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SYMPLECTIC GENERIC COMPLEX STRUCTURES ON
FOUR-MANIFOLDS WITH b+ = 1

Paolo Cascini and Dmitri Panov

We study symplectic structures on Kähler surfaces with pg = 0.
We give an example of a projective surface which admits a symplectic
structure which is not compatible with any Kähler metric.

1. Introduction

The main purpose of this note is to give a negative answer to a question
raised by Tian-Jun Li [Li08]:

Question 1.1. Let X be a closed, smooth, oriented four-manifold which
underlies a Kähler surface such that pg(X) = 0. Does X admit a symplectic
generic complex structure?

A complex structure J on X is called symplectic generic if for any
symplectic form ω of X such that −c1(X, ω) coincides with the canoni-
cal class KJ of J , there exists a Kähler form ω′ cohomologous to either ω or
−ω.

One of the main motivations for this question is the fact that, by a result
of Biran [Bir99], the existence of a symplectic generic complex structure
on any rational four-manifold implies the famous Nagata’s conjecture which
states that given very general points p1, . . . , p� ∈ CP

2, with � ≥ 9, any curve
C in CP

2 must satisfy

deg C ≥
∑�

i=1 multpi C√
�

(see [Li08] for more details). that a smooth four-manifold X is said to be
rational if it is diffeomorphic to either S2×S2 or CP

2#kCP2, for some k ≥ 0.
On the other hand, if X is the four-manifold underlying a smooth minimal

projective surface of general type (i.e., with big and nef canonical line
bundle) then there exists a symplectic form inside the class of the canon-
ical line bundle of X (see [Cat09, STY02]). Therefore, if pg(X) = 0,
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the existence of a symplectic generic complex structure on X would, in
particular, imply the existence of a Kähler–Einstein metric with negative
curvature on X, by the result of Aubin and Yau. For example, Catanese
and LeBrun [CL97] showed the existence of a Kähler–Einstein metric with
negative curvature on the generic Barlow surface, which is a projective sur-
face of general type homeomorphic to CP

2#8CP2. But the question remains
a hard problem in general, as a classification of the projective surfaces with
zero genus is still beyond our reach (see the recent survey [BCP10] for an
updated
account).

Our example is obtained by considering the four-manifold X = (Σ ×
S2)#CP2, where Σ is a Riemannian surface of genus one. We show the exis-
tence of a symplectic form on X which is not cohomologous to any Kähler
form on X, with respect to any complex structure J . From an algebraic
geometric point of view, this corresponds to saying that the Seshardi con-
stant of a suitable ample class on any uniruled projective surface over an
elliptic curve is not maximal (e.g., see [Gar06]). In particular, it follows
that X does not admit a symplectic generic complex structure.

Moreover, we describe a minimal surface of general type, for which the
underlying manifold does not admit a symplectic generic complex structure.
The construction relies on a recent result by Bauer and Catanese [BC11].

Note that both these examples have infinite fundamental group.

2. Preliminary results

In this section, we recall some basic definition and well-known facts about
the space of symplectic forms on a smooth four-manifold.

Given a closed smooth oriented four-manifold X, we consider the positive
cone of X, which is defined as the set

PX = {a ∈ H2(X, R) | a2 > 0}.
Moreover, we denote by ΩX the space of orientation-compatible symplectic

forms on X. Let

CX = {[ω] | ω ∈ ΩX} ⊆ H2(X, R),

and let Kω = −c1(X, ω) be the canonical class of ω ∈ ΩX . We denote by KX

the union of all elements Kω in H2(X, Z), where ω ∈ ΩX . For any K ∈ KX ,
let

C(X,K) = {[ω] ∈ CX | Kω = K}.
Let EX be the set of cohomology classes whose Poincaré dual are repre-

sented by smoothly embedded spheres of self-intersection −1. In particular,
X is said to be minimal if EX is empty. Moreover, for any K ∈ H2(X, Z),
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we denote
E(X,K) = {E ∈ EX | E · K = −1}.

The following result by Li and Liu [LL01] will play an important role:

Theorem 2.1. Let X be a closed, smooth, oriented four-manifold with
b+(X) = 1.

Then
CX = {a ∈ PX | a · E �= 0, for all E ∈ EX}.

Moreover,
(1) If K ∈ KX is not a torsion class, then C(X,K) is contained in one of

the two components of PX , denoted by P(X,K), and

C(X,K) = {a ∈ P(X,K) | a · E > 0 for all E ∈ E(X,K)}.
(2) If K ∈ KX is a torsion class, then C(X,K) = PX .

Proof. See [LL01, Theorem 4] and [Li08, Theorem 3.11]. �
Remark 2.1. Let (X, ω) be a symplectic four-manifold with b+(X) = 1. It
follows from [Li06, Proposition 6.3], that if its canonical class Kω is torsion
then 2Kω = 0 in H2(X, Z). In particular, K−ω = Kω and C(X,Kω) is not
contained in one of the two components of PX . On the other hand, if Kω is
not a torsion class, then Kω �= K−ω.

We say that a complex structure J on X is symplectic generic if CJ is
a connected component of C(X,KJ ), where CJ denotes the Kähler cone of J
and KJ is the canonical class of J . In particular, if KJ is not a torsion class,
then J is symplectic generic if C(X,KJ ) = CJ .

Lemma 2.1. Let (X, J) be a minimal complex surface with b+(X) = 1 and
which admits a Kähler class [ω] ∈ CJ . Then J is a symplectic generic complex
structure if and only if any J-holomorphic curve in X has non-negative
self-intersection.

Proof. By the Kähler Nakai–Moishezon criterion [Buc99, Lam99], if the
Kähler cone CJ is not empty then it coincides with the set of elements
in P(X,KJ ) which are positive on every J-holomorphic curve with negative
self-intersection. Thus, if there is no such curve on X, it follows that J is a
symplectic generic complex structure.

Let us assume now that C is a J-holomorphic curve with negative
self-intersection. Let v = ω(C) and m = −C2 and define a(t) = [ω] +
tPD(C) ∈ H2(X, R) for any t ≥ 0. Then, since

a(t)2 = [ω]2 + 2tω(C) + t2C2 > 2tv − t2m,

it follows that there exists T > v/m such that a(T ) ∈ P(X,KJ ). Since X
is minimal, Theorem 2.1 implies that a(T ) is represented by a symplectic
form ωT such that KωT = KJ . On the other hand, ωT (C) = v − Tm < 0,
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thus a(T ) is not a Kähler class. In particular, J is not a symplectic generic
complex structure. �

By the Kähler Nakai–Moishezon criterion and Theorem 2.1, it also follows
that a positive answer to Question 1.1 in the case of rational four-manifolds
is equivalent to the following conjecture: any integral curve with negative
self-intersection on the blow-up of CP 2 at a set of points in very general
position is a smooth rational curve with self-intersection −1. In fact, both
the conjectures are equivalent to the following:

Conjecture 2.1 (Harbourne–Hirschowitz). Let X be the blow-up of
CP 2 at a set of n ≥ 10 points in very general position. Then, the closed cone
of curves of X is spanned by the smooth rational curves with self-intersection
−1 and the round positive cone of x ∈ N1(X) such that

x2 ≥ 0 and H · x ≥ 0

for some fixed ample class H on X.

3. Ruled manifolds

In this section, we show the existence of a smooth uniruled complex manifold,
which does admit a symplectic generic complex structure.

Lemma 3.1. Let Σ be an elliptic curve, and let p : Y → Σ be a minimal ruled
surface over Σ, such that the parity of the intersection pairing on H2(Y, Z)
is odd. Let X be the blow-up of Y at one point η ∈ Y . Let k be the canonical
class of X, and let e be the class of the exceptional divisor.

Then the class e − 2k contains an effective curve.

Proof. By Atiyah’s classification [Ati57] of rank 2 vector bundles on an
elliptic curve, it follows that Y = P(E) where E is either the indecomposable
vector bundle contained in the sequence

0 → OΣ → E → OΣ(p) → 0,

for some p ∈ Σ or E = OΣ ⊕OΣ(L), where L is a line bundle of odd degree
m < 0.

Let us consider first the case of the indecomposable vector bundle. It is
known (e.g., see [CC93]) that in this case P(E) is isomorphic to the sym-
metric product S2Σ of the elliptic curve Σ, i.e., the quotient of Σ × Σ by
the natural action of Z/2Z. We will denote by [x, y] ∈ S2Σ the class of an
element (x, y) ∈ Σ × Σ. Note that the projection p : S2Σ → Σ is defined by
p([x, y]) = x + y. Consider the family of curves

Ct = {[x, t + x] | x ∈ Σ}, for any t ∈ Σ.
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If t ∈ Σ is not a two-torsion point, then the curve Ct is a smooth elliptic
curve. Otherwise, Ct is a non-reduced elliptic curve. Note that, for any s, t ∈
Σ, we have Ct = Cs if and only if t = s or t = −s and Ct and Cs are disjoint
otherwise. It follows that C2

t = 0. Moreover, given s, t ∈ Σ, there exist
exactly four points x ∈ Σ such that 2x + t = s. Thus, if t is a general point
in Σ, then the general fiber of p meets Ct in exactly four points. Let f be
the numerical class of the pull-back of the general fiber of p in X and let δ
be the numerical class of the pull-back of Ct. Then

δ2 = C2
t = 0, δ · e = 0 and δ · f = 4.

By adjunction, we have that k · δ = −δ2 = 0. Similarly, we have k · e = −1
and k ·f = −2. Moreover, since e, f and k are a basis of H2(X, Q), it follows
easily that δ = 2e − 2k. For any point η ∈ S2Σ there exists t ∈ Σ such that
η ∈ Ct. If X is the blow-up of Y at η and C ′

t is the proper transform of Ct in
X, then C ′

t is in the class of (2− q)e− 2k, where q ≥ 1 is the multiplicity of
Ct at η. In particular, the class e−2k contains an effective curve, as claimed.

Let us consider now the case of a decomposable vector bundle E = OΣ ⊕
OΣ(L) where L is a line bundle on Σ of odd degree m < 0. Then, there exists
an holomorphic section C in Y such that C2 = m. If ξ is the numerical class
of the pull-back of C in X, it follows easily that 2ξ = e+mf −k, where f is
the pull-back of the general fiber of p. In particular, e−2k = 4ξ+(−2mf−e)
is the class of a (possibly not irreducible) effective curve in X. �
Remark 3.1. Note that the uniruled surface which is the projectivization
of the decomposable vector bundle can be obtained as a deformation of
the projectivization of the indecomposable one. Thus, in the proof of the
previous lemma, the second case would follow immediately from the first
one.

Lemma 3.2. A complex surface X homeomorphic to (Σ × S2)#CP2, is
bi-holomorphic to a blow up at a single point of a minimal ruled surface Y
over an elliptic curve, such that the intersection pairing on H2(Y, Z) is odd.

Proof. Recall that from the Enriques–Kodaira classification of complex
surfaces, it follows that each complex surface with odd b+ is Kähler, and
that any algebraic surface of non-negative Kodaira dimension and zero holo-
morphic Euler characteristics is bi-meromorphic to a torus or a bi-elliptic
surface. Since b+(X) = 1, it follows that X is Kähler and pg(X) = 0. Thus
X is algebraic. Since π1(X) = Z

2 and χ(OX) = 0, we conclude that X has
Kodaira dimension −∞.

By the classification of algebraic surfaces, it follows that if Y is the
minimal model of X, i.e., the surface obtained after blowing-down all
the holomorphic (−1) spheres on X, then Y is a uniruled surface over a
Riemannian surface Σ. Since b1(Y ) = b1(X) = 2, it follows that the genus
of Σ is one. Moreover, since b2(X) = 3, it follows that X is the blow-up of a
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ruled surface over an elliptic curve at a single point p ∈ Y . In particular X
has exactly two holomorphic rational curves E1 and E2 with self-intersection
−1: one is the exceptional divisor of the blow-up map and the other is the
strict transform of the rational fiber passing through the blown-up point.
Assume that the intersection form on H2(Y, Z) has even parity. Let C be
a curve on Y which passes through p and which meets the fiber of the
fibration Y → Σ transversally at p. Then the strict transform of C in X has
odd self-intersection and it does not intersect E2. Thus, after contracting
E2 we obtain a surface Y ′ such that the intersection form on H2(Y ′, Z) has
odd parity. After replacing Y by Y ′, we may assume that H2(Y, Z) has odd
parity. �
Lemma 3.3. Let π : Y → Σ be a ruled projective surface over an elliptic
curve Σ, such that H2(Y, Z) has odd parity. Let X be the blow up of Y at a
single point. Let k be the class of the canonical class of X and let e1, e2 be
the classes of the two rational curves of self-intersection −1 on X.

Then E(X,k) = {e1, e2}.
Proof. Let e be a class in H2(X, Z) which can be represented by a smoothly
embedded sphere in X such that e2 = −1. Then e belongs to the kernel
of π∗ : H2(X, Z) → H2(Σ, Z). This kernel is spanned by e1 and e2 and
we deduce e = ±(ne1 + (n − 1)e2) for some integer n. At the same time
e1 · k = e2 · k = −1, since e1, e2 are the classes of exceptional curves on X.
Thus, if e ∈ E(X,k), then e · k = −1 which implies e = e1 or e = e2. �
Theorem 3.1. Let Σ be a Riemann surface of genus 1, let Σ × S2 be the
trivial S2-bundle on Σ and let X = (Σ × S2)#CP

2.
Then, for any complex structure J on X, there exists a symplectic form

ω on X such that ω is not Kähler with respect to J . Moreover, X does not
admit any symplectic generic complex structure.

Proof. Let J be a complex structure on X, let k be the canonical class of
(X, J) and let e be the class of the exceptional divisor E of the contraction
X → Y , whose existence is guaranteed by Lemma 3.2. Let a be the first
Chern class of an ample line bundle on X. By Lemma 3.1, it follows that
v = a · (e − 2k) > 0. Let

a(t) = a + t(e − 2k) ∈ H2(X, R), for all t > 0.

In particular, a(t) · (e − 2k) = v − t and a(v)2 = a2 + v2 > 0. Thus, there
exists T > v such that a(T )2 > 0. Moreover, if E ∈ E(X,k), then

a · E > 0 k · E = −1 and by Lemma 3.3 e · E ≥ −1.

Thus, a(t) · E > 0 for all t > 0. Since b+(X) = 1, Theorem 2.1 implies that
the class a(T ) is represented by a symplectic form ω, such that Kω = k.

On the other hand, by Lemma 3.1, the class e − 2k is represented by a
J-holomorphic curve C such that a(T ) ·C < 0, since T > v. Thus, the class
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a(T ) does not contain a Kähler form. In particular, J is not a symplectic
generic complex structure. �

4. Non-ruled manifolds

In this section, we study Question 1.1 in the case of smooth minimal
four-manifolds with non-negative Kodaira dimension.

Question 4.1. Let X be a minimal four-manifold which underlies a Kähler
surface such that pg(X) = 0. Does X admit a symplectic generic complex
structure?

In particular, we show that the question has positive answer in the case of
zero Kodaira dimension and we provide an example of a minimal surface of
general type which does not admit a symplectic generic complex structure.

By the Seiberg–Witten theory, the Kodaira dimension of a Kähler surface
is preserved under diffeomorphism [FM97]. As noted in [Li08], any uniruled
four-manifold, i.e., a manifold which underlies a Kähler surfaces of Kodaira
dimension −∞, admits a symplectic generic complex structure.

We first consider the case of zero Kodaira dimension:

Proposition 4.1. Let X be a four-manifold which underlies a Kähler sur-
face such that pg(X) = 0 and kod(X) = 0.

Then X admits a symplectic generic complex structure.

Proof. By the classification of algebraic surfaces, it follows that the canonical
class of X is numerically trivial. Thus, by the adjunction formula, the only
holomorphic curves of negative self-intersection, are smooth rational curves
C such that C2 = −2. In particular, Lemma 2.1 implies that it is sufficient
to show that there exists a complex structure on X which does not admit
any of these curves.

By the classification of algebraic surfaces, we just need to consider
two cases: Enriques surfaces and bi-elliptic surfaces. The moduli space of
Enriques surfaces is irreducible and by a result of Barth and Peters [BP83,
Proposition 2.8], the generic Enriques surface does not contain any smooth
rational curve of self-intersection −2.

If X is a bi-elliptic surface, then X = Σ1 × Σ2/G, where Σ1 and Σ2

are Riemannian surfaces of genus one and G is an abelian group acting by
complex multiplication on Σ1 and by translation on Σ2. In particular, since
the universal cover of X is C

2, it follows that X does not contain any rational
curve. Thus, X does not admit any negative self-intersection curve.

By Lemma 2.1, it follows that any complex structure on X is symplectic
generic. �

If X is a minimal surface of general type with pg(X) = 0, it is well
known that q = 0 and 1 ≤ K2

X ≤ 9. Thus, the moduli space of X is
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a union of finitely many irreducible varieties. Nevertheless, it is still not
clear what the topology for these surfaces is (see [BCP10] for a recent
survey). As stated in the introduction, if X is the four-manifold underlying
the surface X, a positive answer to Question 4.1 would imply the existence
of a complex structure on X which admits a Kähler-Einstein metric. By the
results in [Bar84, LP07,PPS09a, PPS09b], it follows that there exist a
surface of general type which is homeomorphic to CP

2#kCP2, for 5 ≤ k ≤ 8.
It follows by [CL97, RŞ09] that, on any of these surfaces, there exists a
complex structure which admits a Kähler–Einstein metric with negative
curvature.

In general, if X is a minimal surface of general type with pg(X) = 0, then
χ(OX) = 1 and by Noether’s formula we have

b2(X) = χ(X) − 2 = 12χ(OX) − K2
X − 2 = 10 − K2

X .

Thus, if K2
X = 9, then any class in PX is the multiple of an ample class and

the answer to Question 4.1 is obvious.
Let us consider now the case of a surface of general type S with pg(X) = 0

and K2
X = 8. All the known examples have infinite fundamental group and

their universal cover is the bidisk Δ1 × Δ2 ⊆ C
2 [BCP10], so we assume

that S is of this type. Denote by w1 and w2 two semi-positive (1,1)-forms
on Δ1 ×Δ2 obtained via pullbacks of Poincaré metrics from the projections
of the bidisk to its factors. For any a, b > 0 the form aw1 + bw2 is Kähler
on the bidisk and is invariant under the action of π1(X). Thus, it descends
to a Kähler form wa,b on S. Since b2(X) = 2, it follows that for a, b > 0
the forms wa,b span one of the two connected components of PX , and so the
complex structure on X is symplectic generic.

On the other hand, the results in [BC11] immediately imply the existence
of a minimal surface of general type which does not admit a symplectic
generic complex structure. Burniat showed the existence of a minimal surface
X of general type such that K2

X = 6, pg(X) = 0, and which is a (Z/2Z)2-
cover of CP

2 blown-up at three points. We will call such a surface a Burniat
surface.

Theorem 4.1. Let X be a four-manifold which underlies a Burniat surface.
Then X does not admit a symplectic generic complex structure.

Proof. By [BC11, Theorem 0.2], any complex structure J on X is a Burniat
surface. In particular, X admits a J-holomorphic curve C of negative self-
intersection, which maps to a (−1)-curve on the blow-up of CP

2 at three
points. More specifically, C is an elliptic curve of self-intersection −1. Thus,
by Lemma 2.1, it follows that J is not symplectic generic. �
Note that a Burniat surface has infinite fundamental group. We do not know
any complex surface with pg = 0, finite fundamental group and which does
not admit a symplectic generic complex structure.
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Recall finally that there exist a wide class of minimal elliptic surfaces of
Kodaira dimension 1 and with pg = 0. These surfaces have topological Euler
characteristic equal to 12, the base of the corresponding elliptic fibration is
CP 1, and the fibration can have any number of multiple fibers greater than
1. It would be interesting to show that all such surfaces admit a symplectic
generic complex structure.
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