be positive. See [14, 15, 16] for
spectral results most relevant to the context here and also [20, 24] for the general
background to the spectral theory of these operators. Note that such results are not
restricted to small ǫ.

For the proofs of the following results and the discussion on generalizations, which
follows, it is important to note that condition (4) and u ≥ 0 on U imply

x∗ ∈ U, u(x∗) = 0 =⇒ [N(ǫ, u)](x∗) = 0; (7)

x∗ ∈ U, u(x∗) > 0, =⇒ [N(0, u)](x∗) < 0; (8)

[N(ǫ, u)](x)v(x) ≥ [Nu(ǫ, u)v](x)u(x), x ∈ U, ∀u, v ∈ X, u, v > 0, ǫ ≥ 0. (9)

Remark 2.1. (a) For general non-local operators N , the growth condition N(u) =
o(|u|α) does not necessarily imply the pointwise condition given in (7). For example
consider the function N(u) = −ũ2. Here, the growth condition holds but N(u) = 0
iff u ≡ 0.
(b) As will be shown below, −A positive definite and condition (8) together are
sufficient to ensure that the local problem has no positive solutions.
(c) The right hand side of (9) may at first sight look somewhat unusual. Recall that
for any suitable function φ, Nu(ǫ, φ)· is a linear operator and hence Nu(ǫ, φ)ψ is its
action on the function ψ, which is itself a function. On setting u = φ and v = ψ,
it is the pointwise multiplication of this function with u that forms the right hand
side of the inequality. As discussed in the final section, condition (9) is similar to a
corresponding condition required for the existence of curves of positive solutions in
local problems.

3. Existence of non-trivial solutions.

3.1. Bifurcation and local existence. We are interested in positive solutions
of (6). To establish the existence of such solutions, we seek branches of positive solu-
tions of (6) that bifurcate from the trivial solution branch. More specifically, we shall
initially appeal to the classical local bifurcation result of Crandall and Rabinowitz
[10] referred to as bifurcation from a simple eigenvalue.

By assumption, F (ǫ, u) = 0 has a branch of trivial solutions (ǫ, 0) ∈ R × X. As a
consequence of the implicit function theorem, bifurcation from this trivial branch can
only occur at points where Fu(ǫ, 0) = L(ǫ) is singular. A value ǫ∗ for which this occurs,
i.e. zero is a eigenvalue of L(ǫ∗), is defined to be a singular value of L(ǫ). Let the
set of singular values of L(ǫ) be denoted by S(L). It is clear from this definition that
S(L) consists of isolated points. Suppose now that there exists an ǫ∗ ∈ S(L) such that
zero is a simple eigenvalue of L(ǫ∗), i.e. dimN(L(ǫ∗)) = 1 with N(L(ǫ∗)) = span{u∗},
say, and u∗ /∈ R(L(ǫ∗)). Suppose also that

Bu∗ /∈ R(L(ǫ∗)). (10)

Then we shall call ǫ∗ a generic singular value of L(ǫ).



NON-LOCAL INTERACTIONS 19

Remark 3.1. If L′(ǫ∗) denotes the derivative of L(ǫ) with respect to ǫ evaluated
at ǫ = ǫ∗, then it follows from (5) that L′(ǫ∗) = B. Hence, our definition of a generic
singular value coincides with, for example, a simple eigenvalue of multiplicity 1 [31]
(and many subsequent, equivalent definitions).

Lemma 3.2. L(ǫ) has a unique singular value ǫ∗ > 0. Moreover, ǫ∗ is a generic

singular value of L(ǫ). The eigenfunction u∗ corresponding to the zero eigenvalue of

L(ǫ∗) can be chosen positive in U .

Proof. It is straightforward to show that condition (10) is in fact equivalent to
λ′(ǫ) 6= 0, i.e. an eigenvalue λ(ǫ) of L(ǫ) passing through zero with non-zero speed
as ǫ passes through ǫ∗. It follows directly by results in [15] that a generic singular
value, ǫ∗, of L(ǫ) exists and is unique and that L(ǫ∗) has a positive eigenfunction
corresponding to the zero eigenvalue.

Lemma 3.2 ensures that on the trivial branch, the unique candidate for a bifur-
cation point is given by ǫ = ǫ∗, the generic singular value of L(ǫ). In fact,

Theorem 3.3. (ǫ∗, 0) ∈ R × X is a bifurcation point of (6), and the bifurcation

branch emanating from (ǫ∗, 0) has the following properties. There exists a positive

real number, s0, and continuous functions, φ : (−s0, s0) → R and ψ : (−s0, s0) → X

with φ(0) = ψ(0) = 0 such that

(ǫ∗ + φ(s), su∗ + sψ(s)) (11)

solves (6) ∀ s ∈ (−s0, s0). Furthermore, there exists a neighbourhood of (ǫ∗, 0) ∈
R × X, M say, such that all non-trivial solutions of (6) in M are given by (11).

Remark 3.4. By Lemma 3.2, the eigenfunction u∗ is positive. Clearly then the
solutions given by (11) are positive for s sufficiently small and positive.

Proof of Theorem 3.3. The proof follows directly from Theorem 1.7 in [10], under
the hypotheses given in Section 2. In particular, as A is a Fredholm operator of index
zero and B is a compact operator, L(ǫ) is also a Fredholm operator of index zero.
Also, the transversality condition (condition (d) in Theorem 1.7 in [10]) is equivalent
to our condition (10).

3.2. Global continua of non-trivial solutions. It is natural to ask to what
extent the local branch defined above can be extended outwith the small neighbour-
hood, M. The global existence of branches of non-trivial solutions can be investigated
via topological methods: central to this is the well-known global bifurcation theorem
of Rabinowitz [33]. However, due to the formulation of the problem under discussion
here, it will be necessary to use a slight modification of this result, (see e.g. [13] and
the references therein; see also [3] for a partially similar result).

The global theory relies on certain compactness properties and therefore we must
first reformulate our problem as follows.

First, we note that (6) is equivalent to

(L(ǫ) + kI)u = kIu−N(ǫ, u), (12)

for any constant k. It can be assumed that k is chosen such that (L(ǫ) + kI)−1 :
Cα(Ū) → Cα(Ū) exists, and hence (12) is equivalent to

u = (L(ǫ) + kI)−1(kIu−N(ǫ, u)). (13)
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i.e.

u = T (ǫ)u+H(ǫ, u), (14)

where T (ǫ) := (L(ǫ)+ kI)−1kI and H(ǫ, u) := −(L(ǫ)+ kI)−1N(ǫ, u). It follows from
[24] that (L(ǫ)+kI)−1 : Cα(Ū) → Cα(Ū) is compact, therefore by standard arguments
T (ǫ) ·+H(ǫ, ·) : Cα(Ū) → Cα(Ū) is compact, and any solution (ǫ, u) ∈ R ×Cα(Ū) of
(14) provides a solution (ǫ, u) ∈ R × X of (6).

Lemma 3.5. ǫ∗ is a generic singular value of I − T (ǫ) iff ǫ∗ is a generic singular

value of L(ǫ).

Proof. It is straightforward to show that λ(ǫ) is an eigenvalue of L(ǫ) iff µ(ǫ) :=
λ(ǫ)/(k + λ(ǫ)) is an eigenvalue of I − T (ǫ) and that µ(ǫ) is a simple eigenvalue of
I − T (ǫ) iff λ(ǫ) is a simple eigenvalue of L(ǫ). Suppose that ǫ∗ is a generic singular
value of L(ǫ). Then this implies λ′(ǫ∗) 6= 0. But then, µ′(ǫ∗) 6= 0 and the result is
proved.

Next, let Φ : R × Cα(Ū) → Cα(Ū) be defined by Φ(ǫ, u) = u − T (ǫ)u−H(ǫ, u).
Then it follows that Φ is a compact continuous perturbation of the identity and the
Frèchet derivative of Φ with respect to u at (ǫ, 0) is I − T (ǫ). For fixed ǫ, Φ(ǫ, u) is
therefore of an appropriate form for the use of the Leray-Schauder degree. From the
arguments above, it follows that u ≡ 0 is an isolated fixed point of Φ(ǫ, u) ∀ǫ 6= ǫ∗.
Therefore for each fixed ǫ 6= ǫ∗, the degree of Φ with respect to the fixed point u ≡ 0
is given by

deg(Φ(ǫ, ·), 0) = deg(I − T (ǫ), 0) = (−1)β, (15)

where β is the sum of the algebraic multiplicities of the eigenvalues µ(ǫ) of T (ǫ) that
are greater than 1 (see e.g. Chpt. 14 in [35]). By Lemma 3.5, ǫ∗ is a unique generic
singular value of I − T (ǫ) and it follows by the definition of the degree given in (15)
that:

Lemma 3.6. Let ǫ1 < ǫ∗ < ǫ2. Then

deg(Φ(ǫ1, ·), 0) = −deg(Φ(ǫ2, ·), 0) 6= 0.

Finally, define the cones P± by

P± = int{(ǫ, u) ∈ R × X : ǫ > 0 and ± u(x) > 0 ∀ x ∈ U}.

Remark 3.7. Note that no general maximum principle exists for non-local equa-
tions of the type studied here, and therefore it is possible, a priori, that non-negative
solutions to (6) lie in ∂P+.

We can now obtain our main result of this section.

Theorem 3.8. There exist unbounded continua C± ⊂ R × X of solutions of (6)
such that (ǫ∗, 0) ∈ C±. Moreover,

(

C±\{(ǫ∗, 0)}
)

∩ Bη(ǫ∗) ⊂ R × P±,

where Bη(ǫ∗) is the ball centre (ǫ∗, 0), radius η, and η > 0 is sufficiently small.
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Proof. The proof follows closely that of Theorem 2.3 in [33]. By the definitions
given above, H(ǫ, u) = o(|u|α) for u near zero, uniformly on bounded ǫ-intervals.
Hence (14) is of the form discussed in [3] and [13] (these transpose the classical
results of [33] to equations of the form given in (14)). The key criterion that the
index changes as ǫ passes through ǫ∗ is ensured by Lemma 3.6. Hence there exists
a continuum C of nontrivial solutions to (14), which emanates from the bifurcation
point (ǫ∗, 0) and which either joins ∞ in R×Cα(Ū) or joins (ǫ̂, 0) where ǫ̂ is another
singular value of I−T (ǫ). The uniqueness of ǫ∗ ensures that the first alternative must
hold. Following [33], it can be shown that sufficiently close to the bifurcation point,
the continuum C can be locally decomposed into two sub-continua C±. Moreover,
sufficiently close to the bifurcation point these sub-continua must coincide with the
branch of solutions given by Theorem 3.3. As a consequence of (11), the solutions
on these subcontinua have the required sign. Finally, following the arguments in [33]
(see also the remarks in [12, 13]), this local structure of the continuum of solutions
ensures that the alternatives stated above for the continuum C can in fact be applied
to each of the sub-continua C±. Again, the uniqueness of ǫ∗ ensures that the second
alternative holds for each sub-continuum. The result follows by the equivalence of
the solutions of (6) and (14) as stated above and denoting the corresponding solution
components in R × X again by C±.

Whilst Theorem 3.8 identifies the existence of an unbounded continua of non-
trivial solutions of (6), it gives only partial information concerning the structure
of the subcomponents. Of particular interest here, is the component C+ on which
solutions are known to be positive, close to the bifurcation point. We now show that
C+\{(ǫ∗, 0)} ⊂ P+, i.e. all solutions on C+\{(ǫ∗, 0)} are positive in U .

Theorem 3.9. C+\{(ǫ∗, 0)} ⊂ P+.

Proof. By Theorem 3.8, C+\{(ǫ∗, 0)} ⊂ P+ in a sufficiently small neighbourhood
of (ǫ∗, 0). We now show that C+\{(ǫ∗, 0)} ∩ ∂P+ = ∅. Suppose that C+\{(ǫ∗, 0)} ∩
∂P+ 6= ∅, i.e. suppose that either (i) there exists a point (ǫ0, u0) ∈ C+ for which
ǫ0 = 0 and u0(x) ≥ 0 for x ∈ U , or (ii) there exists a point (ǫ̂, û) ∈ C+, such that
ǫ̂ > 0 and û(x) ≥ 0 for x ∈ U , whilst ∃ x̂ ∈ Ū such that

û(x̂) = ûx1(x̂) = ûx2(x̂) = ... = ûxn
(x̂) = 0.

First considering (i), we have

[Au0](x) + [N(0, u0)](x) = 0. (16)

Multiplying (16) by u0 and integrating gives
∫

U

[Au0](x)u0(x) + [N(0, u0)](x)u0(x)dx = 0.

However, as −A is positive definite and conditions (7) and (8) hold, we must have that
u0(x) ≡ 0. But then this implies that (0, 0) is a bifurcation point, which contradicts
the uniqueness of ǫ∗. Now considering (ii), we note that either û ≡ 0 or û 6≡ 0. If
û ≡ 0, then (ǫ̂, 0) must be a bifurcation point of L(ǫ) and by Theorem 3.8, ǫ̂ = ǫ∗.
Hence now consider û 6≡ 0. Then it follows from standard arguments for uniformly
elliptic operators that [Au](x̂) ≥ 0, and by (7) that [N(ǫ̂, û)](x̂) = 0. Hence, by (6)
ǫ̂Bu ≤ 0 and it follows directly that ǫ̂ ≤ 0, which is again a contradiction.

Remark 3.10. Part (i) of the proof of this result shows that for the conditions
given here, no positive solution of the local problem (ǫ = 0) exists.
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4. Positive solutions.

4.1. Existence of positive solutions ∀ǫ > ǫ∗. We now establish apriori
bounds that will be used to show the existence of a positive solution to (6) ∀ǫ > ǫ∗.

Lemma 4.1. Any (ǫ, u) ∈ P+ which is a solution of (6) has

|u|X ≤ Γ(ǫ), (17)

where Γ(ǫ) is a positive, increasing function of ǫ, and Γ(ǫ) <∞ for all ǫ <∞.

Proof. Let (ǫ, u) ∈ P+ be a solution of (6). Then multiplying (6) by u and
integrating over U and recalling the definition of n given in (4) yields

∫

U

[Au+ ǫBu](x)u(x)dx −
∫

U

ρ(x)u(x)3dx

−
∫

U

(β(x)u(x)3 + ǫγ(x)u(x)ũ + ǫδ(x)u(x)ũ2)u(x)dx = 0.

Hence,

∫

U

[−Au](x)u(x) + ρ(x)u(x)3dx ≤ ǫ

∫

U

[Bu](x)u(x)dx = ǫ

(∫

U

u(x)dx

)2

.

Applying Hölder’s inequality to the RHS gives

∫

U

[−Au](x)u(x) + ρ(x)u(x)3dx ≤ ǫK

(∫

U

u(x)3dx

)
2
3

, (18)

for some constant K dependent only on U . Now, −A is positive definite and hence it
follows that,

∫

U

u(x)3dx ≤ ǫ
K

minŪ ρ(x)

(
∫

U

u(x)3dx

)
2
3

, (19)

and therefore from (18) and (19) we have
∫

U

[−Au](x)u(x) + u(x)3dx ≤ ǫ3M, (20)

for some positive constant M . Thus it has been shown that u is bounded in W 1,2(U).
For n ≤ 3, W 1,2(U) is continuously embedded in L6(U). It therefore follows that
u is bounded in L6(U). Hence by the hypotheses on N and by (6), Au is bounded
in L2(U), and therefore u is bounded in W 2,2(U). Then by an appropriate Sobolev
embedding, u is bounded in Cα(Ū), where for n = 1, α = 3

2 , for n = 2, α is any
positive number less than 1, and for n = 3, α = 1

2 (see e.g. Theorem 6 in Section 5.6
of [17]). The bound in X then follows from (6) and the fact that L(ǫ) is non-singular
for all ǫ 6= ǫ∗.

Theorem 4.2. There exists a positive solution to (6) for each ǫ > ǫ∗.

Proof. By Theorem 3.9, the continuum of positive solutions C+ emanates from
(ǫ∗, 0) and joins ∞ in R×X. Lemma 4.1 ensure that this occurs at ǫ = ∞. The result
then follows directly.
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4.2. Uniqueness of positive solutions. We now establish that the continuum
C+ is in fact a curve, emanating from the bifurcation point (ǫ∗, 0). This will be
done by applying the implicit function theorem and hence it is required to show that
DuF (ǫ̂, û)· : X → Cα(Ū) is bijective, provided F (ǫ̂, û) = 0, ǫ̂ > 0, and û(x) > 0 ∀x ∈
U . From the definition of F , it follows that

DuF (ǫ̂, û)z = L(ǫ̂)z +Nu(ǫ̂, û)z, (21)

It was noted above that L(ǫ) : X → Cα(Ū) is a Fredholm operator of index zero for
all ǫ ∈ R. Hence and similarly, it can be shown that DuF (ǫ̂, û) · X → Cα(Ū) is a
Fredholm operator of index zero. Therefore DuF (ǫ̂, û) is bijective iff it is injective,
i.e. DuF (ǫ̂, û)z ≡ 0 ⇔ z ≡ 0.

Remark 4.3. That the implicit function theorem can be applied to the example
considered here, means that the previous global existence result is superseded. How-
ever, the implicit function theorem requires quite strict hypotheses to be placed on
the linear operator A and on n, e.g. of the type given in (4). The global results
derived above hold for far weaker hypotheses and therefore will be of relevance to the
more general problem discussed later.

Lemma 4.4. The set C+ is a C1 parameterized curve ǫ→ (ǫ, u(ǫ)) in R × X.

Proof. Let (ǫ̂, û) ∈ C+ and suppose that DuF (ǫ̂, û)z = 0 for some 0 6≡ z ∈ X.
Multiplying (6) by z and (21) by û, subtracting and then integrating over U , gives

∫

U

[Aû](x)z(x) − [Az](x)û(x)dx

+

∫

U

[ǫ̂Bû+N(ǫ̂, û)](x)z(x) − [ǫ̂Bz +Nu(ǫ̂, û)z](x)û(x)dx (22)

=

∫

U

[N(ǫ̂, û)](x)z(x) − [Nu(ǫ̂, û)z](x)û(x)dx = 0.

If z is of one sign on U , then as DuF (ǫ̂, û)z is linear in z, we can assume without loss of
generality that z(x) > 0 in U . But then (22) contradicts (9) and so z must change sign
on U . Without loss of generality, suppose then that z(x) > 0 ∀x ∈ U∗ ⊂ U , whilst
z(x) = 0 on ∂U∗. Hence, zxi

νi ≤ 0 ∀x ∈ ∂U∗, i = 1, ..., n where ν = (ν1, ν2, ..., νn)T

is the outward pointing unit normal vector on ∂U∗. By assumption, −A is uniformly
elliptic and therefore

ai(x) ≥ 0 ∀x ∈ Ū , i = 1, ..., n.

Therefore

∫

U∗

[Aû](x)z(x) − [Az](x)û(x)dx =

∫

∂U∗

n
∑

i=1

ai(x)(ûxi
z − zxi

û)νidS ≥ 0, (23)

where
∫

·dS represents integration with respect to surface area. But on replacing U
by U∗ in (22) then (23) and (9) ensure a contradiction. Hence, z ≡ 0 and as by
Theorem 3.9, C+\{(ǫ∗, 0)} ⊂ P+, we have just shown that DuF (ǫ̂, û) : X → Cα(Ū)
is bijective at all points (ǫ̂, û) ∈ C+\{(ǫ∗, 0)}. The result now follows by a standard
application of the implicit function theorem.

Finally, we have our most complete result.
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Theorem 4.5. Equation (6) has a unique positive solution for all ǫ > ǫ∗ and no

positive solution for 0 ≤ ǫ ≤ ǫ∗.

Proof. The previous results ensure that C+ is a C1 curve parameterised by ǫ, that
joins ∞ in P+ at ǫ = ∞.

Suppose now that (ǭ, ū) ∈ P+ is a solution of (6) not in C+. Then it follows
directly from the proof of Lemma 4.4 that the implicit function theorem can be
applied at (ǭ, ū). First suppose that ǭ ∈ [ǫ∗,∞). Then a maximal C1 curve C̄+ can be
constructed of positive solutions to (6) passing through (ǭ, ū). Now, by Lemma 4.1 and
following similar arguments to those in the proof of Theorem 3.9, it can be shown that
this curve must also remain bounded in P+ for ǫ <∞ and as ǫ∗ is the unique singular
value of L(ǫ), this curve must join (ǫ∗, 0) in R×X. But then by the uniqueness of the
solution curve C+ in any sufficiently small neighbourhood, it follows that C̄+ ≡ C+.

Finally, suppose that ǭ ∈ (0, ǫ∗]. Then again applying the implicit function the-
orem at (ǭ, ū) and using similar arguments to those above, shows that no positive
solution can exist for values of ǫ in this interval.

5. Stability. The solutions discussed so far arise as steady states of the initial-
boundary value problem (1). Therefore a relevant question to ask is: are these solu-
tions stable to perturbation? (It is likely that only stable solutions would be observed
in application.) Following the discussions above and standard arguments (see for ex-
ample [26, 35]), the linear, asymptotic stability of a solution û of (1) is determined
by the eigenvalues of the linear operator Fu(ǫ, û). (Essentially, this follows from the
equivalence of steady state solutions of the boundary value problem and F (ǫ, u) = 0
as discussed above, that the operator Fu(ǫ, û) generates an analytic semi-group and
the compactness of the inverse of Fu(ǫ, û).) The stability result of Henry states that
the solution û is linearly, asymptotically stable if Re(µ) < 0 for all µ ∈ σ(Fu(ǫ, û))
and is unstable otherwise.

First, we note that Fu(ǫ, 0) = L(ǫ) is self-adjoint and has compact resolvent.
Hence its spectrum is real and consists entirely of isolated eigenvalues. Next, by the
definition of the unique singular value ǫ∗ given above, it follows that all the eigenvalues
of Fu(ǫ, 0) are negative for ǫ < ǫ∗ and that (at least) the simple, principal eigenvalue
λp(ǫ) > 0 for ǫ > ǫ∗. Hence, the trivial solution u = 0 is stable for 0 ≤ ǫ < ǫ∗ and
unstable for ǫ > ǫ∗.

Next we consider the branch of positive solutions. In what follows, we assume
that Theorem 4.5 holds and hence there exists a unique branch of positive solutions
extending to ǫ = ∞ as detailed there. In a neighbourhood of the bifurcation point, the
branch of positive solutions is given by (ǫ∗ +φ(s), su∗ + sψ(s)) for s sufficiently small
and positive. Hence the stability of positive solutions close to the bifurcation point is
determined by the eigenvalues of the operator Fu(ǫ+φ(s), su∗+sψ(s)). Note that this
operator has a principal eigenvalue µp(s) for which µp(0) = 0 and all other eigenvalues
µ(s) < 0, for s sufficiently small (by continuity of the spectrum of Fu and noting that,
whilst Fu may not be self-adjoint, it still had compact resolvent). It follows from
Theorem 1.16 in [11], that if φ′(s) > 0, then µp(s) < 0 for s ∈ (0, ŝ), for some
sufficiently small ŝ > 0. By similar arguments to those presented in Corollary 8.25 of
[35], it can be shown that φ′(s) > 0 for s sufficiently small. Hence, positive solutions
are stable provided they lie in a neighbourhood of the bifurcation point. Finally, we
note that solutions on the global extension of this branch can become unstable only
if Re(µp) passes through zero. Recall we are assuming that the implicit function
theorem can be applied at each point (ǫ, u) on the branch. Hence, if σ(Fu(ǫ, u))
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remains real, then by invoking the continuity of the spectrum of Fu, this leads to a
contradiction. Hence all solutions on the branch are stable. However, it is exactly the
non-local components of Fu(ǫ, u) which prevent it from being self-adjoint in general
(even in a formal sense) and hence the spectrum of Fu is not necessarily real. In this
case, a general stability result does not follow directly.

6. The general problem. The results as stated for the specific example consid-
ered above continue to hold for considerably more generalized problems. Essentially,
all that is required of the non-linear term N is for it to be no more than cubic in u and
ũ and the derivative of N/u with respect to u to be negative. (This latter condition
corresponds directly to a commonly used condition imposed to ensure the existence
of curves of solutions in the local case, see e.g. [34] and the references therein.) To
be more precise, suppose that condition (4) is replaced by

n(x, ǫ, u, ũ) := −u[f(x, u) + ǫg(x, ũ)], (24)

where f(x, ·) : R → R and g(x, ·) : R → R are strictly increasing functions satisfying

K1ζ ≤ f(x, ζ) ≤ K2ζ
2, 0 ≤ g(x, ζ) ≤ K3ζ

2

for each x ∈ U for some constants Ki, satisfying 0 < Ki i = 1, 2, 3. Also, suppose that
the derivatives f ′(x, ·) : R → R and g′(x, ·) : R → R exist and are continuous. Then it
is straightforward to show that conditions (7)-(9) still hold and hence all the results
stated above hold in this more general case. (A little more working is required for the
proof of Lemma 4.1, but the calculations take the same form.) It can be shown that
the stability results in Section 5, also hold in this more general case.

For the bifurcation results in Section 3, the conditions on N can be relaxed
further still. Indeed, all that is required for Theorem 3.3 and Theorem 3.8 is that N
is sufficiently differentiable with respect to ǫ and u and that condition (7) is satisfied.
For Theorem 3.9, all that is required in addition is that condition (8) is satisfied.

The non-local term ũ can also be replaced throughout with the more general
expression

[Bu](x) = ũ(x) := c(x)

∫

U

c(x)u(x)dx (25)

with c ∈ Hk−1(U), c(x) of one sign on U . This condition on B is sufficient to
ensure the existence of a unique positive generic singular value of L(ǫ), as defined
above. Moreover, under these conditions, it can be shown that the eigenfunction
corresponding to the zero eigenvalue of L(ǫ∗) is positive (see [15]). The specific form
of ũ is not otherwise required (apart from in the proof of Lemma 4.1, which again
follows along very similar lines).

Finally, the specific form of the differential expression given in (2) is only required
in the proof of Lemma 4.4. Therefore, all main results, other than Theorem 4.5, hold
for more general differential expressions of the form

n
∑

i,j=1

(aij(x)uxi
(x))xj

,

where the operator −A, as defined in (5), is uniformly elliptic and positive definite.
We finish by stating that both general stability and qualitative properties of

positive steady state solutions remain open questions. Numerical integration of the
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system (1) suggests that for simple forms of n of the type given in (4), positive
steady state solutions are stable to large perturbations and for a large range of ǫ.
Such solutions have a convex profile similar to related solutions of the diffusive Fisher
equation. The profile is bounded and becomes increasing by flat in the interior of the
domain and a steep boundary layer is formed as ǫ is increased. It is straight-forward
to gain a heuristic understanding of this behaviour by simply dividing both sides of
equation (2) by ǫ and assuming solutions remain convex and positive. However, it is
exactly the lack of a general maximum principle for such non-local equations, which
prevents this result from following directly. This merits further investigation.
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