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COSMOLOGY, BLACK HOLES AND SHOCK WAVES BEYOND
THE HUBBLE LENGTH *

JOEL SMOLLER' AND BLAKE TEMPLE?

Abstract. We construct exact, entropy satisfying shock wave solutions of the Einstein equations
for a perfect fluid which extend the Oppeheimer-Snyder (OS) model to the case of non-zero pressure,
inside the Black Hole. These solutions put forth a new Cosmological Model in which the expanding
Friedmann-Robertson-Walker (FRW) universe emerges from the Big Bang with a shock wave at the
leading edge of the expansion, analogous to a classical shock wave explosion. This explosion is large
enough to account for the enormous scale on which the galaxies and the background radiation appear
uniform. In these models, the shock wave must lie beyond one Hubble length from the FRW center,
this threshhold being the boundary across which the bounded mass lies inside its own Schwarzshild
radius, 2M/r > 1, and in this sense the shock wave solution evolves inside a Black Hole. The
entropy condition, which breaks the time symmetry by selecting the explosion over the implosion,
also implies that the shock wave must weaken until it eventually settles down to a zero pressure OS
interface, bounding a finite total mass, that emerges from the White Hole event horizon of an ambient
Schwarzschild spacetime. However, unlike shock matching outside a Black Hole, the equation of state

p= %p, the equation of state at the earliest stage of Big Bang physics, is distinguished at the instant
of the Big Bang—for this equation of state alone, the shock wave emerges from the Big Bang at a
finite nonzero speed, the speed of light, decelerating to a subluminous wave from that time onward.
These shock wave solutions indicate a new cosmological model in which the Big Bang arises from
a localized White Hole explosion occurring inside a matter filled universe that eventually evolves
outward through the White Hole event horizon of an asymptotically flat Schwarzschild spacetime.

1. Introduction. In the standard model of cosmology based on a critically ex-
panding, (k = 0), Friedmann-Robertson-Walker (FRW) metric, the universe is infinite
at each instant after the Big Bang, [11, 21, 24]. The Hubble constant, which measures
the recessional velocity of the galaxies, applies to the entire flat space R*—that is, it
applies to an entire universe of infinite mass and extent—at each fixed positive time
in the standard model. In this paper we present a new cosmological model in which
the expansion of the galaxies is a bounded expansion of finite total mass, and the
Hubble law applies only to a bounded region of spacetime, (c.f. [21]). If the observed
expansion of the galaxies actually only applies to a localized region of spacetime, then
it follows that there must be a wave at the leading edge of the expansion. Thus to
replace the assumption in the standard model that the universe is infinite at each
instant after the Big Bang, we are led to models in which the expansion emerges from
an event that is more similar to a classical shock wave explosion, than it is to the
usual scenario of the Big Bang.

In previous work, we constructed such models by matching FRW metrics to stan-
dard Tolman-Oppenheimer-Volkoff (TOV) metrics, (the metric for a static fluid sphere
in general relativity), across a shock wave interface, [14, 21]. In that work we derived
an upper limit on the distance that a shock wave could be from the FRW center, and
this distance turned out to be closer than astronomical observations suggest it could
be. (Astronomical observations currently extend out to approximately 1.5 Hubble
lengths, where all distances are measured at fixed time in the FRW spacetime.) In
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this paper we begin by showing that this upper bound on the shock position that
we identified in [21] for standard FRW-TOV shock matching, is ezactly equal to one
Hubble length. Indeed, we show that in order for the shock position to lie beyond
one Hubble length in an FRW metric, it is necessary that the spacetime beyond the
shock wave lie inside a Black Hole. Thus our previous shock matching limit of one
Hubble length results from the fact that a standard TOV metric cannot be continued
into a Black Hole, except in the special case when the pressure is zero, (we proved
this in [15]). With this motivation, we here derive a new class of gravitational metrics
that we call the TOV metric inside the Black Hole. (In contrast to the standard
TOV metric, the TOV metric inside the Black Hole is dynamical.) Based on this,
we develop a theory of FRW-TOV shock matching inside the Black Hole, and we use
this to construct a new class of exact shock wave solutions of the Einstein equations,
in which a shock wave is incorporated into the FRW metric at distances arbitrarily
far beyond the Hubble length. This demonstrates that the limit in our previous work
[21], that the shock position must lie within one Hubble length of the FRW center
in FRW-TOV shock matching, can be overcome. In fact, because the mass M of the
the TOV metric is constant at each fixed time inside the Black Hole, the TOV metric
represents the simplest metric that can incorporate a finite mass cut off of the FRW
metric beyond one Hubble length.

In the exact solutions constructed in this paper, the expanding FRW universe
emerges behind a subluminous blast wave that explodes outward from the FRW origin
7 = 0 at the instant of the Big Bang ¢t = 0, at a distance beyond one Hubble length?.
The distance of one Hubble length is critical in the FRW metric because the total FRW
mass M inside radius 7 at fixed time satisfies % < 1, out to ezxactly one Hubble length.
Thus, one Hubble length marks the event horizon of a Black Hole in a shock wave
model in which the mass M is isolated in an asymptotically Schwarzschild metric—the
TOV metric in our model. (In contrast to the TOV metric outside the Black Hole,
the TOV metric inside the Black Hole can be continued into an event horizon, c.f. the
remarks after Theorem 6 below.) After the Big Bang, the shock wave in our exact
solution continues to weaken as it expands outward, satisfying the entropy condition
for shocks all the way out until the Hubble length eventually catches up to the shock
wave ®. At this instant the shock wave lies at the critical distance of exactly one
Hubble length from the FRW center. From this time onward, the shock wave can
be approximated by a zero pressure, k = 0 Oppenheimer-Snyder (OS) interface that
emerges from the White Hole event horizon of an ambient Schwarzschild metric of

3Here, 7 = R(t)r measures radial arclength distance at each fixed time ¢ in FRW coordinates,
where R(t) denotes the cosmological scale factor, and r is the standard FRW radial coordinate, c.f.
(2.4), (2.5) below.

: -1
4The Hubble length c¢/H(t) = [CI}{({?)] depends on the cosmological scale factor R(t), and an

easy calculation using the Einstein equations shows that in the FRW spacetime, the Hubble length
increases with time. Thus more and more galaxies pass inside of the threshold distance of one Hubble
length and come into view as time evolves. The Hubble length ¢/Hy at present time is estimated to
be on the order of 1010 light years.

5In our cosmological interpretation of the FRW metric, we (loosely) identify the motion of the
galaxies with the motion of the FRW fluid, which is taken to be a perfect fluid with nonzero pressure,
co-moving with the FRW metric. We show below that, although the shock wave moves outward
through the galaxies, (r > 0), and the Hubble length increases with time, the number of Hubble
lengths from the FRW center to the shock wave, (c.f. (5.36) below), as well as the total mass behind
the shock wave, both decrease in time in these exact solutions, tending to infinity in backwards time
at the instant of the Big Bang. This is no contradiction because the FRW pressure p is assumed
nonzero, c.f. Corollary 1 below.
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finite mass. (The entropy condition implies that the TOV density and pressure tend
to zero as the shock interface approaches the critical distance of one Hubble length.)
Thereafter the interface continues out to infinity along a geodesic of the Schwarzschild
metric outside the Black Hole. Thus the OS solution gives the large time asymptotics
of this new class of shock wave solutions that evolve inside a Black Hole.

One of the surprises in the analysis is that the equation of state that applies at
the earliest stage of Big Bang physics, p = é p, is distinguished by the equations, and
only for this equation of state does the shock wave emerge from the Big Bang at a
finite nonzero speed, the speed of light, decelerating to a subluminous wave from that
time onward.

These new shock wave solutions of the Einstein equations confirm the mathemat-
ical consistency of an FRW universe of finite extent and non-zero pressure expanding
outward from behind an entropy satisfying shock wave emerging from the origin at
subluminous speed beyond one Hubble length at the instant of the Big Bang, a pre-
requisite for early Big Bang physics. Since the shock wave emerges from the Big
Bang beyond one Hubble length, it would account for the thermalization of radiation
in a region that is initially well beyond the light cone of an observer positioned at
the FRW center. Thus our attempt to incorporate a shock wave beyond one Hubble
length has led to unexpected and interesting connections between Big Bang Cosmol-
ogy and Black Holes. But furthermore, we suggest that general relativity pretty much
forces the qualitative behavior we see here into any reasonable model that relaxes the
assumption in the standard model that the expansion of the galaxies is of infinite
extent at each fixed time. (One could say that in these new models, the Copernican
Principle is replaced by the principle in physics that Nothing Is Infinite.)

In Section 2 we transform the FRW metric to standard Schwarzschild coordinates,
and use this to discuss the connection between the Hubble length and the Schwarz-
schild radius. In Section 3 we construct the extension of the zero pressure, k = 0, OS
solution to the interior of a Black Hole by using Eddington-Finkelstein coordinates to
regularize the event horizon of the Schwarzschild metric, [9, 17]. We return to these
OS solutions in Section 6 where we argue that the shock wave solutions constructed
there continue naturally to the OS solution after the solution has relaxed to almost
zero pressure. Thus the OS solutions give the large time asymptotics of our p # 0
shock wave solutions inside the Black Hole.

In Section 4 we construct the TOV metric inside the Black Hole. We refer to this
metric as TOV because the metric components depend only on the radial coordinate
7, but, as in the Schwarzschild metric, the TOV radial coordinate is timelike inside
the Black Hole. It follows that the mass function M is constant in each spacelike slice
7 = const. of the TOV metric inside the Black Hole.

In Section 5 we develop the theory of shock matching between a k = 0 FRW metric
and TOV metrics inside the Black Hole. The shock matching techniques introduced
in [13] must be modified inside the Black Hole because the conservation constraint
used in [13] introduces unphysical solutions. (These solutions are everywhere char-
acteristic relative to the linear partial differential equation for the integrating factor
that determines the matching of the metrics.) The analysis leads to the derivation of
a system of differential equations that simultaneously describe the time evolution of
the shock position together with the outer TOV pressure, and for solutions of these
equations, the shock interface must lie beyond one Hubble length from the center in
the FRW metric. One interesting feature of the matching is that the radial coordi-
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nate 7, a timelike coordinate in the TOV metric, is identified through shock matching
with the FRW spacelike coordinate 7 that measures radial arclength distance from
the center at each fixed value of the (standard) time ¢ in the FRW metric. Another
interesting feature is that the mass function M, which is continuous across shocks as a
consequence of shock matching, has the physical interpretation as a total mass inside
radius 7 in the FRW metric, but M has no such interpretation in the TOV metric by
itself, and in fact we know of no general physical interpretation of the mass function
M inside the Black Hole.

In Section 6 we formulate the entropy condition, and construct a class of global,
entropy satisfying shock wave solutions of the Einstein equations under the simplifying
assumption that the FRW sound speed /o is constant, (that is, we assume the FRW
equation of state p = op, 0 = const. > 0, c.f. [14]). This includes the important case
%, usually assumed at the earliest stage of Big Bang physics. (This is the equation
of state in the extreme relativistic limit of free particles, and for pure radiation, [13].)
Remarkably, under a change of variables, the shock matching equations of Section 5
reduce to a planar autonomous system when o = const., and this system is amenable
to global analysis, a requirement for the construction of solutions in the large. It is
very interesting that the special value o = ¢?/3 plays a distinguished role, and at
this unique value, the shock wave is everywhere subluminous after the Big Bang, but
emerges from the Big Bang at exactly the speed of light. For all other values of o, we
prove that the shock speed at the instant of the Big Bang is either zero, or infinite,
and is everywhere subluminous if and only if o < ¢?/3. This is surprising because the

o=

equation of state p = % p played no special role in shock matching outside the Black
Hole.

The class of exact solutions in Section 6 describes the global dynamics of an
FRW universe of finite extent which explodes outward behind an entropy satisfying,
subluminous shock wave, emerging from the origin, beyond one Hubble length, at the
instant of the Big Bang. Because the TOV metric inside the Black Hole has nonzero
density and pressure, it follows that, unlike the OS solutions of Section 3, these new
exact shock wave solutions do not require any part of the empty space Schwarzschild
solution inside the Black Hole for their construction. On the other hand, the fact that
the OS solution gives the qualitative large time behavior of the solutions independent
of o, (a consequence of the entropy condition alone), suggests that the qualitative
features of these solutions may be generic for a large class of equations of state.

In Section 7 we obtain estimates for the shock position. The conclusion of The-
orem 9 is this: Let ¢y be the first time at which the shock becomes visible at the
FRW center. In our exact solutions, we assume the FRW equation of state p = op,
o = const, 0 < o < 1/3. (We use the convention that we take ¢ = 1 when convenient.)
For these solutions, the shock wave will first become visible at the center ¥ = 0 of the
FRW spacetime at FRW time ¢ = ¢y, at the moment when the Hubble length satisfies

1 1+ 30
— =, 1.1
H(to) 2 (1.1)
where 7, is the FRW position of the shock at the instant of the Big Bang. (The fact
that r, > 0 at the Big Bang does not imply that we are artificially placing the shock
wave away from the center at the Big Bang because r is singular relative to arclength
7 = Rr when R = 0. ) At this time, the number of Hubble lengths v/N from the
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FRW center to the shock wave at time ¢ = ¢y satisfies the bounds

1< < VN < Ve,

S 1430 = 1+30°

Thus, in particular, the shock wave will still lie beyond one Hubble length at the FRW
time to when it first becomes visible. Furthermore,the time t..;; > to at which the
shock wave will emerge from the White Hole event horizon, given that ¢ is the first
instant at which the shock becomes visible at the FRW center, can be estimated by

2 ei“ < tcmt < 2 ezlg
1430 ~ ty T 1430 ’
and by the better estimate
e@ < tcrit < 6%,
S =

in the case ¢ = 1/3. For example, these inequalities imply that in the OS limit o = 0,

\/FO = 27 Lerit = 27
t

0

and in the limit o = 1/3,

1<V/No<45, 18< t;”t < 4.5. (1.2)
0
We conclude in these shock wave cosmological models, that at the moment ¢y when
the shock wave first becomes visible at the FRW center, it must lie within 4.5 Hubble
lengths of the center. Throughout the expansion up until this time, the expanding
universe must lie entirely within a Black Hole—the universe will eventually emerge
from this Black Hole, but not until some later time t..;;, where t..;; does not exceed
4.5t.
Concluding remarks are made in the final section.

2. The Hubble Distance and the Schwarzschild Radius. According to
Einstein’s Theory of General Relativity, all properties of the gravitational field are
determined by a Lorentzian spacetime metric tensor g, whose line element in a given
coordinate system z = (20, ..., 23) is given by

ds® = g;;dx’dx’. (2.1)

(We use the Einstein summation convention whereby all repeated up-down indices

are assumed summed from 0 to 3.) The components g;; of the gravitational metric g
satisfy the Einstein equations,

Gl = KT, T = (pc2 + p)w'! + pg", (2.2)

where we assume the stress-energy tensor T' of a perfect fluid. Here G is the Einstein
curvature tensor,
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871G

c

(2.3)

is the coupling constant, G is Newton’s gravitational constant, c is the speed of light,
pc? is the energy density, p is the pressure, and w = (w?, ..., w®) are the components
of the 4-velocity of the fluid, c.f. [24]. We use the convention that we take ¢ = 1 and
G = 1 when convenient.

In this section we consider the FRW metric, a spacetime metric whose line element

takes the form

d 2
ds®> = —dt* + R(t)* (1 _rkTQ + r2dQ2) : (2.4)

where R(t) is the so-called cosmological scale factor, and dQ2? = df?+sin?0d¢? denotes
the line element on the unit 2-sphere. The FRW metric describes the time evolution
of a three dimensional space of constant scalar curvature, (the t=const. surfaces),
and k can be assumed to take one of the values {—1,0, 1} via a rescaling of the radial
coordinate r. Radial distance at each fixed time in the FRW metric is measured by 7,
where

7= R(t)r, (2.5)

and it is standard to rescale time so that R goes from 0 to 1, where R = 0,¢t =0
corresponds to the Big Bang, and R = 1, t = {y corresponds to present time.

The Hubble constant H, (which actually depends on t), is given in terms of R(t)
by

(2.6)

and we let Hy = H(to) denote the present value of the Hubble constant.

The Hubble length ¢/H, (the reciprocal of the Hubble constant when we take
¢ = 1), gives a length scale determined by the expansion rate of the galaxies, and
can be interpreted as the travel distance for a light ray starting at the Big Bang and
ending at time ¢. (That is, the age of the universe is approximately H, 1~ 10 years,
so the Hubble length ¢/ Hy ~ 10'° light years, is a measure of the distance light travels
during this time interval, [24].) The Hubble length is thus a measure of the distance
to the furthest objects that can be seen in the universe at a given time. (Estimates for
this distance in terms of radial arclength 7 at fixed FRW time ¢ are given in Theorems
1 and 2 below.)

Putting the metric ansatz (2.4) into the Einstein equations (2.2) gives the equa-
tions for the FRW metric, [24],

. 2
R Kk
2 _ - gy
H() 50~ T (2.7)

and
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p=-3(p+pH (2.8)

The unknowns R, p and p are assumed to be functions of the FRW coordinate time ¢
alone, and “dot” denotes differentiation with respect to ¢. In this paper, we focus on
the case of critical expansion, the case k = 0, [1, 24].

When k = 0, the t = const. surfaces in the FRW metric are infinite, flat, Euclidean
3-space. It follows that the standard model of cosmology based on a critically expand-
ing FRW metric, [1], implicitly assumes that the expansion rate H of the universe is
constant all the way out to infinity at each fixed time ¢ in the FRW metric—this even
though, based on lookback time, we can in principle only observe the universe out to
about 1010 light years.

If, on the other hand, there is a shock wave at the leading edge of the expansion
of the galaxies, then the following question presents itself: What is the critical radius
Terit at each fixed time ¢t in a £ = 0 FRW metric such that the total mass inside
a shock wave positioned beyond that radius puts the universe inside a Black Hole?
Indeed, there must always be such a critical radius because the total mass M (7,t)
inside radius 7 in the FRW metric at fixed time ¢ increases like 73, and so at each fixed
time ¢ we must have 7 > 2M (7, t) for small enough 7, while the reverse inequality
holds for large 7. Thus for every time ¢ there must exist a smallest 7 = 7.,.;; for which
Ferit = 2M (Ferit, t). This critical radius then marks the Schwarzschild radius in the
metric that lies beyond the shock wave when it is at that position. We will presently
show that when k = 0, 7.+ equals the Hubble length, and this explains the shock
matching limit uncovered in our previous work in terms of the Hubble length, (c.f.
Section 6, [21]). That is, we cannot match a critically expanding FRW metric to a
classical TOV metric beyond one Hubble length without continuing the TOV solution
into a Black Hole—and we showed in [15] that the standard TOV metric cannot be
continued into a Black Hole.

At this point we make a note on terminology: we say that a radial solution of
the Einstein equations is inside the Black Hole provided that % > 1. If further, the
radial coordinate 7 is always increasing along timelike curves, then we also refer to such
a region % > 1 as a White Hole, but we will nevertheless use the term Black Hole
whenever % > 1.. For example, in the Kruskal development of a Schwarzschild Black
Hole there are four quadrants, and one quadrant contains the Black Hole singularity
and the opposite quadrant, (its time reversal), contains the White Hole singularity, [9].
Both quadrants lie within the region where % > 1, and the quadrant with the Black
[resp. White] Hole singularity at # = 0 has the property that all timelike geodesics
end [resp. begin] at the singularity in finite proper timeS. Thus if 7..;; = ¢/H, and
the mass function M is continuous across shock waves, (both of which we demonstrate
below), then it follows that one can incorporate a shock wave into an FRW metric
beyond one Hubble length only if the metric beyond the shock wave lies inside a Black

Hole, where w > 1.

6By itself, Einstein’s theory is time reversible, the direction of forward time is left undetermined,
and extra conditions like entropy conditions for shocks are needed to determine the direction of for-
ward time. In the region 2M /7 > 1 outside the event horizon, the Schwarzschild metric is symmetric
under time reversal in the sense that the time reversal of a geodesic remains a geodesic. However
in the region 2M /7 < 1, the time reversal of the Schwarzschild metric takes the Black Hole region
beyond t = 400 to the White Hole region before ¢t = —oo. Thus without extra conditions, the ex-
panding White Hole is just as admissible a solution of the Einstein equations as is its time reversal,
the collapsing Black Hole.
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We now verify that 7..;+ = ¢/H, and that the Hubble length is the limit for FRW-
TOV shock matching outside a Black Hole, c.f. [21]. To this end, write the FRW
metric (2.4) in standard Schwarzschild coordinates X = (7,t) where the metric takes
the form

ds* = —B(F, 0)dt* + A(F, )" di? + 72dQ?, (2.9)
and the mass function M (7, ) is defined through the relation

A= M (2.10)
T

(We have set G = ¢ = 1, and our notation is to denote the standard, non-angular
FRW coordinates by x = (2% 2') = (t,r), but TOV coordinates are denoted by
% = (7°,%') = (7,1) because we work inside the Black Hole where A < 0 and 7 is
the timelike coordinate.) It is well known that a general spherically symmetric metric
can be transformed to the form (2.9) by coordinate transformation, [24]. To obtain
A and B for the FRW metric (2.4), set ¥ = Rr, so that

dr T
Using this in the FRW line element we find
ds? = —Cdt* + Ddr* + 2Edrdt + 72dQ?, (2.11)
where
1—kr? — H*?
= 2.12
¢ 1—kr? ’ (2.12)
1
= 2.1
1—kr?’ (2.13)
Hr
F=———. 2.14
1—kr2 (2.14)
Now define the time coordinate ¢ = t(¢,7) by
dt = (YC)dt — (YE)dr, (2.15)
where v is an integrating factor to be determined by the equation
0 0
—(C —(WE)=0. 2.16
—(0C) + 5 (bF) (2.16)

Equation (2.16) implies that dt is an exact differential, and the choice of E and C
applied to (2.15) removes the cross term from the metric (2.11). In (7,?) coordinates
the FRW metric takes the form

1 E?
ds? = —C—Wdt? - (D + ?> dr? + 72 dQ2. (2.17)
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Using (2.12)-(2.14) in (2.17) gives

9 1 1 — kr? 5 1 2 | 202
EER Fy vy e S Fu vy eSS

Comparing (2.18) with (2.9) we obtain

1

e (2.19)
1—kr2—(FH)
1 1—Fkr?

B=—|—-——1. 2.20
(ke (1—kr2—(rH)2> (220)

Note that the characteristic curves for (2.16) are given by
dr —1+kr?+ H?r
r C _ + kre + H*r (2.21)

dt E Hr ’
the RHS being a smooth function for all ¢ > 0 for which H # 0 # 7. (By (2.7), the
condition H = % # 0 holds for all ¢ > 0 when k = 0, —1, and it holds except at the
turning point R = 0 in the case when k = +1, c.f. [24].) It follows that a solution v
of (2.16) exists in a neighborhood of any point. In fact, we have more: we can assign
arbitrary initial values for ¢ on any surface that is non-characteristic for (2.16), and
then use these values to solve (2.16) for ¢ in a neighborhood of that surface, c.f.
[14, 24]. By (2.20), this implies that we can assign arbitrary (non-negative) values
for B on any non-characteristic surface. We conclude that (2.18)-(2.20) gives the
FRW metric in standard Schwarzschild form, the coefficient of d? is determined
independently of 1, and values of B can be freely assigned (locally) on any smooth
non-characteristic surface in (¢, 7) space, thus determining initial values for equation
(2.16).

Moreover, using (2.19) in (2.10), it follows that

(1-A)= g (FPH?) = %gpf3

g /OT p(t)s%ds. (2.22)

M(t,7) =

N 3

Since in the FRW metric # = Rr measures arclength along radial geodesics at fixed
time, we see from (2.22) that M (¢, 7) has the physical interpretation as the total mass
inside radius 7 at time ¢ in the FRW metric.

From here on, we restrict to the case of critical expansion, the case k = 0. In this
case, since % =1— A, one sees from (2.19) that # = H~! is equivalent to % =1,
and so the following equivalences are valid at any fixed time ¢:

2M

F=H ' iff — =1 iff A=0. (2.23)

7
We conclude that # = H~! is the critical length scale for the FRW metric at fixed
time t in the sense that 24 — 1 changes sign at # = H~', and so the universe lies

inside a Black Hole beyon(ﬁ 7= H~!' as claimed above.
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From the FRW equation (2.7), it also follows that # = H 1 iff

31
=, 2.24
S (2.24)
This explains the condition
31
2
2 2.25
et (225)

given in equation (6.2) of [21] for the maximal position of a shock wave in FRW-TOV
matching. This condition was derived in [21] from a different point of view. Thus
(2.23), (2.24) provides a physical interpretation for the bound (6.2) in [21]; namely,
that the shock wave lies inside the Hubble length.

The Hubble length 7c.;y = 7 is also the critical distance at which the outward
expansion of the FRW metric exactly cancels the inward advance of a radial light ray
impinging on an observer positioned at the origin of a k = 0 FRW metric. Indeed, by
(2.4), a light ray traveling radially inward toward the center of an FRW coordinate
system satisfies,

Adt? = R%dr?, (2.26)
so that
@t Ri—HF—c— HE— ) >0 (2.27)
dt = nr T = T C = T H 5 .
if and only if
P>
T

Thus the arclength distance from the origin to an inward moving light ray at fixed
time ¢ in a k = 0 FRW metric will actually increase as long as the light ray lies beyond
the Hubble length. An inward moving light ray will, however, eventually cross the
Hubble length and reach the origin in finite proper time, due to the increase in the
Hubble length with time.

We now calculate the infinite redshift limit in terms of the Hubble length. It is
well known that light emitted at (te,r.) at wavelength A, in an FRW spacetime will
be observed at (to,ro) at wavelength Ag if

By _ M

Moreover, the redshift factor z is defined by

Ao
=— -1
z N
Thus, infinite redshifting occurs in the limit R, — 0, where R = 0, ¢t = 0 is the Big
Bang.
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Consider now a light ray emitted at the instant of the Big Bang, and observed at
the FRW origin at present time t = ty. Let 7o denote the FRW coordinate at time
t — 0 of the furthestmost objects that can be observed at the FRW origin before time
t = tg. Then ro, marks the position of objects at time t = 0 whose radiation would
be observed as infinitly redshifted, (assuming no scattering). Note then that a shock
wave emanating from 7 = 0 at the instant of the Big Bang, will be observed at the
FRW origin before present time ¢t = ¢y only if its position r at the instant of the Big
Bang satisfies r < ro,. We now estimate 7.

First, from (2.26) it follows that an incoming radial light ray in an FRW metric
follows a lightlike trajectory r = r(t) if

and thus
o qr

Too = —_—. 2.28
== )y BD 229

We now prove the following theorem:

THEOREM 1. If the pressure p satisfies the bounds
1

0<p<gp, (2:29)

then for any equation of state, the age of the universe ty and the infinite red shift limit
T are bounded in terms of the Hubble length by

L <2 (2.30)
2H, = = 3H,’ '
1 2
< < —. 2.31
- iR (2.31)

(We have assumed that R =0 when ¢t =0 and R = 1 when ¢ =ty and H = H,.
Note that p = %p is the extreme relativistic limit of free particles, as well as the
equation of state for pure radiation, [24].)

Proof. Integrating (2.7) we obtain

R(t) = e~ J° Vit (2.32)

and, from (2.8) we have

P dp B -
—/OO FErN V3Kt (2.33)
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Thus, if we know p as a function of p, then we can integrate (2.33) to obtain p as a
function of ¢, and then use this in (2.32), which can then be used in (2.28) to calculate

Too. Assuming (2.29), we can estimate (2.33) by

P dp ? dp
— | P < VBt < —/ =,
/oo 3032 o P32

which leads to

E
B

<p=

K2 Kt2'

S
w

Since (2.7) is H? = £p when k = 0, (2.34) gives

1

<HKL
2t~

Y

o @

which implies (2.30). To estimate R(t), write (2.35) in the form

IN

R~
SHE
3
=
INA
S

which integrates to

2 1
(i)s <R< (i)
to - T \tlo

Finally, using (2.36) in (2.28) gives

to 1/2 to 2/3
/ (t_O) dtgroog/ (t_O) d,
0 t 0 t

which leads directly to (2.31). O

(2.34)

(2.35)

(2.36)

The next theorem gives closed form solutions of the FRW equations (2.7), (2.8)
in the case when the sound speed /o = constant. These solutions are the starting
point of the exact shock wave solutions constructed in Section 6. As a special case we

recover the bounds in (2.30) and (2.31) from the cases ¢ = 0 and 1/3.

THEOREM 2. Assume k =0 and the equation of state

p=op,

where o is assumed constant,
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Then, (assuming an expanding universe R > 0), the solution of system (2.7), (2.8)
satisfying R=0 att =0 and R=1 at t =ty is given by,
4 1
3k(l+0)2t2’
¢\ 30FD
R (_) | (2.38)
to
H to

g4 _h 2.
T " (2.39)

p= (2.37)

Moreover, the age of the universe ty and the infinite red shift limit ro are given exactly
in terms of the Hubble length by

2 1
to= - 2.40
" 31 +0) Hy (2.40)

_ 2 1
"o T I 30 Hy'

(2.41)

From (2.41) we conclude that a shock wave will be observed at the FRW origin
before present time ¢t = t( only if its position r at the instant of the Big Bang satisfies
r <y +230 HLO Note that ro ranges from one half to two Hubble lengths as o ranges
from 1 to 0, taking the intermediate value of one Hubble length at o = 1/3, c.f. (2.31).

Proof. Formulas (2.37)-(2.39) follow directly from (2.32)-(2.33), and agree with
the formulas given in [14]. Differentiating (2.38) at t = to gives (2.40), and using
(2.38) and (2.40) in (2.28) gives (2.41). O

COROLLARY 1. If p = op, 0 = const. > 0, then the total mass inside radius
r = const, (that is, inside a ball whose boundary is comoving with the galazies),
decreases in time.

Proof. Using (2.37)-(2.38) in (2.22), it follows that

T ) 27:3
/ p(t)s?ds = ———— 77, (2.42)
0 9(1 + )27

so M <0ifo >0,

3. The OS Solution Inside the Black Hole. The simplest model of a lo-
calized FRW metric contained within a shock boundary that lies beyond the Hubble
distance, is one in which p = 0, and the FRW metric is matched to the Schwarzschild
metric at a contact discontinuity interface positioned inside the Black Hole of the
Schwarzschild metric. This poses the problem of extending the OS solution smoothly
into the interior of a Schwarzschild Black Hole. In this section we construct the OS
solution inside the Black Hole in the case kK = 0, making the point of discussing it
from the FRW point of view, in terms of the Hubble length. (See [10] and [9] for a
discussion of the case k < 0.) The k£ = 0 OS solution inside the Black Hole will give
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us a point of comparison for the p # 0 shock wave models constructed in Sections
5 and 6, and we argue in Section 7 that the (expanding) OS solution also describes
the large time asymptotics of these shock wave models. When p # 0, the resulting
interface is a shock wave, and an entropy condition breaks the time symmetry. In our
examples of Section 6, it is the outward expanding solution (explosion) that globally
meets the entropy condition, (not the inward collapse), thus making the cosmological
interpretation of the model relevant. In contrast, the interface in the OS solution is
time reversible, but the collapsing solution is the one that is relevant in the standard
interpretation of the OS solution as a pressureless sphere collapsing into a Black Hole,
[10, 9].

Our method is to match the £ = 0 FRW metric to the empty space Schwarzschild
metric written in Eddington-Finkelstein (EF) coordinates [9], across a shock interface”
that lies beyond the Hubble length on the FRW side of the shock. As in a classical
explosion, we assume that the FRW metric lies inside a bounded region behind an
outgoing shock interface, and for the OS solution we assume that the Schwarzschild
metric describes the spacetime beyond the interface. Thus in the OS model, the
shock wave (contact discontinuity) marks the leading edge of the expansion of the
FRW metric.

The EF coordinates provide a regularization of the Schwarzschild metric at the
event horizon, and the mapping from the EF spacetime to the Schwarzschild spacetime
is a 1-1 mapping, [9]. Both coordinate systems cover the region of the Schwarzschild
metric outside the event horizon, together with that portion of the Black Hole that
is coordinatized by the Schwarzschild coordinates. Here, since we are dealing with an
expanding FRW solution, we work with the time reversal of these metrics, which covers
the region beyond the event horizon, together with the White Hole region inside the
Black Hole We show that with this latter time orientation, we can match the EF metric
to the spacetime described by a critically expanding FRW metric across a discontinuity
at finite radius, and its time reversal provides the corresponding matching to the
critically contracting FRW metric.

We return to these OS solutions in Section 6 where we argue that the shock
wave solutions constructed there continue naturally to the OS solution after the TOV
density and pressure tend to zero, assuming that the shock has relaxed to a sufficiently
weak wave. But we find this OS model interesting in its own right because it not only
provides the simplest model in which the expansion of the galaxies corresponds to
the expansion of a finite total mass with a wave at the leading edge of the expansion,
but it also embeds the Big Bang singularity of an FRW metric within the singularity
of a larger spacetime—the larger spacetime being the empty space Schwarzschild
solution, and its singularity being the White Hole singularity that lies inside the event
horizon in the Kruskal development of the Schwarzschild metric. Such an embedding
is possible only under the assumption that the Hubble law applies to a bounded region
of spacetime, because the infinite FRW metric cannot be matched to the Schwarzschild
metric.

In EF coordinates, the Schwarzschild line element takes the form

ds* = —Adt* — 2drdi + 7dQ?, (3.1)

where

"The interface in the OS solutions is, in the language of gas dynamics, a contact discontinuity,
which is time reversible because neither mass nor momentum cross the interface.
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2M
A=1-", (3.2)
T

and M is the constant mass of the Schwarzschild solution. Indeed, using (2.11)-(2.16),
the time coordinate ¢ that eliminates the mixed term in (3.1) satisfies

dt = Adt — Yr, (3.3)
where 1) satisfies
0 0
SrU g (A) =0 (3.4)
The solution to (3.3), (3.4) is
P =1/A, (3.5)
t=t—7—In|F—2GM], (3.6)

and in (7,)-coordinates the metric takes the standard Schwarzschild form

1
ds* = —Adt* + Zdﬁ + 72d02. (3.7)

Thus (3.6) defines a 1 — 1 mapping (£,7) — (,1) taking {F > 2M} x R to itself, and
another 1 — 1 mapping (£,7) — (7,1) taking {0 < 7 < 2M} x R to itself. This verifies
the claim that the EF metric covers two of the four quadrants of the (maximal) Kruskal
development of the Schwarzschild metric in a 1 — 1 fashion. Unlike the Schwarzschild
metric, the EF metric is smooth at 7 = 2M, and this is reflected in the singularity of
the transformation (3.6) at # = 2M. Note that in (7, ) coordinates, the vector field %
is timelike, spacelike, when 7 < 2M, 7 > 2M, respectively; while in (£,7) coordinates,
the vector field % is lightlike. This is no contradiction because % points along the
level curves of its complementary coordinates in a given coordinate system. On the
other hand, the vector fields 8%' and % both point along the level curves of 7, and
hence retain the same character as spacelike or timelike according to the sign of A.

The k = 0 FRW metric is given in (2.4) as

ds? = —dt® + R(t)%dr? + R(t)*r2dQ?, (3-8)

where R(t) is the cosmological scale factor. To obtain a matching of the two metrics
(3.1), (3.8), that is smooth at the Schwarzschild radius, we match them in (¢,7)
coordinates. To start, first match the spheres of symmetry by setting, (c.f. [13, 24]),

7 = Rr.
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Writing (2.4) in (¢, 7) coordinates yields the following form of the FRW metric derived
in (2.11)-(2.14) above upon setting k = 0:

2
ds® = —dt* + {dﬁ — 2HFdrdt + %ertQ} + 72d02.
(3.9)

We now construct the transformation ¢ = #(¢,7) by finding functions b(t, 7) and ¢(t, 7)
such that b and ¢ satisfy

df = pdt + pbdr, (3.10)

and

» — (¢b), = 0. (3.11)

Equation (3.11) implies that df is an exact differential, and thus (3.10) defines the
coordinate transformation for ¢ as a function of ¢ and 7. In order to find ¢ and b, we
start from (3.10) and write

dt = % {dt — ¢bdr}, (3.12)

and so

1 .
dt? = 25 {d* — 2bodidr + ¥¢dr} (3.13)

Using these in (3.9) we obtain

.2 '2
ds® = % <%772 - 1) di* + % {—b (—1 + %#) - HF} didr +
" .
{1+b b<—1+R—f2> +%f }sz. (3.14)

R2

The outline of our procedure for matching the components of the metric (3.14) to the
components of the metric (3.1) is as follows: We first set the coefficient of di? equal
to zero in (3.14) and solve for the function b. We then match the coefficients of the
cross terms didr by setting the didr coefficient in (3.14) equal to —2 and then solve
for the value of ¢ on the shock surface. Using the values of b and ¢ in the matching
of the di? coefficients, we obtain a formula for the shock surface. Finally, we show
that the shock surface is non-characteristic for the PDE (3.11), implying that we can
use the initial condition for ¢ to solve for ¢ in a neighborhood of the shock surface,
and thereby determine a nonsingular coordinate ¢ = (¢, r).

To begin, set the coefficient of di? equal to zero in (3.14) to obtain
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1+b{b(—1+ H*") +2Hr} =0. (3.15)

This simplifies to

(H7b+1)% = b2,

so that

-1

b= ——.
H7'1

(3.16)

In order to ensure that b, given in (3.16), is nonsingular and of a single sign, we choose
the plus sign if R > 0, (the case of a White Hole explosion), and the minus sign if
R < 0, (the case of collapse to a Black Hole). Matching the cross terms in (3.1) and
(3.14) yeilds

“{-b(-1+H*?) - Hr} = -2. (3.17)

Using (3.15), we obtain
I
o=Hi+3 =1 (3.18)

at the shock surface. Here, consistent with (3.16), we take +1 if H = % >0, and —1
if H= £ < 0. Matching the df* terms in (3.1) and (3.14) gives

1
TP
Since k = 0 and p = 0, the FRW equations (2.7), (2.8) imply

—A (H*/* —1). (3.19)

H? = Zp. (3.20)

Wl

Using (3.20) and (3.2) together with ¢? = 1 in (3.19) yields the equation for the shock
surface,

M= gp(t)f3. (3.21)
Solving (3.21) for 7 as a function of ¢ gives the shock surface ¥ = 7(¢) in the FRW
coordinate. It follows from the FRW equations (2.7), (2.8) in the case p = 0, that
R(t)%p(t) is constant on FRW solutions, [24]. Using this in (3.21) implies that r =
ro = const. describes the interface in the OS solution. For example, if we choose
R(to) = 1 at present time t = to, then
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ro = {%}1/3 (3.22)

is constant on the interface, and thus 7(t) = R(t)ro describes the motion of the
interface in the OS solution. The fact that r = const. along the interface implies that
the interface moves with the galaxies of the p = 0 FRW metric, and hence neither
mass nor momentum crosses the interface. From this we can also see that the shock
surface is non-characteristic for the PDE (3.11). Indeed, the characteristic curves for
(3.11) satisfy

dr 1 .
— =—-=(Rry)T1
dt b ( 7"())7 5
on the shock surface, where the T agrees with the sign of R. Thus we see that % =

(Rro)fl along the characteristic, and % = Rro along the shock surface, so the two can
never be equal. We conclude that the shock surface is never characteristic for equation
(3.11), and hence ¢, as well as the coordinate t, can be defined in a neighborhood of
the interface.

Note that the shock surface equation (3.21) tells us that 7 goes from zero to
infinity as the FRW density goes from infinity to zero. For example in the case R > 0,
this tells us that the FRW universe starts at the White Hole singularity of the EF

metric at the instant ¢ = 0 of the Big Bang. From this time onward, the shock surface
1/3

/ 2 \1/2
7(t) = (fpj\é)) continues out until the the Hubble distance H~! = (%(t)) ,

(cf. (3.20)), catches up to the shock surface on the FRW side of the shock, which
happens at the FRW time ¢, when 7(ts) = 2M, i.e., when the shock surface lies on the
event horizon of the outer EF metric. As the FRW time increases from tg to oo, the
interface continues on out to infinity, staying inside the Hubble length on the FRW
side of the shock, and outside the Black Hole on the EF side.

Note also that the coordinate 7 is a spacelike coordinate that measures arc-length
distance in the FRW metric at fixed time ¢ in the FRW coordinate system (¢, 7) on
the FRW side of the shock, but on the EF side of the shock, the coordinate 7 is
lightlike in EF coordinates (,7), and changes from timelike to spacelike in standard
Schwarzschild coordinates (7,t) as the shock surface passes through the event horizon
of the EF metric—even so, the coordinate identification (¢,r) — (£,7) is regular in
a neighborhood of the shock surface for all shock positions 0 < 7 < oo. This is no
contradiction, because the coordinate vector field % remains undetermined until a
choice of complementary coordinate is specified.

In conclusion, we have that the interface between the FRW and Schwarzschild
metrics in the £ = 0 OS solution is a contact discontinuity that traverses a geodesic
of the Schwarzschild metric. The total mass of the FRW metric behind the shock
wave interface is finite and constant in time, and emerges from the White Hole sin-
gularity of the ambient Schwarzschild metric at ¥ = 0, the instant of the Big Bang.
After a finite proper time, the solution continues out through the event horizon at
Schwarzschild time ¢ = —oo, and continues to expand forever into the asymptotically
flat Schwarzshild spacetime outside the Black Hole, where % < 1. In this regime the

solution agrees with the £ = 0 OS solution given in [17]5.

81t is well known that the spacetime coordinatized by either the EF or Schwarzschild coordinates
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4. The TOV Solution Inside the Black Hole. The standard Tolman-
Oppenheimer-Volkoff (TOV) metric models a static fluid sphere in general relativity.
It was proved in [15] that the standard TOV metric for a static fluid sphere, by itself,
does not admit Black Holes, and can only exist when % < 1. In this section we
derive the equations for the analogue of the TOV solution inside the Black Hole.

The TOV solutions inside the Black Hole are used in Sections 5 and 6 to extend the
OS solution of Section 3 to the case of non-zero pressure, inside the Black Hole. When
p # 0, energy and momentum cross the interface, and so the contact discontinuity
of the OS solution must be replaced by a shock wave discontinuity. Thus in order
to extend our shock matching techniques beyond the Hubble length when p # 0, we
must replace the outer Schwarzschild metric of the OS solution with a metric that
contains matter, and satisfies 2M /7 > 1. The TOV metric inside the Black Hole is
the simplest metric that satisfies these conditions. We refer to it as TOV because the
components depend only on the radial coordinate 7, as in the standard TOV metric,
but now 7 is timelike. (As in the Schwarzschild metric, the roles of space and time
are interchanged inside the Black Hole.) In shock matching with FRW metrics, this
new TOV metric inside the Black Hole will play the role of a transitional solution
that mediates the mass flux across the shock interface during the time after the Big
Bang when the densities are large, and up until the time when the solution has settled
down to a zero pressure OS expansion.

The usual ansatz for a TOV metric takes the form

ds? = —Bdt? + A~ dr* + 72dQ?, (4.1)

where A(7) and B(7) depend only on the coordinate 7. Here

A(r)=1- ZMF(ﬂ, (4.2)

and when 7 > 2M, M(7) has the interpretation as the total mass inside the ball of
radius 7. Thus our assumption that the TOV metric lies inside the Black Hole or
inside the Schwarzschild radius is equivalent to the assumption that

A<O.

We now obtain the Einstein equations for a perfect fluid under the assumption that
the fluid is co-moving with respect to a metric of form (4.1), assuming that A and B
depend only on 7, but now assuming that A < 0. The stress tensor for a perfect fluid
takes the form,

is not a geodesically complete spacetime. That is, from the point of view of the (complete) Kruskal
development of the Schwarzschild spacetime, the EF metric covers only two of the four quadrants
determined by the event horizon in the Kruskal diagram; namely, the standard quadrant outside the
Black Hole together with the quadrant which contains the Black Hole singularity—or else under time
reversal, the standard quadrant outside the Black Hole together with the region containing the White
Hole singularity. On the other hand, the OS solution is a geodesically complete spacetime because,
from the Kruskal point of view, it consists of the Schwarzschild solution on one side, and the FRW
solution on the other side, of the geodesic defined by the trajectory of the interface of discontinuity.
Thus, by removing a neighborhood of either the White Hole or the Black Hole event horizon, the OS
matching also eliminates the incomplete geodesics that emerge from ¢t = —oo, respectively ¢t = 4o00,,
depending on the time orientation of the solution, [9].
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Tij = (p+ D)Wiw; + Gij, (4.3)
and since 7 is the timelike coordinate for the TOV metric in (7, ¢)-coordinates when

A < 0, the assumption that the fluid is co-moving with the TOV metric inside the
Black Hole implies that, c.f. [24],

(00,01, 2.02) = (7,00, 05) = (—20,0,0) (a0
Wo, W1, W2, W3) = (Wr, Wi, Wy, Wy ) = | —F——,U,U, . .
0, W1, Wa, W3 7, W, We ey

In this case we obtain

Too = Trr = (p+ P) (_—114) +p (%) - —%7 (4.5)

and

T11 = Tt_f = 1@11 = —ﬁB (46)

Using MAPLE we find,

FAB' — B+ AB

Goo = Grr = S4B ; (4.7)
B
G11 = fo = _77_2 {TA — ]. =+ A} . (48)
From (4.5)-(4.8), the Einstein equations Gog = kTpo and G11 = kT1; reduce to
B 1/1-4 o
Y i R st 4.9
B 7 ( A ) VA (49)
and
1-—A
A = "——— + kpr, (4.10)
7
respectively.” From [24], equation (5.45), we also have
d 1
—p =((p+p)—1 — 4.11
p (p+p)drn{m}7 (4.11)
which simplifies to
9Beware that MAPLE’s convention is that —Gpaprr = G, so the Einstein equations are

—GypmaprrLe = KT.
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p+p A pep[(l—A
p=2%r =w{—+m~}. (4.12)

L P+ A PR fl-A

g tPA ot { A, ,@pr} , (4.13)
Al = % + KT, (4.14)
B 1(1-A pr

Alternatively, using the unknown N =1 — A instead of A, (a variable convenient for
our subsequent analysis), we obtain the equivalent system,

, ptp N

_pre 4.16
P="9"N-71 (4.16)

N

N =— {? + ﬁpr} , (4.17)
B 1 (N

___t N L 4.1
B N—l{F ’W} (4.18)

Note that the essential reason why the equations for the TOV metric inside the
Black Hole take a different form than the standard TOV equations “outside the Black
Hole”, is that the assumption of co-mowving puts the nonzero component of w on the
timelike coordinate ¥ when A < 0, and on the timelike coordinate ¢ when A > 0. We
conclude that system (4.16)-(4.18) defines a new class of gravitational metrics which
describe spacetimes that evolve inside the Black Hole.

The TOV equations inside the Black Hole describe a time dependent metric in
which the metric components, together with the fluid variables, are constant at each
fixed value of the TOV timelike coordinate 7. Like the FRW metric, the TOV metric
inside the Black Hole describes a fluid with pressure that emerges from a White Hole
singularity at 7 = 0, the instant of the Big Bang, with one important difference: unlike
the FRW metric, for the TOV metric inside the Black Hole, the total massis constant
on each spacelike slice 7 = constant. In the next section we match the TOV metric
inside the Black Hole to k = 0 FRW metrics across shock interfaces in order to make
the expanding FRW universe finite, in the sense that the total mass on each spacelike
hypersurface is finite.

5. Shock Matching Inside the Black Hole. In this section we derive the
equations that describe the matching of a general & = 0 FRW metric to a TOV
metric inside the Black Hole, at a shock wave interface across which energy and mo-
mentum are conserved. The equations, given in system (5.35)-(5.36) below, describe
the simultaneous time evolution of the shock position together with the TOV metric
inside the Black Hole such that the resulting metric matches a given £k = 0 FRW
metric Lipschitz continuously across the shock, and such that conservation of energy
and momentum hold at the shock. The conservation constraint, given in (5.25) below,
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determines the TOV pressure, and this is used to close the equations, c.f [14]. Equa-
tions (5.35)-(5.36) then determine all other unknowns in the TOV metric beyond the
shock, and guarantee conservation, once the FRW metric is assigned. In particular,
the equations guarantee that there are no delta function sources produced by the
(second order) Einstein equations due to the lower order smoothness (Lipschitz conti-
nuity) of the metrics at the shock, c.f. (i)-(iv) below. The success of the method relies
on the fact that once Lipschitz continuity is imposed, the single conservation condi-
tion (5.25) alone guarantees the two conservation constraints of the Rankine-Hugoniot
jump conditions at the shock, c.f. [13], and Theorem 3 below.

Solutions of equations (5.35)-(5.36) are formally time-reversible without the impo-
sition of an entropy condition. In the next section we formulate an entropy condition
that agrees with the entropy condition of gas dynamics, and we use this to construct
exact solutions of (5.35)-(5.36) that describe a class of time-irreversible entropy sat-
isfying shocks in which the TOV density and pressure satisfy the physical bounds
0<p<p.

To model the expanding universe with a spherical shock wave at FRW position
7 = 7(t), we assume that the FRW metric lies in the region 7 < 7(¢), and the TOV
metric lies beyond the shock wave at 7 > 7(t). The corresponding matching for a
standard TOV metric outside the Black Hole, (and inside the Hubble length), was
accomplished in [14, 15, 21]. In this section we do not use an EF type regularization
of the TOV metric, (c.f. (2.9)), but rather we employ standard Schwarzschild coordi-
nates, avoiding the singularity at A = 0 by working either inside or outside the Black
Hole separately.

Our proceedure for shock matching is as follows: We first identify the shock
surface across which a k¥ = 0 FRW metric matches a TOV metric inside the Black
Hole, such that the matching is Lipschitz continuous across the interface, and such that
we have a smooth matching of the spheres of symmetry, (c.f., [13], Lemma 9, equation
(5.3)). The Lipschitz matching of the metrics is guaranteed by a non-characteristic
condition that always holds outside the Black Hole, when A > 0, c.f. (5.23) below.
Given this matching, we then determine a conservation constraint that guarantees
that the Rankine-Hugoniot jump conditions

[T*]n,, =0, (5.1)

hold across the shock. (Here, as usual, [-] denotes the jump in a quantity across the
shock interface, n, are the covariant components of the normal vector n to the shock
surface, and assuming spherical symmetry, we need only require (5.1) for v = 0,1.)
We can then apply [13], Lemma 9, which states that for metrics matched Lipschitz
continuously across the shock, with a smooth matching of the spheres of symmetry,
the Rankine-Hugoniot jump conditions (5.1) imply that the following equivalencies
are also valid at the shock:

(i) The extrinsic curvature is continuous across the shock,

(ii) The Riemann and Einstein curvature tensors, viewed as second order opera-
tors on the metric components, produce no delta function sources on the shock,

(iii) In a neighborhood of each point on the shock surface there exist coordinate
transformations such that in the new coordinates, all second derivatives of the metric
components are bounded, and

(iv) At each point on the shock surface there exist coordinate frames that are
locally Lorentzian.
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In the papers [13, 14, 17, 21], the main idea for carrying out this procedure in the
case A > 0, was to show that the single condition

[T" Jnun, =0, (5.2)

alone implies the jump conditions (5.1), and hence (i)-(iv). However, we must modify
this idea in the case A < 0 because it turns out that the condition (5.2) has a non-
physical solution which everywhere violates the non-characteristic condition used to
guarantee the Lipschitz matching of the metrics at the shock. For this reason, to
obtain the conservation condition when the shock wave lies inside the Black Hole, we
verify the Rankine-Hugoniot conditions directly. That is, we derive a conservation
constraint equivalent to the condition det[T] = 0, (instead of (5.2)), and then show
that the normal n to the shock surface is in the kernel of [T'] when det[T] = 0. This
then implies that when the conservation constraint holds at the shock, the jump
conditions [T""]n, = 0 hold, and then Lemma 9 of [13] implies that (i)-(iv) also hold
at the shock.

To start, we match the FRW to the TOV metric when £k = 0 and A < 0. The
k =0 FRW metric in the usual (¢,7) coordinates is given by,

ds* = —dt* + R(t)* {dr® + r*dQ°} . (5.3)

In (2.18)-(2.20) we showed that the mapping (¢,r) — (7,¢) that takes metric (5.3) to
standard Schwarzschild coordinates in which the metric takes the form,

ds? = _BFRWd{z + A;‘}%WdFQ + F2d92, (54)
is given by
= R(t)r, (55)
and
dt = (C)dt — (YE)dr, (5.6)
where
C=1-H*, (5.7)
E = —7H. (5.8)

(Recall that % is timelike in the coordinate system (7, ¢) and spacelike in the coordi-
nate system (¢,7) when Apgy < 0, H=! > 1.) Here ¢ can be taken to be any solution
of

0 o)
%(1/10) + a(il)E) =0, (5.9)

determined from initial data on any non-characteristic surface, (c.f. the paragraph
following (2.21)). Under this coordinate transformation, we obtain
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2
Arpw = __ ! 5 (5.10)
R?—2R?  1—(rH)
1 R? 1 1

Brrw = (5.11)

VIR _p2R2 21— (FH)?
c.f. (2.18)-(2.20). We use the subscript FRW to distinguish the FRW metric coeffi-
cients Apgwy = 1 — QM% and Brgrw from the TOV metric coefficients A =1 — %
and B, that appear in the TOV line element

ds®> = —Bdt? + A7 1di? + 72d02, (5.12)

in standard Schwarzschild coordinates. By shock matching, using (2.7) and (5.10),
we find that
1 K
Mrrw(t,7) = 5_3H2 = gﬂ(t)Fg-
Assume now that the (7, %) coordinates that describe the TOV and FRW metrics
in standard Schwarzschild coordinates, actually represent a single coordinate system
for the pair of metrics matched across a shock surface where the metrics agree; that
is, where A = Apgw and B = Bprw. Setting Apgw = A and using (5.13) gives

(5.13)

2MFRW _\2 R 9 2M
Y (Hi)?2 =2 = 5.14
- (H7)" = 2pr” = —, (5.14)
from which we deduce the following conservation of mass condition that must hold at
the shock surface, and which is independent of v :

~p(t)7 = M(F). (5.15)

Equation (5.15) implicitly defines the shock surface 7 = 7(t), which then determines

the position r = r(t) = ;((tt)) of the shock in the original FRW coordinates (¢,7). By

(5.14) we also see that

N=1-A="—=(fH)?, (5.16)

and so

F=VNH? (5.17)

holds on the shock surface. Using (5.17), we can interpret N from the TOV metric
as follows: if (¢,7) is a point on the shock surface, then /N (¢,7) is equal to the
number of Hubble lengths from the center of the FRW spacetime to the shock surface
as measured at fixed time ¢ on the FRW side of the shock. Since N > 1 if and only
if A <0, it follows that the shock wave lies beyond one Hubble length from the FRW
center when A < 0. Note that IV is a convenient variable because it appears in system
(4.16)-(4.18).
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Setting Bprw = B at the shock surface and using (5.11), we obtain the initial
condition for the integrating factor ¢ of the FRW metric on the shock surface (5.15);
namely,

p =t {(1 - H2*)B(r)) V7 =t {AB} 2, (5.18)

where we have used that 1 — H?72 = A < 0 at the shock. Note that AB > 0, and the
choice of sign in (5.18) determines the time orientation for ¢, c.f. (5.6).

We now derive a condition that guarantees that the surface 7 = 7(¢) is non-
characteristic when A < 0.1° To this end, differentiate (5.15) with respect to FRW
time t to obtain,

M'F = gp'f3 + gpFQf“. (5.19)

Using (2.8) and (4.17) in (5.19) we obtain the following formula for the speed 7, the
speed at which the shock wave is receding from an observer fixed at the FRW origin:

PP

_HT. (5.20)
p+p

f =
For future reference we record that this directly implies

. Hr p—ﬁ)
=—|—]. 5.21
""R <p+p (5.21)

On the other hand, in light of (2.21), the characteristics for (5.9) satisfy

F=—{rFH} ' +7H. (5.22)

Thus the shock surface is characteristic if and only if the two speeds in (5.20) and
(5.22) are equal, which holds if and only if

p+Dp 1
1—-q—— 7 = . 5.23
ot 52
Using (5.14) in (5.23) we conclude that the shock surface is non-characteristic for the
PDE (5.9) if and only if

Az LT (5.24)
pP—p

10This is no moot point. Indeed, in previous work, (c.f. [13, 14]), the authors used (5.2) to
obtain the conservation constraint across the shock surface when A > 0, but we must be careful here
because a calculation shows that one of the solutions of (5.2) is everywhere characteristic for (5.9)
when A < 0. It follows that (5.1) does not hold across the characteristic surface, and so there is a
solution of (5.2) that does not represent an actual weak solution of G = KT when A < 0. It is for
this reason that we go directly to (5.1) to construct the conservation constraint in the case A < 0
below.
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The inequality (5.24) is not in general ruled out on a timelike shock surface when
A < 0. However, (5.24) immediately implies the following lemma which we record for
use in Section 6:

LEMMA 1. If p,p,p,p are all positive on the shock surface ¥ = T(t) defined
implicitly by (5.15), then the surface is non-characteristic for the PDE (5.9) so long
asp>pand A <O.

Assuming that (5.24) holds, the above procedure defines a mapping (¢,7) — (7, ),
defined in a neighborhood of any point on the shock surface (7(¢), t), such that, under
this coordinate identification, the FRW metric matches the TOV metric Lipshitz
continuously across the shock surface. Note also that as in the OS solution, the
coordinate 7 is timelike in the Schwarzschild coordinates (7,f) when A < 0, but
spacelike in the FRW coordinates (t,7), where the coordinate ¥ measures arclength
distance in each spatial slice ¢t = const.

It remains to analyze the Rankine-Hugoniot jump conditions (5.1). The follow-
ing theorem gives a formulation of the conservation constraint that is amenable to
analysis.

THEOREM 3. Assume that the coordinate mapping (t,7) — (7,1) defines a
Lipshitz continuous matching of an FRW metric to a TOV metric inside the Black
Hole, in a neighborhood of a point P across a non-characteristic shock surface ¥ = 7(t)
defined by (5.15), so that that N > 1 at P. Assume further that p,p > 0 at P. Then
the Rankine-Hugoniot jump relations (5.1) together with the equivalent conditions (i)-
(iv) listed after (5.1)) all hold at P, if and only if the following single conservation
constraint holds at the point P :

p=—. (5.25)

Note that (5.25) immediately implies that if p > p, then also p > p, consistent
with an outgoing explosion of an inner FRW metric into an outer TOV metric. (The
construction of an explicit example of such a shock wave is the topic of the next
section.) Solving for p, it follows that condition (5.25) is equivalent to the condition

—(p+P)p+(p—p)Np
(p+p)+(@-pN

Note also that from (5.26) we see that if p = p = 0, then also p = 0, the conditions of
the OS solution.

Before giving the proof of Theorem 3, we first use the conservation constraint
(5.26) to derive the equations that describe the time evolution of the shock surface
and TOV metric inside the Black Hole that matches a given k = 0 FRW metric at
a shock wave positioned beyond one Hubble length N > 1. To start, assume that
p(t),p(t) and R(t) are known functions of the FRW time ¢ that determine a unique
equation of state p(p), and let o(t) = p(t)/p(t). The matching condition (5.15) written
in the form

p= (5.26)

3N

—_— ﬁ7 (5.27)
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gives p as a function of N and 7 at the shock, and substituting this into the conser-
vation constraint (5.26) and using p = p(p) gives p as a function of p, N and 7. The
first two equations (4.16), (4.17) of the TOV system (4.16)-(4.18) then close upon
substituting the resulting expression p = p(p, N,7) for p in the first equation (4.16).
The resulting system,

fr— .2
p 5 N1 (5.28)

N
N = — {? + /@pr} , (5.29)

then forms a non-autonomous system of two equations in the unknowns (p, N) as a
function of the independent variable 7, the shock position. (Again, “prime” denotes
4 ) Solving (5.28), (5.29) gives p(7) and N(F) subject to the initial conditions

P = po, N:NOa at r=7p. (530)

Assuming the FRW solution p(t), p(t), and R(t) is given, we can obtain 7 as a function
of t from (5.27), whereby we conclude that p(7) and N(7) determine the entire shock
wave solution. For example, to set the position of the shock at present time in the
FRW metric to be at 7 = 7y, choose pg = present density, define

K

No = gﬂofga (5.31)
(cf. use (5.27)). This leaves Py as a free parameter. Once we know the solution
(p(7), N (7)), we can use (5.27) to obtain the FRW density p as a function of 7, and
inverting the relation

(5.32)

gives the shock position 7 = 7(t), the distance from the shock wave to the FRW center
at FRW time t. The FRW shock position is then

_ (@)
r(t) = RO

The only other unknown in the problem is the metric coefficient B(7) from the TOV
metric, which we get by integrating the equation (4.18)'!,

B(F) = By exp {—/0 N(5 — <Nf) - nﬁ(f)f) dg}. (5.33)

1 Note that (5.33) completes the definition of the TOV metric, and so the integrating factor
for the shock matching is determined by (5.18), and from this the non-characteristic condition (5.24)
implies the Lipschitz matching of the metrics.
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Note that for an outgoing shock wave in an expanding FRW metric, it follows from
(5.29) that N decreases and 7 increases in forward FRW time, and so N — oo, ¥ — 0
would correspond to the Big Bang from the FRW point of view.

We conclude that the problem of constructing FRW-TOV shock waves with N > 1
reduces to the analysis of the 2 x 2 system (5.28), (5.29). The next theorem shows that
when we make the change of variable 5 — u = 2 and take N to be the independent
variable, the resulting equivalent system has the nice property that the equations are
coupled to the FRW metric only through the variable o = %.

THEOREM 4. Under the change of variables

U= ,UZB,J:B, (5.34)

system (5.28), (5.29) with conservation constraint (5.26) transforms to the equivalent
system

du (14 u) Bu—1)(c —u)N + 6u(l +u)
W“{2(1+3u)N}{ (o—wN+(1+a) } (5:35)

dr 1 r
N~ 1N (5:36)
with conservation constraint
—o (1 —u)N
_Zol+u+o-uN (5.37)

(I+u)+ (c—u)N

For such solutions, the speed of the shock interface relative to the fluid comoving on
the FRW side of the shock, is given by

s—Rr—\/N(U_“>. (5.38)
14+u

Note that the dependence of (5.35)-(5.37) on the FRW metric is only through
the variable o, and hence (5.35) is coupled to (5.36) only through the function o. In
particular, if we assume that o is constant in the FRW metric, (a reasonable model
problem, c.f. [14]), then equation (5.35) uncouples from equation (5.36) to form a non-
autonomous scalar equation in v and N which is amenable to phase plane analysis.
This is the starting point for the exact solutions constructed in the next section.

Note too that since (5.36) implies that % < 0, and V/N gives the number of
Hubble lengths to the shock wave, c.f. (5.17), equation (5.36) implies that the number
of Hubble lengths from the FRW center to the shock wave decreases in time, as claimed
in the introduction.

Since system system (5.35), (5.36) is equivalent to system (5.28), (5.29), the
former system also determines all quantities in the shock wave solution, but now
as a function of the variable N. For example, a solution of system (5.35), (5.36) is
determined by the initial conditions u = wg and 7 = 7y at N = Ny, which entails
assigning three constants. Alternatively, if we ask that the shock wave be positioned
/Ny Hubble lengths from the FRW center at the present FRW value of the density
p = po, then by (5.27), the initial shock position is determined by
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[3N,
Fo = 4] =2, (5.39)
Kpo

and there is then a one parameter family of such solutions (u(NV),7(N)) determined
by the remaining free parameter

_ P

U . 5.40
= (5.40)
Once we know the solution (u(N),7(N)), we can use
3N
p= — 2 (541)
# [F(N)]

to obtain p(IN), the FRW density p as a function of N at the shock. Since the FRW
metric is known, knowing p(IN) determines p(NN) and o(N) = %, and using these
in (5.37) we obtain v(N) and p(N) = v(N)p(N). Finally, the TOV metric coefficient
B is determined as a function of N by integrating the equation (4.18) with respect to

N, yielding the formula

N
B(r) = Byexp {— [ = (g —meter©) df}. (5.42)

To connect N with the FRW time ¢, invert the relation (5.41), obtaining N(t). Since
R(t) is assumed known, we can use

r(t) = (5.43)

to get the FRW shock position r as a function of ¢. Relations (5.39)-(5.43) formally
determine an exact shock wave solution of the Einstein equations for any given (k = 0)
FRW metric, and any given solution of system (5.35), (5.36).

Proof of Theorem 4. Equation (5.37) follows directly from (5.26) upon dividing
through by p and making the substitutions in (5.34). Equation (5.36) follows directly
from (4.17) upon noting that xpr = 24 a consequence of (5.32). From (5.36) we
have

1 1 N’
—=—— 5.44
P (1+3u) N (5.44)

To verify (5.35), start with
p\'_ o _»p
! /

u=|=] =——-=p. 5.45
(p) p P (545)
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Then by (5.28) and (5.37),

P u4+v N 1 (1+u)(o—u) ,
2= = N 5.46
P 2 N-1 2{(1+u)+(a—u)N ’ (5.46)
and using (5.27),
, 3N’ N 2 3(1+u)\ N
= = _—— = = _— —_— .4
p { w2 T P\N TF) TP\ 11se ) N (5.47)
where we have used (5.44). Thus,
D, 3u(l+wu)\ N’
Doy N 4
2 < 1+3u ) N’ (5.48)

and so using (5.46) and (5.48) in (5.45) gives

;1 (14+u)(o—u) , 3u(l+u)\ N’
“_5{(1+u)+(a—u)N}N_< 1+ 3u )W
_ (o- u)(3u? +2u — 1)N + 2u(1 + u)QN,
N 2(1+3u)[(1 +u) + (¢ —u)N]N ’

SR b= ds e e

which upon dividing by N’ verifies (5.35). Finally, since the fluid on the FRW side
of the shock is assumed to be co-moving with the radial coordinate r of the FRW
coordinate system, it follows that s = Ry gives the speed of the shock relative to the
FRW fluid, (c.f., the discussion after Theorem 4 of [14]), and so (5.38) follows directly
from (5.21). O

Proof of Theorem 3. Assume that we are given an FRW metric and TOV met-
ric inside the Black Hole that match Lipshitz continuously across a smooth, non-
characteristic shock surface 7 = 7(¢) defined in a neighborhood of point P, such that
the hypotheses of Theorem 3 hold. We show that (5.1) holds if and only if (5.25)
holds. We use the following lemma:

LEMMA 2. On the shock surface, in (7,t) coordinates, we have,

[T = [Thaw — Trov) (5.49)
(p+p)N+(p+p)(1—N) YVN(p+p)
VVN(p+p) V2 {(p+p)+(P—-DN} |’

and

fip = <Ni%§ + 1) , (5.50)

iy = —VN (u) : (5.51)
p+p
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where n,dz" = nodr + fi1dt is the covariant normal to the shock surface.

We use Lemma 2 to verify Theorem 3, and postpone the proof of Lemma 2 until
the end. To verify that (5.1) is equivalent to (5.25) at a point P on the shock surface,
it suffices to show that det ([T]**) = 0 holds at P if and only if (5.25) holds at P, and
that when this holds, the shock normal n is in the kernel of [T]. Indeed, if (5.25) holds
at P, and we know n is in the kernel of [T]*", then (5.1) and (5.2) hold at P, and so
our general theory in [13] would imply that (i)-(iv) hold at P as well. Conversely, if
(i)-(iv) and (5.1) all hold at P, then the RH jump conditions (5.1) alone imply that
det ([T)**) = 0 holds at P, and hence we would have (5.25) at P as well.

We first show that det ([T]**) = 0 holds at P if and only if (5.25) holds at P. But
by (5.49),

det ([T1") = {(p+ )N + (p + p)(1 = N)}; {¢*[(p + D) + (p — D)N]}
—*N(p+p)® =0, (5.52)

and solving for p gives

_ N(p +p)? 1
R P T AR
{(p+pN){}; = N(p+p)?}
(N=1){};
_ W=D {p(p—p)N —p(p+p)}
(N=1D{(p+p)+(p—p)N}

from which (5.25) follows at once. (Note that we have assumed without loss of gener-
ality that {-}; # 0, which is valid because, if {-}; = 0, then (5.52) implies p = p =0,
and p = 0 violates N > 1, e.g., R # 0, c.f. (5.52), (5.16).) Thus it remains only to
show that if det ([T]*”) = 0 holds at P, then the shock normal n at P is in the kernel
of [T]. To this end, note that by (5.50) and (5.51),

[T = 2° { (N% + 1) VN(p+p) (5.53)
VN <Z%§> ((p+ﬁ)+(p—ﬁ)N} =0,

and so 1, [T]*° = 0 as well because we assume det[T] = 0, and [T] is a 2 x 2 matrix
12 The proof of Theorem 3 is complete, once we give the

Proof of Lemma 2. To verify (5.49), we calculate Tr5,, and Thpy,, the stress
tensors in barred coordinates X = (7,%), at the shock. (Recall that 2° = 7 is the
timelike coordinate, and z' =  is spacelike because N > 1.) Using the formula

12 Although (5.53) appears to be a miracle here, this is to be expected from [13, 22], where in the
case A > 0, the single condition [T#"|n,n, = 0 alone implied the equivalencies (i)-(iv), as well as
the Rankine-Hugoniot conditions (5.1). One also expects this in light of the fact that the Einstein
equations for a spherically symmetric metric in standard Schwarzschild coordinates, contains only
one second order, (i.e. for Lipschitz metrics, one weak), equation, so we would expect only one jump
condition.
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Trov = (P + D)oy rov + g™, (5.54)

and the assumption that the TOV fluid is co-moving in barred coordinates,
we obtain

Similarly,

Trrw = (p+ P)Uppw Wrrw + 9", (5.55)
but in this case the assumption that the FRW fluid is co-moving in FRW unbarred

coordinates z® = (¢,7)%, implies that

8*/1«
ot = a%ua, (5.56)

where
(6%
e = [ ; ] , (5.57)

gives the components of the FRW fluid velocity in standard FRW coordinates (¢, r).

CrLAIM. When k = 0, we have

ozH vN R 1"
%{ v meL. (5.58)
Proof of Claim. The coordinate mapping 7 = Rr implies
-0
a&)it = Rr = Hr,
070
e R, (5.59)

which verifies the the first row of (5.58) upon using (5.16), H7 = v/N. Moreover, by
(5.6)-(5.8),

dt = (1 — H?7)dt + ¢ Hrdr. (5.60)
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Substituting

di = d(Rr) = Rrdt + Rdr = HFdt + Rdr

into (5.60) gives

dt =1 (dt + HrRdr) , (5.61)

from which we can deduce the second row of (5.58), which verifies the Claim.
Continuing now from (5.56):

ﬂ“_{ wmeiﬁmér_[ N]u'

Using this in (5.55) gives

N VN 1" 10 ™
ur
TFRW(p+p)[ WV b2 ] +PA{ 0 _wz} . (5.62)
Using (5.62) together with (5.55) gives
[T = [Terw — Trov]
_[ (p+p)N +(p+p)(1-N) vvVN(p+p) }
WWN(p+p) U {(p+p)+-pN} |
which is (5.49).
Finally, we use the Claim to verify (5.50) and (5.51) as follows. Let
o(t,r) =r—1r(t) =0, (5.63)
where 7(¢) denotes the shock surface in FRW (¢, r)-coordinates. Then
dp = —7dt + dr = nodt + ndr,
gives a covariant normal n,dz® to the shock surface in x = (¢, r) coordinates,
nog = —7-’,
ny = 1. (5.64)
In x = (7, t)-coordinates,
_ oz®
n“ = aﬁnm (565)
where % is the inverse of the matrix (5.58),
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oz° L { VRVN  —R r. (5.66)

o da | v VN

Oxe

Using (5.64) and (5.66) in (5.65) and neglecting the irrelevant factor — =, we

det| e

obtain, (to within a minus sign),

= (v [FRVN +1], iR VN ) (5.67)

)
j2

and substituting (5.21) in the form

. VNp—p
= ——,
R p+p

into (5.67), then gives the formulas for n,, given in (5.50), (5.51). The proof of Lemma
2 is complete. O

We summarize the results in this section as follows: System (5.35)-(5.36) de-
scribes the TOV metrics that match a given k£ = 0 FRW metric across a shock wave
discontinuity when A < 0, assuming that the conservation constraint (5.37) is satis-
fied. Solutions of these equations, together with the initial conditions in (5.39)-(5.43),
determine weak solutions of the Einstein equations containing a shock wave interface
across which the metric is only Lipschitz continuous, and such that conditions (i)-(iv)
(after (5.2)) are satisfied. Since the resulting solutions are formally time-reversible,
it still remains to impose a physically meaningful entropy condition. The entropy
condition for shocks determines the time orientation of the solution, c.f. [12]. In the
next section we construct a class of exact solutions of these equations which satisfy
an entropy condition that agrees with the entropy condition of gas dynamics in the
non-relativistic limit.

6. Exact Shock Wave Solutions When A < 0. In this section we derive a
class of exact solutions of equations (5.35)-(5.36) in the case when the FRW pressure
is given by the equation of state

p=op, (6.1)

where o is assumed to be constant,

0<o<l. (6.2)

In this section, as an entropy condition, we impose the condition that the shock be
compressive, a condition sufficient to choose the physically relevant stable shocks in
classical gas dynamics, [4, 7, 12]. That is, we will require that the pressure and
density be larger on the side of the shock that receives the mass flux. Exact solutions
satisfying the equation of state (6.1) were constructed in [14] for the case A > 0, so we
can interpret the results here as an extension of the results in [14] to the case A < 0.
However, in [14], the conservation constraint led to a TOV equation of state also of
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the form (6.1), but in our case here, the TOV pressure is not so simple due to the
fact that the conservation constraint (5.37) is of a different form.

Assuming (6.1), the solution to the FRW equations (2.7), (2.8) is given in Theorem
2, equations (2.37)-(2.41), and we assume an expanding universe, (R > 0), with initial
conditions R = 0 at t = 0, and R = 1, at t = 3. The solution has one assignable
constant which can be taken to be tg, pg or Hy, since

4 1
PO 3+ o) 2 (6:3)
I o

where we interpret g as “present time”in the FRW metric'®, and the relations (5.39)-
(5.43) hold.

We now solve the TOV shock equations (5.35)-(5.36), to obtain a shock wave
solution that matches this FRW metric for all R(¢) in the interval between R = 0 and
R = 1. Since (5.35) is coupled to (5.36) only through the function o, our assumption
that o is constant in the FRW metric implies that solutions of system (5.35)-(5.36)
are determined by solutions of the scalar non-autonomous equation (5.35). Making
the change of variable S = 1/N, (we do this to transform the “Big Bang” N — oo
over to rest point at S — 0, c.f. [21]), equation (5.35) takes the form

du _ [ _(1+w) (Bu—1)(0 —u) + 6u(l +u)S
${2(1+3U>S}{ (0 —u)+ (I +u)S } (6:5)

where u = p/p. We now construct solutions of (6.5) that model the “Big Bang” as a
localized explosion with an outgoing blast wave emanating from 7 = 0 at time ¢t = 0.
Thus, motivated by classical gas dynamics, we seek solutions of (6.5) that satisfy the
entropy conditions,

0<p<np, (6.6)
0<p<p, (6.7)

and meet the physical bounds on the TOV equation of state
0<p<p. (6.8)

Conditions (6.6), (6.7) for outgoing shock waves imply that the shock wave is com-
pressive. The condition (6.8) implies that the TOV equation of state is physically

13Since we are assuming the idealized equation of state (6.1) for the FRW metric, the value of the
Hubble constant at present time alone determines the solution. In the standard model of cosmology
based on a k = 0 FRW metric, [1], the solution is determined by two assignable constants, the Hubble
constant Hy and the background radiation temperature Tp, [1, 21]. Assuming (6.1), the freedom to
assign Ty is represented by the freedom to assign o. Also, in the standard model the galaxies follow
the particle paths of the matter field after the time when the pressure of the matter field is essentially
zero. In the model (6.1), the matter is co-moving with respect to the radial coordinate r, and hence
the particle paths follow 7 = 0. Loosely speaking, we refer to the motion along the particle paths as
the motion of the galazies in the cosmological interpretation of a general FRW metric. Thus we say
that the shock wave is exploding outward through the galaxies when the shock wave satisfies 7 > 0,
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reasonable. Note that the conditions N > 1 and 0 < p < p restrict the domain of
(6.5) to the region 0 < u < 0 < 1,0 < S < 1. The following theorem shows that the
inequalities (6.6), (6.7) and (6.8) can all be expressed in terms of u and S alone, and
are all implied by a single inequality.

THEOREM 5. Assume that

0<u<o, (6.9)

0<S<1, (6.10)

and the conservation constraint (5.87) holds. Then the bounds (6.6)-(6.8) are all
implied by the single condition

S < <;Z> <Z;Z> = E(u). (6.11)

Proof of Theorem 5. Multiplying (6.9) through by p > 0 gives (6.6). To verify
that p < p, write (5.37) in the form

—oS+a
= — 6.12
e (612)
where
o—u
= 0 6.13
“ 1+u> ’ (6.13)

and observe that p < p is equivalent to v < 1, and by (6.12), v < 1 if and only if
—o < 1. To verify (6.8), observe that p < p is equivalent to ¢ > 1, and by (6.12), this
is equivalent to

—oS+a

(S +a)u ~

)

which is easily seen to be equivalent to (6.11). Thus it remains only to verify 0 < p.
But observe that p > 0 is equivalent to v > 0, and by (6.12), this is equivalent to

lo—u
— 6.14
o1 +u’ (6.14)
which is implied by (6.11) because
lo—
E(u) < =72,
ocl+u

The proof of the theorem is complete. O



BLACK HOLE SHOCK WAVE 113

6.1. Analysis of the equations. The purpose of this section is to prove the
following theorem:

THEOREM 6. For every o, 0 < o < 1, there exists a unique solution u,(S) of
(6.5), such that (6.9) and (6.11) hold on the solution for all S, 0 < S < 1, and on
this solution,

0 <us(S) <, (6.15)
éim us(S) =1, (6.16)
where
= Min{o,1/3}, (6.17)
and
lim p=0= lim 5. (6.18)

Proof of Theorem 6. Solutions of (6.5) are determined by trajectories of the
autonomous system

S"=251+3u){(c —u) + (1 +u)S} = F(S,u), (6.19)
u=(1+u){—(1-3u)(oc—u)+6u(l+u)S}=G(S,u),
(6.20)

which has two degenerate rest points, S = 0, u = o and S =0, u = 1/3, in the (S, u)-
phase plane. Here “prime” denotes differentiation with respect to a parameter &, and
we recover equation (6.5) by eliminating & via du/dS = u'/S’. Since E(0) = 1, (c.f.
(6.11)), the “initial condition” u,(1) = 0 is a consequence of the entropy inequality
(6.11), and thus the uniqueness of u,(S) follows from uniqueness of solutions for
system (6.19), (6.20) because v = 0, S = 1, is a regular initial condition for the
system. Thus (6.18) follows from (5.34) and (5.37) because limg_.; us(S) = 0. It
remains to prove the existence of the solution u,(S) on 0 < S < 1, and to establish
(6.16).

Our analysis of these equations is based on the construction of invariant regions.
Before we analyze the phase plane for system (6.19), (6.20), first note that F'(S,u) > 0
in the region 0 <u < 0, 0 < § < 1, and the isocline G = 0 is given by

o—u)(1/3 —u)

_
5= 2u(1 + u)

= h(u,0). (6.21)

Let R, denote the region'*
Ry = {(S,u): 0<u<i, 0<S<h(ua)l, (6.22)
c.f. Figure 1.
14We include the line v = 0 in R, in order that the initial point u = 0, S = 1 for the solution
trajectory lies in R,. However, the entropy conditions (6.6), (6.8) do not hold at the transitional

point u = 0, S = 0, the place where the solution us(S) continues naturally to the OS solution when
p <<l
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u/ s = h(u,0)

<l
1]
[SSTI=N

NN N N NS

c >z

s = h(u,0)

s = h(u,0)

v

Fia. 1. The invariant region Rs
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LEMMA 3. The region R, is a negatively invariant region for system (6.19),
(6.20) for each o between 0 and 1.

Proof. To show that R, is negatively invariant, it suffices to show that the vector
field (F, G) points out of or tangent to R, on the boundary of R,, as shown in Figure
1. Now the vector field (F,G) is tangent to the axis S = 0 because S = 0 is a
solution trajectory of system (6.19), (6.20). Since the boundary u = 0 lies below the
G-isocline, it follows that G < 0 along the boundary u = 0, and so the vector field
(F, G) points out of R, along the lower boundary. Finally, the vector field points out
of R, along the upper boundary S = h because, for each 0, 0 < o0 <1, S =hisa
G-isocline, F' is positive, and S = h(u, o) is a decreasing function of v on 0 < u < 4.
Indeed, S = h(u, o) is decreasing on 0 < u < @ because, (using (6.21), and prime for

d
E)a

A !
X _a <§> <0, (6.23)

where h = % and

A= (c—u)(1/3—u),
B =2u(1+ u),

and we use the fact that A >0, A’ <0, B>0,and B’ >0in 0 <u < .

Now the existence of the orbit u,(S) on the entire interval 0 < S < 1 is a
consequence of the fact that S = 0, u = @ is the only rest point in the region R,.
That is, the unique trajectory of system (6.19), (6.20) starting from initial point
(S;,u) = (1,0) € Ry, must tend to the unique rest point (0,%) in backward time
& — —o00. Moreover, since G < 0 and F' > 0 in the interior of R, it follows that S
and u are monotone along the orbit, so the orbit defines the trajectory u = us,(.5),
0 < S <1, as well as its inverse, S = S, (u), 0 < u < @.

It remains only to verify that the entropy condition (6.11) holds all along the
solution, and for this it suffices to show that

A(u) = E(u) — Sy(u) > 0, (6.24)
for all u € [0, ). But
A(0) =0 (6.25)
because E(0) = 1 = S,(0), and
A(z) >0 (6.26)

because E(u) > 0 and Sy(@) = 0. Thus to verify that A(u) > 0 for 0 < u < @, it
suffices only to show that A(u) > 0 in a deleted neighborhood of v = 0, and that
A’(u) = 0 has at most one root in 0 < u < @. But differentiating (6.11) gives

o—u?

E'(u)=-2(1+ U)m.

Using this and (6.5) at « = 0 gives
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1
E(0) = —2—7 = &,(0),
g
and
1+0)2 (14 0)?
E"(0 _4( -6 =3s"(0
(0) 2 o2 s5(0),

which implies that A’(0) = 0, A”(0) > 0, so A(u) > 0, near u = 0. Moreover, by
(6.11) and (6.5) we also see that A’(u) = 0 if and only if

S*{(o+u)(1+u)’(1+3u)}, (6.27)
+8{(o —u)(o +u)*(1 +u)*(1+ 3u) + 6u(l + o) (1 + u)*(c — u?)}
+{Bu—-1)(1+0)(oc —u)(1+u)(c —u?)}, =0.

b

But {-}, > 0, {:}, > 0, and {-}, < 0 for 0 < u < @ because u = Min{o,1/3},
and thus the quadratic (6.27) has exactly one positive root. We conclude that (6.24)
holds. Finally, to verify (6.18), we note that u — 0 as S — 1, so p — 0. The fact that
limg_.; p = 0 follows directly from (5.37). The proof of Theorem 6 is complete. O

Theorem 6 implies that the entropy conditions (6.6), (6.7) pick out the unique
solution of system (6.5) emanating from the initial point S =1, u = % =0=7p.

6.2. The shock speed. In this section we estimate the shock speed s,(S5) =
s(ux(S)), the speed of the shock relative to an observer fixed relative to the FRW

fluid, along the solutions u,(S) of Theorem 6, 0 < S < 1, 0 < u,(S5) < 0.

THEOREM 7. Let 0 < o < 1. Then the shock wave is everywhere subluminous,
that is,

[ss(9)] < 1, (6.28)
for all0 < S <1, if and only if
o <1/3. (6.29)
Proof. Formula (5.38) gives
50(S) = Ri = —— (”—‘“) , (6.30)
VS \1+u
and thus since limgs_ous(S) = u = Min{o,1/3}, it follows at once that

lims—08,(S) = oo if 0 > 1/3. Since limg_ous(S) = 0 when o < 1/3, we conclude
from (6.30) that the precise value of the shock speed s, in the limit S — 0 depends
on the asymptotic behavior of the solution u,(S) as S — 0. This is addressed in the
next subsection.

To verify (6.28), (6.29), we first prove the following lemma.

LEMMA 4. Assume that 0 < 0 < 1/3, and let S = Qq(u) = Q(u) be defined by
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2 (0 —u)?
Qa(u) =a” 7~ e (6.31)
Then the region
o ={(Su): 8> Qa(u)} N Ry, (6.32)

is a negatively invariant region for solutions of system (6.19), (6.20), so long as

1
2 —. 6.33
" < o (6.33)

Moreover, for o = 1/3 and sufficiently small € > 0, there exists a § > 0, such that if

1

< —o 34
@<t (6:39)

then solutions of (6.19), (6.20), starting in the region
Qf/3(e) = Q15 N{(S,u) : 0 <u<1/3—¢}, (6.35)

can only leave the region Qf 5 (e) through the boundary u=1/3 — €.

Note first that, assuming o < 1/3, the condition a? < % guarantees that Q,(u) <
h(u) in the region 0 < u < 0, 0 < S < 1 because by (6.21), Qq(u) < h(u) is equivalent
to

oc—u 2u

a2<(1/3—u> (1+u) 6.36)

and since

20 oc—u 2u

1 <1/3—u> (1+u) (6.37)

a? < % guarantees (6.36) in 0 < u < 0, 0 < S < 1. It follows that when a? < %
the region Q% is the region in the (S, u)-plane that lies above the curve S = Q,(u)
above the curve u = 0, and below the isocline S = h(u). Moreover, when a? < %,
the initial point u = 0, S =1 for solution trajectory u,(S) lies within the region Q%
because Q,(0) = a’0? < 1.

Before proving the lemma, we first use Lemma 4 to complete the proof of Theorem
7 by verifying (6.28). Since the initial condition S = 1, u = 0 lies within the region

@, we can estimate the shock speed all along the orbit u,(S) by

o= () < L) (52 =L e

and so taking a = \/% < #, (optimal for (6.33)), we obtain

)
)
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5o(u) < V3o < 1, (6.39)

forall 0 < 0 < 1/3,0 < u < ¢. This verifies (6.28) for 0 < ¢ < 1/3. However, (6.39)
does not provide a strict inequality if o = 1/3.

To obtain the strict inequality (6.28) in the case o = 1/3, we use that the initial
condition § =1, u = 0 also lies in Qf 5(¢) for a = ﬁ, so if we assume u;/3(S) <
1/3 — ¢, then (6.34), (6.35) imply that the shock speed in the region Qf ;(€) can be
estimated by

1
81/3(U) < E =v1- o< ]., (640)

when ¢ = 1/3. Since ¢ is arbitrary, we conclude that (6.28) holds for all 0 < o < 1/3,
0<S<L
The proof of Theorem 7 is complete, once we give the

Proof of Lemma 4. Assume (6.29). To show that Q% is negatively invariant, it
suffices to prove that the vector field (F, G) restricted to the curve S = Q,(u), always
points into the region below the curve. That is, it suffices to prove that |Q’(u)| > ‘%

on S =Q.(u) =Q, where % is given in (6.5). Thus our condition is

(14+0)(c—u)
(14 u)3

2(1 4 3uw)Ql(o —u) + (1 + u)Q]

Q' = 2a (1 +u)|(3u— 1) (0 — u) + 6u(l +u)Q|

>

After some algebra, this reduces to

(1+0) < (14 u) + (0 — u)a?
(0 —u)(143u) = |[(1 —3u)(1+u) — 6ulc —u)a?|

(6.41)

But the term inside the absolute value is positive so long as a < % because then

1 1—-3u\1+u
2 - <« 6.42
“ =9 =\o-u 6u ( )

as a result of (6.37).

Therefore, using that the term in the absolute value in (6.41) is positive, we can
solve (6.41) for a? to obtain the following condition equivalent to the condition that
S > Q(u) is negatively invariant:

14w [(14+0)1—3u)— (1+3u)(oc —u)]
(14 3u)(oc—u)2+ (14 0)6u(c —u)
(1+u) |(1+0)8=9 (14 30)

(o—u)
T (43w —uw)+6(1+o)u (6.43)

a2§

But using that
1—-3u
>

o—u
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it follows that the inequality

e (1t w3 —u)
~ (14+3u)(oc—u)+6(1+0)

- = ¢ (u), (6.44)

guarantees (6.43) all along the curve S = Q4 (u). But ¢/ (u) <0for 0 <u <o <1/3

because ¢, (u) = 4 where

A= (14+u)2+3(c —u),

B=(143u)(c —u)+6(1+o0)u,

and
BA' — AB' <.
Therefore,

1

bo(u) > ¢ (U)

From this we conclude that if (6.33) holds, that is, if a? < 3= < 5=, then (6.44) holds,
and hence Q% is an invariant region for all 0 < o < 1/3, as claimed. It remains to
verify (6.34) and (6.35) in the case o = 1/3.

So assume ¢ = 1/3. Then from (6.44), we have

(1+u)243(1/3 —u)]
(1+3u)(1/3—u)+6(1+1/3)u’

¢1/3 (U) =

But since, ¢ 5(u) <0 for 0 < u < 1/3, it follows that for every e > 0 there exists a
0 > 0 such that

1

b1/3(u) > T3

in the region 0 < u < 1/3 — €. Thus, if we choose a? < ﬁ, then (6.44) holds, and so
S > Q13(u) is an invariant region for 0 < u < 1/3 —e. It follows that (6.34) implies
that orbits can only leave the region Qf /3(6) through the line u = 1/3 — ¢, as claimed.
The proof of Lemma 4 is complete. O

6.3. The shock speed at the Big Bang. In this section we calculate the shock
speed s, (.5) along the orbit u = u,(.9) in the limit S — 0, the instant of the Big Bang.
In Theorem 7 we showed that limg_0s, = 00 if o > 1/3, and the following theorem
asserts that limg_osy = 0 for o < 1/3, but that limg_os, = 1 for the special value
o = 1/3. In particular, this confirms that the estimates of Theorem 7 are sharp.

THEOREM 8. Let 0 < o < 1/3, and let s5(S) = so(us(S)) denote the shock
speed along the solution u = uy(S), given in (6.30). Then if o > 1/3,

élgb 56(9) = o0, (6.45)
ifo<1/3,
lim s,(S) =0, (6.46)

S—0
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and if 0 = 1/3,

élgb s6(S) =1. (6.47)

Proof. By (6.30), the shock speed is given by

_ 1 (o—us(S)
50(5) = 75 <71 +ug(5)> ) (6.48)

from which (6.45) is evident. To verify (6.46), we show that when 0 < o < 1/3, and
a= %, there exists m > 0 such that
(1,0) e R ={(S,u) : S >m(c —u)} N O,
and that the region R is negatively invariant for solutions of system (6.19), c.f.
(6.32). If R™ is negatively invariant and contains the initial point (S,u) = (1,0),
then u,(S) > o — 1S in a neighborhood of v = ¢, which implies (6.46) because then
we can use (6.48) to conclude
1 Lg

<lim — ( —2—— | =0.
=50V <1 +ua<5>>

To see that R} is negatively invariant for some m > 0, assume first that

< I
0< élgb 56(5)

1-30

m < (o) = oLt o)

(6.49)
c.f. (6.21). This implies that m(c — u) < h(u) in the region 0 < u < 0, 0 < § < 1.
Thus when m < h/(0), the region R consists of the set of all points in Q% that lie
above the curve S = m(o —u) and below the curve S = h(u). It is also easily verified
that the initial condition S =1, u = 0 lies in R* when m < h/(0).

To find a value of m < h/(o) for which R is negatively invariant, we mimic the
proof of Lemma 4 using L = L(u) = m(o — u) in place of Q,(v). That is, R} is
negatively invariant if the vector field (F, G) points into the region below S = L(u),
all along S = L(u), which is to say that |L'(u)| > ‘%‘ on S = L(u), where 42 is given
n (6.5). Since we have already verified that Q% is negatively invariant for a = \/%,
we actually need only verify the negative invariance of the curve S = L(u) for values
@ < u < o, where @ is the value of u at the point of intersection (S, ) of the line

S = L(u) and the quadratic S = Q,(u) = %%, c.f. (6.31). Since L is linear and

Q. is quadratic at (0,0), it follows that u — o as m — 0. Thus our condition is

L] = m > 2L(1 + 3u)[L(1 +u) + (0 — u)]
“ (Q+u)|(c—u)Bu—1)+6u(l+u)L|’

for u < u < 0. After some algebra, this reduces to

L 2(oc —u)(1+ 3u)[m(1 +u) +1]

“ (1 +u)|(3u — 1) + 6u(l + w)m|’ (6.50)

But the term inside the absolute value is negative because
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1—-3u

m < L (6.51)

a consequence of the fact that we are assuming m < h'(c). Therefore, we can solve
(6.50) for m to obtain the following condition equivalent to the condition that S >
L(u) is negatively invariant:

1—3u—2(143u)(c —u)

"= (I+w)[2(1 + 3u)(o — u) + 6u] = w"(u)' (6.52)

Now assuming o < % is fixed, it follows that ¢» = A/B, where
B = (1+u)[2(1 +3u)(o —u) + 6u] < 2(1+0)(70 + 35?), (6.53)
and
A=1-3u—2(1+3u)(c—u).

Therefore, to verify (6.52) for ¢ < u < o for some m > 0, it suffices only to show
that for m sufficiently small, A = 1 — 3u — 2(1 4 3u)(c — u) is bounded uniformly
away from zero for all u € [@,0]. But 1 — 30 = € > 0, so lim,,_,o @ = o implies that
there exists an § > 0 such that m < ¢ guarantees that 2(1 + 3u)(oc — u) < €/2 for all
u € [u,0]. In this case, A =1 —3u — 2(1 + 3u)(c —u) > §, and hence by (6.53),

€

(14 0)(70 + 302)

It follows from (6.52) that if we choose m = Min{4,61}, Then for fixed o < %, it
follows that

Yo(u) > 1 = 05. (6.54)

m < 11)0 (u)v (655)

for all u € [, 0], and hence that R is negatively invariant. Thus the proof of (6.46)
is complete, and it remains only to consider the case o = 1/3.

In the case o = 1/3, R is not negatively invariant for any m > 0, and to evaluate
lims_.0 55(S5) in this case we need the asymptotics of the solution u,/3(S) near S = 0.
This is given in the following lemma:

LEMMA 5. Assume o =1/3. Then
Uy (S) ~1/3—m.VS, as S —0, (6.56)

where

LW W~

(6.57)

My =

Lemma 5 implies (6.47) of Theorem 8, (the case o = 1/3), because using (6.56)
in (6.30) we obtain,

_ 1 (o—-us(S)
5o(8) = \/§<71+u0(5)> (6.58)

maVS | .
S\ 1+us(S) 1+1 7

ol

-

Wl
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Note that (6.56) confirms that the orbit u;/3(S) comes into the rest point S = 0,
u = 1/3, asymptotically like the negatively invariant curve S = Q1 (u) = (%)2 (% —u)?,
c.f. (6.31).

Proof of Lemma 5. Assume o = 1/3. To verify (6.56), write
us(S) =1/3+6(S), 0<S8<1. (6.59)

We find the equation that ¢ satisfies asymptotically as S — 0. (Note that ¢(0) =0
because u,(S) tends to the rest point (0,1/3) as S — 0.) Putting (6.59) into (6.5) we
obtain

(3+0) [-36° + (2+60)(3 +)S]
22+39) [0+ (53+0)S]

But by Lemma 4, we know that Qf /3 is negatively invariant for ¢ = 1, and from

S¢'(S) = (6.60)

this it follows that wu;/3(S) is squeezed below the G-isocline and above the curve
u=Q S)=1/3—+/S as S — 0. It follows that (1/3 — uy/3(S)) is order S1/2 as
S — 0. Using this in (6.60) gives

(3) [-3¢° + §5]
22)[~d]

where ~ means to leading order in S as S — 0. Thus, to leading order in S, equation
(6.61) takes the asymptotic form

S¢'(S) ~

(6.61)

85
S =¢——— 6.62
d=o-52 (6:62)
which we can write in the form
24/ a¢2
= — - 6.63
@y =225 (6.6
which is linear in v = ¢? with
a=2, (6.64)
and
8 =16/9. (6.65)
But (6.63) has the general solution
p
= kS* — S 6.66
! l—a”’ (6.66)

where k is a constant. Since o > 1, the first term in (6.66) is higher order in S, and
thus we have shown that to leading order in S, equation (6.62) has the unique solution

$(S) = m.V/'S, (6.67)
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where

g

a—1

my =

=4/3. (6.68)

This agrees with (6.56) and (6.57). Thus the proof of Lemma 4 will be complete once
we prove the following lemma.

LEMMA 6. Assume o = 1/3. Then every solution u(S) of (6.5) that enters the
rest point S = 0, u = 1/3 from inside the invariant region Q‘lz/3, a =1, must satisfy

u(S) ~1/3 — 3\/5, as S — 0. (6.69)

Proof. By the derivation of (6.62), we know that
u(S) =1/3+(S),
where QAS satisfies
) —o® g
(¢> ) = a%s e(S), (6.70)

for some function, ¢(S) — 0 as S — 0. Thus it suffices to show that

limg_.q M‘ = 0. But (6.70) is linear and has the general solution
~ So
#*(S) = KS™ + S“/ {B+e(t)}t*dt, (6.71)
5
for some constants K and Sp. Moreover, ¢?(S) = m2S also satisfies
p 5
#*(S) = mSga“s(’ + S“/ Btdt, (6.72)
- 5

as one easily sees by integration, and consistent with the fact that ¢ solves (6.70) with
€ = 0. Thus

So
P sa/ ()t dt + K S°
- S
8 %
=g ottge 4 E*S(’/ t=dt + KS”
a—1 S

1
_ _%So—a-i-lsoz Te, (m) [So—a—i-lsoz _ S] +K5a,

(6.73)

where we have applied the mean value theorem for integrals with e, = €(S,) for some
Sy € (S, 50). Now if we choose Sy = S® for some 0 < a < 1, then every term in (6.73)
is higher order than S. That is,

€«

-1

62 - qb?\ ($) < [&SW”““) + K|S+ S,
a—1 «
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from which we conclude that

|8 - 6s)
S—0 S

‘_O’

as claimed. This completes the proof of Lemma 6, and thus Lemma 5 as well. O

6.4. The asymptotics for S > 1. Equation (6.18) implies that v = g =0=p
at S = 1. Thus, the TOV metric inside the Black Hole continues to the empty space
Schwarzschild metric at v = 0, v = 0, S = 1, an event horizon for the outer TOV
metric in light of the fact that at S =1, N = % =1, c.f (5.17). It follows that if the
FRW density p is small at S = 1, then it makes sense in cosmology to approximate
the FRW solution with p = 0 for all times S > 1. Assuming this, Theorem 6 implies
that for each 0 < o < 1, the unique solution u,(S) continues to the zero pressure,
k = 0, OS solution at S = N = 1, the moment when the shock wave lies exactly
one Hubble length from the FRW center. That is, at S = 1, the shock wave emerges
from the White Hole event horizon of an ambient Schwarzschild metric as an outward
propagating contact discontinuity that bounds a finite FRW mass, this being exactly
equal to the total mass of the ambiant Schwarzschild metric into which it propagates.
Thereafter the interface continues out to infinity along a geodesic of the Schwarzschild
metric outside the Black Hole.

We conclude that the OS solution gives the large time asymptotics of this new
class of shock wave solutions that evolve inside of a Black Hole—and thus the explosion
that begins at the Big Bang eventually settles down to a localized expansion that looks
something like a giant supernovae, but on an enormous scale. .

7. Estimates for the Shock Position. In this section we use the invariant
region Q%, (c.f. (6.32)), to estimate the shock position 7y at present time in terms
of its position at the instant of the Big Bang S = 1/N = 0. Using this, we finish by
estimating the time at which the shock wave first leaves the Black Hole in terms of
the time at which the shock wave first becomes visible to an observer at the FRW
center.

Since the physical shock position at S = 0 is ¥ = 0, we begin by estimating
To = 1o, R(tp) = 1, in terms of r,, the value of the radial FRW coordinate at the
instant of the Big Bang. In particular, the analysis shows that r,(S) has a limit
re = r(0) as § — 0, for any solution (r,(S),us(S)) of system (5.35),(5.36). So
assume the FRW solution for the equation of state p = op, 0 < o < 1/3, is given,
together with the shock trajectory u,(S), that solves equation (5.35). There then
remains the one equation (5.36), leaving one free initial condition to impose. The
next lemma gives an equivalent form of equation (5.36) in terms of the FRW variable
7.

LEMMA 7. Equation (5.86) is equivalent to

dr o—u

dS~ (14+o0)(1+3u) S’ (7.1)

for all0 < S <1.

Proof. Starting with (5.36), we can write
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a_dr N 1y 7
dS  dN dS ~ (1+3u)S’ '
Also,
drd(f) 1dr 7 dR (7.3)
dS dS RdS R2dS’ '
so using (7.2) we have
dr_ (L \r_rdi
dS \1+3u)S RdS
So now we need only compute dR/dS. For this, we use (2.38), (2.39) to obtain
H = HyR~ 5%
= 1io )
and from (5.16),
H*? =N =1/8S.
These imply
R = (SHZ?)™ | (7.4)
Using (7.4) together with (7.2) gives
dR (14 u) 9 ol o (2430
o H 3(1+0) 3(1+0) | .
15~ U0y 13n H0T)™7S (75)
From (7.4) we get
R3(1+a)
H{r? =
0 g )
and using this in (7.5) gives
d 1
a8 (+w) R (7.6)
dS (1+4+o0)(1+4+3u)S

Use this in (7.3) to get (7.1). O

We now use (7.1) to estimate ro in terms of 7., assuming that the shock position
7o = ro = v No/Hy at present time lies beyond one Hubble length. Then Ny > 1,
and we have
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S()Zl/NO: <1, (77)

1
H()??(Q)
c.f. (2.7), (5.17). Then integrating equation (7.1) we obtain,

ro = roelo () ariys 5. (78)

where u denotes the function of S given by the trajectory u = u,(S5)) of (5.35),
us(0) =0 < 1/3, us(1) = 0, u,(S) < 0,0 < S < 1. We can now use the invariant
region Q% to estimate o — u,(S) for 0 < .S < 1. That is, the condition that the orbit
ug(S) lies in Q% implies that

(c—u)(1—3u)  (c—u)(l—3u) o—u
h < 1
() 6u(l+u) — 6u - 6u (7.10)
and we can take, c.f. (6.33),
1
2= —. 7.11
"= o (7.11)
Now using (7.11) in the lower bound in (7.9) leads to
— 1
7 (1) 3ovS < vBaVS, (7.12)
14 3u 1+3u
and applying this in (7.8) gives
ro < meZl\-/f VS0 (7.13)

We now apply the upper bound in (7.9). Note first that

Min {1, h(us(S)} < Min {1, W} < Min {1, %} . (7.14)

where 4 is the (smallest) value of u at which h(@) = 1. (We need 4, the smallest value
of u that puts h(u) < 1, to bound the factor u in the denominator of h(u).) We can
estimate @ as follows. First, note that by (7.10), h(4) = 1 is equivalent to

o 342 o

— <
7+3c 7430 7+30’

’il:

so using the latter inequality to estimate the second term after the equality, we obtain
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N o 3 o 2
u > —
T T74+30c 7430 \7+ 30
1—1/7? o
>— ' o> —. 7.15
>—5—0zg (7.15)

Using (7.15) in the second inequality in (7.14), (i.e., ignoring for the moment the
factor (1 — 3u) in the middle term of (7.14)), implies that

_ 3 _
S<Mind1, 272V < pin 1,222 (7.16)
6u 2 o
which implies that

2
o—u> §US (7.17)

holds all along the orbit u = uy(S). Using (7.17) in (7.8) gives the inequality

7o > reei?5o. (7.18)

In the case o = 1/3, we can improve the estimate (7.18) by using the first inequality
in (7.14) to obtain

) (0 —u)? . 1 (0 —u)?
< — > < G .
S_Mm{l, 150 < Min 1,2 - , (7.19)
and
o—u>vV208S, (7.20)

in place of (7.16) and (7.17). Using (7.20) in (7.8) gives the improved inequality valid
for 0 =1/3,

o)

o > ree’t V50, (7.21)

Putting (7.13) and (7.18) together, we obtain the following bounds for the shock
position 19 = 7o in terms of the initial position r, that apply for 0 < o < 1/3:

ﬁ

1 230
ree1750 <y < e tre VOO, (7.22)

In the case p = % p, we obtain the improved bounds

mevTEVS*O <rg < r*e%m. (7.23)

The following Corollary follows immediately from (7.22) and (7.23) in the case Sp =1 :
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COROLLARY 2. Let 7 = 7oy denote the FRW shock position at the instant S = 1
when the shock wave emerges from the Black Hole. Then for 0 < o < 1/3 we have

2V30o
r*ei” < Fepit < Tye 1o (7.24)
while if o = 1/3 we have,
V6 3
ree T < Tepit S Tx€2, (725)

where r, is the FRW radial coordinate of the shock wave at the instant of the Big
Bang.

Note that because

1 1
S=—= 7.26
N  H?*? (7.26)
multiplying (7.22) through by Hy gives
e721\+/3Ua\/50 _ o - 67}1050 - 1 797
THo VS T S Hon 720

and so we could use (7.27) in (7.22), (7.23) to obtain estimates involving Hy in place
of Sy. In particular we have

235
re < 1o < rheeGFHT (7.28)

which reproduces the OS result g = 7, in the limit ¢ — 0.

The final theorem gives an estimate for the number of Hubble lengths to the shock
wave at the instant when it first becomes visible at the FRW center, as well as an
estimate for the time it takes the shock wave to emerge from the Black Hole after it
first becomes visible at the FRW center.

THEOREM 9. Let r, =limg_,07,(S) denote the FRW position of the shock wave
at the instant of the Big Bang, and assume 0 < o < 1/3. Then the shock wave will
first become wvisible at the center ¥ = 0 of the FRW spacetime at FRW time t = tg, at
the moment when the Hubble constant Hy = H (ty) satisfies

2
T 1430’

Hor, (7.29)

(assuming R =1 at t = tg), and, the number of Hubble lengths \/Ng from the FRW
center to the shock wave at time t = tg satisfies

2 2 V3o ( Ltse
1< < /N, < o (55%7). ,
1430 — 0714—30'6 (7.30)

Furthermore, the time te.;¢ > to at which the shock wave will emerge from the Black
Hole given that it first becomes visible at t = to is estimated by
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2_toglet 2 ngp (7.31)
1+ 30 to 1+ 30
and by the better estimate
oF < Lot 3 (7.32)
— tO —_ )

in the case o =1/3.

Note that, for example, (7.30), (7.31) imply that at the OS limit ¢ = 0,

/NO =2, tctm't =2,

and in the limit o = 1/3,

which verifies (1.2). Note also that (7.30) and (7.31) imply that the shock wave will
still lie beyond one Hubble length at the time ¢ = tp when it first becomes visible at
the FRW center.

Proof of Theorem 9. Equation (2.41) implies that if the shock wave is first visible
at t = tg, Rg = 1, then

2

(I +30)Hy (7.33)

Te = Too =
which implies (7.29). To verify (7.30), multiply equation (7.28) through by Hy, and
use (7.29) and (5.17).

To verify (7.31) and (7.32), let 7¢rit = Terit Rerit denote the shock position at
S = N =1, (the instant when the shock wave emerges from the Black Hole), and use
(2.39) and (7.26) to write

tori H, B
%’t - Hot = HoForis- (7.34)

Then multiplying (7.24) and (7.25) through by Hy and using (7.33) in (7.34) gives
(7.31) and (7.32), respectively. This completes the proof of Theorem 9. O

8. Concluding Remarks. We have constructed global exact solutions of the
Einstein equations in which the expanding FRW universe extends out to a shock wave
that lies arbitrarily far beyond the Hubble length. The critical OS solution inside the
Black Hole is obtained in the limit of zero pressure, but the shock wave solutions
have qualitative differences from the OS solution. For example, the shock surface 7(t)
tends to zero as t — 0, and the mass function at the shock M (7(t)) is finite for all
t > 0, but unlike the OS solution, in the shock wave solution, M (7(¢)) tends to infinity
as t — 0. That is, the mass function is infinite at the instant of the Big Bang, but
immediately becomes a finite decreasing function of FRW time, for all future times
t > 0. Moreover, when p # 0, the directional orientation of the shock wave motion
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relative to the various observers is determined by the entropy condition—the entropy
condition chooses the explosion over the implosion. For the entropy condition we take
the condition that the pressure and density be larger behind the shock wave; that is,
larger on the side that receives the mass flux. This condition implies that the shock is
compressive, and is sufficient to rule out expansion shocks in classical gas dynamics,
[12].

One can ask the question, what is the solution like beyond the shock wave at
any fixed instant of time inside the Black Hole? The answer is that the TOV energy
density p(7) and the TOV mass M (7) as well, are both constant at each fixed “time”in
the TOV metric beyond the shock wave, because 7 is the timelike TOV coordinate
inside the Black Hole. This is no contradiction because what we identify (via shock
matching) as the total mass function on the TOV side of the shock comes from the
dr? component of the metric, which is timelike inside the Black Hole. However, this
TOV “total mass”matches the FRW total mass continuously at the shock surface,
and the FRW total mass has the physical interpretation as M = %’T pr>, the integral
of the energy density at each fixed time ¢ in the FRW coordinates (¢,7). ® Thus the
evolution of the “total mass“is interesting and surprising inside the Black Hole.

Throughout its expansion, the strength of the shock is on the order of the energy
density p on the FRW side of the shock. At the moment when the shock wave lies
at the critical distance of exactly one Hubble length from the FRW center, the TOV
density and pressure are zero, and thus we argue that if the FRW density is small
as well, then the shock wave continues, (with small errors), to a zero pressure OS
interface leaving the Black Hole at that instant. Thus the OS solution provides the
large time asymptotics of these shock wave models. That is, the interface that marks
the boundary of the FRW expansion continues out through the White Hole event
horizon of an ambient Schwarzschild metric at the instant when the shock wave is
exactly one Hubble length from the FRW center # = 0, and it then continues on
out to infinity along a geodesic of this Schwarzschild metric outside the Black Hole.
These solutions thus indicate a scenario for the Big Bang in which the expanding
universe emerges from an explosion emanating from the White Hole singularity inside
the event horizon of an asumptotically flat Schwarzschild spacetime of finite mass.
The model does not require the physically implausible assumption that the uniformly
expanding portion of the universe is of infinite mass and extent at every fixed time,
and it has the nice feature that it embeds the Big Bang singularity of cosmology
within a larger spacetime, the Schwarzschild spacetime. Moreover, the model also
allows for arbitrarily large densities to exist over arbitrary numbers of Hubble lengths
early on in the Big Bang, a prerequisite for the standard physics of the Big Bang at
early times.

One might ask how an observer near the FRW center would first detect evidence
of such a cosmic shock wave. Since the shock wave emerges from the Big Bang beyond
the Hubble length, the model would imply a uniform expansion throughout a region
that is initially well beyond the light cone of an observer positioned near the FRW
center. If the shock wave were initially far enough out, then the uncoupling of matter

15To see how M can be constant on the TOV side when it measures a total mass on the FRW
side, consider shock matching in (¢,7) coordinates. Then since the FRW mass M depends only on ¢,
while the TOV mass depends only on #, one of them depends on the timelike coordinate and one on
the spacelike coordinate in the (¢, 7) coordinates at the shock. Thus, in the Einstein equations, the
nonzero M derivative ends up in a different equation on each side of the shock, giving the physical
total mass on the FRW side. But on the TOV side, the derivative M’ is equated to the pressure,
and thus doesn’t have the same interpretation as an integral of the energy density.
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from radiation at about 300, 000 years after the Big Bang would produce an extended
region with a uniform background radiation field. This would persist until roughly
the time when the Hubble length catches up to the shock wave, a time determined
by the initial conditions. The influence of the solution beyond the shock wave would
propagate into this radiation field at the speed of light, first appearing to an observer
that is off center on the FRW side of the shock as a disturbance in the background
radiation field at a point in the sky in the direction nearest the shock wave, and the
disturbance would grow from that time onward.

These exact shock wave solutions give the global dynamics of strong gravitational
fields in an exact solution, the dynamics is qualitatively different from the dynamics of
solutions when the pressure p = 0, and the solution suggests a Big Bang cosmological
model in which the expanding universe is bounded throughout its expansion. Surpris-
ingly, unlike shock matching outside the Black Hole, the equation of state p = % p of
early Big Bang physics, plays a special role in the equations, and for this equation of
state alone, the behavior of the shock wave at the instant of the Big Bang is distin-
guished. But these solutions are only rough qualitative models because the equation
of state on the TOV side is determined by the equations, and therefore cannot be
imposed. That is, the TOV density p and pressure p only satisfy the loose physical
bounds 0 < p < p ; and on the FRW side, the equation of state is taken to be p = op,
o = const., 0 < 0 < 1. We take these bounds as implying that the equations of state
are qualitatively reasonable. The entropy condition, p > p, p > p, (that the density
and pressure be larger on the side that receives the mass flux), implies that the shock
wave is compressive, and this fixes a time orientation for solutions, and determines
a unique solution.!> However, we expect that these solutions will capture the gross
dynamics arising when more general equations of state are imposed. In fact, we sug-
gest that the global dynamics described in these solutions could only be discovered
within a class of exact solutions in which simplifying assumptions are made. For more
general equations of state, other waves, (e.g. rarefaction waves), would need to be
present to meet the conservation constraint, and thereby mediate the transition across
the shock wave. Such transitional waves would be pretty much impossible to model
in an exact solution.

Finally, we note that because Einstein’s theory by itself does not choose an orien-
tation for time, it follows that if we believe that a Black Hole can exist in the forward
time collapse of a mass through an event horizon as t — oo, (the time ¢ as observed
in the far field), then we must also allow for the possibility of the time reversal of
this process, a White Hole explosion of matter through an event horizon coming from
t — —oo. These solutions might be relevant in explaining astropysical systems, such
as galaxies and stellar associations [2], whose expansions appear so great as to have
emerged from an event horizon at earlier times—an impossibility if one only allows the
time orientation of a collapsing Black Hole, and not its time reversal, the expanding
White Hole. Of course, this naturally leads one to wonder if there is a connection
between the mass that mysteriously disappears into Black Hole singularities, and the
mass that mysteriously emerges from White Hold singularities.

15The time orientation of a solution must be selected based on an extra condition, such as an
entropy condition for shocks, because the Einstein equations and the compressible Euler equations,
taken by themselves, are both time reversible, [7, 12]. Thus the entropy condition for the shock is
what determines the time orientation for the global dynamics of the solutions we construct: the FRW
metric expanding outward behind a shock wave emanating from a White Hole is entropy satisfying,
while its time reversal, the FRW metric contracting into a Black hole, is entropy violating. We find
it interesting that the entropy condition determines a unique solution in the large.
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