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ON WAVEWISE ENTROPY INEQUALITIES FOR
HIGH-RESOLUTION SCHEMES WITH SOURCE TERMS I:

THE SEMI-DISCRETE CASE ∗

HUANAN YANG† AND NAN JIANG‡

Abstract. We extend the framework and the convergence criteria of wavewise entropy inequal-
ities of [H. Yang, Math. Comp., (1996), pp. 45-67] to a large class of semi-discrete high resolution
schemes for hyperbolic conservation laws with source terms. This approach is based on an extended
theory of Yang [22] on wave tracking and wave analysis and the theory of Vol’pert [21] on BV so-
lutions. For the Cauchy problem of convex conservation laws with source terms, we use one of the
criteria to prove the convergence to the entropy solution of generalized MUSCL schemes and a class
of schemes using flux limiters previously discussed in 1984 by Sweby.

1. Introduction. In this paper, we extend the framework and the convergence
criteria of wavewise entropy inequalities, or WEI, developed in [22] to a large class of
semi-discrete high-resolution schemes for initial value problems of hyperbolic conser-
vation laws with source terms:

(1.1)
{
wt + f(w)x = q(w),
w(x, 0) = w0(x),

where f ∈ C1(R), q ∈ C1(R), and w0 ∈ BV (R). Here BV stands for the subspace of
L1

loc consisting of functions z with bounded total variation

TV (z) := sup
h�=0

∫
R

|z(x+ h) − z(x)|
|h| dx.

The homogeneous problems corresponding to (1.1) are

(1.2)
{
wt + f(w)x = 0,
w(x, 0) = w0(x).

To introduce the numerical scheme, let us partition the real line for the space
variable into cells of equal size. The j-th cell is centered at xj = jh + c, where
j = 0,±1,±2, . . . , c is a constant, and h is the space step size. For an arbitrary
function v we use ∆+ and ∆− to denote the forward and the backward difference
operators, respectively: ∆±vj = ±(vj±1 − vj) or ∆±v(x) = ±(v(x± h) − v(x)). The
corresponding divided difference operators are denoted by D± = 1

h∆±. Let uj(t) be
the numerical approximation to the exact solution w(xj , t) or its cell average on the
j-th cell w̄(xj , t). We consider semi-discrete conservative schemes for (1.1) that have
the form

(1.3)
d

dt
uj(t) = −D+gj− 1

2
(t) + q(uj(t))

where

(1.4) gj+ 1
2
(t) = gj+ 1

2
(u(t)) = g(uj−p+1(t), uj−p+2(t), · · · , uj(t), · · · , uj+p(t), h).
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Here g is the numerical flux which is Lipschitz continuous with respect to its first 2p
arguments and is consistent with the conservation law in the sense that

(1.5) g(u, u, · · · , u, h) ≡ f(u).

The collection of points {xj−p, xj−p+1, · · · , xj+p} is said to be the stencil of the scheme
at the point (xj , t), and the integer 2p+ 1 is the size of the stencil of the scheme. We
call the corresponding scheme

(1.6)
d

dt
uj(t) = −D+gj− 1

2
(t)

which is consistent with the problem (1.2) the homogeneous counterpart (HCP) of the
scheme (1.3). The scheme (1.6) is said to be self-similar if g is independent of h. In
this paper, we only consider conservative schemes with self-similar HCPs.

We denote by Qt the solution operator of the ordinary differential equation v′(t) =
q(v(t)). Namely, v(t) = Qt(v(0)). For a numerical solution {uj , j ∈ Z}, let A =
infj(uj(0)) and B = supj(uj(0)). Let T > 0 be a point within the intersection of the
intervals of existence of Qt(A) and Qt(B). Finally, we set Ā = mint∈[0,T ]Qt(A) and
B̄ = maxt∈[0,T ]Qt(B). As an easy consequence of the results of this paper, the exact
solution w(·, t) is defined for 0 ≤ t ≤ T and its range is a subset of [Ā, B̄]. Through out
this paper Qt, A,B, Ā, B̄ and T will obey these definitions. We extend the domain
of a numerical solution {uj(t) : j ∈ Z} to R × [0, T ) by setting u(x, t) = uj(t)
for xj−1/2 ≤ x < xj+1/2. Extended numerical solutions are represented by the same
symbols as the mesh valued ones except the absence of subscripts. We use superscripts
to label sequences of solutions. A scheme (1.3)-(1.5) for the Cauchy problem (1.1)
converges if, for every initial condition w0 in BV and for each sequence of initial data
{uk

j (0), j ∈ Z}∞k=1 with uniformly bounded variations that converges in L1
loc(R) to w0,

the corresponding sequence of (extended) numerical solutions {uk} generated by the
scheme converges in L1

loc(R× [0, T )) to the unique entropy solution w of the problem
(1.1) provided that the step sizes hk of uk vanish as k → ∞. By Helly’s Theorem
on the set of total variation bounded functions and Lax-Wendroff Theorem [8] on
conservative schemes, a TVB conservative scheme converges provided that each limit
function of the numerical solution is an entropy solution.

The analyses of convergence in the early time were focused on the numerical
methods for homogeneous problems (1.2). By the end of the 1980s, the method
of cell entropy inequalities (CEI) had been the dominant approach for the analysis
of entropy admissibility. See, for example, [1], [4], [7], [12], [13], [15], [16] and the
references therein. In the CEI approach, one tries to derive cell entropy inequalities
for certain pairs of numerical entropy and entropy flux. Once this is obtained, the same
arguments for Lax-Wendroff Theorem [8] ensure entropy admissibility of the limits of
the numerical solutions. Unfortunately, it is too demanding, if not impossible, for a
high-resolution scheme to satisfy numerical entropy inequalities at every mesh point,
as required by the CEI approach. As a result, the convergence of some very popular
methods, such as the MUSCL scheme in its original setting cannot be proved by this
approach.

Realizing that cell entropy inequalities are not necessary for convergence, since
the early 1990s, several authors have developed new approaches for convergence anal-
ysis. Lions and Souganidis [9] proved, for strictly convex homogeneous conservation
laws, convergence of MUSCL schemes (which are the second-order extension of Go-
dunov’s schemes) for the resolvent equation and the implicit MUSCL schemes with
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large (unbounded) CFL numbers obtained by the backward Euler time discretization
of the semi-discrete MUSCL schemes. The proof is based on the theory of viscosity
solutions. To our knowledge, this approach has not been extended to conservation
laws with source terms.

Meanwhile, Yang [22] and [23] formed the concept of wavewise entropy inequal-
ities (WEI) for a large class of TVD (Total Variation Diminishing) schemes. Based
on this concept Yang proved several convergence criteria. In particular, for convex
conservation laws, one of the criteria points out that, a wavewise entropy inequality
across the area of rarefaction where uj ≤ uj+1 for all xj is sufficient for conver-
gence to the entropy solution. Hence, in convergence analysis, one may safely remove
the shock area from scrutiny. Further, even in the rarefaction area, a much weaker
condition than CEI is sufficient for convergence. Using this criterion, Yang proved
the convergence of both semi-discrete MUSCL schemes and some fully-discrete ones,
and the convergence of a class of high-resolution schemes based on flux limiters, for
homogeneous problems with convex flux functions (1.2).

Recently, the numerical analysis of non-homogeneous problems (1.1) has attracted
much attention. This includes studying numerical methods for the approximation of
(1.1), see [2], [6], [10], for example; the error bounds related to the approximation of
(1.1), see [17], [20] for example. However, the analytical tools in this area remain to
be CEI, and hence, suffer to the aforementioned restrictions.

In this paper, we extend the entire framework of Yang’s WEI (see [22]) to non-
homogeneous conservation laws provided that the numerical flux satisfies the same
conditions as in the homogeneous case. In particular, we show that the aforementioned
semi-discrete MUSCL schemes and the class of high-resolution schemes based on flux
limiters, remain convergent in the non-homogeneous case. The WEI framework also
works for fully-discrete schemes which will be discussed in a subsequent paper.

The paper is organized as follows. §2 consists of two parts. In the first part we
review some properties of the discontinuities of BV weak solutions of conservation
laws emphasizing entropy conditions which harbor the idea of WEI approach; and
in the second part we show existence, uniqueness and total variation boundedness of
the numerical solutions as infinite systems of ordinary differential equations, which
ensure existence of convergent subsequences of numerical solutions whose limits are
weak solutions by, again, the arguments of Lax-Wendroff (see [8]).

The main results of the paper are in section §3 where we give four WEI conver-
gence criteria and use one of them to show convergence of the generalized MUSCL
schemes and a class of high resolution schemes using flux limiters for convex conser-
vation laws with source terms. These results are parallel to those in [22] for their
HCPs. We give full proofs of the first two criteria since they are simple and reveal
interesting effects of similarity transforms on the schemes with source terms. To prove
the third criterion, we need to extend the extremum tracking theory of [22] to high-
resolution schemes for non-homogeneous conservation laws, and we need to perform
the wave separations, concentrations and splittings. The extension of the extremum
tracking theory was once in doubt since, unlike their HCPs, the values of the nu-
merical solutions with source terms may increase at local maxima and decrease at
minima. Remarkably, as we are able to show, the enhancement of local extrema by
the source term does not destroy the non-oscillatory property of the scheme, which
makes the extension possible. We devote the entire section §4 to the, rather lengthy,
extension. With the extended extremum tracking theory one could perform the wave
separations, concentrations and splittings needed to complete the proof. We omit
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these since they follow, almost word by word, those in [22]. We also omit the proof
of the last criterion for the same reason.

In general, we only present proofs that are substantially different from the corre-
sponding ones in [22]. Also, for better readability, we closely follow many notations
in [22].

2. Preliminaries.

2.1. Review of discontinuities of weak solutions. In [22] a simple obser-
vation explains the idea of WEI approach for homogeneous conservation laws. This
observation is also valid for non-homogeneous ones: Let U(w) be a convex entropy
function, and F (w) its flux: F ′ = U ′f ′. In the area where the solution w is smooth,
the additional conservation law U(w)t + F (w)x = U ′(w)q(w) holds, and the entropy
condition is automatically satisfied. Therefore, the entropy admissibility of a weak
solution is solely determined by that of its discontinuities. The following is a closer
examination of this observation.

For any two distinct numbers w− and w+ in the domain of f , the function

(2.1) W (x, t) =
{
w− if x < st,
w+ if x > st,

is a traveling discontinuity, provided that

(2.2) s(w+ − w−) = f(w+) − f(w−)

holds. ClearlyW (x, t) is a weak solution of the homogeneous conservation law. Denote
by f [w;w−, w+] the linear function interpolating f(w) at w = w− and w = w+. Then
W is an admissible traveling discontinuity if

(2.3) sgn(w+ − w−)(f [w;w−, w+] − f(w)) ≤ 0

holds for all w between w− and w+; otherwise, it is a traveling expansion shock.
Generic discontinuities of BV weak solutions are inherently connected to the trav-

eling discontinuities through Vol’pert’s BV solution theory (see [21]) on which a brief
discussion is in order. Let µ(E) be the Lebesgue measure of a measurable set E ⊂ R

n.
We use Br(x0) to denote the open ball centered at x0 with the radius r. Let a be an
unit vector in R

n, and Ra(x0) be the half space {(x− x0) • a > 0} in R
n. A point of

density (rarefaction) for the set E is a point x for which

lim
r→0

µ(E
⋂
Br(x))/µ(Br(x)) = 1(0).

If w(x) is a function defined on a set E ⊂ R
n and x0 is not a point of rarefaction

for E, then LEw(x0) will denote the approximate limit of the function w(x) at the
point x0 with respect to the set E. This means, by definition, ∀ε > 0, x0 is a point
of rarefaction of the set

{x : |w(x) − LEw(x0)| > ε, x ∈ E.}

Definition 2.1. Let w(x) be a function defined on R
n.

(α) A point x0 ∈ R
n is said to be regular if there exists a unit vector a such that

law(x0) and l−aw(x0) exist and are finite. Here, law(x0) = LRa(x0)w(x0).
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(β) The point x0 is said to be a point of jump for w(x) if it is regular and
law(x0) �= l−aw(x0). The set of the jump points for w(x) is denoted by Γ(w).

(γ) If x0 ∈ Γ(w), then the value a appearing in the definition (α) is called the
normal to Γ(w) at the point x0.

For simplicity, we apply the preceding concepts in the case n = 2 to a BV weak
solution w(x, t) of the conservation law, possibly with source terms. For any (x0, t0) ∈
Γ(w), let a be the normal to Γ(w) at the point (x0, t0) with positive spatial component,
and let w+ = law(x0, t0), w− = l−aw(x0, t0). We then call W , defined by (2.1)-(2.2),
the traveling discontinuity associated with w at the jump point (x0, t0).

Denote by Hn the n-dimensional Hausdorff measure. The following basic result
holds.

Lemma 2.2 ( Vol’pert[21] ). A necessary and sufficient condition for a weak
solution w ∈ BV of wt + f(w)x = q(w) to be an entropy solution is that (2.3) holds,
for H1-almost all points in Γ(w).

Briefly speaking, in the WEI approach, if a sequence of total variation bounded
numerical solutions approaches an entropy violating weak solutions, one may con-
struct a sequence of numerical solutions with vanishing step size and vanishing source
terms that converges to a traveling expansion shock and harbors an asymptotic trav-
eling expansion shock, a concept that will be given in §3. Similarity transforms play
the central role in the construction of such a sequence. Let Sε

x0,t0 be the similarity
transform centered at a point (x0, t0):

Sε
x0,t0((x, t)) = (x0 + εx, t0 + εt).

This induces a transform T ε
x0,t0 in the set of the functions ψ defined on a domain

Ω ⊂ R
n × R

+: T ε
x0,t0ψ = ψ ◦ Sε

x0,t0 |Ω , if Sε
x0,t0Ω ⊂ Ω, where φ |Ω denotes the

restriction of φ to the set Ω. Define wε(x, t) by

wε(x, t) = (T ε
x0,t0w)(x, t) = w ◦ Sε

x0,t0((x, t)) = w(x0 + εx, t0 + εt).

Clearly, if w(x, t) is a weak solution of wt + f(w)x = q(w), then wε(x, t) is one of
wt + f(w)x = εq(w). The following lemma (presented in [22] and still holds for non-
homogeneous case) is one of the foundations of the WEI method. It shows that by
successively zooming in around a jump point (x0, t0) of a weak solution w, one can
view it locally as a traveling discontinuity.

Lemma 2.3 (Microscope Lemma). Let (x0, t0) be a jump point of a BV weak
solution w in the sense of Definition 2.1. If {εk}∞k=1 is a sequence of positive numbers
such that limk→∞ εk = 0, then the sequence {wεk

} converges in L1
loc to the traveling

discontinuity W associated with the jump point (x0, t0).

2.2. Preliminaries of the numerical schemes. In this subsection, we discuss
the existence, uniqueness and boundedness of the solutions of the schemes (1.3)-(1.5)
and the convergence of the schemes to the weak solutions. Throughout the paper, we
require that the numerical flux of the schemes satisfy the following assumption.

Assumption 2.4. The numerical fluxes gj+ 1
2
(t), j = 0, ±1, ±2, · · · , satisfy

gj+ 1
2
(t) ≥ gj− 1

2
(t) if uj(t) − uj±1(t) ≥ 0,
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and

gj+ 1
2
(t) ≤ gj− 1

2
(t) if uj(t) − uj±1(t) ≤ 0.

We remark that for homogeneous conservation laws, this was proposed by Tadmor
[19] as a convenient TVD condition of conservative schemes.

The local existence, uniqueness and total variation boundedness of the numerical
solutions for the schemes (1.3)-(1.5) under the Assumption 2.4 follow easily from
Picard’s iteration beginning with u

(0)
j (t) = Qt−t0(uj(t0)). See [11] for details. We

have the following result on the “global” existence and uniqueness of the numerical
solutions.

Theorem 2.5. Suppose the flux of the numerical scheme (1.3)-(1.5) satisfies
Assumption 2.4, and the initial condition satisfies A ≤ uj(0) ≤ B for all integer j.
Then the scheme (1.3)-(1.5) admits a unique solution that satisfies Qt(A) ≤ uj(t) ≤
Qt(B) for all j and for 0 ≤ t ≤ T provided that Qt(A) and Qt(B) are defined on the
interval.

To prove the theorem, we first establish a lemma concerning

S(t) := sup
j

(uj(t)) and I(t) := inf
j

(uj(t)).

Lemma 2.6. Under the Assumption 2.4, for any b > a ≥ 0, we have

S(b) ≤ S(a) +
∫ b

a

q(S(t)) dt and I(b) ≥ I(a) +
∫ b

a

q(I(t)) dt

provided that S(t) and I(t) are defined on [a, b].

Proof. The proofs of the two inequalities are parallel, and we only prove the one
for S(t). Clearly, S(t) is a Lipschitz function, which implies that

S(b) = S(a) +
∫ b

a

S′(t) dt.

It is, therefore, suffices to show that S′(t) ≤ q(S(t)) for every t ∈ (a, b] such that S′(t)
is defined. Let b ≥ t > t− τ > a. Fix such a t. Since u is locally TVB, there exists a
sequence of integers {jk}∞k=1 such that the limits

vi = lim
k→∞

ujk+i(t) for i = 0,±1, . . . ,±p

exist with

v0 = S(t) = max
−p≤i≤p

vi.
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We have

S(t) − S(t − τ)

τ
≤ lim inf

k→∞
ujk (t) − ujk(t − τ)

τ
= lim inf

k→∞

∫ 1

0

d

dt
ujk (t − θτ)dθ

= lim inf
k→∞

∫ 1

0

{
− 1

h
(gjk+1/2(t − θτ) − gjk−1/2(t − θτ)) + q(ujk(t − θτ))

}
dθ

≤ lim inf
k→∞

{
− 1

h
(gjk+1/2(t) − gjk−1/2(t)) + q(ujk(t)) + C(h)τ

}

= − 1

h
(g(v−p+1, . . . , v0, . . . , vp) − g(v−p, . . . , v−1, . . . , vp−1)) + q(S(t)) + C(h)τ

≤ q(S(t)) + C(h)τ.

In the last part of the inequality we have applied Assumption 2.4. The desired
inequality is obtained by letting τ → 0.

Proof. [Proof of Theorem 2.5] Under the assumptions of the theorem, we claim
that if the numerical solution {uj(t), j ∈ Z} with initial condition

{uj(0), j ∈ Z} ⊆ [A,B]

exists for 0 ≤ t < δ, where δ is a positive constant, then the a-priori estimate
{uj(t), j ∈ Z} ⊆ [Qt(A), Qt(B)] holds for 0 ≤ t < δ. With this a-priori estimate,
the desired result follows easily from the local existence and uniqueness and the ex-
tension procedure which are standard in the theory of ordinary differential equations
(see, for example, [5]). It remains to prove the a-priori estimate which is equivalent to
S(t) ≤ Qt(B) and I(t) ≥ Qt(A). Since the proof of the two is similar, we only show
the former. Let z(t) = Qt(B). If the inequality were false, then since uj(0) ≤ B,
there would be an interval (α, β) with 0 ≤ α < β ≤ T such that S(α) = z(α) and
S(t) > z(t) for t ∈ (α, β). However, Lemma 2.6 and the definition of z(t) imply that,
for t ∈ (α, β), we have

S(t) ≤ S(α) +
∫ t

α

q(S(τ)) dτ and z(t) = z(α) +
∫ t

α

q(z(τ)) dτ,

which imply that S(t) − z(t) ≤ ∫ t

α
q′(ξ(τ))(S(τ) − z(τ)) dτ. Thus S(t) − z(t) ≤

C+
∫ t

a
(S(τ) − z(τ)) dτ, where C+ = maxt∈[α,β] |q′(ξ(t))| is finite. Hence, by Gron-

wall’s inequality, S(t) − z(t) ≤ 0 for t ∈ (α, β), which would be a contradiction.

The theory of ordinary differential equations and Theorem 2.5 immediately imply
the following corollary.

Corollary 2.7. If the numerical flux of the scheme (1.3)-(1.5) satisfies Assump-
tion 2.4, and q′(u) ≤ C for all u, then the numerical solution exists and is unique for
t ≥ 0.

Let TVu(t) be the total spatial variation of u(t). For conservation laws with
source terms, Assumption 2.4 no longer guarantees the TVD property of the scheme
(1.3)-(1.5). However, the following TVB property holds.

Theorem 2.8. With the conditions of Theorem 2.5, we have TVu(t) ≤ TVu(0)eCt

for t ∈ [0, T ], provided that maxu∈[Ā,B̄] q
′(u) ≤ C with C ≥ 0.
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Proof. Let sj+1/2(t) := sgn(∆uj(t)). Multiplying both sides of the forward dif-
ference of (1.3) by sj+1/2 and then integrating, we obtain

|∆uj(t)| = |∆uj(0)| − 1
h

∫ t

0

sj+1/2(τ)[∆gj+1/2(τ) − ∆gj−1/2(τ)] dτ

+
∫ t

0

sj+1/2(τ)∆q(uj(τ)) dτ.(2.4)

Next, summing the above equation over all j, using summation by parts for the
second-term on the right-hand side, we obtain

(2.5) TVu(t) = φu(t) + ψu(t),

where φu(t) and ψu(t) are defined by

(2.6) φu(t) := TVu(0) +
1
h

∫ t

0

∞∑
j=−∞

(sj+1/2 − sj−1/2)(gj+1/2(τ) − gj−1/2(τ)) dτ,

ψu(t) :=
∫ t

0

∞∑
j=−∞

sj+1/2∆q(uj(τ)) dτ,(2.7)

respectively. Since φu(0) = TVu(0) and Assumption 2.4 implies that φu(t) is a non-
increasing function of t, and since sj+1/2(τ)∆q(uj(τ)) ≤ C|∆uj(τ)|, we have

(2.8) TVu(t) ≤ TVu(0) + C

∫ t

0

TVu(τ) dτ ∀ t ≥ 0.

Hence, TVu(t) ≤ TVu(0)eCt, by Gronwall’s inequality.

Remark. The functions φu(t) and ψu(t) have the following invariant properties
under similarity transform T ε

x0,t0 : Denote (x̂, t̂) = Sε
x0,t0((x, t)) and û = T ε

x0,t0(u).
Then, for any t1, t2 ∈ R with t̂1, t̂2 ≥ 0, we have φû(t2)−φû(t1) = φu(t̂2)−φu(t̂1), and
ψû(t2)− ψû(t1) = ψu(t̂2)− ψu(t̂1). These properties are very important in extending
the WEI framework. One should notice that in the definition of ψ the source term
for û is εq(û) instead of q(û).

With Theorem 2.8, using Helly’s Theorem on the set of total variation bounded
functions and following the proof of the Lax–Wendroff Theorem [8], we obtain the
following result.

Theorem 2.9. Suppose a scheme defined by (1.3)-(1.5) satisfies Assumption 2.4
and {un

j (t)}∞n=1 are generated by the scheme. Suppose also that the step sizes hn → 0
as n → ∞, and the initial conditions have uniformly bounded total variations. Then
{un

j (t)}∞n=1 contains a subsequence {unl
j (t)}∞l=1 which converges in L1

loc(R × [0, T ))
towards a weak solution of (1.1) as l → ∞.

3. WEI criteria for convergence to the entropy solution. For convenience,
let Υ be the set of all sequences of numbers in (0, 1) with zero limit. We use bold-faced
letters to represent the sequences in Υ, and use the corresponding light-faced ones
with subscripts to represent the terms in such a sequence.
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3.1. General TVB schemes. To obtain sufficient conditions for convergence to
the entropy solution, we attack their contrapositives. Hence, we begin with a sequence
of numerical solutions {un

j }∞n=1 generated by the scheme (1.3)-(1.5) that converges to
an entropy violating weak solution w. We also assume that the corresponding sequence
of step-sizes h ∈ Υ. By Lemma 2.2, there exists a jump point (x0, t0) of w with an
associated traveling expansion shock W . Now for any ε ∈ Υ applying similarity
transforms T εk

x0,t0 to un for each n and to w, we obtain un
εk

and wεk
respectively. The

numerical solution un
εk

satisfies the same scheme for wt + f(w)x = εkq(w) with step
size Hk,n = hn/εk. For fixed k, un

εk
→ wεk

as n → ∞ in L1
loc, and the step size

satisfies limn→∞Hk,n = 0. Applying Lemma 2.3 and using the same diagonal process
as in [22], one may choose a sequence of increasing positive integers {nk} such that
{unk

εk
}∞k=1 converges in L1

loc to W and limk→∞Hk,nk
= 0. For simplicity, we denote

{unk
εk
}∞k=1 by {uk}∞k=1 and Hk,nk

by hk. Then uk is generated by

(3.1)
d

dt
uk

j (t) = − 1
hk

[gj+ 1
2
(uk

j (t)) − gj− 1
2
(uk

j (t))] + εkq(uk
j (t)),

with h, ε ∈ Υ . We call the scheme (3.1) the (h, ε)-scaled form of the scheme (1.3)-
(1.5), and we have obtained our first WEI convergence criteria.

Theorem 3.1. A TVB scheme (1.3)-(1.5) for the Cauchy problem (1.1) converges
if there exists no sequence of functions {uk(x, t)}∞k=1 generated by the (h, ε)-scaled
form (3.1) of the scheme with h, ε ∈ Υ that converges in L1

loc(R× [0, T )) to a traveling
expansion shock.

3.2. Schemes with TVD HCP. Clearly, Theorem 3.1 also holds for TVB
schemes approximating scalar conservation laws of several spatial dimensions. How-
ever, time dependent functions of one-spatial dimension have a property that is not
shared by those of several spatial dimensions: similarity transforms T ε

x0,t0 preserves
the total variation in space. This enables us to obtain stronger and more practical
convergence criteria than Theorem 3.1.

Recall that TVu(t) is the total spatial variation of u at the time t. From now
on we denote TTVu(t1, t2) and Tφu(t1, t2) as the total temporal variations of TVu(t)
and φu(t), respectively, from t1 to t2. W (x, t) is a traveling discontinuity defined
by (2.1) with the two states w− and w+, where w− and w+ are two distinct real
constants in the domain of f . Throughout the remaining part of the paper, we make
a convention: the phrase “(h, ε)-scaled form” automatically implies that h, ε ∈ Υ. We
call a sequence of numerical solutions {uk}∞k=1 generated by a (h, ε)-scaled form (3.1)
of the scheme (1.3)-(1.5) a TV-stable sequence of a numerical traveling discontinuity
with the limit W , if there exist ε′ ∈ Υ and positive constants C0 and C such that

(i) uk →W in L1
loc(R × [0, 1)),

(ii) TVuk(t) < C0 for all t and k, and
(iii) Tφuk(0, 1) < Cε′k for each k.

When W is a traveling expansion shock, we call {uk}∞k=1 a TV-stable sequence of a
numerical traveling expansion shock.

Theorem 3.2. A semi-discrete scheme of the form (1.3)-(1.5) satisfying Assump-
tion 2.4 for the Cauchy problem (1.1) converges if no (h, ε)-scaled form (3.1) of the
scheme is able to generate a TV-stable sequence of a numerical traveling expansion
shock.
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Proof. We argue by contradiction. Assume that the convergence of a TVB scheme
given by (1.3)-(1.5) fails. By Theorem 3.1 there exists a (h′, ε′)-scaled form (3.1) of the
scheme which is capable of generating a sequence of functions {uν}∞ν=1 that converge
in L1

loc(R × [0, 1)) to a traveling expansion shock W of the form (2.1). Moreover,
TVuν (t) < C0 for all ν. Our goal is to find a sequence {ûk}∞k=1 generated by a
(h, ε)-scaled form (3.1) of the scheme such that ûk → W in L1

loc, TV
k
û (t) ≤ C0 and

Tφûk(0, 1) ≤ Cε′k. To this end, by (2.5)-(2.7) and Tφuν (t1, t2) = φuν (t1) − φuν (t2),
we have

Tφuν (t1, t2) = TVuν (t1) − TVuν (t2) + ε′ν

∫ t2

t1

∞∑
j=−∞

sj+1/2∆q(uν
j (s)) ds

≤ (2 + C̄)C0 := C ′
0,

where t1, t2 ∈ [0, 1], and C̄ := maxu∈[Ā,B̄]|q′(u)|.
Since φuν is monotone decreasing, for any positive integers n and ν, there is an

integer m(n, ν) such that 0 ≤ m(n, ν) ≤ n− 1 and

Tφuν (m(n, ν)/n, (m(n, ν) + 1)/n) ≤ 1
n
Tφuν (0, 1) ≤ C ′

0

n
.

Let tn,ν = m(n, ν)/n, and xn,ν = stn,ν . For each k, one can first choose a sufficiently
large n = nk so that C ′

0/nk < ε′k. Then, since uν → W in L1
loc(R × [0, T )), one can

choose a sufficiently large ν = νk so that∫ 1

0

∫ st+1

st−1

|uνk(x, t) −W (x, t)|dxdt < ε′k/n
2
k,

and hk := nkh
′
νk
< 1

k . For simplicity we set x̂k = xnk,νk
, t̂k = tnk,νk

, and ûk(x, t) =
T

1/nk

x̂k,t̂k
uνk(x, t). We then have

∫ 1

0

∫ st+nk

st−nk

|ûk(x, t) −W (x, t)|dxdt < ε′k,

since T c
sα,αW (x, t) = W (x, t) for any positive constants α and c. Therefore ûk → W

in L1
loc(R × [0, 1)). Next, since hk <

1
k , and the source term of ûk is εkq(ûk), where

εk :=
ε′

νk

nk
→ 0 as k → ∞, {ûk}∞k=1 is generated by the (h, ε)-scaled form of the

scheme. Moreover, TVûk(t) ≤ C0 since similarity transforms preserve the spatial
variation. Finally, the remark following the proof of Theorem 2.8 implies that

Tφûk(0, 1) = Tφuνk (m(nk, νk)/nk, (m(nk, νk) + 1)/nk) ≤ C ′
0

nk
< ε′k.

Therefore, {ûk}∞k=1 is a TV-stable sequence of numerical traveling expansion shock.
The Theorem is proved.

3.3. Extremum Traceable schemes, general flux f . To connect the numer-
ical flux with the exact flux, we make the following assumption which is stronger than
Assumption 2.4. This assumption is needed to develop more practical convergence
criteria.

Assumption 3.3. The numerical fluxes gj+ 1
2
(t), j = 0, ±1, ±2, · · · , satisfy

gj+ 1
2
(t) ≥ f(uj) ≥ gj− 1

2
(t) if uj(t) − uj±1(t) ≥ 0,
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and

gj+ 1
2
(t) ≤ f(uj) ≤ gj− 1

2
(t) if uj(t) − uj±1(t) ≤ 0.

In what follows we will introduce the concepts of asymptotic traveling discontinu-
ity (ATD ) and asymptotic traveling expansion shock (ATES ). As in [22], we use the
following notion of paths to be the boundaries of the transition areas of the disconti-
nuities of the numerical solutions.

Definition 3.4. A grid point valued function xI(t) = I(t)h+ c, t ∈ [0, 1], is said
to be an ε-path of the first type with respect to a numerical solution u if for ε > 0 the
following conditions hold:

(i) There is a finite partition of [0, 1]: 0 = τ0 < τ1 < · · · < τn = 1 such that I(t)
is a constant integer on each subinterval (τν−1, τν).

(ii) For all j between I(τν−) and I(τν+),

uj(τν) = uI(τν−)(τν) = uI(τν+)(τν).

(iii) The following inequality holds:

min(sgn(∆+uI(t)(t))∆−uI(t)(t), |∆+uI(t)(t)|) < ε.

(iv) The total variation of the function uI(t)(t) of t for 0 ≤ t ≤ 1 is bounded by
Cε, for some positive constant C.

Definition 3.5. A grid point valued function xI(t) = I(t)h+ c, t ∈ [0, 1], is said
to be an ε-path of the second type with respect to a numerical solution u if for ε > 0
the following conditions hold:

(i) I(t) is a monotone function of t on the interval [0, 1] with the property that
there is a finite partition of [0, 1]: 0 = τ0 < τ1 < · · · < τn = 1 such that I(t) is a
constant integer on each subinterval (τν−1, τν). Moreover, |I(τν+) − I(τν−)| = 1 for
ν = 1, · · · , n− 1.

(ii) There is a constant A such that for any t ∈ [0, 1], |uj(t) − A| < ε/2 holds if
xj is in the stencil of the scheme at (xI(t), t).

Along an ε-path of either type, the numerical flux and the exact flux have the
following relationship.

Lemma 3.6 (see Lemma 3.7 in [22] for the corresponding result in the homo-
geneous case). Let {uk}∞k=1 be a sequence of functions generated by a (h, ε)-scaled
form (3.1) of the scheme (1.3)-(1.5) that satisfies Assumption 3.3. For each k, let
xIk(t) = Ik(t)hk + c be an εk-path of either type with εk ≤ ε. We then have

(3.2)
∫ 1

0

|gIk(t)± 1
2
(t) − f(uk

Ik(t)(t))|dt < Cε,

where C depends on the Lipschitz coefficients of g and maxu∈[Ā,B̄] |q(u)|.

Loosely speaking, the essential structure of a traveling wave of a numerical solu-
tion is the moving transition from a left limit to a different right limit. The transition
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region is bounded either by extremum paths, i.e., ridge (trough) lines, which can be
approximated by an ε-path of the first type, or by rim lines which can be approximated
by an ε-path of the second type. Now we define the waves rigorously.

Definition 3.7. Let {uk}∞k=1 be a sequence of functions generated by a (h, ε)-
scaled form (3.1) of the scheme (1.3)-(1.5) that satisfies Assumption 3.3. We call a
sequence of pairs of εk-paths of either type, {x(k)(t), y(k)(t)}, where x(k)(t) = xk

Ik(t) =
Ik(t)hk + ck , y(k)(t) = xk

Jk(t) = Jk(t)hk + ck, and 0 ≤ t ≤ 1, an asymptotic traveling
wave (ATW ) of {uk} if x(k)(t) < y(k)(t), and if there are a linear function x(t) = st+r
and two distinct constants L and R such that:

(i) In the case s = 0, for each k, if either path of the pair {x(k)(t), y(k)(t)}, say
x(k)(t), is of the second type, then x(k)(t) is a constant depending only on k.

(ii) Both x(k)(t) and y(k)(t) converges to x(t) uniformly on the t-interval [0, 1] as
k → ∞.

(iii) uk
Ik(t)(t) and uk

Jk(t)(t) converges to L and R respectively and uniformly on
the t-interval [0, 1] as k → ∞.

For each k, denote by Ω̂k the region xIk(t) −hk/2 < x < xJk(t) −hk/2, 0 ≤ t ≤ 1.
As in [22] we call the sequence {Ω̂k} the transition region of the ATW, x(t) the limit
path of the ATW, L and R the two states of the ATW.

In order to study entropy properties of an ATW, as Osher in [12], for any convex
entropy U(w) and its flux F (w), we adopt the numerical entropy flux Gj− 1

2
(t) def=

F (uj) + U ′(uj)[gj− 1
2
− f(uj)]. Applying Lemma 3.6 for the conservation laws of the

form: U(w)t+F (w)x = εkU
′(w)q(w) with ε ∈ Υ, then Gj− 1

2
(t) satisfies the following.

Corollary 3.8. If {uk}∞k=1 satisfies the conditions of Lemma 3.6, then∫ 1

0

|GIk(t)− 1
2
(t) − F (uk

Ik(t)(t))|dt < Cε.

Adapting Osher’s proof in [12], we have the following equality for {uk}∞k=1 gen-
erated by a (h, ε)-scaled form (3.1) of the scheme (1.3)-(1.5).

hk[
d

dt
U(uk

j (t)) +D+Gj− 1
2
(t) − εkU

′(uk
j (t))q(uk

j (t))](3.3)

=
∫ uk

j+1(t)

uk
j (t)

U ′′(w)(gj+ 1
2
− f(w))dw.

Let φ(x, t) be a smooth function with compact support in the domain −∞ < x <
∞, 0 < t < 1. Set φj(t) = φ(xj , t) and define

(3.4) Φ̂k def=
∫ 1

0

Jk(t)−1∑
j=Ik(t)

hk[
d

dt
U(uk

j (t)) +D+G
k
j− 1

2
(t) − εkU

′(uk
j (t))q(uk

j (t))]φj(t)dt.

We have the following important result.

Lemma 3.9 (see Lemma 3.10 in [22] for the result of the HCP of the scheme (1.3)-
(1.5)). Suppose {uk(x, t)}∞k=1 satisfies the conditions of Lemma 3.6. Let {Ik(t)hk +
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ck, J
k(t)hk + ck} be an ATW of {uk(x, t)}∞k=1 with the limit path x(t) = st and the

two states L and R. We then have

(3.5) lim
k→∞

Φ̂k = [F (R) − F (L) − s(U(R) − U(L))]
∫

x=st

φ(x, t)dt.

Choosing U(w) = w, we have Φ̂k = 0. Hence f(R) − f(L) = s(R − L), and an
integration by parts give the second equality of the following Corollary.

Corollary 3.10. With the conditions of Lemma 3.9, we have the following
discrete Rankine-Hugoniot condition:

(3.6) f(R) − f(L) = s(R− L).

Moreover

(3.7) lim
k→∞

Φ̂k =
∫ R

L

U ′′(w)(f [w;L,R] − f(w))dw
∫

x=st

φ(x, t)dt.

Definition 3.11. An ATW {xk(t), yk(t)}∞k=1 of {uk}∞k=1 is called an ATD of
{uk}∞k=1 if the ATW is essentially monotone in space. Namely, for each k and for
t ∈ [0, 1],

(i) if p and q are any integers such that Ik(t) ≤ p < q ≤ Jk(t), then

−(uk
q (t) − uk

p(t))sgn(R− L) ≤ εk,

and
(ii) if j is an integer such that Ik(t) ≤ j ≤ Jk(t) and that (uk

j+1(t) − uk
j (t))(R −

L) < 0, then

uk
j (t), uk

j+1(t) ∈ Nδk
({w : f(w) = f [w;L,R]})

for some δ ∈ Υ, where Nδ(S) denotes the δ-neighborhood of a set S. An ATD of
{uk}∞k=1 is called an ATES of {uk}∞k=1 if the entropy condition (2.3) with w− = L
and w+ = R fails. In the last case we also say that {uk}∞k=1 harbors the ATES
{xk(t), yk(t)}∞k=1.

Now we are ready to state the third WEI criterion for the convergence.

Theorem 3.12. A semi-discrete scheme of the form (1.3)-(1.5) satisfying As-
sumption 3.3 converges if no (h, ε)-scaled form (3.1) is able to create a sequence of
functions {uk(x, t)}∞k=1 that harbors an ATES.

Proof. [Sketch of the proof] (for details see the proof of Theorem 3.13 in [22]
for HCP of the scheme) Again, we argue by contradiction. If the convergence fails,
then by Theorem 3.2 there exists a TV-stable sequence {uk} of a numerical trav-
eling expansion shock generated by a (h, ε)-scaled form (3.1) of the scheme. Since
TVuk(t) < C0 for all k and t ∈ [0, 1] and since {uk} converges to W in L1

loc(R× [0, 1)),
in the compact domain Ω = {(x, t) : (x, t) ∈ [st − 1, st + 1] × [0, 1]} there may exist
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at most uniformly bounded number of large oscillations which asymptotically either
travel away from the line x = st as infinitesimally thin spikes in the graph of the
numerical solutions, or move along the line. If the scheme is extremum traceable, i.e.,
non-oscillatory, then we can use approximate extremum paths to track these oscilla-
tions. Since the sequence {uk} is TV-stable, the amplitudes of these oscillations are
essentially stationary, and it contains a subsequence, in which the approximate paths
becomes ε-paths as described in Definitions 3.4 and 3.5. Using similarity transforms
and selecting subsequences, we may push those oscillations which do not travel along
the line x = st out of the interested domain Ω (this effect is called wave separation).
Hence, all the strong oscillations which remain in Ω travel along the line (this effect is
called wave concentration). Finally it can be shown that these oscillations consists of
finite number of strong ATWs which dominated the entropy estimate and the oscilla-
tions of small amplitude whose contributions to the entropy estimate are negligible,
and at least one of the strong ATWs must be an ATES (this analysis is called wave
splitting). The entire proof can be directly translated from that for Theorem 3.13
in [22], except the extreme tracking theory is in question now, since with the source
term the numerical solution, in general, does not satisfy the Local Maximum Principal
(LMP). Fortunately, a careful analysis shows that the extrema can still be traced and
we devote §4 to this analysis.

3.4. Extremum traceable schemes, convex flux f . Now we focus on the
case f ′′(w) ≥ 0, i.e., the convex conservation laws. We call a pair of numbers {L,R}
a rarefying pair if L < R and f [w;L,R] > f(w) when L < w < R. And we call
a collection of data {vj}n+p

j=−p a rarefying collection with respect to the pair {L,R}
if L = v0 ≤ v1 ≤ · · · ≤ vn = R, and L ≤ v−1, and R ≥ vn+1. Let ḡj+1/2 :=
g(vj−p+1, vj−p+2, · · · , vj+p), where g is the function (1.4) in its self-similar form.

Our fourth, and the last WEI criterion of convergence states that the WEI across
the area of the rarefaction is sufficient for convergence.

Theorem 3.13. A scheme of the form (1.3)-(1.5) satisfying Assumption 3.3
converges for convex conservation laws if, for any rarefying pair {L,R}, there is a
constant δ > 0 such that the quadrature inequality

(3.8)
n−1∑
j=0

(vj+1 − vj)ḡj+1/2 + δ <

∫ R

L

f [w;L,R]dw

holds for all rarefying collections {vj}n+p
j=−p with respect to the pair {L,R}.

It is startling that the theorem is exactly the same as the corresponding one
for the HCP of the scheme in [22]. Indeed, the source term does not appear in the
criterion. Therefore, all the concrete schemes whose convergence was established in
[22] by WEI remain convergent in the presence of the source term.

For completeness, we end this section by listing these results which establish the
convergence to the entropy solution of generalized MUSCL schemes and a class of
schemes using flux limiters. The building blocks for both classes are called E schemes
[12]. Let gE(·, ·) be the flux of any E scheme, i.e., it is Lipschitz continuous, and
satisfies

(3.9) sgn(wj+1 − wj)(gE(wj , wj+1) − f(w)) ≤ 0
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for all w between wj and wj+1. First, we give the result of the class of generalized
MUSCL schemes

(3.10)
duj

dt
= − 1

h
∆+g

E(uj−1 + sj−1h/2, uj − sjh/2) + q(uj).

Theorem 3.14. A generalized MUSCL scheme with an E scheme building block
converges provided that the slope sj satisfies: sj = 0, if uj is an extremum; 0 ≤

hsj

∆+uj
,

hsj

∆−uj
≤ 2, if uj−1 is a maximum or uj+1 is a minimum; and 0 ≤ hsj

∆+uj
,

hsj

∆−uj
≤

1 holds if uj < uj+1.

Next, we give the convergence results of a large class of high resolution schemes
using flux limiters in their semi-discrete form with source terms. They have been
studied by Sweby In [18]. Denote

(∆fj+ 1
2
)+ := f(uj+1) − gE(uj , uj+1), (∆fj+ 1

2
)− := f(uj) − gE(uj , uj+1),

r+j := (∆fj− 1
2
)+/(∆fj+ 1

2
)+, r−j := (∆fj+ 1

2
)−/(∆fj− 1

2
)−,

and (Dfj+ 1
2
)± := (∆fj+ 1

2
)±/∆+uj . With the Chakravarthy and Osher limiters (see

[14]):

(3.11) ψc(r) =

⎧⎨
⎩

0 r < 0,
r 0 ≤ r < c,
c r ≥ c,

and the numerical flux defined by

(3.12) gj+ 1
2

= gE(uj , uj+1) +
1
2
ψ(r+j )(∆fj+ 1

2
)+ +

1
2
ψ(r−j+1)(∆fj+ 1

2
)−,

we have the following general result.

Theorem 3.15. The numerical solutions of the schemes (1.3)-(1.5) converge for
the convex problem (1.1) provided that the numerical flux gj+ 1

2
satisfies

(i) gj+ 1
2
≥ f(uj) if uj − uj±1 ≥ 0, and gj− 1

2
≥ f(uj) if uj − uj±1 ≤ 0.

(ii) When uj+1 > uj, gj+ 1
2

is given by (3.12), where gE is the numerical flux
function of any E scheme with ψ(r) = ψ1(r) defined by (3.11).

The result can be improved, when the building blocks of the high resolution
schemes are well known monotone schemes such as the Godunov, the Engquist–Osher,
or Lax-Friedrichs schemes.

Theorem 3.16. The numerical solutions of the schemes (1.3)-(1.5) converge for
the convex problem (1.1) provided that the numerical flux gj+ 1

2
satisfies:

(i) gj+ 1
2
≥ f(uj) if uj − uj±1 ≥ 0, and gj− 1

2
≥ f(uj) if uj − uj±1 ≤ 0.

(ii) When uj+1 > uj, gj+ 1
2

is defined by (3.12), where ψ(r) = ψc(r) is given
by (3.11) with 1 ≤ c ≤ 2, provided that gE(·, ·) is the numerical flux of one of the
following monotone schemes.
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The Godunov scheme:

gGod(uj , uj+1) =
{

minuj≤w≤uj+1 f(w) when uj ≤ uj+1,
maxuj≥w≥uj+1 f(w) when uj ≥ uj+1.

The Engquist–Osher scheme:

gEO(uj , uj+1) =
∫ uj

0

max(f ′(w), 0)dw +
∫ uj+1

0

min(f ′(w), 0)dw + f(0).

The Lax-Friedrichs scheme:

gLF(uj , uj+1) =
f(uj) + f(uj+1)

2
− a

2
(uj+1 − uj)

where a ≥ max |f ′(w)|.
4. Extended extremum tracking theory. We now extend the extremum

tracking theory to the non-homogeneous scheme (1.3)-(1.5), as needed in the proof of
Theorem 3.12. We begin with a simple fact which comes from the Lipschitz continuity
of the numerical flux function and the source term.

Lemma 4.1. If u is a uniformly bounded numerical solution of the scheme (1.3)-
(1.5), then, for h ≤ 1, there are two positive constants C1 and C2 such that

|duj(t)
dt

| ≤ C1/h and |duj(t′′)
dt

− duj(t′)
dt

| ≤ (C2/h
2)|t′′ − t′|.

Throughout this section, C1 and C2 are exclusively used for these two constants.
The set X = {xj}∞j=−∞ is called the set of grid points and L = X × [0, T ) the set
of grid line. The solution u is defined on L. A finite set of successive grid points
{xp, . . . , xq} with q ≥ p is called the stencil of a spatial maximum, or simply an
M-stencil of u at the time t, provided up(t) = · · · = uq(t), up−1(t) < up(t), and
uq+1(t) < uq(t). Notions of N-stencils for minima and E-stencils for general extrema
are defined similarly.

The following lemma still holds for the numerical solution u generated by the
non-homogeneous scheme (1.3)-(1.5).

Lemma 4.2 (see Lemma 6.2. in [22] for the homogeneous case). Suppose
{xp, . . . , xq}, q ≥ p, is an M-stencil of u at the time t0. Then there exists a δ > 0
such that, when |t − t0| < δ, there exists at least one M-stencil {xp′ , . . . , xq′} of u at
the time t that is a subset of {xp, . . . , xq}.

Nothing needs to be changed when we adopt the notion of extremum paths [22]
for the non-homogeneous schemes.

Definition 4.3 (The extremum paths). A nonempty subset of {(x, t) ∈ L : t1 ≤
t ≤ t2} denoted by Mt1,t2 is called a ridge of the numerical solution u from t1 to t2 if

(i) For each t ∈ [t1, t2] the set

PM (t) def= {xj : (xj , t) ∈Mt1,t2} = {xp(t), . . . , xq(t)}

is non empty, and is an M -stencil of u at t.
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(ii) Mt1,t2 satisfies the following “connectivity” condition: for each t in [t1, t2],
there exists a neighborhood U(t) of t such that if t′ ∈ U(t) ∩ [t1, t2], then PM (t′) ⊆
PM (t).

The set PM (t) is called the x-projection of Mt1,t2 at t. The value of u along the
ridge is denoted by VM (t): VM (t) = uj(t) for p(t) ≤ j ≤ q(t). Hereafter , we use
the notations Mt1,t2 , PM (t) and VM (t) exclusively for the above notions. If for all
t ∈ [t1, t2] the M -stencil in (i) and (ii) is replaced by an N -stencil, then the set is
called a trough of u from t1 to t2, and is denoted by Nt1,t2 . The related notions PN (t)
and VN (t) are defined similarly. Ridges and troughs are also called extremum paths.
When we do not distinguish between ridges and troughs, we use Et1,t2 , PE(t) and
VE(t) for either type. We add superscripts on M , N , or E to indicate several paths
in one solution, sequences of paths associated with a sequence of solutions, or both.
We make the convention that E1

t1,t2 < (≤)E2
t1,t2 when maxPE1(t) < (≤)maxPE2(t)

for all t ∈ [t1, t2]. For t′′ > t′, we say that a given E-stencil of u at t′′ can be traced
back to t′ if it is the x-projection of an extremum path Et′,t′′ at t′′.

Two local non-oscillatory properties (LNOPs) of the scheme (1.3)-(1.5) are the
foundation of the extremum tracking theory. These properties imply that no new
extremum may emerge for t > 0. Hence one can trace any given E-stencil back to the
initial time t = 0. In the homogeneous case, Yang [22] proved the two LNOPs by using
the LMP: If xi belongs to an M(N)-stencil of uj(t) at the time t, then dui(t)

dt ≤ (≥)0.
For the scheme with a source term, the LMP, in general, does not hold. Surprisingly,
the LNOPs, as described in the following two lemmas, still hold, provided that the
numerical flux function satisfies the same Assumption 2.4 that enforces the LMP on
its HCP.

Lemma 4.4 (LNOP 1). With Assumption 2.4, if {xp, . . . , xq} is an M-stencil of
u at some t0, then there exists a δ > 0 such that at any t ∈ [t0, t0 + δ), there is no
N-stencil of u that is a subset of {xp, . . . , xq}.

Proof. Since u is continuous in t and {xp, . . . , xq} is an M -stencil of u at t0, there
exists a δ > 0 such that for t ∈ [t0, t0 + δ),

max(up−1(t), uq+1(t)) < min
p≤j≤q

uj(t).

If q ≤ p+ 1, the lemma holds trivially. Otherwise, for any j with p < j < q, set

Dj(t)
def= min( max

p≤l<j
(ul(t) − uj(t))+, max

j<r≤q
(ur(t) − uj(t))+)

and

D(t) def= max
p<j<q

Dj(t).

Here, (a)+ = max(a, 0). Clearly, D(t) ≥ 0, and D(t) = 0 if and only if there is
no N -stencil of u at t that is a subset of {xp, . . . , xq}. The function D(t) is clearly
Lipschitz continuous. Therefore, if

I := {t : D(t) > 0} ∩ (t0, t0 + δ) �= ∅,
there are real numbers α and β satisfying t0 ≤ α < β ≤ t0 + δ with D(α) = 0 and
D(t) > 0 for α < t < β. Moreover, D(t) is differentiable almost everywhere in the
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interval (α, β) and

(4.1) D(t) =
∫ t

α

D′(s) ds.

For any t ∈ (α, β) where D′(t) is defined, there exist an i with p < i < q, an l with
p ≤ l < i, and an r with i < r ≤ q such that

D(t) = min(ul(t) − ui(t), ur(t) − ui(t)).

Clearly, xl and xr each belongs to an M -stencil of u, and xi belongs to an N -stencil
of u at t. Hence, Assumption 2.4 implies

dul(t)
ds

≤ q(ul(t)),
dur(t)
ds

≤ q(ur(t)), and
dui(t)
ds

≥ q(ui(t)).

Hence, if ul(t) − ui(t) = ur(t) − ui(t), then

D′(t) ≤ max(u′l(t) − u′i(t), u
′
r(t) − u′i(t))(4.2)

≤ max(q(ul(t)) − q(ui(t)), q(ur(t)) − q(ui(t))) ≤ C̄D(t).

Otherwise, without loss of generality, assume ul(t) − ui(t) < ur(t) − ui(t). By def-
inition, for any s ∈ (α, β), we have D(s) ≥ min(ul(s) − ui(s), ur(s) − ui(s)). Thus,
D(s) ≥ ul(s) − ui(s) when |s − t| is sufficiently small and the equality holds when
s = t. This implies that

(4.3) D′(t) = u′l(t) − u′i(t) ≤ C̄(ul(t) − ui(t)) = C̄D(t).

Now from (4.2), (4.3) and (4.1), we obtain D(t) ≤ ∫ t

α
C̄D(s) ds for all t ∈ (α, β).

Applying Gronwall’s inequality, we get D(t) ≡ 0 for all t ∈ (α, β). This contradicts
the inequality D(t) > 0 for all t ∈ (α, β). Hence, I = ∅ as desired.

Lemma 4.5 (LNOP 2). With Assumption 2.4, if

up−1(t0) > up(t0) ≥ · · · ≥ uq(t0) > uq+1(t0),

then there exists a δ > 0 such that for t ∈ [t0, t0 + δ)

(4.4) up−1(t) > up(t) ≥ · · · ≥ uq(t) > uq+1(t).

Proof. Since the numerical solution is continuous in t, there exists a δ > 0 such
that

up−1(t) > max
p≤i≤q

ui(t) ≥ min
p≤i≤q

ui(t) > uq+1(t)

for t ∈ [t0, t0 + δ). Define

D(t) = max
p≤l<q

( max
l<r≤q

(ur(t) − ul(t))+).

Clearly, D(t) ≥ 0, and D(t) = 0 if and only if (4.4) holds. It therefore suffices to show
that D(t) = 0 for all t ∈ [t0, t0 + δ). We omit the rest of the proof, which is similar to
that of Lemma 4.4.
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Without LMP, the two Monotonicity Properties (Lemmas 6.7, 6.8 in [22]) need a
minor modification for the scheme (1.3)-(1.5). For Mt1,t2 , define

RM (t) := inf
max PM (t)<j<∞

uj(t).

Mimicking the proof of Lemma 2.6, one can easily show the following lemma.

Lemma 4.6. With Assumption 2.4, if Mt1,t2 is a ridge of u, then for any t1 ≤
t ≤ t2, we have

(i) VM (t) ≤ VM (t1) +
∫ t

t1
q(VM (s)) ds,

(ii) RM (t) ≥ RM (t1) +
∫ t

t1
q(RM (s)) ds.

Let C ′ := maxu∈[Ā,B̄] |q(u)|. Immediately we have the following corollary.

Corollary 4.7. With Assumption 2.4, if Mt1,t2 is a ridge of u, then for any
t′, t′′ with t1 ≤ t′ ≤ t′′ ≤ t2, we have

(i) VM (t′′) ≤ VM (t′) + C ′(t′′ − t′),
(ii) RM (t′′) ≥ R(t′) − C ′(t′′ − t′).

The following two lemmas come from [22], both still hold for the numerical solu-
tion u generated by the scheme (1.3)-(1.5). The first one implies that along its route
of propagation, an extremum path of u sweeps over all the grid points in between. The
next lemma implies that the forward extremum path of u starting from an E-stencil
at any time t0 is unique.

Lemma 4.8 (Sweeping Over Property). If Mt1,t2 is a ridge of u such that

xp = min[PM (t1)
⋃
PM (t2)] and xq = max[PM (t1)

⋃
PM (t2)],

then
⋃

t1≤t≤t2
PM (t) ⊇ {xj : p ≤ j ≤ q}.

Lemma 4.9 (Order Preserving Property). Suppose the numerical solution u sat-
isfies Assumption 2.4 and suppose E(1)

t1,t2 and E(2)
t1,t2 are two extremum paths of u. If

maxPE(1)(t2) < minPE(2)(t2), then E
(1)
t1,t2 < E

(2)
t1,t2 .

We now prove the main result of this section.

Lemma 4.10 (Backward Trace-ability Property). With the Assumption 2.4, any
M-stencil {xp, . . . , xq} at any T1 > 0 can be traced back to t = 0.

Proof. Let � be the set of t for which there exists an Mt,T1 with PM (T1) =
{xp, xp+1, . . . , xq}. We prove the lemma by showing that � is nonempty and is both
open and closed in [0, T1]. It is obvious that � is nonempty, since T1 ∈ �. The proof
of “open” is similar to the one in [22]. We give the proof for closeness.

“Closed”: For any τ, τ ′ ∈ (0, T1), if τ > τ ′, then τ ′ ∈ � implies that τ ∈ �. Thus,
to show the closeness it suffices to show that for any {τµ}∞µ=0 ⊂ � with τ1 > τ2 > · · ·
and τµ → t′, we have t′ ∈ �.

First, We claim that xpµ(t) and xqµ(t) are uniformly bounded: there exists a
constant Xmax such that for all µ, xqµ(t) < Xmax when τµ ≤ t ≤ T1. Similarly, there
exists a constant Xmin that is a lower bound of xpµ(t).
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Since xqµ(T1) = xq(T1) for all µ, it suffices to show that there exists a constant
∆t such that for any t0 ∈ (t′, T1], there exists a constant Xmax(t0) for which xqµ(t) ≤
Xmax(t0) for all µ and t0 −∆t ≤ t ≤ t0 provided that {xqµ(t0)}∞µ=0 has a upper bound
xsup(t0).

Indeed, applying Lemma 4.6 and argument similar to the proof of Theorem 2.5
shows that we have RMµ(t) ≤ α(t) < β(t) ≤ VMµ(t), for all µ and τµ ≤ t ≤ T1, where
α(t) and β(t) are the solutions of the ordinary differential equation v′(t) = q(v(t))
with α(T1) = RMµ(T1) and β(T1) = VMµ(T1) respectively. Define

δ = min
t′≤t≤T1

1
4
(β(t) − α(t)).

Since β(t) is uniformly continuous on [0, T1], there is a η such that

|β(s) − β(r)| ≤ δ,

provided that s, r ∈ [0, T1] and |s−r| ≤ η. Now let ∆t = min( δh
C1
, η). By the definition

of RMµ(t), there exists an j0 with xj0 ≥ xsup(x0) for which uj0(t) ≤ α(t0) + δ for
t ∈ [t0 − ∆t, t0]. The inequality ∆t ≤ η also implies that on the same interval

VMµ(t) ≥ β(t) = β(t0) + (β(t) − β(t0)) ≥ β(t0) − δ.

Hence

VMµ(t) − uj0(t) ≥ β(t0) − α(t0) − 2δ ≥ 2δ > 0.

Therefore, the Sweeping over Lemma 4.8 implies that for t ∈ [t0 − ∆t, t0], we have

qµ(t) ≤ xj0 .

This prove the claim.
Next, we show that there exists a subsequence {Mτµ,T1}∞µ=1 of ridges {Mµ

τµ,T1
}∞µ=1,

such that PM (T1) = {xp, xp+1, . . . , xq} and

(4.5) Mτµ1 ,T1 ⊂Mτµ2 ,T1 if µ1 < µ2.

Because of (4.5), it is not necessary to use superscripts to distinguish different ridges
in this sequence.

To see this, let us assume that {Pµ
i }mµ

i=1 is the collection of M -stencils of u at τµ
between Xmin and Xmax. Since xpµ(t) and xqµ(t) are uniformly bounded, {mµ}∞µ=1

is a bounded sequence. Inductively, we select an M -stencil Pµ = Pµ
iµ

at τµ for each
natural number µ as follows: We are able to select a P 1 = P 1

i1
such that it consists

of the x-projections at τ1 of an infinite subsequence (SQ)1 of {Mµ
τµ,T1

}∞µ=1 because
m1 is bounded. In general, if (SQ)µ and Pµ have been selected, we are able to
select a Pµ+1 = Pµ+1

iµ+1
such that it consists of the x-projections at τµ+1 of an infinite

subsequence (SQ)µ+1 of (SQ)µ because {mµ}∞µ=1 is a bounded sequence. Thus, Pµ is
selected for every natural number µ. Now we define Mτµ,T1 to be the unique ridge of
u such that PM (τµ) = Pµ ( uniqueness is guaranteed by Lemma 4.9 ). The relation
(4.5) follows from the uniqueness.

Finally, suppose that PM (t) = {xp(t), . . . , xq(t)} and that

p̃ = lim
µ→∞ inf p(τµ), and q̃ = lim

µ→∞ sup q(τµ).
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We have p̃ ≤ q̃. Since p(τµ) and q(τµ) are uniformly bounded, q(τµ) ≤ q̃ and p(τµ) ≥ p̃
for sufficiently large µ. Moreover, Lemmas 4.5 and 4.8 and the continuity of u in t
imply that

up̃(t′) = · · · = uq̃(t′) = lim
µ→∞V (τµ).

Let p̂ and q̂ be integers such that p̂ ≤ p̃ ≤ q̃ ≤ q̂ with

up̂(t′) = · · · = uq̂(t′),

and

up̂−1(t′) �= up̂(t′), uq̂+1(t′) �= uq̂(t′).

The collection {xp̂, . . . , xq̂} is an M -stencil of u at t′, because otherwise, by Lemmas
4.4 and 4.5, {xp̂−1, . . . , xq̂+1} would not contain any M -stencil at t = τµ for suffi-
ciently large µ and the existence of the aforementioned Mτµ,T1 would be violated. Set
PM (t′) = {xp̂, . . . , xq̂}. Then Mt′,T1 is well defined. Hence t′ ∈ �. This shows that �
is closed in [0, T1].

Given a path Et1,t2 , we would like, ideally, to have a function xE(t) : [t1, t2] → R

that satisfies the following conditions.
(1) There is a finite partition of [t1, t2] : t1 = τ0 < τ1 < · · · < τn = t2 such that

xE(t) is a constant on each subinterval (τµ−1, τµ) for 1 ≤ µ ≤ n.
(2) xE(t) ∈ PE(t) for t ∈ [t1, t2].

It is not clear that such a function xE(t) exists. However, we can construct a piecewise
constant function of t that represent Et1,t2 sufficiently well. Without loss of generality,
we only discuss the spatial maxima.

Lemma 4.11. For any ε > 0 and for each ridge Mt1,t2 of a numerical solution u
generated by the scheme (1.3)-(1.5) satisfying Assumption 2.4, there exists a piecewise
constant function xε

M (t) : [t1, t2] → R and a finite partition of [t1, t2] : t1 = τ0 < τ1 <
· · · < τn = t2 such that xε

M (t) ≡ cν and

(4.6) cν ∈ PM (τν−1)
⋂
PM (τν),

on each subinterval (τν−1, τν) for 1 ≤ ν ≤ n. Furthermore, at any t ∈ [t1, t2], for any
xi between ( and including ) xε

M (t) and PM (t), we have

(4.7) |VM (t) − ui(t)| < ε.

Finally, for V ε
M (t) def= u(xε

M (t), t),

(4.8) TVt1≤t≤t2(V
ε
M (t)) < VM (t1) − VM (t2) + C.

We call the function xε
M (t) an ε-ridge to Mt1,t2 . Similarly, we may define an

ε-trough xε
N (t) to an trough Nt1,t2 . Both ε-ridges and ε-troughs are called ε-E paths.

Let E1
t,t′ , E

2
t,t′ be two extremum paths of u. In the following, the total spatial

variation of u at s between E1
t,t′ and E2

t,t′ is denoted by TVE1E2(s). We also denote
TTVE1E2(t, t′) as the temporal variation of TVE1E2(s) from t to t′.
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Lemma 4.12. Suppose the numerical solution u of the scheme (1.3)-(1.5) satisfies
Assumption 2.4. Suppose also that E1

t,t′ ≤ E2
t,t′ are two extremum paths of u such

that either PE1(t′) and PE2(t′) are identical or they are two successive E-stencils of
u at t′. Let C = maxu∈[Ā,B̄] |q(u)|(t′ − t) and let

uM = max
min PE1 (t′)≤x≤max PE2 (t′)

u(x, t′), uN = min
min PE1 (t′)≤x≤max PE2 (t′)

u(x, t′).

(i) If minPE1(t) ≤ xj ≤ maxPE2(t), then

uN − TTVE1E2(t, t′) − C ≤ uj(t) ≤ uM + TTVE1E2(t, t′) + C.

(ii) If minPE1(t) ≤ xp < xq ≤ maxPE2(t), and uq(t) − up(t) has the opposite
sign of VE2(t) − VE1(t), then

|uq(t) − up(t)| ≤ TTVE1E2(t, t′)/2 + C.

Proof. Without loss of generality, we may assume that E1
t,t′ , and E2

t,t′ are a trough
and a ridge, respectively. It follows that uM = VE2(t′) and uN = VE1(t′). Denote
uM (t) := VE2(t) and uN (t) := VE1(t). Using Corollary 4.7, we have

TTVE1E2(t, t′) ≥ TVE1E2(t) − TVE1E2(t′) = TVE1E2(t) − (uM − uN )
≥ uM (t) − uj(t) − uM + uN ≥ −C ′(t′ − t) − uj(t) + uN ,

and

TTVE1E2(t, t′) ≥ TVE1E2(t) − TVE1E2(t′) = TVE1E2(t) − (uM − uN )
≥ uj(t) − uN (t) − uM + uN ≥ uj(t) − C ′(t′ − t) − uM .

Hence, (i) holds. Next, we have

TTVE1E2(t, t′) ≥ TVE1E2(t) − TVE1E2(t′) = TVE1E2(t) − (uM − uN )
≥ |uM (t) − uq(t)| + |uq(t) − up(t)| + |up(t) − uN (t)| − uM + uN

= 2(up(t) − uq(t)) − 2C ′(t′ − t).

Thus, (ii) holds, and the lemma is proved.

Remark. Since TVu(t) =
∑∞

j=−∞ |uj+1(t) − uj(t)| ≤ C0 implies that

lim
j→±∞

uj(t) = C±(t)

exists for some C±(t). We have dC±(t)
dt = q(C±(t)), by the consistency of the numerical

flux g. Therefore, −C ′(t′ − t) ≤ C±(t) − C±(t′) ≤ C ′(t′ − t). It is easy to see that
Lemma 4.12 also holds when u(x, t′) is monotone between −∞ and maxPE2(t′), or
when u(x, t′) is monotone between minPE1(t′) and ∞. In the former case, minPE1(t)
is replaced by −∞ and VE1(t) is replaced by C−(t); in the latter case, maxPE2(t) is
replaced by ∞ and VE2(t) is replaced by C+(t). The proof is similar to that in the
standard case and is omitted.

For the non-homogeneous scheme (1.3)-(1.5), Lemma 6.15 of [22] no longer holds,
which plays active role in the proof of Theorem 3.12. Thus, we need a enhanced
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version of Lemma 4.12 which functions the same as the Lemma 6.15 of [22]. Recall
the function φu(t) defined by the relation (2.6) is a decreasing function of t. Hence,
we have Tφu(t, t′) = φu(t) − φu(t′). Our next goal is to replace TTVE1E2(t, t′) in
Lemma 4.12 by Tφu(t, t′). For this purpose, we shall first establish the relationship
between Tφu(t, t′) and TTVE1E2(t, t′). During the argument, C stands for a generic
constant and E1

t,t′ , E
2
t,t′ are two arbitrary extreme paths. It is easy to see that VE(t)

is Lipschitz continuous. Hence it is differentiable almost everywhere.

Lemma 4.13. For almost all s ∈ [t, t′], there is a xi = xi(s) ∈ PE(s), such that
dVE(s)

ds = dui(s)
ds .

Proof. For any s ∈ [t, t′], where VE(s) is differentiable, we have PE(s′) ⊆ PE(s)
for s′ sufficiently close to s. Hence, there is a xi = xi(s) ∈ PE(s) and a sequence
{τn} ⊆ R \ {0}, τn → 0 such that VE(s+ τn) = ui(s+ τn). Thus

dVE(s)
ds

= lim
τn→0

VE(s+ τn) − VE(s)
τn

= lim
τn→0

ui(s+ τn) − ui(s)
τn

=
dui(s)
ds

.

Lemma 4.14. Let Mt,t′ be any ridge and PM (τ) = {xp(τ), · · · , xq(τ)}. Then,
with Assumption 2.4, for almost all τ ∈ [t, t′], we have

q(VM (τ)) ≥ dVM (τ)
dτ

(4.9)

≥ 1
2h

q(τ)∑
j=p(τ)

(sj+ 1
2
(τ) − sj− 1

2
(τ))(gj+ 1

2
(τ) − gj− 1

2
(τ)) + q(VM (τ)).

Proof. By Assumption 2.4, the first inequality always holds. To see the second
one. Let i = i(τ) be as in Lemma 4.13. Clearly, we have

dVM (τ)
dτ

=
dui(τ)
dτ

= max
j∈PM (τ)

duj(τ)
dτ

= max
j∈PM (s)

[− 1
h

(gj+ 1
2
(τ) − gj− 1

2
(τ)) + q(VM (τ))].

If p(τ) = q(τ), then j = i = p = q and sj+ 1
2
− sj− 1

2
= −2. Hence

dVM (τ)
dτ

=
1
2h

(sj+ 1
2
(τ) − sj− 1

2
(τ))(gj+ 1

2
(τ) − gj− 1

2
(τ)) + q(VM (τ)).

Thus (4.9) holds.
If p(τ) ≤ q(τ) − 1, then sp+ 1

2
− sp− 1

2
= sq+ 1

2
− sq− 1

2
= −1. Hence

dVM (τ)
dτ

= max
j∈PM (τ)

[− 1
h

(gj+ 1
2
(τ) − gj− 1

2
(τ)) + q(VM (τ))]

≥ 1
2
[− 1
h

(gp+ 1
2
− gp− 1

2
) − 1

h
(gq+ 1

2
− gq− 1

2
)] + q(VM (τ))

=
1
2h

q(τ)∑
j=p(τ)

(sj+ 1
2
(τ) − sj− 1

2
(τ))(gj+ 1

2
(τ) − gj− 1

2
(τ)) + q(VM (τ)).
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Thus (4.9) holds as well. We finished the proof of Lemma 4.14.

The following lemma is the result of a simple observation.

Lemma 4.15. Without loss of generality. Let the extrema at τ ∈ [t, t′] and between
E1

t,t′ and E2
t,t′ are N1,M1, · · · , Nl,Ml. We have

TVE1E2(τ) = VMl
(τ) − VN1(τ) + 2

l−1∑
m=1

(VMm
(τ) − VNm+1(τ)).

Now, by Lemmas 4.13, 4.14 and 4.15, for almost all τ ∈ [t, t′] we have

|dTVE1E2(τ)
dτ

| ≤ − 1
h

∞∑
j=−∞

(sj+1/2 − sj−1/2)(gj+1/2 − gj−1/2) + C.

Hence, we have

TTVE1E2(t, t′) =
∫ t′

t

|dTVE1E2(τ)
dτ

| dτ ≤ Tφu(t, t′) + C.(4.10)

Based on the relation (4.10), we can restate Lemma 4.12 in the following impor-
tant form.

Lemma 4.16. With the conditions and notations of Lemma 4.12,
(i) If minPE1(t) ≤ xj ≤ maxPE2(t), then

uN − Tφu(t, t′) − C ≤ uj(t) ≤ uM + Tφu(t, t′) + C.

(ii) If minPE1(t) ≤ xp < xq ≤ maxPE2(t), and uq(t) − up(t) has the opposite
sign of VE2(t) − VE1(t), then

|uq(t) − up(t)| ≤ Tφu(t, t′)/2 + C,

where C is a positive constant.

Lemma 4.16 and the relation (4.7), imply immediately the following result.

Lemma 4.17. Suppose that, in addition to the conditions and the notations of
Lemma 4.12, xI(t) and xJ(t) are ε-E paths to E1

t,t′ and E2
t,t′ respectively, such that

xI(t′) ∈ PE1(t′) and xJ(t′) ∈ PE2(t′).
(i) If xI(t) ≤ xj ≤ xJ(t), then

uN − (C + ε) − Tφu(t, t′) ≤ uj(t) ≤ uM + (C + ε) + Tφu(t, t′).

(ii) If xI(t) ≤ xp < xq ≤ xJ(t), and uq(t)−up(t) has the opposite sign of VE2(t)−
VE1(t), then

|uq(t) − up(t)| ≤ Tφu(t, t′)/2 + (C + 2ε).

Remark. Lemmas 4.16 and 4.17 also hold when u(x, t′) is monotone
between −∞ and maxPE2(t′), or when u(x, t′) is monotone between
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minPE1(t′) and ∞. This is because in both cases Lemma 4.12 and the rela-
tion (4.10) still hold.

The following result connects the notions of ε-E paths of this section, the ε-paths
in the sense of Definition 3.4 and the TV-stable sequences of a numerical traveling
discontinuity introduced in §3.

Lemma 4.18. Let {uk}∞k=1 be a TV-stable sequence of a numerical traveling
discontinuity generated by a (h, ε)-scaled form of the scheme (1.3)-(1.5) that satisfies
Assumption 2.4 for each positive integer k. If xεk

E (t) is an εk-E path of uk, then it is
also an εk-path of the first type with respect to uk.

Thus, the extension of the extremum tracking theory [22] has been completed.
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