
METHODS AND APPLICATIONS OF ANALYSIS. c© 2006 International Press
Vol. 13, No. 4, pp. 337–350, December 2006 002

BLOW-UP RESULTS FOR A REACTION-DIFFUSION SYSTEM∗

YUSUKE YAMAUCHI†

Abstract. We consider the Cauchy problem for the reaction-diffusion system with the nonlinear
terms |x|σj upj vqj . In this system, the exponents p1 and q2 play a crucial role to determine the
behavior of the solutions. Using an ODE method, we prove the Fujita-type nonexistence results for
p1, q2 < 1, for q2 < 1 < p1 or for p1, q2 > 1. Moreover, we also show the nonexistence results for
large initial data.
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1. Introduction. We consider the Cauchy problem for the reaction-diffusion
system:

ut − ∆u = |x|σ1up1vq1 , x ∈ R
N , t > 0,(1.1)

vt − ∆v = |x|σ2up2vq2 , x ∈ R
N , t > 0,(1.2)

u(x, 0) = u0(x) ≥ 0, 6≡ 0, x ∈ R
N ,

v(x, 0) = v0(x) ≥ 0, 6≡ 0, x ∈ R
N ,

where pj , qj ≥ 0, σj > max(−2,−N) (j = 1, 2), and p1, q2 6= 1.
There are some papers on the Cauchy problem for semilinear reaction-diffusion

systems. In [2], Escobedo and Herrero proved the existence and nonexistence of global
solutions, so-called the Fujita-type result, for σ1 = σ2 = p1 = q2 = 0, p2, q1 ≥ 1,
p2q1 > 1. As an extension of [2], Mochizuki and Huang [4] showed the Fujita-type
result for p1 = q2 = 0, 0 ≤ σ1 < N(p2 − 1), 0 ≤ σ2 < N(q1 − 1), p2, q1 ≥ 1, p2q1 > 1.
Both of the results show that the interaction between the unknown functions in the
nonlinear terms determines the behavior of solutions of the system.

In [3], Escobedo and Levine showed an interesting result for σ1 = σ2 = 0, p1,
p2, q1, q2 ≥ 0. Under the assumption that p2 + q2 ≥ p1 + q1 > 0, they showed that
if p1 > 1, the solutions of the system behave like a solution of the single equation
ut − ∆u = up1+q1 .

Our aim of this paper is to show the conditions for the nonexistence of global
solutions of the system (1.1) and (1.2) in three cases p1, q2 < 1, q2 < 1 < p1, or
p1, q2 > 1. The conditions are about the relation between the exponents pj , qj , σj ,
and the initial data. See Theorems 2.1-2.3 in the next section. Comparing each part
(i) in the theorems with the results in [1], we see that our conditions are optimal
because the authors in [1] have proved the following results:
(i) Let p1 < 1, q2 < 1 and p2q1 − (1− p1)(1− q2) > 0. If α < N/2 and β < N/2, then
global solutions exist for small initial data.
(ii) Let p1 > 1 and q2 < 1. If α < N/2 and p1 + q1 > 1 + (2 + σ1)/N , then global
solutions exist for small initial data.
(iii) Let p1 > 1 and q2 > 1. If p1 + q1 > 1 + (2 + σ1)/N and p2 + q2 > 1 + (2 + σ2)/N ,
then global solutions exist for small initial data.
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(iv) Let p1 < 1, q2 < 1 and p2q1− (1−p1)(1− q2) < 0. Then all nonnegative solutions
are global.
Since this problem includes the sublinear case, pj or qj < 1, the authors in [1] show
the global existence by iteration argument in weighted L∞ function space.

Moreover, the same result as [3] holds in our problem, that is, if p1 > 1, the solu-
tions of the system behave like a solution of the single equation ut−∆u = |x|σ1up1+q1

under the assumption that (p2 + q2 − 1)/(σ2 + 2) ≥ (p1 + q1 − 1)/(σ1 + 2).

The iteration method of [3] is often used to show blow up for reaction-diffusion
systems. However, the method does not seem applicable for our problem because the
nonlinear terms have the variable coefficients |x|σj . In this paper, we improve the
argument in [4] and apply it to our problem. The argument in [4] is to transform the
system of PDEs into the ordinary differential inequalities. In our problem, multiply-
ing the equation by negative power of unknown function makes the transformation
possible.

Our plan of this paper is as follows. In Section 2, we state main theorem and
some notation. In Section 3, we prepare several pointwise estimates for solutions.
These estimates are obtained from the system of integral equations associated to
(1.1) and (1.2). In Sections 4 and 5, we prove the nonexistence results in the case
max(p1, q2) < 1 and the case max(p1, q2) > 1, respectively. Because the interaction
between u and v in the former case is stronger than that in the latter, we employ a
system of ordinary differential inequalities. On the other hand, because self-growth of
the solution in the latter case is stronger than that in the former, we employ a single
ordinary differential inequality. In both of the cases, we first show that functions
used in the differential inequality have upper bounds under the assumption that the
global solutions exist. Next, we show lower bounds from the estimates in Section 3.
This contradicts the upper bounds. Hence, the nonexistence of global solutions is
shown. In Appendix, we introduce a comparison principle used in the proofs and a
local existence result for the associated system of integral equations.

Remark 1.1. In [2], [3], [4] and [5], the authors show that the solution blows up
in critical case. This critical blow-up also occurs in our system (1.1)-(1.2), which is
shown in Sections 4 and 5.

2. Main results. For simplicity, let















α =
q1(σ2 + 2) + (1 − q2)(σ1 + 2)

2{p2q1 − (1 − p1)(1 − q2)}
,

β =
p2(σ1 + 2) + (1 − p1)(σ2 + 2)

2{p2q1 − (1 − p1)(1 − q2)}
,

(2.1)















δ1 =
q1σ2 + (1 − q2)σ1

p2q1 − (1 − p1)(1 − q2)
,

δ2 =
p2σ1 + (1 − p1)σ2

p2q1 − (1 − p1)(1 − q2)
.

(2.2)

For a ∈ R, we define the function spaces:

Ia = {w ∈ C(RN ); w(x) ≥ 0, lim sup
|x|→∞

|x|aw(x) < ∞},

Ia = {w ∈ C(RN ); w(x) ≥ 0, lim inf
|x|→∞

|x|aw(x) > 0},
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and

L∞
a = {w is measurable function on R

N ;

w(x) ≥ 0, ‖w‖∞,a ≡ sup
x∈RN

〈x〉a w(x) < ∞},

where 〈x〉 =
(

1 + |x|2
)1/2

. We also define

ET = {(u, v); [0, T ] → L∞
δ1

× L∞
δ2

, ‖(u, v)‖ET
< ∞},

where

‖(u, v)‖ET
= sup

t∈[0,T ]

(‖u(t)‖∞,δ1
+ ‖v(t)‖∞,δ2

).

Now, we state our main results. Throughout this paper, we assume that the initial
data (u0, v0) ∈ Iδ1 × Iδ2 .

Theorem 2.1. Let p1 < 1, q2 < 1 and p2q1 − (1 − p1)(1 − q2) > 0.
(i) If max(α, β) ≥ N/2, then no nontrivial global solutions exist.
(ii) If u0 ∈ Ia (a < 2α) or v0 ∈ Ib (b < 2β), then no global solutions exist.
(iii) For any ν > 0, there exists large C > 0 such that no global solutions with
u0(x) ≥ C exp(−ν|x|2) exist.

Theorem 2.2. Let p1 > 1, q2 < 1.
(i) If α ≥ N/2 or p1 + q1 ≤ 1 + (2 + σ1)/N , then no nontrivial global solutions exist.
(ii) If u0 ∈ Ia (a < max((σ1 + 2 − Nq1)/(p1 − 1),
−{q1(σ2 + 2)+ (1− q2)(σ1 + 2)− p2q1N}/{(1− p1)(1− q2)}), then no global solutions
exist.
(iii) For any ν > 0, there exists large C > 0 such that no global solutions with
u0(x) ≥ C exp(−ν|x|2) exist.

Theorem 2.3. Let p1 > 1, q2 > 1.
(i) If p1 + q1 ≤ 1 + (2 + σ1)/N or p2 + q2 ≤ 1 + (2 + σ2)/N , then no nontrivial global
solutions exist.
(ii) If u0 ∈ Ia (a < (σ1 + 2−Nq1)/(p1 − 1)) or v0 ∈ Ib (b < (σ2 + 2−Np2)/(q2 − 1)),
then no global solution exist.
(iii) For any ν > 0, there exists large C > 0 such that no global solutions with
u0(x) ≥ C exp(−ν|x|2) exist.

Remark 2.4. Each part (i) in Theorems 2.1-2.3 is so-called the Fujita-type nonex-
istence result. Each (ii) and (iii) are for the initial data with bad decay and for large
initial data, respectively.

We can also rewrite the theorems into the way in Escobedo-Levine [3].

Corollary 2.5. Assume that

p1 + q1 − 1

σ1 + 2
≤ p2 + q2 − 1

σ2 + 2
,(2.3)

and let p1 < 1, q2 6= 1.
(i) If max(α, β) ≥ N/2, then no nontrivial global solutions exist.
(ii) If 0 < max(α, β) < N/2, then no global solutions exist for large data.
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Corollary 2.6. Assume (2.3), and let p1 > 1, q2 6= 1.
(i) If p1 + q1 ≤ 1 + (2 + σ1)/N , then no nontrivial global solutions exist.
(ii) If p1 + q1 > 1 + (2 + σ1)/N , then no global solutions exist for large data.

3. Key estimates. In this section, we prepare several estimates for the solu-
tions. To show them, we introduce the system of integral equations associated to
(1.1) and (1.2):

u(t) = S(t)u0 +

∫ t

0

S(t − s)| · |σ1u(s)p1v(s)q1ds,(3.1)

v(t) = S(t)v0 +

∫ t

0

S(t − s)| · |σ2u(s)p2v(s)q2ds,(3.2)

where

S(t)f(x) = (4πt)−
N
2

∫

RN

exp

(

−|x − y|2
4t

)

f(y)dy.

The following lemma is a well-known estimate for the heat equations.

Lemma 3.1. Let u and v be solutions of the system (1.1) and (1.2). There exists
C > 0 such that

u(x, t) ≥ C(1 + t)−
N
2 exp

(

−|x|2
2t

)

, (t > 0),

v(x, t) ≥ C(1 + t)−
N
2 exp

(

−|x|2
2t

)

, (t > 0).

Moreover, we can add logarithmic growth to the bounds in the critical case.

Lemma 3.2. ([3]) Let u and v be solutions of the system (1.1) and (1.2). Assume
that

u(x, t) ≥ C1(1 + t)−
N
2 exp

(

−|x|2
t

)

, (t > 0),

v(x, t) ≥ C2(1 + t)m exp

(

−C3|x|2
t

)

, (t > t0),

where C1, C2, C3 > 0, t0 ≥ 0 and m ∈ R. If m and σ1 satisfy

−Np1

2
+ mq1 +

σ1 + 2

2
= −N

2
, σ1 > max(−2,−N),

then there exist constants C4, C5 > 0 and t1 > t0 such that

u(x, t) ≥ C4(1 + t)−
N
2 log(1 + t) exp

(

−C5|x|2
t

)

, (t > t1).

Proof. See Proposition 1 in [3].

The following two lemmas are for the sublinear case.
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Lemma 3.3. Let 0 ≤ q2 < 1, σ2 > max(−2,−N) and define

v̄(x, t) = ˜Ct
σ2+2

2(1−q2) (S(t)u0(x)ε)
p2

ε(1−q2) .

for ˜C, ε > 0. If ˜C and ε are sufficiently small, then v̄(x, t) is a subsolution for the
problem:

vt − ∆v = |x|σ2up2vq2 , x ∈ R
N , t > 0,

v(x, 0) = v0(x), x ∈ R
N .

Proof. Let k > max{(σ2 + N)/N, 1} and 0 < ε < min(1, p2/{(1 − q2)k}). It
suffices to prove that

v̄(x, t) ≤
∫ t

0

S(t − s)|x|σ2 (S(s)u0(x))p2 v̄(x, s)q2ds.

By Jensen’s inequality, we have

∫ t

0

S(t − s)|x|σ2 (S(s)u0(x))
p2 v̄(x, s)q2ds

≥ ˜Cq2

∫ t

0

s
q2(σ2+2)

2(1−q2) S(t − s)|x|σ2 (S(s)u0(x)ε)
p2

ε(1−q2) ds.(3.3)

Using the inverse Hölder inequality and Jensen’s inequality again, we have for k > 1,

S(t − s)|x|σ2 (S(s)u0(x)ε)
p2

ε(1−q2)

≥ {S(t − s)|x|
σ2

1−k }1−k{S(t − s) (S(s)u0(x)ε)
p2

kε(1−q2) }k

≥ {C1(t − s)
σ2

2(1−k) }1−k{S(t − s) (S(s)u0(x)ε)}
p2

ε(1−q2)

= C1−k
1 (t − s)

σ2
2 (S(t)u0(x)ε)

p2
ε(1−q2) .(3.4)

Substituting (3.4) into (3.3), we obtain

∫ t

0

S(t − s)|x|σ2 (S(s)u0(x))
p2 v̄(x, s)q2ds

≥ ˜Cq2C1−k
1 (S(t)u0(x)ε)

p2
ε(1−q2)

∫ t

0

s
q2(σ2+2)

2(1−q2) (t − s)
σ2
2 ds

≥ ˜Cq2C1−k
1 C2t

σ2+2

2(1−q2) (S(t)u0(x)ε)
p2

ε(1−q2)

= ˜Cq2−1C1−k
1 C2v̄(x, t)

≥ v̄(x, t)

for sufficiently small ˜C > 0. This completes the proof.

Lemma 3.4. Let 0 ≤ q2 < 1, and σ2 > (−2,−N) and let u and v be solutions of
the system (1.1) and (1.2). Then there exist constants C1, C2 > 0 such that

v(x, t) ≥ C1t
σ2+2

2(1−q2) (1 + t)
−

p2N

2(1−q2) exp

(

−C2|x|2
t

)

, (t > 0).
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Proof. Fix arbitrary s > 0, and apply Lemma 3.3 to U(t) = u(t + s) and V (t) =
v(t + s). Then, we have

V (x, t) ≥ Ct
σ2+2

2(1−q2) (S(t)U(x, 0)ε)
p2

ε(1−q2) .

Putting s = t and using Lemma 3.1, we obtain

v(x, 2t) ≥ Ct
σ2+2

2(1−q2) (S(t)u(x, t)ε)
p2

ε(1−q2)

≥ Ct
σ2+2

2(1−q2) (1 + t)
−

p2N

2(1−q2)

{

(4πt)−
N
2

∫

exp

(

−|x − y|2
4t

− ε|y|2
2t

)

dy

}

p2
ε(1−q2)

≥ Ct
σ2+2

2(1−q2) (1 + t)
−

p2N

2(1−q2) exp

(

−C|x|2
t

)

.

This completes the proof.

4. Proof of Theorem 2.1. Necessary condition for the global exis-

tence Assume that (u, v) are global solutions for (1.1) and (1.2). Since p1 < 1,
q2 < 1 and p2q1− (1−p1)(1−q2) > 0, we can take a positive constant k > 0 such that
(1 − q2)/p2 < k < q1/(1 − p1). For this k, fix positive constants r1, r2 > 0 satisfying

r2 = kr1,

r1 < min {1 − p1, p2} ,

r2 < min {1 − q2, q1} ,

r1σ1 <
N(q1 − k(1 − p1))

k
,

r2σ2 <
N(kp2 − (1 − q2))

k
.

For ε > 0, define the cut off function

ρε(x) =







ε
N
2 exp

(

− 1

1 − ε|x|2
)

(|x| < ε−
1
2 )

0 (|x| ≥ ε−
1
2 ),

and set

Fε(t) =

∫

RN

u(x, t)r1ρε(x)dx,(4.1)

Gε(t) =

∫

RN

v(x, t)r2ρε(x)dx.(4.2)

Then the following inequalities hold.

Lemma 4.1. Let p1 < 1, q2 < 1 and σj > −N (j = 1, 2). Then there exist
constants C1, C2, C3, C4 > 0 such that

F ′
ε(t) ≥ −C1εFε(t) + C2ε

−
σ1
2 Fε(t)

−
(1−p1)−r1

r1 Gε(t)
q1
r2 ,(4.3)

G′
ε(t) ≥ −C3εGε(t) + C4ε

−
σ2
2 Fε(t)

p2
r1 Gε(t)

−
(1−q2)−r2

r2 .(4.4)
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Proof. Multiplying (1.1) by ur1−1ρε, and integrating over R
N with respect to x,

we obtain the desired inequality (4.3). Indeed, integration by parts implies that
∫

RN

ρεu
r1−1utdx =

1

r1

d

dt
Fε(t),

∫

RN

ρεu
r1−1∆udx ≥ −

∫

RN

∇ρε · ur1−1∇udx

= − 1

r1

∫

RN

∇ρε · ∇(ur1)dx

=
1

r1

∫

RN

ur1∆ρεdx

≥ −Cε

r1
Fε(t).

Here, we have used the property of ρε that there exists a constant C > 0 depending
only on N such that ∆ρε ≥ −Cερε. The normal and inverse Hölder inequalities also
imply that
∫

RN

ρε|x|σ1ur1−(1−p1)vq1dx

≥
(

∫

|x|<ε− 1
2

ρεv
r2dx

)

q1
r2

(

∫

|x|<ε− 1
2

ρε|x|
r2σ1

r2−q1 u
r2(r1−(1−p1))

r2−q1 dx

)

r2−q1
r2

≥ G
q1
r2
ε

(

∫

|x|<ε− 1
2

ρεu
r1dx

)

r1−(1−p1)

r1

(

∫

|x|<ε− 1
2

ρε|x|−
r1r2σ1

r1q1−r2(1−p1) dx

)−
r1q1−r2(1−p1)

r1r2

= Cε−
σ1
2 Fε(t)

−
(1−p1)−r1

r1 Gε(t)
q1
r2 .

Multiplying (1.2) by vr2−1ρε, and integrating over R
N with respect to x, we can

also get (4.4).
Setting

˜Fε(t) = F
1−p1

r1
ε (t),

˜Gε(t) = G
1−q2

r2
ε (t),

we simplify the inequalities (4.3) and (4.4).

Lemma 4.2. Let p1 < 1, q2 < 1 and σj > −N (j = 1, 2). Then there exist
constants C5, C6, C7, C8 > 0 such that

˜Fε

′
(t) ≥ −C5ε˜Fε(t) + C6ε

−
σ1
2 ˜Gε(t)

q1
1−q2 ,

˜Gε

′
(t) ≥ −C7ε˜Gε(t) + C8ε

−
σ2
2 ˜Fε(t)

p2
1−p1 .

From the phase field argument in [4], we get upper bounds of Fε(t) and Gε(t) as
follows:

Proposition 4.3. Let p1 < 1, q2 < 1 and σj > −N (j = 1, 2).
(i) There exist constants A > 0 and B > 0 such that

˜Fε(t) ≤ Aεα(1−p1),(4.5)

˜Gε(t) ≤ Bεβ(1−q2),(4.6)
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for all t > 0 and ε > 0, where α and β are defined in (2.1).
(ii) (upperbounds) There exist constants A > 0 and B > 0 such that

Fε(t) ≤ Aεαr1 ,(4.7)

Gε(t) ≤ Bεβr2 ,(4.8)

for all t > 0 and ε > 0.

Proof of Theorem 2.1 (i). We consider the case α ≥ N/2. Lemmas 3.1, 3.2, 3.4,
and the definition of Fε in (4.1) give lower bounds of Fε(ε

−1):

Fε(ε
−1) ≥

{

C5ε
Nr
2 , (α > N

2 ),

C6ε
Nr
2 log(1 + ε−1), (α = N

2 ).
(4.9)

Indeed, in the critical case α = N/2, we have

u(x, t) ≤ C(1 + t)−
N
2 exp

(

−|x|2
t

)

, (t > 0),

v(x, t) ≤ C(1 + t)
σ2+2−p2N

2(1−q2) exp

(

−C|x|2
t

)

, (t > 1)

from Lemmas 3.1 and 3.4. Applying Lemma 3.2, we have

u(x, t) ≤ C(1 + t)−
N
2 log(1 + t) exp

(

−|x|2
t

)

, (t > t0)(4.10)

for some t0 > 1. Substituting (4.10) into (4.1), we obtain (4.9). This contradicts (4.7)
for small ε > 0. This completes the proof.

Proof of Theorem 2.1 (ii). We consider the case lim inf |x|→∞ |x|au0(x) > 0 (a <
2α). Then we have

Fε(0) =

∫

RN

u0(x)r1ρε(x)dx

=

∫

|x|<1

u0(ε
− 1

2 x)r1 exp

(

− 1

1 − |x|2
)

dx.

Hence, for the constant A in Proposition 4.3, we can choose sufficiently small ε > 0
such that

ε−αr1Fε(0)

≥ ε−αr1

∫

1/2<|x|<1

u0(ε
− 1

2 x)r1 exp

(

− 1

1 − |x|2
)

dx

≥ Cε(−α+ a
2
)r1

∫

1/2<|x|<1

|x|−ar1 exp

(

− 1

1 − |x|2
)

dx

> A.

Therefore, we get

Fε(0) > Aεαr1 ,
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which contradicts (4.7). This completes the proof.

Proof of Theorem 2.1 (iii). We assume that u0(x) ≥ ˜C exp(−ν|x|2) for sufficiently

large ˜C > 0. Letting ε = 1 and t = 0, we get for the constant A in Proposition 4.3,

F1(0) = ˜Cr1

∫

|x|<1

exp
(

−νr1|x|2
)

exp

(

− 1

1 − |x|2
)

dx

> A,

which contradicts (4.7). This completes the proof.

5. Proofs of Theorems 2.2 and 2.3. In this section we prove Theorems 2.2
and 2.3. In order to prove the theorems, it suffices to show the following propositions.

Proposition 5.1. Let p1 > 1, q2 < 1. (i) If α ≥ N/2, then no nontrivial global
solutions exist.
(ii) If u0 ∈ Ia (a < −{q1(σ2 +2)+ (1− q2)(σ1 +2)− p2q1N}/{(1− p1)(1− q2)}), then
no global solutions exist.
(iii) For any ν > 0, there exists large C > 0 such that no global solutions with
u0(x) ≥ C exp(−ν|x|2) exist.

Proposition 5.2. Let p1 > 1. (i) If p1 + q1 ≤ 1+(2+σ1)/N , then no nontrivial
global solutions exist.
(ii) If u0 ∈ Ia (a < (σ1 + 2 − Nq1)/(p1 − 1)), then no global solutions exist.
(iii) For any ν > 0, there exists large C > 0 such that no global solutions with
u0(x) ≥ C exp(−ν|x|2) exist.

Necessary condition for the global existence Assume that (u, v) are
global solutions for (1.1) and (1.2). For ε > 0, define

Fε(t) =

∫

RN

u(x, t)rρε(x)dx,(5.1)

where r > 0 satisfying rσ1 < N
p1−1 .

Multiplying (1.1) by ρε(x)ur−1 and integrating by parts, we have

Fε(t)
′ ≥ −C1εFε(t) + C2ε

−
σ1
2 t

q1(σ2+2)−p2q1N

2(1−q2) Fε(t)
r+p1−1

r (t ≥ ε−1),

where C1 and C2 > 0. Indeed, from the inverse Hölder inequality and Lemma 3.4,
∫

RN

ρε|x|σ1ur+p1−1vq1dx

≥
(
∫

RN

ρεu
rdx

)

r+p1−1

r
(
∫

RN

ρε|x|
rσ1

1−p1 v
rq1

1−p1 dx

)

1−p1
r

≥ Fε(t)
r+p1−1

r · Cε−
σ1
2 t

q1(σ2+2)−p2q1N

2(1−q2) .

Putting

{

˜Fε(s) = ε
q1(σ2+2)+(1−q2)(σ1+2)−p2q1N

2(1−p1)(1−q2)
r
Fε(t),

s = εt,
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yields the following inequality:

˜Fε(s)
′ ≥ −C1

˜Fε(s) + C2s
q1(σ2+2)−p2q1N

2(1−q2) ˜Fε(s)
r+p1−1

r (s ≥ 1).

A comparison argument and the global existence of ˜Fε(s) imply that

˜Fε(1) ≤ K,

where K > 0 is independent of 0 < ε ≤ 1. Hence,

Fε(ε
−1) ≤ Kε

−
q1(σ2+2)+(1−q2)(σ1+2)−p2q1N

2(1−p1)(1−q2)
r
,(5.2)

for 0 < ε ≤ 1.

Proof of Proposition 5.1 (i). Lemmas 3.1 and 3.2, and the definition of Fε in (5.1)
give lower bounds of Fε(ε

−1):

Fε(ε
−1) ≥

{

C3ε
Nr
2 , (α > N

2 ),

C4ε
Nr
2 log(1 + ε−1), (α = N

2 ),

which contradicts (5.2) for small ε > 0. Indeed, one can see that α ≥ N
2 is equivalent

to

−q1(σ2 + 2) + (1 − q2)(σ1 + 2) − p2q1N

2(1 − p1)(1 − q2)
≥ N

2
.

This completes the proof.

Proof of Proposition 5.1 (ii). From the definition of Fε in (5.1), we obtain

Fε(ε
−1)

≥
∫

|x|<ε− 1
2

(

S(ε−1)u0(x)
)r

ρε(x)dx

≥
∫

|x|<ε− 1
2

(

(4πε−1)−
N
2

∫

RN

exp

(

−ε|x|2
2

)

exp

(

−ε|y|2
2

)

u0(y)dy

)r

ρε(x)dx

≥
∫

|x|<1

exp

(

−r|x|2
2

− 1

1 − |x|2
)

dx

∫

RN

exp

(

−r|y|2
2

)

u0(ε
− 1

2 y)rdy

= C

∫

RN

exp

(

−r|y|2
2

)

u0(ε
− 1

2 y)rdy.

Hence, for the constant K in (5.2), we can choose sufficiently small ε > 0 such that

ε
q1(σ2+2)+(1−q2)(σ1+2)−p2q1N

2(1−p1)(1−q2)
r
Fε(ε

−1)

≥ Cε
q1(σ2+2)+(1−q2)(σ1+2)−p2q1N

2(1−p1)(1−q2)
r
∫

RN

exp

(

−r|y|2
2

)

u0(ε
− 1

2 y)rdy

≥ Cε

n
q1(σ2+2)+(1−q2)(σ1+2)−p2q1N

2(1−p1)(1−q2)
+ a

2

o
r

> K.
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Therefore, we get

Fε(ε
−1) > Kε

−
q1(σ2+2)+(1−q2)(σ1+2)−p2q1N

2(1−p1)(1−q2)
r
,

which contradicts (5.2). This completes the proof.

Proof of Theorem 5.1 (iii). We assume that u0(x) ≥ ˜C exp(−ν|x|2) for sufficiently

large ˜C > 0. In the same way as the previous proof, we obtain

Fε(ε
−1) ≥ C

∫

RN

exp

(

−r|y|2
2

)

u0(ε
− 1

2 y)rdy.

Letting ε = 1, we get for the constant K in (5.2)

F1(1) ≥ C

∫

RN

exp

(

−r|y|2
2

)

u0(y)rdy

≥ C ˜Cr

∫

RN

exp

(

−r|y|2
2

)

exp
(

−νr|y|2
)

dy

> K,

which contradicts (5.2). This completes the proof.

Proof of Proposition 5.2 (i), (ii) and (iii). Using Lemma 3.1 instead of Lemma 3.4
for the estimate of v(x, t), we can prove Proposition 5.2(i), (ii) and (iii) in the same
way as the proof of Proposition 5.1(i), (ii) and (iii), respectively.

6. Appendix. In this section, we give a comparison theorem and a local
existence theorem.

Comparison principle

Lemma 6.1. Let f(u, v) and g(u, v) be strictly monotone increasing in u and v
for u, v ≥ 0. Assume that ū, v̄, u, v are nonnegative and satisfy on R

N × (0, T ),

ūt − ∆ū ≥ |x|σ1f(ū, v̄),

v̄t − ∆v̄ ≥ |x|σ2g(ū, v̄),

ut − ∆u ≤ |x|σ1f(u, v),

vt − ∆v ≤ |x|σ2g(u, v),

and that on R
N ,

ū(x, 0) − u(x, 0) ≥ 0, 6≡ 0,

v̄(x, 0) − v(x, 0) ≥ 0, 6≡ 0.

Then we have ū(x, t) ≥ u(x, t) and v̄(x, t) ≥ v(x, t) on R
N × (0, T ).

Local existence result

Theorem 6.2. Let δ1 and δ2 be defined in (2.2). Assume that (u0, v0) ∈ Iδ1 ×Iδ2

and that 0 ≤ δ1, δ2 < N . Then there exist (u(t), v(t)) ∈ PT = {(u, v) ∈ ET ; u ≥
0, v ≥ 0} satisfying the integral equations (3.1) and (3.2) for some T > 0.
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To prove the theorem, we define {un(x, t)} and {vn(x, t)} (n = 1, 2 · · · ) inductively
by:

un+1(t) = S(t)u0 +

∫ t

0

S(t − s)| · |σ1un(s)p1vn(s)q1ds,

vn+1(t) = S(t)v0 +

∫ t

0

S(t − s)| · |σ2un(s)p2vn(s)q2ds,

u1 = S(t)u0,

v1 = S(t)v0.

At first, we introduce two lemmas.

Lemma 6.3. ([4]) (i) Let (u0, v0) ∈ Iδ1 × Iδ2 and 0 ≤ δ1, δ2 < N . Then
(S(·)u0, S(·)v0) ∈ ET for all T > 0, and we have

sup
s∈[0,T ]

‖S(s)u0‖∞,δ1
≤ C‖u0‖∞,δ1

,

sup
s∈[0,T ]

‖S(s)v0‖∞,δ2
≤ C‖v0‖∞,δ2

.

(ii) For (u, v) ∈ ET , define Φ1(u, v) and Φ2(u, v) by

Φ1(u, v) =

∫ t

0

S(t − s)| · |σ1u(s)p1v(s)q1ds,

Φ2(u, v) =

∫ t

0

S(t − s)| · |σ2u(s)p2v(s)q2ds.

Then (Φ1(u, v), Φ2(u, v)) ∈ ET , and we have

sup
s∈[0,T ]

‖Φ1(u, v)(s)‖∞,δ1
≤ CT

(

sup
s∈[0,T ]

‖u(s)‖p1

∞,δ1
sup

s∈[0,T ]

‖v(s)‖q1

∞,δ2

)

,

sup
s∈[0,T ]

‖Φ2(u, v)(s)‖∞,δ2
≤ CT

(

sup
s∈[0,T ]

‖u(s)‖p2

∞,δ1
sup

s∈[0,T ]

‖v(s)‖q2

∞,δ2

)

.

This lemma leads to uniform estimates for the solutions.

Lemma 6.4. Suppose that (u0, v0) ∈ Iδ1 ×Iδ2 . Then there exist K > 0 and T > 0
such that

sup
t∈[0,T ]

‖un(t)‖∞,δ1
< K,

sup
t∈[0,T ]

‖vn(t)‖∞,δ2
< K,

for all n.

Proof. Let C > 0 be as in Lemma 6.3, (i) and (ii). Put R =
max(‖u0‖∞,δ1

, ‖v0‖∞,δ2
). Taking K > 0 and T > 0 such that

K > 2CR, T <
K − CR

C(Kp1+q1 + Kp2+q2)
,



BLOW-UP RESULTS FOR A REACTION-DIFFUSION SYSTEM 349

we can get the desired estimates. This completes the proof.

Now, we can prove Theorem 6.2.

Proof of Theorem 6.2. From Lemma 6.4, one can see that

sup
t∈[0,T ]

‖un(t)‖∞ < K,

sup
t∈[0,T ]

‖vn(t)‖∞ < K

for all n. The monotonicity of the heat kernel gives

un ≤ un+1, vn ≤ vn+1

for all n. Therefore, there exist ũ(x, t) = limn→∞ un(x, t), ṽ(x, t) = limn→∞ vn(x, t)
on R

N × [0, T ], and we have

sup
t∈[0,T ]

‖ũ(t)‖∞,δ1
≤ K,

sup
t∈[0,T ]

‖ṽ(t)‖∞,δ2
≤ K.

Moreover, from Lebesgue’s monotone convergence theorem, we can easily see that
(ũ, ṽ) are local solutions for (3.1) and (3.2). This completes the proof of Theorem
6.2.
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