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FLOER TRAJECTORIES WITH IMMERSED NODES AND
SCALE-DEPENDENT GLUING

Yong-Geun Oh and Ke Zhu

Development of pseudo-holomorphic curves and Floer homology in
symplectic topology has led to moduli spaces of pseudo-holomorphic
curves consisting of both “smooth elements” and “spiked elements”,
where the latter are combinations of J -holomorphic curves (or Floer
trajectories) and gradient flow line segments. In many cases the “spiked
elements” naturally arise under adiabatic degeneration of “smooth
elements” which gradually go through thick–thin decomposition. The
reversed process, the recovering problem of the “smooth elements” from
“spiked elements” is recently of much interest.

In this paper, we define an enhanced compactification of the mod-
uli space of Floer trajectories under Morse background using the adi-
abatic degeneration and the scale-dependent gluing techniques. The
compactification reflects the one-jet datum of the smooth Floer trajec-
tories nearby the limiting nodal Floer trajectories arising from adiabatic
degeneration of the background Morse function. This paper studies the
gluing problem when the limiting gradient trajectories has length zero
through a renomalization process. The case with limiting gradient tra-
jectories of nonzero length will be treated elsewhere.

An immediate application of our result is a complete proof of the
isomorphism property of the PSS map: a proof of this isomorphism
property was outlined by Piunikhin–Salamon–Schwarz [PSS] in a way
somewhat different from the current proof in its details. This kind of
scale-dependent gluing techniques was initiated in [FOOO2] in rela-
tion to the metamorphosis of holomorphic polygons under Lagrangian
surgery and is expected to appear in other gluing and compactification
problem of pseudo-holomorphic curves that involves ‘adiabatic’ param-
eters or rescaling of the targets.
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1. Introduction

Development of pseudo-holomorphic curves and Floer homology in sym-
plectic geometry has led to moduli spaces consisting of both “smooth ele-
ments” and “spiked elements”, where the latter are combinations of J -
holomorphic curves (or Floer trajectories) and gradient flow segments. For
example, they appear in the generalized holomorphic building in symplec-
tic field theory [BEHWZ], in the quantum structure and cluster com-
plex for Lagrangian submanifolds [BC,CL], and even earlier in the works
[Fu2,Oh1,PSS,Sc1,MT]. In many cases the “spiked elements” naturally
arise from adiabatic degeneration of “smooth elements” which gradually
decompose into “thick parts” and “thin parts”.

The adiabatic degeneration and its reversal process of the type stud-
ied in this paper has appeared in [FOh, Ek, R]. The paper [SW] stud-
ied another type of adiabatic degeneration in a different context. All these
papers are, however, restricted to the case without quantum contribution,
i.e, without bubbling phenomenon. The papers [Oh5, Oh3, MT] studied
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adiabatic degeneration with quantum contribution close to the one studied
in this paper. However, the recovering problem was only mentioned and left
as a future work in [Oh1,MT].

Part of the difficulty for the recovering problem lies in finding good local
models near the junction points where the J -holomorphic curve and gradient
flow intersect. It turns out the derivative information of the J -holomorphic
curve and the gradient flow at the junction point is needed to determine
the local model. Besides a good local model, appropriate Fredholm theory
and implicit function theorem are needed in order to glue the “spiked ele-
ments” to “smooth elements” in a controlled way to reflect the adiabatic
degeneration. It turns out that the scale-dependent gluing technique carried
out in chapter 10 [FOOO2] of [FOOO1] in relation to metamorphosis of
J -holomorphic polygon under the Lagrangian surgery, which treats a small
region near the junction point as about the same size as the original target
manifold, is needed to retain the geometric features of the local model under
the perturbation via implicit function theorem. Large part of the analysis
used in this paper is motivated by those in [FOOO2].

1.1. Adiabatic degeneration of Floer trajectories. In this paper, we
study the adiabatic degeneration of maps u : R × S1 → M satisfying the
following one-parameter (0 < ε < ε0) family of Floer equations:

(1.1) (du+ PKε(u))
(0,1)
Jε

= 0 or equivalently ∂Jε(u) + (PKε)
(0,1)
Jε

(u) = 0,

We refer to Section 3 for detailed exposition of (1.1), the invariant form of
the Floer equation. The expression of the degenerating Hamiltonian Kε :
R× S1 ×M → R is given by

(1.2) Kε(τ, t, x) =

⎧
⎪⎨

⎪⎩

κ+
ε (τ) ·H(t, x), for τ ≥ R(ε)
ρε(τ) · εf(x), for |τ | ≤ R(ε)
κ−ε (τ) ·H(t, x), for τ ≤ −R(ε)

where κ±e and ρε are suitable cut-off functions (see (5.34) for the precise
definition). This type of equations, for example, appears in the study of
isomorphism property of the PSS map introduced in [PSS].

Roughly speaking, the adiabatic degeneration occurs because Kε restricts
to Morse function εf on longer and longer cylinder [−R(ε), R(ε)] × S1 in
R× S1. A basic assumption that we put on this paper is that R(ε) satisfies

(1.3) lim
ε→0

εR(ε) = 0.

The general case of limε→0 εR(ε) = � for � > 0 will be studied in a forthcom-
ing paper [OZ2]. Under this assumption, it is proved in [Oh5,Oh3,MT]
that as ε → 0, a degenerating sequence of Floer trajectories converges to
a nodal Floer trajectory denoted by (u−, u+). Descriptions of nodal Floer
trajectories and immersed nodal points are now in order.
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Let Σ̇+ be the Riemann sphere with one marked point o+ and one positive
puncture e+. Choose analytical charts at o+ and at e+ on some neighbor-
hoods O+ and E+, respectively, so that conformally O+\o+ ∼= (−∞, 0]×S1,
and E+\e+ ∼= [0,+∞) × S1. We use t for the S1 coordinate and τ for the
R coordinate. Then {−∞} × S1 and {+∞}× S1 correspond to o+ and e+,
respectively.

We consider a vector-valued one-form K+ on Σ̇ with its values in the set
ham(M,ω) of Hamiltonian vector fields on (M,ω), and Σ̇ = CP 1\{e+, o+} ∼=
C \ {0} ∼= R × S1. We denote by (τ, t) the standard coordinate on R × S1.
With respect to this coordinates, we require K+ satisfy

(1.4)

{
K+ = 0, near o+
K+ = H+(t, x) dt, near e+

H+ : S1 ×M → R is a Hamiltonian function independent of the variable τ .
Let z+ : S1 →M be a nondegenerate periodic orbit of H+ and consider a

finite energy solution u+ : Σ̇→M of the Floer equation (1.1) associated to
K+. By the finite energy condition and since K+ ≡ 0 near o+, u+ extends
smoothly across o+ and can be regarded as a smooth map defined on C that
is holomorphic near the origin 0 ∈ C.

Similarly we consider one-form K− on Σ̇ and Σ̇ = CP 1 \ {o−, e−} ∼=
C \ {0} ∼= R×S1. We denote by (τ, t) the standard coordinate on R×S1, so
that +∞ corresponds to o− and −∞ to e−. With respect to this coordinates,
we require K+ satisfy

(1.5)

{
K− = 0, near o−
K− = H−(t, x) dt, near e−

H± : S1 ×M → R are a pair of Hamiltonian functions independent of the
variable τ . Let z± : S1 → M be a nondegenerate periodic orbit of H± and
its lifting [z±, w±] of z±.

A nodal Floer trajectory is, by definition, the gluing u−#u+ at u−(o−) =
u+(o+) where u± are the solutions of the Floer equation associated to K±
respectively. We say that a nodal point of u−#u+ is immersed if u± are
immersed at o±, respectively.

One of the main results of the paper is the following enhanced compactifi-
cation theorem in Section 12 (Theorem 12.1) for gluing and its surjectivity:

Theorem 1.1. Suppose that u−, u+ are immersed at the node

p = u−(o−) = u+(o+).

Let Glue(u−, u+) be the nodal Floer trajectory formed by u− and u+

with nodal points p = u−(o−) = u+(o+). Suppose that un converges to
Glue(u−, u+) in level 0. Then there exists a subsequence uni and a sequence
εi → 0 such that uni converges to (u−, u+, u0) in the {εi}-controlled way.
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A more detailed description of the local model u0 above is in order now.
The convergence in level 0 is the usual Gromov convergence (Definition

12.3). The convergence in ε-controlled way is in Definition 12.4. Roughly
speaking, we magnify suitable small neighborhood of the center of the neck
of uni to keep track of the degeneration in microscopic level, and in the limit
we get a proper holomorphic curve in C

n with asymptotic convergence to
simple Reeb orbits γ− and γ+ of the standard contact form λ on S2n−1 in
the cylindrical end R × (S2n−1, λ) of C

n. Such a holomorphic curve can be
identified as a degree 2 rational curve in CPn intersecting the hyperplane at
infinity at two points x0 and x∞. We have the following classification result
of such rational curves (Proposition 6.1):

Proposition 1.1. Fix a hyperplane H in CPn and two points x0, x∞ ∈ H.
Then there exists a unique rational curve passing through x0, x1 and of
degree 2 modulo the action of Aut(CPn;H), which is the group of auto-
morphisms of CPn fixing H.

We can give an explicit formula for such rational curves. (See Remark 6.1
for such formula.) We refer to Theorem 6.1 for the explanation how this
proposition can be used to provide the local model u0. (Strictly speaking the
microscopic adiabatic limit has some remnant from the background small
Morse function εf put in the middle of Kε (5.34) above and is a proper
holomorphic curve perturbed by a linear vector τ∇f(p), i.e., has the form
u0 + τ∇f(p) See Proposition 7.2.)

We call (u−, u+, u0) an enhanced nodal Floer trajectory. For a given
enhanced nodal Floer trajectory, we glue a 1-parameter family of smooth
Floer trajectories and show that they are all possible nearby smooth Floer
trajectories according to the topology defined by the above enhanced con-
vergence. (See Theorem 10.1 for the precise statement.)

Equation (1.1) is nothing but a coordinate free expression of the equation
arising in the framework of the PSS map described in [PSS]. A key step
during the PSS scheme of proof of the isomorphism property is to resolve the
nodal Floer trajectory to a 1-parameter family of smooth Floer trajectories.
Unlike the smoothing trajectories obtained via the more conventional gluing
outlined in [PSS, MS] (see also [Lu]), our resolved Floer trajectories is
more closely tied to the limiting configurations arising through adiabatic
degeneration in that they are aligned in the gradient flow direction near the
node and is related to the disk-flow-disk elements.

Remark 1.1. As far as we know, the detail of a key gluing result needed
in the proof of isomorphism property of the PSS map announced in [PSS]
has not been given yet in any previous literature and our paper is the first
one that provides a full detail of the proof of isomorphism property of the
PSS map. Our proof uses a somewhat possibly “overkilled” gluing result
obtained in Theorems 12.1 and 10.1: Although we did not check it, it is
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conceivable that one might be able to write down a proof, without rescaling
target manifolds, following the more standard approach of Floer’s gluing
[Fl1]. However we strongly believe that to materialize such a proof one will
still need to assume that nodes are immersed as we do in the present paper.
Such a requirement has not been addressed in the proposed PSS scheme
in [PSS] or in any other existing literature related to it. We refer to the next
subsection for more discussion on the nontriviality of this gluing theorem
involved in the PSS scheme. See also Remark 5.2.

In this paper, we take the PSS framework as a test case to apply our
scale-dependent gluing scheme thereto because the PSS picture appears as
the simplest case for an adiabatic degeneration yet manifests the general
technique. Our gluing scheme can also be applied to other context such as
in the story told in [Oh1] where the adiabatic degeneration of holomor-
phic polygons under the total collapse of k Lagrangian graphs Graph dfi,
i = 1, . . . , k in a Darboux neighborhood of a given Lagrangian submanifold
L ⊂ M was outlined which involves configurations of holomorphic curves
joined by gradient trajectories of k different Morse functions in a general
symplectic manifold (M,ω). In this general case there are non-constant holo-
morphic spheres or discs around unlike the case of cotangent bundle studied
in [FOh]. This is a subject of future study [OZ2].

1.2. Nodal Floer trajectories with immersed nodes. Temporarily we
denote byMε the general moduli space parameterized by ε for −ε0 ≤ ε ≤ ε0
with some phase change at ε = 0. We will focus on the one that appears
in the above mentioned PSS scheme but the same story can be applied to
more general setting. In relation to the scheme of proof of the isomorphism
property of the PSS map, for example, one would like to prove a certain
parameterized moduli space

Mpara :=
⋃

−ε0≤ε≤ε0

Mε → [−ε0, ε0]

defines a piecewise smooth compact cobordism between M−ε0 and Mε0 :
there occurs a ‘phase change’ at ε = 0. Due to the ‘phase change’ at ε = 0,
one needs to prove a bi-collar theorem of M0 ⊂ Mpara to materialize the
PSS-scheme. From −ε0 to 0, one can construct the left one-sided collar by
finite dimensional differential topology (see Section 9). On the other hand,
for the right one-sided collar over [0, ε0], [PSS] attempts to produce the
collar by a ‘standard gluing method’ of ‘some’ perturbed Cauchy Riemann
equation. More specifically, [PSS] attempts to produce a diffeomorphism

⋃

0≤ε≤ε0

Mε
∼=M0 × [0, ε0]
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for a sufficiently small ε0 > 0. However the details of this gluing theorem
are given neither in [PSS, Lu] nor in the recent book [MS]. As far as the
authors understand, construction of this diffeomorphism is not as standard
as [PSS,MS] indicated.

The main result of the present paper is to construct this one-sided col-
lar, at ε = 0 (not at ∞), by producing a one-parameter family of Floer
trajectories out of the nodal Floer trajectories (out of M0) by the adia-
batic degeneration [Oh5,Oh3,MT] and a scale-dependent gluing method.
We would like to emphasize that due to the phase change at ε = 0 the
standard gluing theorem of parameterized moduli space over ε cannot be
applied either here.

If we only consider the usual stable map convergence a ε→ 0, we only see
the standard nodal Floer trajectories as a degenerate limit when we ignore
bubbling-off-spheres. But to recover the nearby resolved Floer trajectories
for ε > 0 and construct the above mentioned one-sided collar, we need
extra one-jet data that is lost into the node during the standard stable
map convergence. For this purpose, it is essential to assume that nodal
points are immersed. For the purpose of completing the proof of isomorphism
property of the PSS map, consideration of such nodal Floer trajectories will
be sufficient.

Let [z±, w±] be periodic orbits with caps ofH±, respectively. We denote by

Mnodal
stand([z−, w−], [z+, w+]; (K,J))

the set of nodal Floer trajecotories in class B ∈ π2(z−, z+) that satisfies

[w−]#B#[w+] = 0.

Here π2(z−, z+) is the set of homotopy class of maps w : [0, 1]×S1 →M sat-
isfying w(0, t) = z−(t), w(1, t) = z+(t). Note that the gluing u− #u+ canon-
ically assigns a class in π2(z−, z+). A general index theorem [SZ] says that
the virtual dimension of the moduli spaceMnodal

stand([z−, w−], [z+, w+]; (K,J))
is given by

μH−([z−, w−])− μH+([z+, w+])

where μH([z, w]) is the Conley–Zehnder index [CZ] of the periodic orbit
z with cap w associated to the Hamiltonian H. The sign conventions of
[CZ,SZ] are different from those used in the present paper one way or the
other. We refer to Appendix of [Oh4] for a discussion of the index formula
in the convention used in the present paper.

The following theorem enable us to consider only the nodal Floer trajec-
tories with immersed node for the purpose of proving isomorphism property
of the PSS map.
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Theorem 1.2. Let (K±, J±) be a Floer datum with the asymptotic Hamil-
tonian H±. Suppose that

μH−([z−, w−])− μH+([z+, w+]) < 2n− 1.

Then there exists a dense subset of Jω consisting of J ’s such that for any
quadruple

(u−, u+, r−, r+) ∈Mnodal
stand([z−, w−], [z+, w+]; (K,J))

with u−(r−) = u+(r+), r− and r+ are immersed points of u− and u+ respec-
tively, and

[du−(r−)] �= [du+(r+)] in P(TxM)
with x = u−(r−) = u+(r+). The same holds for a one parameter family of
such (K±, J±).

In particular, these hold when μ([z−, w−])− μ([z+, w+]) = 0, or −1.

1.3. Related works and organization of the content. Our gluing the-
orem involves two moduli spaces in different scales. This kind of gluing the-
orem first appeared in [FOh] in symplectic geometry, in which Fukaya and
Oh glued holomorphic discs with boundary punctures at the intersections
of several gradient trajectories of different Morse functions after they are
shrunk with a prescribed scale depending on the degeneration parameter ε.
Another scale-dependent gluing theorem has been also used in [FOOO2] in
relation to the Lagrangian surgery and metamorphosis of holomorphic poly-
gons. Furthermore the kind of analysis that has been used for the analysis of
proper pseudo-holomorphic curves in symplectic manifolds with cylindrical
ends [Ho,HWZ1,HWZ2,HWZ4] also plays a crucial role in our analysis.
This analysis is further complicated by the fact that we have to work out
the relevant estimates in the setting of asymptotically cylindrical ends on
incomplete manifolds, especially in the proof of surjectivity of the gluing.

Finally it would be worthwhile to mention that the analysis given in the
present paper is a first step towards a full understanding of the conjectural
picture described in [Oh1], which would require this type of scale-dependent
gluing theorem of pseudo-holomorphic curves under the background Morse
function, or twisted by the Hamiltonian flow of a Morse function. Based on
the argument of adiabatic degeneration, the senior author indicated that
‘homology’ of the quantum chain complex will be isomorphic to that of the
Floer complex, if they defined. Study of some related collapsing degener-
ations has been carried out by the senior author in [Oh5, Oh3] and by
Mundet i Rierra and Tian [MT].

We would like to mention one potential application of our gluing scheme.
In [FOOO2], scale-dependent gluing was used to compare the moduli
space of J -holomorphic triangles ending on 3 Lagrangian submanifolds
(L0, L1, L2) and the moduli space of J -holomorphic 2-gons ending on
two Lagrangian submanifolds (L0, L1#λL2), where L1#λL2 is obtained by
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Lagrangian surgery from L1 and L2. Similar to the Lagrangian surgery to
smooth the singular Lagrangian submanifolds L1∪L2 to L1#λL2, we expect
our scale-dependent gluing can be used to understand J -holomorphic curves
in singular target spaces, or its change when the target manifold undergoes
some surgery.

A brief summary of each part of the paper is in order. In Part I, we
set up a new geometric framework which addresses an enhancement of the
description of standard nodal Floer trajectories. In this enhancement, it is
essential to assume that the nodes of nodal Floer trajectories are immersed
and to insert suitable local models at the nodes in one-jet level, so we prove
Theorem 1.2 (Theorem 5.1).

In Part II, we carry out a scale-dependent gluing analysis to glue two
outer pseudo-holomorphic curves and the local model in different scale
which is somewhat reminiscent of the ones in [FOh,FOOO2]. In this scale-
dependent analysis, the immersion property of nodal points and a proper
choice of scales of neck-stretching relative to the adiabatic parameter is
essential.

In Part III, we combine these with the standard deformation-cobordism
argument to explain how our gluing theorem can be used to give a proof of
the isomorphism property of the PSS map.

2. Review of the classical Floer’s equation

Throughout this paper, (M,ω) is a compact symplectic manifold. We will
always identify S1 with R/Z, which in particular has the canonical mark-
ing 0 (mod 1) ∈ S1. Denote by S = R × S1 the infinite cylinder with the
unique complex structure, denoted by j. We denote by (τ, t) be the associ-
ated cylindrical coordinates such that

τ + it, τ ∈ R, t ∈ S1 = R/Z

provides the standard complex coordinates on S identified with the quotient
space S = C/iZ which lifts to the standard coordinates z = e2π(τ+it) on C.

Let J = J(τ, t) be a two-parameter family of almost complex structures
compatible with ω for (τ, t) ∈ R× S1 satisfying the asymptotic condition

(2.1) J(τ, t) ≡ J(±∞, t), for τ ≥ R+ and τ ≤ −R−

for some R± ≥ 0. Denote the set of all such J by J = Jω, and by J cyl
ω the

set of such J ’s independent of τ .
Next, we consider two parameter family of smooth functions onM param-

eterized by (τ, t) ∈ R× S1

H = H(τ, t, x)

such that H(τ, t, x) ≡ H±(t, x) for τ ≥ R+ or τ ≤ R−. We call H cylindrical
if H is independent of τ . For each given cylindrical H, we consider the
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Hamilton equation
ẋ = XH(t, x), t ∈ S1,

where XH is the Hamiltonian vector field of H, and denote by PerH the set
of one-periodic solutions z(t), i.e., those satisfying z(0) = z(1). We note
that z(t) can be written as z(t) = φt

H(x) for some x ∈ M , where φt
H is the

Hamiltonian flow for H at time t. Then z(t) is periodic if and only if x is a
fixed point of the time-one map φ1

H of XH.
For each given periodic orbits z±(t) at τ = ±∞ of H±, respectively, the

Floer’s perturbed Cauchy Riemann equation associated to the pair (H, J)
has the form

(2.2)

⎧
⎨

⎩

∂u

∂τ
+ J

(
∂u

∂t
−XH(u)

)

= 0,

u(−∞, t) = z−(t), u(∞, t) = z+(t)

for a map u : R× S1 →M . We call this equation Floer’s perturbed Cauchy-
Riemann equation or simply as the perturbed Cauchy-Riemann equation
(associated to the pair (H, J)). This equation may be regarded as the neg-
ative gradient flow equation of an action functional defined on the Novikov
covering space. The Floer theory largely relies on the study of the moduli
spaces of finite energy solutions u : R × S1 → M of the kind (14.5). The
relevant energy function is given by

Definition 2.1. For a given smooth map u : R × S1 → M , we define the
energy, denoted by E(H,J)(u), of u by

E(H,J)(u) =
1
2

∫ (∣
∣
∣
∣
∂u

∂τ

∣
∣
∣
∣

2

Jt

+
∣
∣
∣
∣
∂u

∂t
−XH(u)

∣
∣
∣
∣

2

Jt

)

dt dτ.

Equation (14.5) has translational symmetry for the cylindrical pair (H, J)
and counting the isolated trajectories of such pair defines the Floer bound-
ary map, and counting isolated trajectories of generic (noncylindrical) pair
defines the Floer chain map. This finishes the summary of Floer’s original
setup of the Floer homology.

When one considers the product structure on the Floer homology, one
needs to consider general Riemann surfaces, Σ̇ of genus zero with punctures.
We denote by Σ a closed Riemann surface, possibly with nonempty bound-
ary ∂Σ, and Σ̇ the corresponding punctured Riemann surface with a finite
number of marked points in Int Σ.

3. Invariant setup of the Floer equation

In this section, we will formulate the setup for the general Floer’s perturbed
Cauchy–Riemann equation on compact Riemann surface with a finite num-
ber of punctures. This requires a coordinate-free framework of the equation.
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3.1. Punctures with analytic coordinates. We start with the descrip-
tion of positive and negative punctures. Let Σ be a compact Riemann surface
with a marked point p ∈ Σ. Consider the corresponding punctured Riemann
surface Σ̇ with an analytic coordinates z : D → C on a neighborhood D ⊂ Σ̇.
By composing z with a linear translation of C, we may assume z(p) = 0.

We know that D \ {p} is conformally isomorphic to both [0,∞)× S1 and
(−∞, 0]× S1.

(1) We say that the pair (p; (D, z)) has a incoming cylindrical end (with
analytic chart) if D = z−1(D2(1)) and the chart induces the biholo-
morphism

(τ, t) ∈ (−∞, 0]× S1 
→ e2π(τ+it) ∈ D2(1) \ {0} 
→ z−1 ∈ D \ {p}.
We call the corresponding puncture p ∈ Σ a positive puncture.

(2) We say that the pair (p; (D, z)) has a outgoing cylindrical end (with
analytic chart) if D = z−1(D2(1)) and the chart z induces the biholo-
morphism

(τ, t) ∈ [0,∞)× S1 
→ e−2π(τ+it) ∈ D2(1) \ {0} 
→ z−1 ∈ D \ {p}.
In this case, we call the corresponding puncture (p; (D, z)) a negative
puncture (with analytic chart).

3.2. Hamiltonian perturbations. Now we describe the Hamiltonian per-
turbations in a coordinate free fashion. Such a description was given, for
example, by Seidel in [Se2,Se3,MS].

Let Σ be a compact Riemann surface and Σ̇ denote Σ with a finite number
of punctures and analytic coordinates. We denote by J0,ω the set of almost
complex structures that are cylindrical near the puncture with respect to
the given analytic charts z = e±(2π(τ+it). Define JΣ or JΣ̇ to be the set of
maps J : Σ, Σ̇→ J0,ω, respectively.

We recall that the standard ∂-operator

∂J : u 
→ ∂Ju :=
du+ J ◦ du ◦ j

2
defines a section of the vector bundle

Ω(0,1)
J (Σ,M)→ C∞(Σ,M),

where the fiber thereof at u is given by the vector space

Ω(0,1)
J (u∗TM) := C∞(Λ(0,1)

J (u∗TM)),

where Λ(0,1)
J (u∗TM) is the set of anti-J-linear maps from (TΣ, j)→ (TM, J)

lifting u, or in other words, u∗TM -valued (0, 1)-forms on Σ. Recall we have
the decomposition

Ω1(u∗TM) = Ω(1,0)
J (u∗TM)⊕ Ω(0,1)

J (u∗TM).
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In the cylindrical coordinates (τ, t), the map

∂

∂τ
�(·) : Ω(0,1)

J (u∗TM)→ Ω0(u∗TM) = C∞(u∗TM)

defines a local isomorphism and the expression ∂u
∂τ +J ∂u

∂t in the Floer equation
is nothing but

2∂Ju

(
∂

∂τ

)

.

We want to regard the perturbation term −JXH(u) in a similar way. It
will be the value of the (0, 1)-part of some one-form PΣ̇(u) ∈ Ω1(u∗TM).
Furthermore, the term involves a Hamiltonian vector field, not a general
vector field. We recall the exact sequence

0→ R→ C∞(M)→ ham(M,ω)→ 0,

where ham(M,ω) is the set of Hamiltonian vector fields on (M,ω) and we
assume that M is compact and connected. This sequence canonically splits:
we have the integration map

∫

M
: C∞(M)→ R ; h 
→

∫

M
h dμ.

Therefore, this induces a natural exact sequence

0→ Ω1(Σ,R)→ Ω1(Σ, C∞(M))→ Ω1(Σ,ham(M,ω))→ 0.

If we restrict the Hamiltonians to the mean-normalized ones, i.e., those in
the kernel of the above integral map, we have the isomorphism

Ω1(Σ, C∞
m (M)) ∼= Ω1(Σ,ham(M,ω)).

We denote C∞
m (M) = ker

∫

M .
Now let K ∈ Ω1(Σ, C∞(M)) and denote by PK the corresponding one-

form of Ω1(Σ,ham(M,ω)). Then for each choice of ξ ∈ C∞(TΣ), K(ξ) gives
a function on M and so a Hamiltonian vector field PK(ξ) = XK(ξ) on M . In
cylindrical coordinate (τ, t), we want K to satisfy

−2(PK)(0,1)(u)
(
∂

∂τ

)

= −JXH(u).

It is easy to check that one such choice of K will be

(3.1) K(τ, t) = H(t) dt

on the cylindrical ends for an arbitrary choice of H.

Definition 3.1. We call K ∈ Ω1(Σ, C∞(M)) cylindrical at the puncture
p ∈ Σ with analytic chart (D, z), if it has the form

K(τ, t) = H(t) dt

in D \ {p}. We denote by KΣ̇ the set of such K’s.
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One important quantity associated to the one-form K is a two-form,
denoted by RK , and defined by

(3.2) RK(ξ1, ξ2) = ξ1[K(ξ2)]− ξ2[K(ξ1)]− {K(ξ2),K(ξ1)}
for two vector fields ξ1, ξ2, where ξ1[(K(ξ2)] denotes directional derivative
of the function K(ξ2)(z, x) with respect to the vector field ξ1 as a function
on Σ, holding the variable x ∈M fixed. It follows from the expression that
RK is tensorial on Σ.

Remark 3.1. This quantity has the interpretation as the curvature of a
symplectic vector bundle over Σ in the following way [Ba,Se1]. We regard
the product E = Σ×(M,ω) as a bundle of symplectic manifold whose struc-
ture group is Symp0(M,ω), the identity component of Symp(M,ω). Each
one-form K defines a horizontal subspace of T(p,x)E given by the subspace

DK(p, x) := {(ξ,XK(ξ)(x)) | ξ ∈ TpΣ, x ∈M}
and so can be regarded as an Ehresmann connection of TE → Σ. Then
RK is the corresponding curvature of this connection K. Note that the
distribution DK ⊂ TE is integrable if and only if RK = 0 and also equivalent
to saying that locally PK can be integrated as the two-parameter family of
Hamiltonian isotopies

Λ : (s, t) 
→ φ(s, t) ∈ Ham(M,ω),

where Ham(M,ω) is the Hamiltonian diffeomorphism group on M . This
last statement was essentially proved by Banyaga [Ba]. Motivated by this
observation, we will call RK as the curvature of the connection K.
3.3. Floer moduli spaces. Now we are ready to give the definition of the
moduli space of perturbed Cauchy–Riemann equation in a coordinate-free
form. The Hamiltonian-perturbed Cauchy–Riemann equation has the form

(3.3) (du+ PK(u))(0,1)
J = 0 or equivalently ∂J(u) + (PK)(0,1)

J (u) = 0

on Σ in general. Following Seidel [Se3], we call a pair (K,J) ∈ KΣ̇ × JΣ̇ a
Floer datum.

For each given such pair (K,J), it defines a perturbed Cauchy–Riemann
operator by

∂(K,J)u := ∂Ju+ PK(u)(0,1)
J = (du+ PK(u))(0,1)

J .

Let (p, q) be a given set of positive punctures p = {p1, . . . , pk} and with
negative punctures q = {q1, . . . , q	} on Σ. For each given Floer datum (K,J)
and a collection �z = {z∗}∗∈p∪q of asymptotic periodic orbits z∗ attached to
the punctures ∗ = pi or ∗ = qj , we consider the perturbed Cauchy–Riemann
equation

(3.4)

{
∂(K,J)(u) = 0,
u(∞∗, t) = z∗(t).
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One more ingredient we need to give the definition of the Hamiltonian-
perturbed moduli space is the choice of an appropriate energy of the map u.
For this purpose, we fix a metric hΣ, which is compatible with the structure
of the Riemann surface and which has the cylindrical ends with respect to
the given cylindrical coordinates near the punctures, i.e., hΣ has the form

(3.5) hΣ = dτ2 + dt2

on D∗ \ {∗}. We denote by dAΣ the corresponding area element on Σ.
Here is the relevant energy function

Definition 3.2 (Energy). For a given asymptotically cylindrical pair
(K,J), we define

E(K,J)(u) =
1
2

∫

Σ
|du− PK(u)|2J dAΣ,

where | · |J(σ,u(σ)) is the norm of Λ(0,1)(u∗TM)→ Σ induced by the metrics
hΣ and gJ := ω(·, J ·).

Note that this energy depends only on the conformal class of hΣ, i.e.,
depends only on the complex structure j of Σ and restricts to the standard
energy for the usual Floer trajectory moduli space given by

E(H,J) =
1
2

∫

C∗

(∣
∣
∣
∣
∂u

∂τ

∣
∣
∣
∣

2

J

+
∣
∣
∣
∣
∂u

∂t
−XH(u)

∣
∣
∣
∣

2

J

)

dt dτ,

in the cylindrical coordinates (τ, t) on the cylinder C∗ corresponding to
the puncture ∗. E(K,J)(u) can be bounded by a more topological quantity
depending only on the asymptotic orbits, or more precisely their liftings to
the universal covering space of L0(M), where the latter is the contractible
loop space of M . As usual, we denote such a lifting of a periodic orbit z by
[z, w] where w : D2 →M is a disc bounding the loop z.

We recall the definition of the standard action functional AH : L̃0(M)→
R on the Novikov covering space [HS] given by

AH([γ,w]) = −
∫

w∗ω −
∫ 1

0
H(t, γ(t)) dt.

The following lemma can be derived by a straightforward computation. See
[Sc2,Oh3,Se2] for related calculations.

Lemma 3.1. Assume (K,J) is asymptotically cylindrical. Let {[z∗, w∗]}∗∈p∪q

be a given collection of asymptotic periodic orbits and let u have finite energy.
Then we have the identity

(3.6) E(K,J)(u) =
k∑

i=1

AHpi
([z+

i , w
+
i ])−

	∑

j=1

AHqj
([z−j , w

−
j ]) +

∫

Σ
RK(u),

where RK ∈ Ω2(Σ, C∞(M)) is the curvature two-form of the one-form K.
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Here, we remark that the last curvature integral converges as RK(u) will
have compact support by the hypothesis that K is cylindrical near the ends
of Σ̇.

We also consider the real blow-up of Σ̇ ⊂ Σ at the punctures and denote
it by Σ which is a compact Riemann surface with boundary

∂Σ =
∐

∗∈p∪q

S1
∗ ,

where S1∗ is the exceptional circle over the point ∗. We note that since there
is given a preferred coordinates near the point ∗, each circle S1∗ has the
canonical identification

θ∗ : S1
∗ → R/Z = [0, 1] mod 1.

We note that for a given asymptotic orbits �z, one can define the space of
maps u : Σ̇ → M which can be extended to Σ such that u ◦ θ∗ = z∗(t) for
∗ ∈ p∪ q. Each such map defines a natural homotopy class B relative to the
boundary. We denote the corresponding set of homotopy classes by π2(�z).
When we are given the additional data of bounding discs w∗ for each z∗,
then we can form a natural homology (in fact a homotopy class), denoted
by B#

(∐
∗∈p∪q[w∗]

)
∈ H2(M), by ‘capping-off’ the boundary components

of B using the discs w∗, respectively.

Definition 3.3. Let {[z∗, w∗]}∗∈p∪q be given. We say B ∈ π(�z) is admissible
if it satisfies

(3.7) B#

(
∐

∗∈p∪q

[w∗]

)

= 0 in H2(M,Z),

where

# : π2(�z)×
∏

∗∈p∪q

π2(z∗)→ H2(M,Z)

is the natural gluing operation of the homotopy class from π2(�z) and those
from π2(z∗) for ∗ ∈ p ∪ q. Now we are ready to give the definition of the
Floer moduli spaces.

Definition 3.4. Let (K,J) be a Floer datum over Σ with punctures p, q,
and let {[z∗, w∗]}∗∈p∪q be the given asymptotic orbits. Let B ∈ π2(�z) be a
homotopy class admissible to {[z∗, w∗]}∗∈p∪q. We define the moduli space

(3.8) M(K,J ; {[z∗, w∗]}∗)
to be the set of u : Σ̇→M that satisfies (3.4) and [u]#(

∐
∗∈p∪q[w∗]) = 0.
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We note that the moduli space M(K,J ; {[z∗, w∗]}∗) is a finite union of
the moduli spaces

M(K,J ; �z;B); B#

(
∐

∗∈p∪q

[w∗]

)

= 0 : .

It follows from the energy estimate (3.6) and Gromov compactness that
there are only finitely many elements B ∈ π2(�z) admissible to the given
collection {[z∗, w∗]}∗∈p∪q.

4. Formulation of the PSS maps

In this section, we will give a precise formulation of the so called PSS-map
introduced in [PSS].

Let f : M → R be a back-ground Morse function on M and H = H(t, x)
and J = J(t, x). The goal of the PSS-map is to establish an isomorphism
between the Morse homology of f and the Floer homology of (H, J).

One of the moduli spaces entering in the construction of the PSS-map is
the space of solutions of (3.4) with one puncture, which can be either positive
or negative, and with one marked point playing the role of the origin of Σ̇.

4.1. The smooth moduli space M(s0;s+,s−)(K, J ; B). We consider the
triple

p = {p1, . . . , ps+}, q = {q1, . . . , qs−}, r = {r1, . . . , rs0}
of positive and negative punctures, with analytic charts assigned, and
marked points respectively. We assume they are all distinct points. We
denote by

M̃(s0;s+,s−)

the set of all such triples and byM(s0;s+,s−) the quotient space by the action
of automorphisms of the punctured Riemann surface with marked points.
We call a triple (r; p, q) stable if it has a finite automorphism group. The
space M(s0;s+,s−) is non-empty as long as s0 + s+ + s− ≥ 3.

Next we define M(s0;s+,s−)(K,J ; �z;B) in an obvious way,

(4.1) M(s0;s+,s−)(K,J ; �z;B) = {(u; r; p, q) | u, satisfies (3.4) [u] = B},
where B is a given homotopy class of maps u satisfying the asymptotic
conditions at the punctures. Here �z = {z∗}∗∈p∪q is a given set of asymptotic
periodic orbits. To avoid having continuous automorphisms, we will always
assume that the asymptotic Hamiltonian H at the puncture is not time-
independent when we consider the moduli space corresponding to

(s0; s+, s−) = (1; 1, 0) or (1; 0, 1).
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We will not need to consider the case where r = 0, s+ + s− = 1. This
assumption rules out the possibility of a circle symmetry for the asymptotic
solutions at infinity.

In addition, we will also assume that K and J satisfy

K ≡ 0,(4.2)

J ≡ J0, near the marked point r ∈ Σ̇,(4.3)

respectively, where J0 is a (time-independent) compatible almost complex
structure of (M,ω). We assume J0 is generic.

This assumption together with the condition on the asymptotic Hamil-
tonian being nondegenerate makes such K prevent from having continuous
symmetry and so a genuinely two-dimensional family over Σ̇. In particular,
any solution in these moduli space has automatically a finite automorphism
group which can be trivial. The following can be derived by a standard
argument.

Proposition 4.1. Let J0 be a given compatible almost complex structure
on (M,ω). Suppose that all the asymptotic pairs (H∗, J∗) are Floer-regular
in that H∗ are non-degenerate in the sense of Lefshetz fixed point theory,
and in that the corresponding Floer moduli space is transverse. Then there
exists a generic choice of such (K,J) ∈ KΣ̇×JΣ̇ such that the moduli space
M(s0;s+,s−)((K,J); �z;B) become transverse. Furthermore, the dimension of
the moduli space is given by

dimM(s0;s+,s−)(K,J ; �z;B) =
∑

μH+∗ ([z+
∗ , w

+
∗ ])−

∑
μH−∗ ([z−∗ , w

−
∗ ])

+ 2s0 + n(s+ − s−),

where [z∗, w∗] are the liftings of the asymptotic orbits with B satisfying (3.7).

From now on in the rest of the paper, we will exclusively concern Σ of
genus zero.

4.2. The PSS maps Φ and Ψ. In this subsection, we recall the definitions
of the two PSS maps Φ and Ψ from [PSS] except that we follow different
grading conventions using the ones from [Oh2] for the various grading issues
(Figure 1). And we also use Morse cycles of −f , instead of f , to represent
the homology of M : In particular, the grading of Morse cycles is given by

Index(−f)(p) = 2n− Indexf (p).

The issue of grading is not essential for the proof and so can be largely
ignored. We just put this here for the consistency with the papers by the
senior author [Oh2]–[Oh4].

Let Σ̇+ be the Riemann sphere with one marked point o+ and one positive
puncture e+. We identify Σ̇+ \ {o+} ∼= R × S1 and denote by (τ, t) the
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Figure 1. The PSS maps Ψ and Φ.

corresponding coordinates so that {+∞} × S1 correspond to e+. We note
that the coordinates (τ, t) is defined modulo the the action of R× S1 ∼= C

∗

(τ, t) 
→ (τ + a, t+ b).

We consider the one form K+ ∈ Ω1(Σ̇,ham(M,ω)) such that in the above
mentioned coordinates K+ as a one-form in Ω1(Σ̇,ham(M,ω)) can be
written as

(4.4)

{
K+ = 0, near o+,
K+ = H+(t, x) dt, near e+,

where H+ : S1 × M → R is a t-dependent Hamiltonian function. By
the remark on the coordinate (τ, t) made above, the phrases “near e+” or
“near o+” put on the above definition of K+ does not depend on the choice
of coordinates and has well-defined meaning.

Let L0(M) be the contractible free loop space of M and L0(M) the
Novikov covering space L̃0(M). Let z+ = z+(t) (t ∈ S1) be a nondegen-
erate periodic orbit of H+(t, x) We denote by [z+, w+] a lifting of z+ to
L̃0(M) and denote

P̃ er(H+) = {[z+, w+] | ż+ = XH+(z+)}.
We note that P̃ er(H+) is precisely the set of critical points of the action
functional AH : L̃0(M) → R. Using the bounding disc w+ : D2 → M , we
trivialize the symplectic bundle z∗+(TM) and get a loop in Sp(2n), which
gives rise to the Conley–Zehnder index μH+([z+, w+]) ∈ Z.

Now we consider the moduli space

M(K+, J+; [z+, w+];A+) = {u : Σ̇→M | ∂(K+,J+)u = 0,

u(+∞, t) = z+(t), [u#w+] = A+},
where A+ ∈ H2(M,Z) is in the image of the Hurwitz map π2(M) → H2

(M,Z).
For generic J+ or K+, the moduli space is regular and its dimension is

equal to

Index Du∂(K+,J+) = n− μH+([z+, w+]) + 2c1(A+).
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Here we follow the conventions from [Oh2] (See section 6.2 [Oh2]). Similarly
for u in the moduli space

M(K−, J−; [z−, w−];A−) = {u : Σ̇→M | ∂(K−,J−)u = 0,

u(−∞, t) = z−(t), [w−#u] = A−},
where A− is similar to A+.

Index Du∂(K−,J−) = n+ μH−([z−, w−]) + 2c1(A−).

Recall that the quantum homology QH∗(M) = H∗(M) ⊗ Λω, where Λω is
the Novikov ring defined as

Λω =

{
∑

A∈Γ

rAq
−A

∣
∣
∣
∣rA ∈ Q, such that for all λ ∈ R,(4.5)

#{A ∈ Γ | rA �= 0, ω(A) > λ} <∞
}

.

Here Γ ⊂ H2(M) is the image of π2(M) under the Hurewicz homomorphism,
and q is a formal variable. If we use the Morse homology of −f to represent
H∗(M), then we can represent QH∗(M) as the homology of C∗(−f) ⊗ Λω,
where C∗(−f) is the chain complex of the Morse homology of −f generated
by the critical points of f . The grading of [p]q−A is μ(−f)(p)−2c1(A), where
[p] ∈ C∗(−f), and μ(−f)(p) is the Morse index of f at p.

We are going to define the PSS map

Φ∗ : QHk(M)→ FHn−k(M).

Following [PSS], we first define the chain level map Φ : C∗(−f) ⊗ Λω →
CF∗(M) by defining it on the generators [p] of C∗(−f) and then linearly
extending over ring Λω as

Φ : [p]→
∑

[z+,w+]∈P̃ er(H+)

#(M(p, [z+, w+];A+)[z+, w+]q−A+ .

Here, roughly speaking, the moduli space M(p, [z+, w+];A+) consists of
“spike discs” emerging from the critical point p and ending on the periodic
orbit z+ in class [u#w+] = A+ in Γ. More precisely, we have the definition

M(p, [z+, w+];A+) = {(χ+, u+) | u+ : Σ̇+ →M, [u+#w+] = A+,

u(+∞, t) = z+(t), ∂(K+,J+)u+ = 0,

χ̇+ = ∇f(χ+), χ+(−∞) = p, χ+(0) = u+(o+)}.
Here we put index condition such that M(p, [z+, w+];A+) is a zero-
dimensional oriented manifold so we can do algebraic count “#”. The index
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condition is

(n− μ([z+, w+] + 2c1(A+)) + (2n− μ(p))− 2n = 0,

i.e. μ([z+, w+]) = n− (μ(p)− 2c1(A+)).

Standard gluing argument shows that φ is a chain map (similar to the con-
tinuation map that proves Morse homology is independent on the Morse
function), so it passes to homology and we get the PSS map Φ∗ : QHk(M)→
HFn−k(M).

Next we define the inverse of Φ

Ψ∗ : HF∗(M)→ QH∗(M).

For any [z−, w−] ∈ P̃ er(K−), define ψ : CF∗(M)→ C∗(−f)⊗ Λω,

Ψ : [z−, w−]→
∑

p∈Crit(−f);A−∈π2(M)

#M([z−, w−], p;A−)p⊗ q−A− ,

whereM([z−, w−], p;A−) consists of “spiked-discs” emerging from the peri-
odic orbit z− and ending on the critical point p, namely

M([z−, w−], p;A−) = {(u−, χ−) | u− : Σ̇− →M, [w−#u−] = A−,

u(−∞, t) = z−(t), ∂(K−,J−)u− = 0,

χ̇− = ∇f(χ−), χ−(+∞) = p, χ−(0) = u−(o−)}.
Here we also put the index condition

μH−([z−, w−]) = n− (μ(−f)(p)− 2c1(A−)),

so M([z−, w−], p;A−) becomes a zero-dimensional (orientable) manifold.
The same continuation map argument shows Ψ is a chain map so it induce
the homomorphism Ψ∗ : HFn−k(M)→ QHk(M).

4.3. The PSS-scheme of proof of the isomorphism property Φ∗. In
this section, we sketch the argument of Piunikhin–Salamon–Schwarz towards
a proof of isomorphism property of the PSS-maps based on some picture,
which describes a deformation leading to the chain isomorphism between
the composition

Ψ ◦ Φ, id : CF ∗(M)→ CF ∗(M)
and the identity map. The deformation involves the moduli spaces of three
different types in the course of deformations (see Figure 2):

(1) disk-flow-disk,
(2) nodal Floer trajectories,
(3) chain map Floer trajectories.
For the sake of following discussion, we denote the deformation param-

eter by λ ∈ [−1, 1], so that the nodal configuration occurs at λ = 0. As
long as λ > 0 or λ < 0, the deformation involves the same type of moduli
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Figure 2. The PSS scheme.

spaces and so can be applied the standard argument to construct a cor-
bodism over [−1,−ε0] or [ε0, 1] for ε > 0. To complete the cobordism over
the whole interval [−1, 1], one needs to connect the two cobordisms to one
over [−ε0, ε0]. However, there occurs “phase change” in the moduli spaces
over the interval [−ε0, ε0] at λ = 0. Due to the “phase change” at λ = 0,
one can a priori expect only a piecewise smooth corbodism and needs to
prove a bi-collar theorem of M0 ⊂ Mpara to materialize the PSS-scheme.
From −ε0 to 0, one can construct the left one-sided collar by finite dimen-
sional differential topology (See Section 9). For the right one-sided collar
over [0, ε0], we will construct the collar by the method of adiabatic degener-
ation [Oh5,Oh3,MT] and scale-dependent gluing of immersed nodal Floer
trajectories developed in the present paper

This then implies the following isomorphism property as stated in [PSS].
We refer to Part III in the present paper for the details of proof of this iso-
morphism property based on this bi-collar neighborhood theorem and the
adiabatic degeneration result. This final step largely reproduces the argu-
ment used in [PSS].

Theorem 4.1. Let (f ; g) be a generic Morse–Smale pair of a Morse function
f and a metric g on M and HMorse(f ; g) the Morse homology of (f ; g) and
(H, J) be a generic time-periodic Hamiltonian function H and a family of
compatible almost complex structure J = {Jt} on M . Let Ψ, Φ be the PSS
maps given in [PSS]. Then there exists a homomorphism

hpss : CF ∗(H, J)→ CF ∗+1(H, J)
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that satisfy

(4.6) Ψ ◦ Φ− id = ∂(H,J) ◦ hpss − hpss ◦ ∂(f,g).

In particular, we have Ψ∗ ◦ Φ∗ = id in homology.

This shows Ψ∗ ◦ Φ∗ = id. The other identity Φ∗ ◦Ψ∗ = id is much easier
to prove. Details of the proof are given in Section 15.

Remark 4.1. The adiabatic degeneration of the moduli space of solutions
of the Floer trajectory equation with a Morse function εf in the middle
does not produces just nodal Floer trajectories as used in the PSS-scheme
but produces the nodal Floer trajectories with some one-jet datum which
reflects the back ground Morse function f . This datum enters in our scale-
dependent gluing which is the correct reversal process of the the adiabatic
degeneration of the moduli space as ε→ 0.

Part I. Geometry: Floer trajectories with
immersed nodes

5. Definition of the deformation-cobordism moduli space

In this section, we will provide the precise mathematical formulation of
the moduli spaces appearing in each stage of the deformation-cobordism
described in Subsection 4.3 which was proposed by Piunikhin–Salamon–
Schwarz [PSS,MS].

5.1. Moduli space of “disk-flow-disk” configurations. This subsec-
tion is the first stage of the deformation of the parameterized moduli space
entering in the construction of the chain homotopy map between Ψ ◦Φ and
the identity on HF (H, J).

A “disk-flow-disk” configuration consists of two perturbed J -holomorphic
discs joined by a gradient flow line between their marked points. In this
section we will define the moduli space of such configurations.

For notation brevity, we just denote

Mε(K±, J±; [z±, w±], f ;A±) =Mε([z±, w±], f ;A±),

respectively, omitting the Floer datum (K±, J±), as long as it does not cause
confusion.

Given the two moduli spaces M([z−, w−];A−) and M([z+, w+];A+) and
the Morse function f , let the moduli space of “disk-flow-disk” configurations
(u−, χ, u+) of flow time ε to be

Mε([z−, w−]; f ; [z+, w+];A±) := {(u−, χ, u+) | u± ∈M(K±, J±; �z±;A±),
(5.1)

χ : [0, ε]→M, χ̇−∇f(χ) = 0, u−(o−) = χ(0), u+(o+) = χ(ε)}.
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Then the moduli space of “disk-flow-disk” configurations is defined to be

(5.2) Mpara([z−, w−]; f ; [z+, w+];A±) :=
⋃

ε≥0

Mε([z−, w−]; f ; [z+, w+];A±)

Note we have included the ε = 0 case, which corresponds to the nodal Floer
trajectory moduli space.

We now provide the off-shell formulation of the “disk-flow-disk” moduli
spaces. We first provide the Banach manifold hosting the moduli space

Mε([z−, w−]; f ; [z+, w+];A±).

We define

Bdfd
ε (z−, z+) := {(u−, χ, u+) | u± ∈W 1,p(Σ̇,M ; z±),(5.3)

χ ∈W 1,p([0, ε],M), u−(o−) = χ(0), u+(o+) = χ(ε)}
for p > 2. Then for each u = (u−, χ, u+) ∈ Bres

ε (z−, z+), we define

Lp
u(z−, z+) = Lp(Λ(0,1)u∗TM)

and form the Banach bundle

Ldfd
ε =

⋃

u∈Bdfd
ε (z−,z+)

Lp
u(z−, z+)

over Bdfd
ε (z−, z+). Here the superscript “dfd” stands for “disk-flow-disk”. We

refer to [Fl2] for a more detailed description of the asymptotic behavior of
the elements in Bdfd

ε (z−, z+) in the context of Floer moduli spaces.
For u = (u−, χ, u+) ∈ Bdfd

ε (z−, z+), its tangent space TuBdfd
ε consists

of ξ = (ξ−, a, ξ+), where ξ± ∈ W 1,p(u∗±TM), a ∈ W 1,p(χ∗TM), with the
matching condition

(5.4) ξ−(o−) = a(0), ξ+(o+) = a(ε).

We denote the set of such ξ as W 1,p
u (z−, z+).

We let

Bdfd(z−, z+) =
⋃

ε∈(0,ε0)

Bdfd
ε (z−, z+) and Ldfd(z−, z+) =

⋃

ε∈(0,ε0)

Ldfd
ε (z−, z+).

Remark 5.1. If we regard u in Bdfd instead of Bdfd
ε , then its tangent

space consists of ξ = (ξ−, a, ξ+, μ), where ξ± ∈ W 1,p(u∗±TM), a ∈ W 1,p

(χ∗TM), μ ∈ TεR
∼= R, with the matching condition

(5.5) ξ−(o−) = a(0), ξ+(o+) = a(ε) + μ∇f(χ(ε)).

Here the μ comes from the variation of the length ε of the domain of gradient
flows.
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Now we fix ε > 0 and consider a natural section

(5.6) e : Bdfd
ε (z−, z+)→ Ldfd

ε (z−, z+)

such that e(u) ∈ Lp
u(z−, z+) is given by

e(u) = (∂(K−,J−)u−, χ̇−∇f(χ), ∂(K+,J+)u+),

where the u± and χ satisfy the matching condition in (5.3). The linearization
of e at u ∈ e−1(0) =Mε([z−, w−]; f ; [z+, w+];A±) induces a linear operator

(5.7) E(u) := Due : TuBdfd
ε (z−, z+)→ Lp

u(z−, z+),

where we have

TuBdfd
ε (z−, z+) = {(ξ−, ξ+, a) | ξ± ∈W 1,p(u∗±TM), ξ−(o−)

= a(0), ξ+(o+) = a(ε)}
and the value Due(ξ) =: η has the expression

η = (η−, b, η+) =
(

Du−∂(K−,J−)(ξ−),
Da

dτ
−∇agrad(f), Du+∂(K+,J+)(ξ+)

)

for ξ = (ξ−, a, ξ+). For the simplicity of notation, we denote the tangent
space

TuBdfd
ε (z−, z+) ⊂W 1,p(u∗−TM)×W 1,p(χ∗TM)×W 1,p(u∗+TM)

by W 1,p
u (z−, z+; dfd). Now we show E(u) is Fredholm and compute its index.

Denote by Πε
0 the parallel transport along the path χ and Δu(o) the diagonal

subspace in Tu(o)M × Tu(o)M .

Proposition 5.1. The operator E(u) is a Fredholm operator and we have

(5.8) IndexE(u) = μH−([z−, w−])− μH+([z+, w+]) + 2c1(A−) + 2c1(A+).

for any
u = (u−, χ, u+) ∈Mε([z−, w−]; f ; [z+, w+];A±).

Proof. We compute the kernel and the cokernel of

E(u) : W 1,p
u (z−, z+; dfd)→ Lp

u(z−, z+).

By the matching condition (5.5) it is clear that

(5.9) kerE(u) =
{

(ξ−, ξ+, a)
∣
∣
∣
∣ξ± ∈ kerDu±∂(K±,J±),

Da

∂τ
−∇agradf(χ) = 0, ξ−(o−) = a(0), ξ+(o+) = a(ε)

}

.

It is easy to see

(ξ−(o−), ξ+(o+)) = (dφε
f × id)−1(Δu+(o+)),
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for any (ξ−, ξ+, a) ∈ kerE(u) noticing that a is determined by its initial
value a(ε) and by the equation

(5.10)
Da

∂τ
−∇agradf(χ) = 0.

Then we derive

dim kerE(u) = dim kerDu−∂(K−,J−) + dim kerDu+∂(K+,J+)(5.11)

− 2n+ dim Δu−(o−) ∩Graph((Πε
0)

−1 ◦ dφε
f ).

Next we compute the cokernel of E(u). Let E(u)∗ be the adjoint operator
of E(u), such that

E(u)∗ : Lp
u(z−, z+)∗ →W 1,p(z−, z+; dfd)∗.

Using the nondegenerate L2 pairing

Lp(Λ(0,1)u∗TM)× Lq(Λ(1,0)u∗TM)→ R,

we identify Lp
u(z−, z+)∗ with Lq(Λ(1,0)u∗TM). On the other hand, we can

identify W 1,p(z−, z+; dfd)∗ with the space

{(ξ−, a, ξ+) ∈W 1,p(z−, z+) | ξ−(o−) = a(0), ξ+(o+) = a(ε)}⊥

in the direct product

W−1,q(z−, z+) = W−1,q(u∗−TM)×W−1,q(χ∗TM)×W−1,q(u∗+TM),

where (·)⊥ denotes the L2-orthogonal complement. Here we have 1 < q < 2
since 2 < p <∞.

We denote by

E(u)† : Lq(Λ(1,0)u∗TM)→W−1,q(z−, z+; dfd)

the corresponding L2-adjoint with respect to these identifications.
Now we derive the formula for E(u)†. Recall by definition, we have

〈E(u)ξ, η〉 = 〈ξ, E(u)†η〉.
Then for any given η := (η−, b, η+) ∈ kerE†(u) ⊂W−1,q(z−, z+) it satisfies

0 =
∫ ε

0

〈
Da

∂τ
−∇gradf(χ)a, b

〉

+
∫

Σ̇−
〈Du−∂(K−,J−)ξ−, η−〉+

∫

Σ̇+

〈Du+∂(K+,J+)ξ+, η+〉,

for all (ξ+, a, ξ−) ∈ W 1,p
u (z−, z+; dfd), i.e., for all the triples satisfying the

matching condition

(5.12) ξ−(o−) = a(0), ξ+(o+) = a(ε).
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Integrating by parts, we have

0 = 〈a(ε), b(ε)〉 − 〈a(0), b(0)〉+
∫ ε

0

〈

−Db
∂τ
−∇gradf(χ)b, a

〉

(5.13)

−
∫

Σ̇−
〈(Du−∂(K−,J−))

†η−, ξ−〉 −
∫

Σ̇+

〈(Du+∂(K+,J+))
†η+, ξ〉.

Here Du±∂(K±,J±)) is the formal adjoint of Du±∂(K±,J±)) which has its
symbol of that of the Dolbeault operator ∂ (near z = 0 in C) and so elliptic.
Here we note that we are using a metric on Σ± ∼= C that is standard near
the origin and cylindrical near the end.

Substituting (5.12) into this we can rewrite (5.13) into

0 =
∫ ε

0

〈

−Db
∂τ
−∇gradf(χ)b, a

〉

+ 〈ξ+(o+), b(ε)〉 − 〈ξ−(o−), b(0)〉

−
∫

Σ̇−
〈(Du−∂(K−,J−))

†η−, ξ−〉 −
∫

Σ̇+

〈(Du+∂(K+,J+))
†η+, ξ〉.

Note a can be varied arbitrarily on the interior (0, ε) and can be matched to
any given ξ±(o±) at 0, ε. Therefore, considering the variation ξ− = ξ+ = 0,
we derive that b must satisfy

〈

−Db
∂τ
−∇gradf(χ)b, a

〉

= 0

for all a with a(0) = 0 = a(ε). Therefore, b satisfies

(5.14) −Db
∂τ
−∇gradf(χ)b = 0

on [0, ε] first in the distribution sense and then in the classical sense by the
bootstrap regularity of the ODE (5.14) and so it is smooth.

Let

P : Tu−(o−)M → Tu+(o+)M, a(0)→ a(ε),

P † : Tu−(o−)M → Tu+(o+)M, b(0)→ b(ε)

be the linear maps for solutions a, b of ODE (5.10) and (5.14), respectively,
We note that P = dφε

f (u−(o−)). Then for solutions a, b we have

d

dτ
〈a(τ), b(τ)〉 = 〈∇gradf(χ)a(τ), b(τ)〉+ 〈a(τ),−∇gradf(χ)b(τ)〉 = 0,

This in particular implies

(5.15) 〈Pa(0), P †b(0)〉 = 〈a(ε), b(ε)〉 = 〈a(0), b(0)〉.
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Substituting (5.14) into the above we obtain

0 = −〈ξ−(o−), b(0)〉+
∫

Σ̇−
〈(Du−∂(K−,J−))

†η−, ξ−〉

+ 〈ξ+(o+), b(ε))〉+
∫

Σ̇+

〈(Du+∂(K+,J+))
†η+, ξ+〉.

Now we can vary ξ± independently and hence we have

0 = −〈ξ−(o−), b(0)〉 −
∫

Σ̇−
〈(Du−∂(K−,J−))

†η−, ξ−〉,

0 = 〈ξ+(o+), b(ε)〉+
∫

Σ̇+

〈(Du+∂(K+,J+))
†η+, ξ+〉

and hence

(Du−∂(K−,J−))
†η− − b(0)δo− = 0,(5.16)

(Du+∂(K+,J+))
†η+ + b(ε)δo+ = 0.

Here δo denotes the Dirac-delta measure supported at the point {o} ⊂ Σ.
Due to the choice of our metric on the domain C of u±, η± must have
the singularity of the type 1

z̄ which is the fundamental solution to ∂η = �bδo
which lies in Lq for any 1 < q < 2. Therefore, we can solve the distributional
equation

(Du±∂(K±,J±))
†η = �b · δo±

provided that �b satisfies the Fredholm alternative:

〈�b, ξ±(o±)〉 =
∫

Σ̇±
〈�b · δo± , ξ±〉 = 0

for all ξ± ∈ ker((Du±∂(K±,J±))†)† = kerDu±∂(K±,J±). Namely �b ∈ (V±)⊥,
where

V± := evo±(kerDu±∂(K±,J±)).
We fix such a solution denoted by η�b ∈ Lq.

Then (5.16) can be written as

(Du−∂(K−,J−))
†(η− − ηb(0)) = 0, (Du+∂(K+,J+))

†(η+ + ηb(ε)) = 0

i.e.,

η− + ηb(0) ∈ ker(Du−∂(K−,J−))
†,

η+ − ηb(ε) ∈ ker(Du+∂(K+,J+))
†.

Therefore, we have the exact sequence

0→ GraphP † ∩ (V ⊥
− × V ⊥

+ ) i→ kerE†(u)
j→ ker(Du+∂(K+,J+))

† ⊕ ker(Du−∂(K−,J−))
† → 0 : .
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Here the first homomorphism is the map

i(b1, b2) = (ηb1 , bb1 ,−ηb2)

where bb1 is a solution of (5.14) satisfying bb1(0) = b1. Note that we have
bb1(ε) = b2 if and only if (b1, b2) ∈ Graph P †. And the second map j is
given by

j(η−, b, η+) = (η− + ηb(0), η+ − ηb(ε)),

and so kerE†(u) has its dimension given by

dim ker(Du+∂(K+,J+))
† + dim ker(Du−∂(K−,J−))

†(5.17)

+ dim GraphP † ∩ (V ⊥
+ × V ⊥

− )

= dim ker(Du+(∂(K+,J+))
† + dim ker(Du−∂(K−,J−))

†

+ dim(P † · V ⊥
− ∩ V ⊥

+ ).

Equivalently E(u) has a closed range and its cokerE(u) has dimension the
same as this. Combining this dimension counting of cokerE(u) with that of
kerE(u) in (5.11), we conclude that E(u) is Fredholm and has index given by

Index E(u) = dim kerE(u)− dim kerE†(u)

= Index Du+∂(K+,J+) + Index Du−∂(K−,J−) − 2n

= (n+μH−([z−, w−])+2c1(A−))+(n−μH+([z+, w+])+2c1(A+))

= μH−([z−, w−])− μH+([z+, w+]) + c1(A−) + c1(A+).

Here we have used

dim(P · V− + V+) + dim(P † · V ⊥
− ∩ V ⊥

+ )

= dim(P · V− + V+) + dim((P · V−)⊥ ∩ V ⊥
+ )

= dim(P · V− + V+) + dim(P · V− + V+)⊥ = 2n,

for the second identity, where P †V ⊥− = (PV−)⊥ is due to (5.15), and

Index Du−∂(K−,J−) = (n+ μH−([z−, w−]) + 2c1(A−)),

Index Du+∂(K+,J+) = (n− μH+([z+, w+]) + 2c1(A+))

for the third identity. �

In Section 9, we will show that for given generic J±, f , there exists
some ε0 > 0, such that for ε ∈ (0, ε0], every “disk-flow-disk” curves
u ∈Mε([z−, w−]; f ; [z+, w+];A±) is regular, in the sense that E(u) is surjec-
tive. So Mε([z−, w−]; f ; [z+, w+];A±) is a smooth manifold with dimension
equal to the index of E(u):

μH−([z−, w−])− μH+([z+, w+]) + c1(A−) + c1(A+)

for generic J±, f and small ε.
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5.2. Nodal Floer trajectories of PSS deformation at λ = 0. This
is the middle stage of the construction of the above-mentioned piecewise
smooth corbodism at which the “phase transition” of the moduli spaces
occurs as λ pass through λ = 0. In next subsection, we will give an enhanced
version of the corresponding moduli space entering in our construction of
the cobordism. The definition of the enhanced moduli space will involve a
picture of recently developed symplectic field theory [EGH, BEHWZ] in
the Morse–Bott setting. (See [FOOO2] also.)

Let Σ̇± be two compact surfaces each with one positive puncture (resp.
one negative puncture) with analytic coordinates. Let o± ∈ Σ̇± a marked
point and denote by (τ, t) with ±τ ≥ 0 the cylindrical chart of Σ̇± \ {o±}
such that z = e±2π(τ+it). We fix periodic orbits z± of H± = H±(t) and their
liftings [z±, w±], respectively. We denote

M1((K±, J±); [z±, w±])={(u±, o±) | u±∈M((K±, J±); [z±, w±]), o±∈Σ̇±},
respectively. We have the natural evaluation maps

ev± :M1((K±, J±); [z±, w±])→M ; ev±(u±) = u±(o±).

The standard nodal Floer trajectories will be the elements in the fiber
product

M1((K+, J+); [z+, w+])ev+ ×ev−M1((K−, J−); [z−, w−])

= {(u+, u−) | u± ∈M((K±, J±); [z±, w±]), u+(o+) = u−(o−)}.
This is the space that appears in the middle of the “chain homotopy”
between Ψ ◦ Φ and the identity map on HF (H, J) proposed by Piunikhin–
Salamon–Schwarz in [PSS]. To differentiate this moduli space from the later
enhanced version of nodal Floer trajectories that we introduce when the
nodal points are immersed, we denote this moduli space by

Mnodal
stand([z−, w−], [z+, w+]; (K,J)).

On U±, using the given analytic coordinates z = e2π(τ+it), we fix a
function

(5.18) κ+(τ) =

{
0, if |τ | ≤ 1,
1, if |τ | ≥ 2

and let κ−(τ) = κ+(−τ). We set κ+
ε (τ) = κ+(τ − R(ε) + 1) and κ−ε (τ) =

κ+
ε (−τ). It is easy to see

κ+
ε (τ) =

{
1, for τ ≥ R(ε) + 1,
0, for τ ≤ R(ε),

κ−ε =

{
1, for τ ≤ −R(ε)− 1,
0, for τ ≥ −R(ε),

(5.19)

We then extend these outside the charts U± by zero.
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We define (Kε, Jε) to be the obvious pairs

Kε(τ, t, x) =

⎧
⎪⎨

⎪⎩

κ+
ε (τ) ·K+(τ, t, x), (τ, t) ∈ U+,

κ−ε (τ) ·K−(τ, t, x), (τ, t) ∈ U−,
0, z ∈ Σε \ U+ ∪ U−,

J±
ε (τ, t, x) =

⎧
⎪⎨

⎪⎩

Jκ+
ε (τ)(t, x), (τ, t) ∈ U+,

Jκ−
ε (τ)(t, x), (τ, t) ∈ U−,

J0(x), z ∈ Σε \ U+ ∪ U−

(5.20)

associated to κ±ε respectively. Here, we denote a gluing of Σ+ and Σ− by
Σ+#εΣ− (see Definition 12.1, Example 12.1 for details). We then extend
these to a constant family outside the charts U±. Thanks to the cut-off
functions β±, this extension defines a smooth family on Σ̇. We will vary
R = R(ε) depending on ε, so that we are given a one-parameter family

Σ̇ε, (Kε, Jε).

Here, we would like to emphasize that Kε ≡ 0 in the neck regions of Σε.

5.3. Moduli space of enhanced nodal Floer trajectories. If we
attempt to construct a smooth coordinate chart for the parameterized mod-
uli space of dimension 1 near λ = 0, the resolved Floer trajectories should be
related to the “disk-flow-disk” elements. One way is to break the local con-
formal symmetry of the equation near the node by inserting a small Morse
function εf with ε → 0 at the node. This forces one to study adiabatic
degeneration as studied in [Oh5,Oh3,MT] and the relevant gluing prob-
lem. What distinguishes this gluing problem from the gluing problem in the
standard Gromov–Witten or in the Floer theory is that it glues two config-
urations in different scales: nodal Floer trajectory (u−, u+) in macroscopic
level and local model u0 in microscopic level. To find the correct local model,
we need to analyze the fine structure of the node in the nodal trajectories.
Description of this structure is in order.

First of all, we will need to require that the nodal points are immersed
points for both u±. We will prove that this requirement holds for a generic
choice of J . For the moment, we will assume that the nodal points are
immersed for both u±, and continue with our discussion.

Secondly, we need to enhance the moduli space of standard nodal Floer
trajectories by some local models, which are to be implanted at the inter-
section point u+(o+) = u−(o−) of u+ and u−.

We first describe the space of local models. Let H be a hyperplane of
CPn. We identify (CPn, H) with

CPn = P(1⊕ C
n), H = P(0⊕ C

n)
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and Aut(CPn, H) is the set of homothety and translations given by

v 
→ cv + a ; Cn → C
n

with c ∈ C
∗ and a ∈ C

n. We define

M̃(0;2,0)(CP
n, H; 2) := {(u; p1, p2) | u : Σ→ CPn, u(pi) ∈ H, p1 �= p2,

degu = 2, Imu �⊂ H},
M(0;2,0)(CP

n, H; 2) = M̃(0;2,0)(CP
n, H; 2)/PSL2(C).

In terms of the cylindrical coordinates (s,Θ) of C
n \ {0} ∼= R × S2n−1, the

above moduli space can be identified with

M̃SFT
(0;2,0)(C

n; (1, 1)) =:
{

u : Σ̇→ C
n | u : Σ̇ ∼= S1 × R→ C

n is proper,

(5.21)

∂̄J0u = 0, lim
τ→±∞Θ ◦ u(τ/2π, t) = γ±(t),

lim
τ→±∞

∫

u∗τλ = 2π
}

.

We then define

MSFT
(0;2,0)(C

n; (1, 1)) = M̃SFT
(0;2,0)(C

n; (1, 1))/PSL2(C).

Here λ is the standard contact form on S2n−1(1) ⊂ C
n, γ± closed Reeb

orbits of λ and (1, 1) stands for the multiplicity of the closed Reeb orbits
γ±, respectively, and uτ : S1 → C

n is the loop defined by uτ (t) = u(τ, t). We
recall that T :=

∫
γ∗λ for a closed Reeb orbit γ is the same as its period.

We denote by
R̃1(λ) = Reebmin(S2n−1, λ)

the set of minimal Reeb orbits of period 2π. Then the diagonal circle action
on C

n induces a free S1-action on R̃1(λ), which makes and R̃1(λ)→ CPn−1

a principal S1-bundle. We then denote by R1(λ) that of unparameterized
ones, i.e.,

R1(λ) = R̃1(λ)/S1.

Now for the purpose of defining the correct nodal Floer trajectories we
need to consider one-jet evaluation maps on both M̃SFT

(0;2,0)(C
n; (1, 1)) and

M̃1(K−
ε , J

−
ε ; [z−, w−]) (or M̃1(K+

ε , J
+
ε ; [z+, w+])). We now explain these

evaluation maps.
We now fix a local chart I = {Ip : Up → Vp} be a given Darboux family.

(See Subsection 8.1 for the definition.) Using I we can identify (TpM,Jp, ωp)
with C

n equipped with the standard Kähler structure. Then we can define
the evaluation maps

(5.22) ẽv#
I,± : M̃SFT

(0;2,0)(C
n; (1, 1))→ R̃1(λ) :
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By the immersed property of u± at o±, the limit

γ±(t) := lim
τ±∞uτ (τ, t)

defines an element R̃1(S1(TpM), λp) ∼= R1(λ). Then the map ẽv#
I,± descends

to the map

ev#
I,± :MSFT

(0;2,0)(C
n; (1, 1))→ R1(λ); ev#

I,±(u) = [γ±]

for u± ∈ M̃(K±
ε , J

±
ε ; [z±, w±]). Since we will not change the Darboux family

I, we often omit the sub-index I as long as there occurs no confusion.
To get rid of the domain automorphism, we consider the moduli space

(5.23) M̃SFT
(1;2,0)(C

n; (1, 1)) = {(u, (e±, r))) | u : Σ̇→ C
n}

and
MSFT

(1;2,0)(C
n; (1, 1)) = M̃SFT

(1;2,0)(C
n; (1, 1))/ ∼

where e± are punctures on Σ̇ and r is a marked point in the interior, ∼ is
the equivalence relation under the action of PSL(2,C). After modding out
by PSL(2,C), we can identify MSFT

(1;2,0)(C
n; (1, 1)) with the more concrete

space
{

u | u : R× S1 → C
n, ∂J0u = 0,

[

lim
τ→±∞uτ (·)

]

∈ R1(λ)
}

via the unique conformal identification

ϕ : (Σ̇, r) ∼= R× S1

such that ϕ(e±) = ±∞ and ϕ(r) = (0, 0).
We denote the corresponding moduli space also by

MSFT(R× S1,Cn;R1(λ)) ∼=MSFT
(1;2,0)(C

n; (1, 1)).

We have the evaluation maps

evSFT
#,− :MSFT

(1;2,0)(C
n; (1, 1))→ R1(λ)

by

evSFT
#,−(u) =

[

lim
τ→−∞uτ

]

∈ R1(λ).

Similarly, we define evSFT
#,+ :MSFT

(1;2,0)(C
n; (1, 1))→ R1(λ).

Lemma 5.1. The above definition of evSFT
#,± pushes down to the quotient

moduli space
MSFT

(1;2,0)(C
n; (1, 1))/Aut(Cn).
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Proof. We need to prove

evSFT
# (u) = evSFT

# (g ◦ u)
for all (g : v 
→ cv + a) ∈ Aut(Cn). For the identity for evSFT

# , we note that
the action induced by the elements of Aut(Cn) does not change the asymp-
totic limit limτ→±∞ uτ as an unparameterized Reeb orbit. This finishes the
proof. �

Now we are ready to give the definition of “enhanced” moduli space of
nodal Floer trajectories appearing in the PSS picture.

Let I = {Ip : Up → Vp} be the given Darboux family. (See Subsection 8.1
for the definition.) This family provides an isomorphism between TpM
and C

n at any p ∈M . We now consider the evaluation maps

ev#
+,I :M1(K+

ε , J
+
ε ; [z+, w+])→ R1(λ),

ev#
−,I :M1(K−

ε , J
−
ε ; [z+, w+])→ R1(λ)

as before for u ∈ M1(K∗
ε , J

∗
ε ; [z∗, w∗]). We further note that M1(K±

ε , J
±
ε ;

[z±, w±]) have decomposition

M1(K+
ε , J

+
ε ; [z+, w+]) =

⋃

A∈π2(M)

M1(K+
ε , J

+
ε ; [z+, w+];A),

M1(K−
ε , J

−
ε ; [z−, w−]) =

⋃

A∈π2(M)

M1(K−
ε , J

−
ε ; [z−, w−];A),

where M1(K±
ε , J

±
ε ; [z±, w±];A) are the sets

M1(K+
ε , J

+
ε ; [z+, w+];A+)

= {u+ ∈M1(K+
ε , J

+
ε ; [z+, w+]) | [u#w+] = A+ ∈ π2(M)},

M1(K−
ε , J

−
ε ; [z−, w−];A−)

= {u− ∈M1(K−
ε , J

−
ε ; [z−, w−]) | [w−#u] = A− ∈ π2(M)}.

We can define the fiber product

M1(K+
ε , J

+
ε ; [z+, w+];A+)

ev#
+,I
×evSFT

#,−
MSFT

(0;2,0)(C
n; (1, 1))evSFT

#,+

×
ev#

−,I
M1(K−

ε , J
−
ε ; [z−, w−];A−)

for each given pair A± ∈ π2(M). Then we form the union

Mnodal([z−, w−], [z+, w+]; (K,J))

(5.24)

:=
⋃

(A−,A+);A−+A+=0

M1(K+
ε , J

+
ε ; [z+, w+];A+)

ev#
+,I

×evSFT
#,−
MSFT

(0;2,0)(C
n; (1, 1))evSFT

#,+
×

ev#
−,I
M1(K−

ε , J
−
ε ; [z−, w−];A−)
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Figure 3. The enhanced PSS scheme.

under the assumption that du±(o±) �= 0. We call elements (u+, u0, u−)
therein enhanced nodal Floer trajectories in vacuum (Figure 3). The fol-
lowing theorem justifies the hypothesis that the nodal points are immersed,
and so that the above fiber product is well defined. We will postpone its
proof to the next subsection.

Theorem 5.1. Let (K,J ; ε) be a Floer datum with the asymptotic Hamil-
tonian H such that it satisfies (5.19), (5.20). Suppose that

μ([z−, w−])− μ([z+, w+]) < 2n− 1.

Then there exists a dense subset of Jω consisting of J ’s such that for any
quintuple

(u−, u+, r−, r+; ε) ∈ ∪0<ε≤ε0Mnodal
stand([z−, w−], [z+, w+]; (Kε, Jε))

with u−(r−) = u+(r+), r− and r+ are immersed points of u− and u+ respec-
tively, and

[du−(r−)] �= [du+(r+)] in P(TpM)
with p = u−(r−) = u+(r+).

In particular, these hold when μ([z−, w−])− μ([z+, w+]) = 0.

5.4. Nodal points are immersed. In this subsection, we will give the
proof of Theorem 5.1. The proof is a variation of the dimension count-
ing argument and partially inspired by Hutchings and Taubes’s proof of
Theorem 4.1 [HuT] in which they studied immersion properties of pseudo-
holomorphic curves in the symplectization of contact three-manifolds.
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Consider the parameterized family (K,J) = ({Kε}, {Jε}) such that

J ≡ J0

in a neighborhood of the marked point r ∈ Σ̇. We consider a pair of them
denoted by (K±, J±).

We consider (J, (u−, r−), (u+, r+), ε) and the map

Υ : (J, (u−, r−), (u+, r+), ε)


→ (∂(J,K)−;ε(u−), ∂(J,K)+;ε(u+); ∂Ju(r−), ∂Ju(r+)),

where we denote

∂(K,J)−;ε(u−) = (du+ PK−
ε

)(0,1)

J−
ε

(u),

∂(K,J)+;ε(u+) = (du+ PK+
ε
)(0,1)

J+
ε

(u).

We consider the bundles over Σ×M
H

(0,1)
J0

(Σ×M) := ∪(z,x)Hom
′′
J0

(TzΣ, TxM),

H
(1,0)
J0

(Σ×M) := ∪(z,x)Hom
′
J0

(TzΣ, TxM),

whose fibers are J-anti-linear and J-linear parts of Hom(TzΣ, TxM), respec-
tively. The union of standard nodal Floer trajectories

Mnodal
stand([z−, w−], [z+, w+]; (K,J);R(ε))

over J ∈ Jω is nothing but

Υ−1({0} × {0} ×H(1,0)
J0

(Σ×M)×Δ H
(1,0)
J0

(Σ×M))

:=Mnodal
stand([z−, w−], [z+, w+];K;R(ε)).

We recall that K± ≡ 0 near the marked points o±. Therefore, we have

∂(J,K)±;εu±(o±) = ∂J0(u±)(o±)

which implies that for any u± with ∂(J,K)±;ε(u±)(o±) = 0, we have

du(o±) = 0, if and only if ∂Ju(o±) = 0.

Postponing the precise functional analytic details until Section 8.3, we intro-
duce the necessary framework for the Fredholm theory needed to prove The-
orem 5.1. We denote by

F− = F−(Σ̇,M ; [z−, w−]), F+ = F+(Σ̇,M ; [z+, w+])

the off-shell function space hosting the operator ∂(K,J)± and the correspond-
ing Floer moduli spaces, respectively. And we introduce the standard bundle

H′′ = ∪(u,J)H′′
(u,J), H′′

(u,J) = Ω(0,1)
J (u∗TM),

H′ = ∪(u,J)H′
(u,J), H′

(u,J) = Ω(1,0)
J (u∗TM).
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We have the natural evaluation map

evF∗ : F∗ → H
(1,0)
J0

(Σ×M); evF∗(u) = (o∗, u(o∗); ∂Ju(o∗))

for ∗ = ±, respectively. Then the above map Υ defines a section of the
Banach bundle

Jω ×F− ×F+ → H′′
− ×H′′

+ ×H(1,0)
J0
×H(1,0)

J0
.

We now prove the following proposition by a standard argument via the
linearization of Υ. We use the convention that oL is the zero section for a
bundle L.

Proposition 5.2. The map Υ is transverse to the (stratified) submanifold

oH′′
− × oH′′

+
×
(

o
H

(1,0)
J0

×Δ H
(1,0)
J0

⋃
H

(1,0)
J0
×Δ o

H
(1,0)
J0

)

⊂ H′′
− ×H′′

+ ×H(1,0)
J0
×H(1,0)

J0
.

In particular the set

Υ−1

(

oH′′
− × oH′′

+
×
(

o
H

(1,0)
J0

×Δ H
(1,0)
J0

⋃
H

(1,0)
J0
×Δ o

H
(1,0)
J0

))

is a (stratified) submanifold of

Mnodal
stand([z−, w−], [z+, w+];K; ε)

of codimension 2n.

Proof. It is easy to check the statement on the codimension and so we will
focus on proving the submanifold property. We note that the subset

(5.25) oH′′
− × oH′′

+
×
(

o
H

(1,0)
J0

×Δ H
(1,0)
J0

⋃
H

(1,0)
J0
×Δ o

H
(1,0)
J0

)

consists of two strata: one is the open stratum given by

oH′′
− × oH′′

+
×
(

o
H

(1,0)
J0

×Δ H
(1,0)
J0

⋃
H

(1,0)
J0
×Δ o

H
(1,0)
J0

)∖

oH′′
− × oH′′

+
× (o

H
(1,0)
J0

×Δ o
H

(1,0)
J0

)

and the other is given by the lower-order stratum

oH′′
− × oH′′

+
×
(

o
H

(1,0)
J0

×Δ o
H

(1,0)
J0

)

.

We note that the lower-dimensional stratum has codimension 2n insider the
set (5.25).

The linearization of Υ is given by

(B, (ξ−, v−), (ξ+, v+), h) 
→ (D∂(K−)(u−)(B, ξ−), D∂(K+)(u+)(B, ξ+);

(ξ−(o−), (D∂J−,u−(ξ−)(o−)), (ξ+(o+), (D∂J+,u+(ξ+)(o+))),
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for B ∈ TJ0Jω, ξ± ∈ Tu±F±, and v± ∈ To±Σ±. It is well known that D∂(K−)

(u−)(B, ξ−), D∂(K+)(u+)(B, ξ+) are surjective and so we will focus on the
problem of finite-dimensional transversality of the linear map

(ξ−, ξ+) 
→ ((ξ−(o−), (D∂J−,u−(ξ−)(o−)), (ξ+(o+), (D∂J+,u+(ξ+)(o+)))

to the submanifold

o
H

(1,0)
J0

×Δ H
(1,0)
J0

⋃
H

(1,0)
J0
×Δ o

H
(1,0)
J0

in H(1,0)
J0

(Σ×M)×H(1,0)
J0

(Σ×M).
Since transversality of the map (u−, u+) 
→ (u−(o−), u+(o+)) to Δ ⊂

M ×M is obvious, we will focus on the other factor on the tangential data.
We first consider the top dimensional stratum, i.e., for the pair (u−, u+)
such that u−(o−) = u+(o+) and

du−(o−) = 0, du+(o+) �= 0.

We need to prove that the equation

(5.26) D∂J,u(ξ−)(o−) = η−
has a solution ξ− for each given η− ∈ Λ(1,0)(TM). Similar consideration
applies to the case of switching + and −.

In general, a well-known computation shows

Du∂J(ξ−) = (∇uξ−)(1,0)
J + T

(1,0)
J (du−, ξ)

with the torsion term T . However, if du−(o−) = 0, T
(1,0)
J (du−(o−),

ξ(o−)) = 0 for any ξ.
We now introduce the linear operator qJ,x0 defined by

qJ,x0(x) = (Jx0 + J(x))−1(Jx0 − J(x))

for x such that d(x, x0) < δ for δ > 0 depending only on (M,ω, J) but inde-
pendent of x0. qJ,x0 satisfies qJ,x0(x0) = 0. (See [Si].) Then if we identify
(Tx0M,Jx0) ∼= C

n, we can write the operator

(∇uξ−)(1,0)
J = ∂ξ− − qJ,r(u)∂ξ− +D · ξ−

for some zero-order operator D with D(o−) = 0.
Therefore, if u satisfies du−(o−) = 0, we can write

D∂J,u(ξ) = ∂ξ− −A · ∂ξ− + C · ξ−
in a neighborhood of o− where A, C are smooth pointwise (matrix) multi-
plication operators with

(5.27) A(o−) = C(o−) = 0.

To finish the proof, we need to prove the existence of local solutions of the
equation

∂ξ− −A · ∂ξ− + C · ξ− = η−
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near the given point r−. This equation can be transformed into

(5.28) (Id−A · T )∂ξ− + C · ξ− = η−,

where T is the operator

Tg(z) = p.v.

(
1

2πi

∫ ∫

D

g(ζ)
(ζ − z)2dζ ∧ dζ

)

= − lim
δ→0

∫ ∫

ζ||ζ−z|≥δ,|ζ|≤1

g(ζ)
(ζ − z)2dζ ∧ dζ.

The operator T satisfies the a priori estimate

(5.29) ‖Tg‖W k,p ≤ Ak,p‖g‖k,p.

(see [Ve], p. 166–167 of [Si]).
Now after multiplying a cut-off function to η− with its support contained

in a sufficiently small neighborhood of r− and using the a priori estimate
(for k = 1), we can solve (5.28) by the contraction mapping theorem in a
neighborhood of o−. This finishes the existence of a solution to (5.26) for
the top stratum.

For the lower-dimensional stratum, i.e., for those pairs (u−, u+) with

u−(o−) = u+(o+), du−(o−) = du+(o+) = 0

we can prove the existence by the same argument. The only thing to make
sure is that the surjectivity proof of D∂(K,J)± using the same variation B
still holds. But it is easy to check that the nodal condition u−(o−) = u+(o+)
ensures this, whose checking is left to the readers. (see [OZ1] for a complete
discussion on this matter.)

This finishes the proof of the proposition. �

We have the natural projection

πΥ : Υ−1

(

oH′′
− × oH′′

+
×
(

o
H

(1,0)
J0

×Δ H
(1,0)
J0

⋃
H

(1,0)
J0
×Δ o

H
(1,0)
J0

))

→ Jω,

which is the restriction of the projection map

Mnodal
stand([z−, w−], [z+, w+];K)→ Jω,

where we denote

Mnodal
stand([z−, w−], [z+, w+];K) =

⋃

J∈Jω

Mnodal
stand([z−, w−], [z+, w+];K,J).

Since the latter projection has the index μ([z−, w−]) − μ([z+, w+]) + 1 (for
the parameterized problem over 0 < ε ≤ ε0), the Fredholm index of πΥ is
given by μ([z−, w−])− μ([z+, w+]) + 1− 2n.
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Therefore for any regular value J of πΥ, the preimage will be empty
whenever

μ([z−, w−])− μ([z+, w+]) < 2n− 1

and in particular when μ([z−, w−]) − μ([z+, w+]) = 0 or −1. This finishes
the proof of Theorem 5.1 except the requirement [du−(o−)] �= [du+(o+)].
But this itself can be proved by refining the above genericity argument with
an addition of another stratum

Δ
H

(1,0)
J

⊂ H(1,0)
J ×H(1,0)

J

whose details we leave to the readers.

5.5. Resolved nodal Floer trajectories in Morse background. This
subsection is the third stage of the deformation of the parameterized moduli
space of the PSS cobordism.

In this subsection, we consider the Riemann surface with one positive and
one negative punctures

(Σ; p, q)

with analytic charts. Modulo the action of PSL(2,C), we may identify this
with the standard cylinder

(R× S1; {−∞}, {+∞})
with a global conformal coordinates (τ, t). The coordinate is uniquely defined
modulo the linear translations

(τ, t) 
→ (τ + τ0, t+ t0).

We provide the analytic charts at the punctures p, q so that they are com-
patible with this identification. Using this coordinates, we write

K = F (τ, t) dτ +H(τ, t) dt

and require the condition of cylindrical ends

F ≡ 0, H ≡ H(t), at±∞
for K. This condition does not affect under the coordinate change (τ, t) 
→
(τ + τ0, t+ t0) and so is well-defined.

Similarly we also fix a homotopy from J0 to J(t) {Js}0≤s≤1 so that J0 =
J0, J

1 = J .
We will consider a one-parameter family of such pairs (Kε, Jε) with their

cylindrical ends given by

End±(Kε, Jε) = (H, J), R0 ≤ R(ε) <∞
for a given Floer-regular pair (H, J). For this purpose, we use the family of
function κ±ε constructed in (5.19) for R ∈ R+ = [0,∞). We also define a
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function ρε : R→ [0, 1] so that

ρε(τ) =

{
1, for |τ | ≤ R(ε)− 1,
0, for |τ | ≥ R(ε),

(5.30)

|ρ′ε(τ)| ≤ 2, for R(ε)− 1 ≤ |τ | ≤ R(ε).(5.31)

For the main purpose of the present paper, we will later choose R = R(ε)
so that

(5.32) εR(ε)→ 0, as ε→ 0.

We remark that the choice of R(ε) made in (5.32) will be needed for some
normalization procedure which will be explained later in the course of the
adiabatic degeneration argument.

We define Jε by

(5.33) Jε(τ, t, x) =

⎧
⎪⎨

⎪⎩

Jκ+
ε (τ)(t, x), for τ ≥ R(ε),

J0(x), for |τ | ≤ R(ε)− 1,
Jκ−

ε (τ)(t, x), for τ ≤ −R(ε).

Thanks to the cut-off functions κ±, this defines a smooth R× S1 family of
almost complex structures J on M.

Similarly, we define the family Kε : R× S1 ×M → R by

(5.34) Kε(τ, t, x) =

⎧
⎪⎨

⎪⎩

κ+
ε (τ) ·H(t, x), for τ ≥ R(ε),
ρε(τ) · εf(x), for |τ | ≤ R(ε),
κ−ε (τ) ·H(t, x), for τ ≤ −R(ε).

Remark 5.2. We would like to compare our choice of Kε above with that
of [PSS,MS]: the latter uses a family of Kε with Kε ≡ 0 in the neck region
of Σε, while we use the one by putting a small Morse function εf in the
neck and take the adiabatic limit as ε → 0. With the choice Kε ≡ 0 in the
neck region, this process of degenerating Floer trajectories to nodal ones by
letting ε → 0 is not at all obvious to the authors. However this process is
not properly explained in [PSS,MS].

Now using this particular one-parameter family (KR, JR) for a given cut-
off function κ = {κ+, κ−}, we consider the corresponding parameterized
moduli space

Mpara([z−, w−], [z+, w+]); {(K,J ;κ)}
=
⋃

0<ε≤ε0

M([z−, w−], [z+, w+];Kε, Jε).

For the simplicity of notations, we will also writeMpara = ∪0<ε≤ε0Mε when-
ever there is no danger of confusion. To study the map Ψ ◦ Φ in homology,
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we need to analyze compactification of Mpara. In the next several sections
of the paper, we prove the following theorem.

Theorem 5.2. The parameterized moduli space Mpara as 0 < ε ≤ ε0 can
be compactified to a one-dimensional smooth manifold with boundary whose
collar is diffeomorphic to

[0, ε0)×Mnodal
(0;1,1)([z−, w−], [z+, w+]; (H, J), (f, J0))

for a sufficiently small ε0 > 0.

This theorem provides the right-hand one-sided collar neighborhood of
M0 inMpara = ∪−ε0≤ε≤ε0Mε mentioned in Section 4.3.

6. Local models near nodes in vacuum

We study proper holomorphic curves in C
n with cylindrical end R× S2n−1

with a cylindrical metric on at the ends thereof: we provide a metric g
conformal to the standard metric on C

n and has the form

g = ds2 + gS2n−1 =
1
r2
gCn

at infinity where (r,Θ) is the standard polar coordinates of C
n \ {0} and

r = es for the cylindrical coordinates (s,Θ) ∈ R× S2n−1(1).
The standard complex structure on C

n provides an almost complex struc-
ture on the cylinder that is translational invariant, and the symplectic form
written in the coordinates as

ω0 = d(r2Θ) = d(e2sΘ∗λ) = e2s(2ds ∧Θ∗λ+ dΘ∗λ)

where λ is the standard contact form on S2n−1 = S2n−1(1). The set of Reeb
orbits of λ on S2n−1 consists of the Hopf circles with constant speed which
forms a smooth family parameterized by CPn−1 and gives a Morse-Bott
type degenerate asymptotic condition at infinity for the relevant pseudo-
holomorphic curves on C

n. A relevant Fredholm theory has been given
in [HWZ3] in three dimension. And in a general Morse-Bott setting the
Fredholm theory has been laid out in [Bou] and [FOOO2].

We modify the exposition given in [FOOO2] in our context. The book
[FOOO2] dealt with the more nontrivial case with Lagrangian boundary
conditions. Because we cannot directly borrow the results therefrom, we
provide detailed explanation in our current context.

6.1. Classification of local models. We note that the unit sphere S2n−1

has the standard contact form given by

λ =
1
2

n∑

i=1

(xidyi − yidxi)
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and the associated Reeb vector field by

Xλ =
∑

i=1

(

xi
∂

∂yi
− yi

∂

∂xi

)

.

It follows from the expression of the Reeb vector field Xλ that the minimal
Reeb orbits of (S2n−1, λ) are given by the curves γ : [0, 2π] → C

n which
parameterize a Hopf circle in S2n−1

S2n−1 ∩ L ⊂ S2n−1,

where L ⊂ C
n is one-dimensional complex subspace. We note that all the

Reeb orbits have the same periods 2π and are nondegenerate in the Morse-
Bott sense.

We recall that an element u ∈ MSFT
(0;2,0)(C

n; (1, 1)) is assumed to satisfy
the convergence

lim
τ→±∞ s ◦ u(τ, t) =∞,
lim

τ→±∞Θ ◦ u(τ, t) = γ±(t),
(6.1)

respectively, for some Reeb orbit γ± ∈ R̃1(λ). The following uniqueness
result will be important later in the gluing problem.

Proposition 6.1. Fix a hyperplane H in CPn and two points x0, x∞ ∈ H.
Consider a rational curve that is not contained in H. Then there exists a
unique rational curve passing through x0, x1 of degree 2 modulo the action
of Aut(CPn;H) which is the group of automorphisms of CPn fixing H.

Proof. It is easy to construct a degree two map u : S2 → CPn through any
two given points in CPn and hence there always exists a map u : S2 → CPn

a holomorphic map of degree 2 satisfying

u(0) = x0, u(∞) = x∞; x0, x∞ ∈ H ⊂ CPn.

We now prove the uniqueness modulo the action of Aut(CPn;H). Let
u′ be another such curve with the same asymptotic condition. Then the
extension of u′ to CPn has the condition u′(0) = u(0) and u′(∞) = u(∞)
and u(z) ∈ CPn \H ∼= C. Now we choose a point x ∈ C with C = Image u.
Composing u′ with an element g ∈ Aut(CPn;H) and replacing u′ by g ◦
u′, we may assume that u and u′ pass through the three distinct points
{x0, x∞, x}. We note that as long as n ≥ 3, we can find a hyperplane H ′ ⊂
CPn that contains the three points. Then both C, C ′, which have degree 2,
must be contained in the hyperplane H ′ ⊂ CPn containing the three points.
Repeating this argument inductively whenever n ≥ 3, we can reduce the
proof to the case n = 2, i.e., to CP 2. From now on, we assume n = 2.

We choose a point x ∈ C \H, which exists since C is not a line. Let L be a
line that is tangent to C at x. We note that any irreducible degree two curve
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is immersed (in fact embedded) and the action of Aut(CPn, H) = Aut(Cn)
preserves the projective tangent line, i.e., the induced map

g∗ : P(TxC
n)→ P(Tg(x)C

n) ; [�] 
→ [dxg(�)]

becomes the identity map under the canonical identification of P(TxC
n) =

P(Cn) = P(Tg(x)C
n).

Therefore there is a well-defined Gauss map

CP 1 → CP 1 = P(C2) ; p 
→ [du(p)],

where [du(p)] is the tangent line at u(p). Since this map is holomorphic which
is not constant for a degree 2 curve u, it must be surjective. Let x′ ∈ C ′
be a point such that [TxC] = [Tx′C ′] in P(C2). We apply an element g with
g(x) = x′ to the map u. Then the map g ◦u passes through the three points
x0, x∞, x′ and becomes tangent to C ′ at x′. Finally, if g(C) = C ′ already, we
are finished. Otherwise (C \C ′) \H �= ∅. We choose a point y ∈ (C \C ′) \H
and consider the line L′ through x′ and y. This line cannot coincide with the
tangent line [Tx′C ′] of C ′and so it must intersect with another point y′ ∈ C ′
because C ′ has degree 2. Now we apply a scaling at the center x′

gλ : y 
→ x′ + λ(y − x′) ; C2 → C
2,

which satisfies gλ(y) = y′ (and gλ(x′) = x′). We consider the map gλ ◦ g ◦ u
and u′. They share 4 points and a common tangent at the point x′. But
any two such degree two curves, i.e., conics must coincide up to reparam-
eterization (see, e.g., Remark 4.2.1 in Chapter V [Ha]). This finishes the
proof. �

We now derive the following uniqueness result from the above proposition.

Theorem 6.1. For each given γ± ∈ R1(λ), there exists a unique proper
holomorphic map u : R× S1 → C

n modulo the action of

Autlmd = Aut(Cn)

with the given asymptotic condition

evSFT
#,± (u) = γ±.

Proof. The case where γ+ = γ− can be regarded as the limiting case of
unique intersection of the curve and H with multiplicity two and can be
treated similarly. Therefore we will assume γ+ �= γ− as an unparameterized
curve.

Recall that there is a one–one correspondence between MSFT
0;2,0(C

n;
(1, 1)) and M(0,2,0)(CPn, H; 2). The theorem immediately follows from
Proposition 6.1. �
Remark 6.1. We can be more explicit by giving the equations of rational
curves in CP 2 with asymptote x+ and x− on the hyperplane H∞. In affine
charts C = CP 1 −∞ ⊂ CP 1 and C

2 = CP 2 − H∞ ⊂ CP 2 the quadratic
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curve satisfies equation Ax2 + Bxy + Cy2 + Dx + Ey + F = 0, where the
coefficients A, . . . , F are in C. For generic coefficients, the equation can be
factorized as

(k+(x− e) + l+(y − f))(k−(x− e) + l−(y − f)) = 1

for suitable k±, l±, e and f ∈ C. We rewrite the above equation in a param-
eterized form

(6.2)

⎧
⎨

⎩

k+(x− e) + l+(y − f) = z,

k−(x− e) + l−(y − f) =
1
z

and solve

(6.3)

{
x(z) = az + b/z + e,

y(z) = cz + d/z + f,

where a, . . . , f are in C. Since z = e2π(τ+it) for (τ, t) ∈ R× S1,

(6.4)

{
limτ→+∞[x(z), y(z), 1] = [a, c, 0] = x+ ∈ H∞,
limτ→−∞[x(z), y(z), 1] = [b, d, 0] = x− ∈ H∞.

From (10.3) we can determine the coefficients in (6.3), up to the ambiguity
of e, f arising from Aut(CP 2, H∞) and the ambiguity of the ratio a/b aris-
ing from Aut(R × S1) = C

∗. Since any two CP 2 in CPn are related by a
projective linear transform, which restricted on the affine chart CP 2\H∞ is
a linear transform, from (6.3) we get the equation for the degree 2 curves in
the above theorem:

u(z) = Az +B/z + C, z = e2π(τ+it) ∈ C∗, A,B,C ∈ C
n, A �= 0, B �= 0,

(6.5)

for z ∈ C
∗ ∼= R× S1.

Remark 6.2 (Local models with Morse background). From the expression
(6.5) we can calculate that the center of mass of the loop u({τ0}×S1) in C

n

(with respect to the standard metric) for any τ0 is always at the fixed vector
C ∈ C

n (by mean value theorem of harmonic functions), which indicates
that the needed local model is not quite those lying in MSFT

0,2,0(C
n; (1, 1))

because they do not reflect the background gradient flow of the given Morse
function f . This motivates us to look for some models in Section 7 for which
the center of mass of the loop u({τ} × S1) resembles the straight line aτ in
C

n ∼= TpM where a = ∇f(p) the gradient vector of f at p.
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6.2. Fredholm theory of local models. We can improve the asymptotic
property of such constructed holomorphic curves in the following way. For
each γ ∈ R1(λ), we have the following exponential convergence statement,
which is the analog to the similar results from [BEHWZ] and can be proved
in the same way as other cases of Morse–Bott–Floer theory. (See also section
62 [FOOO2] for the relevant discussion.)

Proposition 6.2. Fix any p > 2. Let ε > 0 be sufficiently small. Con-
sider a holomorphic map u : Σ̇ → C

n satisfying (10.3) and write u(τ, t) =
(s(τ, t),Θ(τ, t)) near τ = ∞. Then there exist constants τ0 and Ck, ck > 0
depending only on k, p such that

|∇k(s(τ, t)− 2π(τ − τ0))| ≤ Cke
−2πck|τ |

p ,(6.6)

|∇k(Θ(τ, t)− γ(2πt))| ≤ Cke
−2πck|τ |

p .(6.7)

Proposition 6.2 dictates the adequate function space for the proper Fred-
holm theory of the pseudo-holomorphic curves in our problem, which we
now explain. Let δ < 2π be a positive number.

Our metric h is conformal to the standard Euclidean metric |dz|2 on C

such that
h = λ(z)|dz|2.

where λ : C→ R is a positive radial function such that

λ(z) =
1
|z|2 ,

when |z| sufficiently large. We also fix a metric gcyl on C
n conformal to the

standard metric |dw|2 so that

(6.8) gcyl = μ(w)|dw|2
for a radial function μ and it becomes the cylindrical metric on the end of
C

n, i.e.,

μ(w) =
1
|w|2

when r =
∑n

i=1 |wi|2 is sufficiently large.
With respect to these metrics on the domain and the target, we now define

the space
W 1,p

δ,(0;2,0)(Σ̇,C
n; γ+, γ−, τ+, τ−)

for each fixed γ± in R1(λ) and τ± ∈ R as follows.

Definition 6.1. W 1,p
δ,(0;2,0)(Σ̇,C

n; γ+, γ−, τ+, τ−) is the set of all u = (s ◦
u,Θ ◦ u) such that

(1) u ∈W 1,p
loc ,
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(2) Using coordinate (τ, t) at the ends of Σ̇, u satisfies

e
2πδ|τ |

p |Θ±(τ, t)− γ±(t)| ∈W 1,p([0,∞)× S1,R),

where Θ± = Θ ◦ u|D±
(3) and

e
2πδ|τ |

p |s±(τ, t)− 2π(τ − τ±)| ∈W 1,p([0,∞)× S1,R),

where s± = s ◦ u|D± .
Here we denote by D± the given coordinate disks associated to the ana-
lytic charts at p±, and use the cylindrical metrics h = λ(|z|)|dz|2 to define
W 1,p and the metric gcyl (6.8) of C

n to define | |. We call the tuple
((γ−, τ−), (γ+, τ+)) the asymptotic datum of u relative to the cylindrical
ends associated to the given analytic charts.

Proposition 6.2 implies

M(0;2,0)(Σ̇,C
n) ⊂

⋃

γ±∈R1(λ)

⋃

τ±∈R

W 1,p
δ,(0;2,0)(Σ̇,C

n; γ±, τ±).

We define

W 1,p
δ,(0;2,0)(Σ̇,C

n) =
⋃

γ±∈R1(λ)

⋃

τ0∈R

W 1,p
δ,(0;2,0)(Σ̇,C

n; γ±, τ±)).

We recall that we have the natural projection

π : R1(λ)→ CPn−1

forms a principal S1-bundle with the S1-action being the Hopf action, which
can also be realized by with the rotations of the domain circle. We denote
by

ev± : W 1,p
δ,(0;2,0)(Σ̇,C

n)→ R1(λ)

the evaluation map defined ev±(u) = u(±∞, ·).
The following can be proved by a standard argument. We refer to

[FOOO2] for the relevant proof in the more complicated context of proper
holomorphic curves with Lagrangian boundary conditions. Since we will need
to use the description of the tangent space thereof, we give an outline of the
proof of this lemma.

Lemma 6.1. W 1,p
δ,(0;2,0)(Σ̇,C

n) has the structure of Banach manifold such
that the obvious projection

((π ◦ ev+, ev+
R

), (π ◦ ev−, ev−R )) : W 1,p
δ,(0;2,0)(Σ̇,C

n)(6.9)

→ (CPn−1 × R)× (CPn−1 × R)

defines a locally trivial fiber bundle.



530 Y.-G. OH AND K. ZHU

Proof. The tangent space of this Banach manifold can be constructed as in
Lemma 29.5 or Lemma 60.10 [FOOO2]. See [Bou] for a relevant discussion.

We take a smooth function χ+ : [0,∞) → [0, 1] such that χ+(τ) = 1
for τ > 2, χ+(τ) = 0 for τ < 1, and |χ′

+(τ)| < 2. Symmetrically, we let
χ−(τ) = χ+(−τ). Let u ∈ W 1,p

δ,(0;2,0)(Σ̇,C
n; γ±, τ±) ⊂ W 1,p

δ,(0;2,0)(Σ̇,C
n). We

consider the set of all quintuples (U, V ±
R1(λ), V

±
R

) satisfying

(1) V ±
R1(λ)(t) ∈ Tγ±R1(λ), V ±

R
∈ R ∼= Tτ±R, respectively.

(2) U ∈W 1,p
loc (Σ̇;u∗TC

n).
(3) Denote

Ũ(τ, t) = U(τ, t)− χ−(τ)Palu(τ,t)U(−∞, t)− χ+(τ)Palu(τ,t)U(+∞, t),
where U(+∞, t) = (V +

R
, V +

R1(λ)(t)) in the cylindrical end of (Cn, gcyl), and
Palu(τ,t)U(+∞, t) is the parallel transport of U(+∞, t) from u(+∞, t)
to u(τ, t) along the minimal geodesic of (Cn, gcyl). Similarly, we define
Palu(τ,t)U(+∞, t). Then we have

e
2πδ|τ |

p |Ũ(τ, t)| ∈W 1,p
D±(Σ̇,R).

Here we regard V ±
R1(λ) to be a vector field on γ± in C

n. Since every parame-
terized simple Reeb orbit γ in S2n−1 ⊂ C

n satisfies γ(t) = e±2πiγ(0), we have
V ±
R1(λ)(t) = e±2πiV ±

R1(λ)(0).
Let C0(u) be the set of all such quintuples. It becomes a Banach space

with norm ‖ · ‖1,p,δ such that

‖(U, V ±
R1(λ), V

±
R

)‖p1,p,δ =
∥
∥
∥
∥e

2πδ|τ |
p Ũ(τ, t)

∥
∥
∥
∥

p

W 1,p

(6.10)

+ |V −
R1(λ)(0)|p + |V −

R
|p + |V +

R1(λ)(0)|p + |V +
R
|p.

We remark that V ±
R1(λ), V

±
R

are determined from U in case the norm
‖(U, V ±

R1(λ), V
±

R
)‖1,p,δ is finite.

It is standard to check that W 1,p
δ,(0;2,0)(Σ̇,C

n) is a Banach manifold and

C0(u) = TuW
1,p
δ,(0;2,0)(Σ̇,C

n).

To show that (6.9) is a locally trivial fiber bundle, we use the U(n) action as a
biholomorphic isometry on C

n, which preserves the contact form (S2n−1, λ).
It induces an U(n)-action on W 1,p

δ,(0;2,0)(Σ̇,C
n). Then the map (6.9) is U(n)-

equivariant.
On the other hand, the group C

∗ ∼= Aut(CP 1; {0,∞}) acts on W 1,p
δ,(0;1,0)

(Σ̇,Cn) as the automorphism of the domain and on CPn−1 ×R trivially on
CPn−1 and by an addition by 1

2π ln |z| on R.
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Then (6.9) is C
∗-equivariant. The local triviality (6.9) follows from this

equivariance. �

We next put
C1(u) = Lp

δ(Σ̇,Λ
(0,1)(u∗TC

n)).

Then there exists an infinite-dimensional vector bundle overW 1,p
δ,(0;2,0)(Σ̇,C

n)
whose fiber at u is C1(u).

The formal linearization of the Cauchy–Riemann operator ∂ defines an
operator

(6.11) Du∂ : C0(u)→ C1(u).

We apply Du∂ only the first component U of the triple (U, VR1(λ), VR).
To see Du∂ indeed maps to C1(u), consider the function

ũ(τ, t) = e2π(τ−τ+)γ+(t) = e2π(τ−τ++
√−1t)γ+(0)

in C
n, then ũ is holomorphic, and has the same asymptote as u when τ →

+∞. It is easy to verify that

(6.12) Dũ∂(Palu(τ,t)U(+∞, t)) = 0.

Using (6.12) the fact that u− ũ ∈W 1,p
δ ([0,+∞]× S1), we see

Du∂(Palũ(τ,t)U(+∞, t)) ∈ Lp
δ([0,+∞)× S1),

similarly
Du∂(Palũ(τ,t)U(−∞, t)) ∈ Lp

δ(−∞, 0]× S1).

Hence (Du∂)(U) is contained in C1(u).

Proposition 6.3. The operator (6.11) is Fredholm with index given by

(6.13) Index Du∂ = 4(n+ 1) + 4− 6 + 1 = 4n+ 3.

Proof. The Fredholm property can be proved in the same way as Lemma
60.14 [FOOO2] and so its proof is omitted referring readers thereto. The
index formula can be derived from the general theory from [Bou,EGH] but
we will give its proof as a consequence of the classification, Proposition 6.1,
and the transversality of the local models, which we will prove in the next
subsection. �

6.3. Transversality of local models. We recall that each element u ∈
M(0;2,0)(Σ̇,Cn) has the convergence

lim
τ→±∞ s ◦ u(τ, t) =∞, lim

τ→±∞Θ ◦ u(τ, t) = γ±(t)

for some γ± ∈ R1(λ).
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By Proposition 6.2, we have

M(0;2,0)(Σ̇,C
n) ⊂W 1,p

δ,(0;2,0)(Σ̇,C
n).

We first prove the following surjectivity.

Proposition 6.4. Let u ∈M(0;2,0)(Σ̇,Cn) and

C0(u) = TuW
1,p
δ,(0;2,0)(Σ̇,C

n), C1(u) = Lp
δ(Σ̇,Λ

(0,1)(u∗TC
n)).

Then the linearization operator

Du∂ : C0(u)→ C1(u)

is surjective.

Proof. We note that since the almost complex structure on C
n is integrable,

we have
Du∂ = the standard Dolbeault operator.

Here we recall from Theorem 5.1 that the nodal points are immersed and
the tangent planes of the two components at the nodes are different. This is
translated as the local model u corresponds to a degree two rational curve
in P

n that intersect the hyperplane H at two distinct points transversely.
Furthermore since we use the cylindrical metrics on both on the domain Σ̇
and C

n, the operator
Du∂ : C0(u)→ C1(u)

can be shown to be conjugate to the standard Dolbeault operator

∂ : W 1,p(u∗TP
n)→ Lp(Λ(0,1)

J (u∗TP
n))

if we regard u as a map from P
1 to P

n. Once we have these, the surjectivity
immediately follows from the well-known fact H1(u∗TP

n) = {0} for any
rational curve u : P

1 → P
n. �

Due to the Morse–Bott character of our gluing problem, this surjectivity
will not be enough for our purpose. We need to augment this by the asymp-
totic evaluation datum at infinity. We recall that ev : W 1,p

δ,(0;2,0)(Σ̇,C
n) →

(CPn−1 × R) × (CPn−1 × R) is the assignment of the asymptotic datum
followed by the projection R1(λ)→ CPn−1.

The following is the main result of this subsection.

Theorem 6.2. Let u be a holomorphic curve in M(0;2,0)(Σ̇,Cn) with the
asymptotic datum (γ±, τ±). Then the operator

Du∂⊕Dπ : C0(u)→ C1(u)⊕T([γ−],τ−)(CP
n−1×R)⊕T([γ+],τ+)(CP

n−1×R)

is surjective.



FLOER TRAJECTORIES WITH IMMERSED NODES 533

Proof. We note that the action of U(n) on C
n preserves (S2n−1, λ) and

induces an action on CPn−1. By this U(n)-invariance of the equation, it
suffices to consider the case when γ− is the equator given by

γ−(t) = (cos(2πt) + i sin(2πt), 0, . . . , 0) ∈ S2n−1 ⊂ C
n.

Furthermore, CPn−1 is two-point homogeneous in that any two pair of dis-
tinct points can be mapped to each other by the action of U(n) (or more
precisely by the action of PU(n)).

As a first step, we will establish the following splitting:

(6.14) C0(u) = TuW
1,p
δ,(0;2,0)(Σ̇,C

n) = C
n
−(u)⊕ C

n
+(u)⊕W 1,p(u∗TC

n)

such that the restriction

(6.15) Dπ : C
n
−(u)⊕C

n
+(u)→ T([γ−],τ−)(CP

n−1×R)⊕T([γ+],τ+)(CP
n−1×R)

is surjective.
First, we find a subspace C

n−1 ⊂ u(n) such that

C
n−1 ⊕ u(n− 1) = u(n),

where U(n−1) is the isotropy subgroup of the vector (1, 0, . . . , 0). We identify
C

n−1 ∼= u(n)/u(n− 1) with {0} ⊕ C
n−1 ⊂ C

n. The action

A ∈ C
n−1 ∼= u(n)/u(n− 1) 
→ A · u

defines an embedding

C
n−1 → C0(u) = TuW

1,p
δ,(0;2,0)(Σ̇,C

n).

We denote by C
n−1
− (u) the image of this embedding.

Similarly, we consider the isotropy group U(n − 1)γ+ of [γ+] and define
an embedding of C

n−1 into C0(u) by the similar way. We denote this by
C

n−1
+ (u). Using the fact that CPn−1 is two-point homogeneous, we can

choose this embedding so that C
n−1
+ (u) and C

n−1
− (u) are linearly indepen-

dent. We note by construction of C
n−1
± (u) that they are transverse to the

Hopf action.
Finally we take the generators X of C ∼= aut(Σ̇) ∼= Aut(C, {0}) and

consider the action
X 
→ LXu.

This action at each end γ± of u defines an embedding C → C0(u) which
coincides with the infinitesimal action of the translations along the direction
of τ in the analytic charts chosen at p±. The image of this embedding is
linearly independent of C

n−1
± (u). This gives rise to the required splitting by

setting

(6.16) C
n
±(u) = Cγ̇± ⊕ C

n−1
± (u),

respectively. By construction, it follows that the map (6.15) is surjective and
so we have established the required splitting (6.14).



534 Y.-G. OH AND K. ZHU

By the splitting (6.14), Theorem 12.2 will follow from the surjectivity of
the linear map

Du∂ : C0(u)→ C1(u),
which is precisely the content of Proposition 6.4. This finishes the proof. �

Once we have established the surjectivity of the linearization opera-
tor Du∂, the moduli space M(0;2,0)(Σ̇,Cn) becomes a smooth manifold
whose tangent space can be identified with the kernel of the operator
Du∂ : C0(u) → C1(u) for a holomorphic curve u : Σ̇ → C

n found in the
uniqueness Theorem 6.1.

The classification theorem, Proposition 6.1, immediately proves the fol-
lowing theorem. This in particular computes the index of Du∂, when com-
bined with the surjectivity.

Theorem 6.3. Assume 0 < δ < 2π is sufficiently small. Let u be the pseudo-
holomorphic map constructed in Theorem 6.1 associated to the Reeb orbits
γ±. Then we have

dim KerDu∂ = 4n+ 3

and all the elements u ∈ M̃(0;1,1)(Σ̇,Cn) is transverse and so is a smooth
manifold of dimension 6n. Furthermore, the quotient space

M̃(0;1,1)(Σ̇,C
n)/Autlmd

is a one-point set.

We would like to separately state the following obvious corollary of
Theorems 12.2 and 6.3.

Corollary 6.1. We have

Index Du∂ = 4n+ 3.

7. Local models near nodes in Morse background

In this section, we provide the Banach manifold for the solutions (u, a) of
the inhomogeneous Cauchy–Riemann equation ∂J0u = a in (Cn, J0), with
the same asymptotic condition (10.3) for u at infinity as the homogeneous
case in the previous section. Here u : R × S1 → C

n is a map, ∂J0 is the
standard Cauchy–Riemann operator, a is a section of Λ0,1(u∗(TC

n)) that
satisfies

a

(
∂

∂τ

)

= ∇f(p)

in C
n in coordinates (τ, t), where z = e2π(τ+it). Then the equation ∂u = a is

nothing but (
∂

∂τ
+ J0

∂

∂t

)

u(τ, t) = ∇f(p),
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whose inhomogeneous term is a constant vector ∇f(p) in (TpM,Jp) ∼= (Cn,
J0). We remark that the norm of a section of Λ0,1(u∗(TC

n)) is induced
from the asymptotically cylindrical metric λ(x)gst rather than the standard
metric gst in C

n, so the norm of the one-form a depends on u(τ, t) pointwise
and is not a constant.

We need to adapt the local models found in the previous section because
the ambient manifold has the background gradient flow associated to the
given Morse function f , which affects the Hamiltonian perturbation K for
the resolved nodal Floer trajectories. The relevant rescaling procedure of
the Floer equation at the nodes does not yield the homogeneous equation
∂u = 0 but yields the inhomogeneous Cauchy–Riemann equation ∂̄u = a on
TpM ∼= C

n for the one-form a with a( ∂
∂τ ) = ∇f(p).

Recall the off-shell Banach manifold for homogeneous local models was

W 1,p
δ,(0;2,0)(Σ̇,C

n) = W 1,p
δ,(0;2,0)(Σ̇,C

n; (1, 1)).

For inhomogeneous local models, we set the Banach manifold to be the set

B0 := W 1,p
δ,(0;2,0)(Σ̇,C

n)⊕ C
n\{0}

of the pair (u, a) and the Banach bundle over it as

L0 :=
⋃

(u,a)∈B0

Lp
δ(Σ̇,Λ

0,1(u∗TC
n)).

We define the augmented Cauchy Riemann operator ∂̂ : B0 → L0 as

∂̂ : W 1,p
δ,(0;2,0)(Σ̇,C

n)⊕ C
n\{0} →

⋃

(u,a)∈B0

Lp
δ(Σ̇,Λ

0,1(u∗TC
n))

such that
∂̂(u, a) = ∂̄u− a

The following proposition gives the relation between homogeneous and inho-
mogeneous Cauchy–Riemann equations:

Proposition 7.1. We equip both Σ̇ and C
n with metrics cylindrical at infin-

ity. Then the followings hold:
(1) u0 in W 1,p

δ,(0;2,0)(Σ̇,C
n) if and only if u := u0+aτ is in W 1,p

δ,(0;2,0)(Σ̇,C
n).

(2) ∂u0 = 0 if any only if ∂̄u− a = 0.
(3) Suppose u0 in W 1,p

δ,(0;2,0)(Σ̇,C
n) has the decomposition u0 = (s ◦ u0,

Θ ◦ u0) that satisfies the asymptotic condition

lim
τ→±∞Θ ◦ u0(τ, t) = γ±(t),

lim
τ→±∞ s ◦ u0(τ, t) = 2π(τ − τ±).

Then u = u0 + aτ is also in W 1,p
δ,(0;2,0)(Σ̇,C

n) and satisfies the same
asymptotics.
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Proof. Since ∂(aτ) = a, it follows that ∂̂(u, a) = 0 if and only if ∂u0 = 0.
(1) is a conclusion of (3), by applying (3) to u = u0 + aτ and u0 = u− aτ .
So it remains to prove the statement (3).

Write u0(τ, t) = (Θ0(τ, t), s0(τ, t)) in the cylindrical end of C
n. Then by

the definition of W 1,p
δ,(0;2,0)(Σ̇,C

n), there exist γ± ∈ R1(λ), τ± ∈ R such that

e
2πδ|τ |

p |Θ0(τ, t)− γ±(t)|S2n−1 ∈W 1,p(R× S1,R),

e
2πδ|τ |

p |s0(τ, t)− 2π(τ − τ±)| ∈W 1,p(R× S1,R).

Since W 1,p([k, k + 1]× S1) ↪→ C0,α([k, k + 1]× S1) when p > 2, we have

max
τ∈[k,k+1]

e
2πδ|τ |

p |Θ0(τ, t)− γ±(t)|

≤ C‖e
2πδ|τ |

p |Θ0(τ, t)− γ±(t)|‖W 1,p([k,k+1]×S1,R) → 0

Hence
|Θ0(τ, t)− γ±(t)| ≤ C e−

2πδ|τ |
p

for large enough τ . Similarly,

|s0(τ, t)− 2π(τ − τ±)| ≤ C e−
2πδ|τ |

p

for large enough τ . So for large τ ,

s0(τ, t) ≥ 2π(τ − τ±)− 1.

Thus,
|u0(τ, t)| = |es0(τ,t)| ≥ e−1e2π|τ−τ±| ≥ C e2π|τ |

for |τ | sufficiently large.
Let u(τ, t) = u0(τ, t) + aτ , and write u(τ, t) = (Θ(τ, t), s(τ, t)). Then

Θ(τ, t) =
u0(τ, t) + aτ

‖u0(τ, t) + aτ‖ =
u0(τ, t)
‖u0(τ, t)‖ ·

‖u0(τ, t)‖
‖u0(τ, t) + aτ‖ +

aτ

‖u0(τ, t) + aτ‖
= Θ0(τ, t)

(

1− ‖u0(τ, t) + aτ‖ − ‖u0(τ, t)‖
‖u0(τ, t) + aτ‖

)

+
aτ

‖u0(τ, t) + aτ‖ .

Therefore

‖Θ(τ, t)−Θ0(τ, t)‖ ≤ ‖aτ‖
‖u0(τ, t) + aτ‖ +

‖aτ‖
‖u0(τ, t) + aτ‖

≤ 2‖a‖τ
Ce2π|τ | − ‖a‖τ

≤ C1‖a‖e−2π|τ |

for large enough |τ |. Hence

e
2πδ|τ |

p |Θ(τ, t)−Θ0(τ, t)| ∈ Lp(R× S1,R).
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Similar straightforward computation also shows

e
2πδ|τ |

p |∇Θ(τ, t)−∇Θ0(τ, t)| ∈ Lp(R× S1,R).

Hence

(7.1) e
2πδ|τ |

p |Θ(τ, t)−Θ0(τ, t)| ∈W 1,p(R× S1,R).

Since

e
2πδ|τ |

p |Θ(τ, t)− γ±(t)| ≤ e
2πδ|τ |

p (|Θ(τ, t)−Θ0(τ, t)|+ |Θ0(τ, t)− γ±(t)|)
we get

e
2πδ|τ |

p |Θ(τ, t)− γ±(t)| ∈W 1,p(R× S1,R).

Next, we estimate s(τ, t) = log |u0(τ, t) + aτ |:

|s(τ, t)− s0(τ, t)| = log
‖u0(τ, t) + aτ‖
‖u0(τ, t)‖

= log
(

1 +
‖u0(τ, t) + aτ‖ − ‖u0(τ, t)‖

‖u0(τ, t)‖
)

.

Since
∣
∣
∣
∣
‖u0(τ, t) + aτ‖ − ‖u0(τ, t)‖

‖u0(τ, t)‖
∣
∣
∣
∣ ≤

‖aτ‖
‖u0(τ, t)‖ ≤

‖aτ‖
C1 e2π|τ | = C2|τ |e−2π|τ | → 0,

and log(1 + h) ∼ h when h→ 0, for large enough τ

|s(τ, t)− s0(τ, t)| ≤ 2C2|τ |e−2π|τ |.

Now

e
2πδ|τ |

p |s(τ, t)−2π(τ−τ±)| ≤ e
2πδ|τ |

p (|s(τ, t)−s0(τ, t)|+|s0(τ, t)−2π(τ − τ±)|),
hence

e
2πδ|τ |

p |s(τ, t)− 2π(τ − τ±)| ∈ Lp(R× S1,R).

We also have

|∇s−∇s0| =
∣
∣
∣
∣
(u+ aτ) · (∇(u+ aτ))

|u+ aτ |2 − u · ∇u
|u|2

∣
∣
∣
∣

≤ |(u+ aτ) · (∇(u+ aτ))| ·
∣
∣
∣
∣

1
|u+ aτ |2 −

1
|u|2
∣
∣
∣
∣

+
1
|u|2 |(u+ aτ) · ∇(u+ aτ)− u · ∇u|

≤ C3

(

|u||∇u| |aτ ||u|3 +
1
|u|2 (|a · u|+ |aτ · ∇u|)

)

≤ C3|τ |e−2π|τ |,
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when |τ | large. So

(7.2) e
2πδ|τ |

p |s(τ, t)− s0(τ, t)| ∈W 1,p(R× S1,R).

Together with

e
2πδ|τ |

p |s0(τ, t)− 2π(τ − τ±)| ∈W 1,p(R× S1,R),

by triangle inequality

e
2πδ|τ |

p |s(τ, t)− 2π(τ − τ±)| ∈W 1,p(R× S1,R).

This finishes the proof of (3). �

Denote the moduli space of solutions of ∂̂(u, a) = 0 by M+
(0;2,0)(Σ̇,C

n;
(1, 1)), which is the moduli space of inhomogeneous local models. By Propo-
sition 7.1, we see

Corollary 7.1. M+
(0;2,0)(Σ̇,C

n; (1, 1)) ∼=M(0;2,0)(Σ̇,Cn; (1, 1))⊕ C
n\{0}.

By the same argument, it is immediate to check the following lemma
whose proof is omitted.

Lemma 7.1. ∂̂(u, a) = ∂̄u− a is indeed in Lp
δ(Σ̇,Λ

0,1(u∗TC
n)).

Next we consider the tangent space of any (u, a) ∈ B0. The tangent space
consists of elements (U, VR± , VR±

1 (λ), h), where U is a section in W 1,p
δ (Σ̇,

u∗TC
n), VR± ∈ Tτ±R ∼= R, VR1(λ) ∈ Tγ±(0)S

2n−1, and h ∈ TaC
n. The

linearized ∂̂ operator is

D(u,a)∂̂ : W 1,p
δ (Σ̇, u∗TC

n)⊕ TaC
n → Lp

δ(Σ̇,Λ
0,1(u∗TC

n)),

D(u,a)∂̂(U, VR± , VR(λ), h) = Du∂U − h = ∂U − h.
(7.3)

The last identity holds because Du∂ becomes the standard Dolbeault oper-
ator in C

n. Recall the projection

π : W 1,p
δ,(0;2,0)(Σ̇,C

n; (1, 1))→ (S2n−1 × R)× (S2n−1 × R),

u→ (γ+(0), τ+)× (γ−(0), τ−),

Dπ : TuW
1,p
δ,(0;2,0)(Σ̇,C

n)→ Tγ+(0),τ+
(S2n−1 × R)× Tγ−(0),τ−(S2n−1 × R).

We consider the combined operator

Du∂̂ ⊕Dπ : TuW
1,p
δ,(0;2,0)(Σ̇,C

n)→ Lp
δ(Σ̇,Λ

0,1(u∗TC
n))

⊕ T(γ+(0),τ+)(S
2n−1 × R)

⊕ T(γ−(0),τ−)(S
2n−1 × R),

(U, VR± , VR1(λ), h)→ (D∂U − h, V +
R
, V +

R1(λ), V
−

R
, V −

R1(λ)).
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Proposition 7.2. There exists a constant η > 0 depending on u but inde-
pendent of a such that for u = u0+aτ with |a| < η ·min{eτ+ , eτ−}, Du∂̂⊕Dπ
is surjective. Here τ± are the asymptotic parameters of u0.

Proof. In the previous section, we have proved the surjectivity of Du0∂,
where u0 is in W 1,p

δ,(0;2,0)(Σ̇,C
n) satisfying ∂u0 = 0 with fixed asymptote γ±

and τ±. Here the solution of ∂u = a is given by u = u0 + aτ , so for small
a ∈ C

n\{0}, u = u0 + aτ is a small perturbation from u0 in W 1,p
δ,(0;2,0)(Σ̇,C

n)

by (7.1) and (7.2). Since surjectivity of Du∂ is an open condition, which is
preserved under small perturbation from u, for all a with |a| < η, Du∂ :
W 1,p

δ (Σ̇, u∗TC
n) → Lp

δ(Σ̇,Λ
0,1(u∗TC

n)) is surjective, where η is a constant
depending on u0.

Especially, this implies D(u,a)∂̂ is surjective since we can let h = 0 in (7.3),
and the target Lp

δ(Σ̇,Λ
0,1(u∗TC

n)), is still the same. �

Next we describe the kernel of ∂̂:

Proposition 7.3. For any (u, a) satisfying ∂̂(u, a) = 0,

ker(D(u,a)∂̂) = {(U, V ±
R
, V ±

R1(λ), h)|Du∂U − h = 0}(7.4)

∼= {(ker(Du∂) + hτ, V ±
R
, V ±

R1(λ), h)}.(7.5)

Corollary 7.2. Index D(u,a)∂̂ = dim kerD(u,a)∂̂ = 6n+ 3

Proof. From (7.5), we see

dim ker D(u,a) = dim ker Du∂ + dimTaC
n = 4n+ 3 + 2n = 6n+ 3.

By Proposition 7.2, D(u,a)∂̂ is surjective so we get the index is equal to the
dimension of the kernel. �

On the moduli space M+
(0;2,0)(Σ̇,C

n; (1, 1)), using the isomorphism in
Corollary 7.1 we define the jet evaluation map

evjet :M+
(0;2,0)(Σ̇,C

n; (1, 1))→ C
n \ {0}, (u, a)→ a.

evjet has the following geometric meaning: For u(τ, t) ∈ M+
(0;2,0)(Σ̇,C

n;
(1, 1)), let I(τ) =

∫

S1 u(τ, t)dt be the center of mass flow of u(τ, t), where
the integration is with respect to the standard metric in C

n, then I ′(τ) =
a = evjet(u) for any τ . (This is due to the mean value theorem of harmonic
functions.) So evjet(u) gives the direction that the local model u is aligned to.

Definition 7.1 (Enhanced nodal Floer trajectory). We denote

Mnodal([z−, w−], [z+, w+]; (K,J), (f, J0), p) := (evjet)−1([∇f(p)])
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and define

Mnodal([z−, w−], [z+, w+]; (K,J), (f, J0))(7.6)

=
⋃

p∈M

Mnodal([z−, w−], [z+, w+]; (K,J), (f, J0), p).

We call an element (u+, u0, u+) therein an enhanced nodal Floer trajectory
under the back ground Morse function f .

8. Off-shell framework for the gluing

We first define several function spaces to furnish the Banach manifolds and
bundles needed for the ∂(K,J) := (d+PK)(0,1)

J operator to become a smooth
Fredholm section of an appropriate infinite dimensional vector bundle. We
summarize the various moduli spaces relevant to this formulation:

(1) For the moduli space MSFT
(0;2,0)(C

n), this is the Morse-Bott setting
of the Symplectic Field Theory. We have followed the description
by Fukaya–Oh–Ohta–Ono [FOOO2] of the Fredholm theory where
a similar Morse–Bott setting of SFT but with Lagrangian boundary
condition was used. There was also given a Morse–Bott setup of the
Fredholm theory of SFT by Bourgeois [Bou].

(2) For the moduli spaceM(1;1,0)((K,J); z−) orM(1;0,1)((K,J); z+), this
is standard except the requirement that the maps are immersed at
the origin.

(3) For the moduli space of nodal Floer trajectories, it is necessary
to match the evaluation maps from (1) and (2). We will intro-
duce a cylindrical metric on a neighborhood of the nodal point
p = u−(o−) = u+(o+) in M for any element u = (u−, u+) with
u− ∈ M((K,J); [z−, w−]) and u+ ∈ M((K,J); [z+, w+]), such that
the evaluation map of (2) takes the value in SFT setting. Geometri-
cally this corresponds to blowing up of the neighborhood of p and then
reparameterization by S2n−1 ×R. This setting is very similar to that
in [FOOO2] in Lagrangian surgery on a vertex of a holomorphic trian-
gle. However, instead of blowing up a given vertex in M, here we need
to do this reparametrization for a family of neighborhoods depending
on varying p, so we need a family of cylindrical metrics fibered overM .
The precise off-shell formulation is in the subsequent subsection.

(4) For the moduli space of “disk-flow-disk”, we need to formulate a Fred-
holm theory for the objects which are allowed to have dimension jump.
When the length of the lines of “disk-flow-disk” elements shrink to
zero, there appears some subtlety in the Fredholm theory since we
encounter a noncompact family of domains and suitable transversality
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is needed for such a family. However, this transversality issue can be
reduced to a finite dimensional differential topology lemma and is
solved in Section 9.

To apply the discussion on C
n to the one-jet consideration of M , we

need a way of identifying (TxM,ωx, Jx) with the standard almost Kähler
structure on (Cn, ω0, J0). Since this identification depends on the point x,
there is no canonical way of doing this identification, especially when J is
nonintegrable. One might try to adjust J so that it becomes integrable if
the given point x were a fixed point. However for our purpose, we will need
to provide this identification at an unspecified point and so changing the
given almost complex structure is not appropriate. Because of this, we need
to carry out this identification in a systematic way making all the choices
involved smoothly varying over x ∈M .

It turns out the notion of Darboux family introduced by Weinstein [We1]
is particularly useful for the above process.

8.1. Darboux family and explosion of manifolds. In this section, we
first recall the notion of Darboux family introduced by Weinstein [We1]
and then carry out the explosion of manifolds of the Riemannian metric
at a point to produce a smooth family parameterized by M × [0, ε0] for a
constant ε0 depending only on the symplectic manifold (M,ω).

For a symplectic manifold M , each tangent space TxM inherits the struc-
ture of symplectic vector space with the symplectic quadratic form ωx.

Definition 8.1. [We1] A Darboux family is a family of symplectic diffeo-
morphisms Ix : Vx → Ux such that

(1) Vx and Ux are open neighborhoods of 0 ∈ TxM and x ∈ M , respec-
tively,

(2) Ix(0) = x and dIx(0) = id,
(3) I∗xω = ωx,
(4) (Vx, Ux; Ix) depends smoothly on x.

To emphasize the readers that Ix plays the same kind of role as the expo-
nential map at x, we denote

Ix =: expI
x .

When (M,ω) is equipped with a compatible almost complex structure J
so that the triple (M,ω, J) defines an almost Kähler structure, the above
Darboux family automatically assigns an almost complex structure I∗xJ on
Vx. In addition to (1), we can require the condition

(5) (I∗xJ)(0) = Jx on T0(TxM) ∼= TxM.

Now we can identify (TxM,ωx, Jx) with C
n by an Hermitian isometry

and denote by B2n(ε0; Jx) as the standard ball of radius ε0 > 0. The ball
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B2n(ε0; Jx) ⊂ TxM does not depend on this identification but depends on
(ωx, Jx; ε0).

Note that when M is compact, we can choose the family so that there is
ε0 > 0 such that

(8.1) Ix(B2n(ε0; Jx)) ⊂ Ux

for all x ∈M . We call any such ε0 > 0 an admissible radius for the Darboux
family. We denote

B(I, J ;x, ε0) = Ix(B2n(ε0; Jx)) ⊂M.

Since we will not change J or I, we will simplify and just denote B(I, J ;x, ε0)
by Bε0(x) whenever there is no danger of confusion.

Next we recall the explosion constructions of manifolds and metrics from
[We2] in detail in Appendix 8.4. We use this construction in the context of
almost Kähler structure.

Consider the pointed manifold (M,p) for each p ∈ M and denote by
πE(M,p) : E(M,p) → M × R the explosion of (M,p) at p. By construction,
E(M,p) is defined by beginning with the product M × R, removing the
“axis” M × {0}, and replacing it with the tangent space TpM at p in M .
The differentiable structure on E(M,p) is taken to be the usual product
structure on M × (R \ {0}). Charts near M × {0} is defined with the aid of
the above given Darboux family of coordinates on M . We refer to [We2] or
Appendix 8.4 for more precise details. This enables us to regard E(M,p) as
a family of manifolds “exploding” at p at the time ε = 0. For ε �= 0, the fiber
Eε = E(M,p)ε is diffeomorphic to M and for ε = 0, E0 is diffeomorphic to
the linear space TpM .

We now consider the explosions E(M,p) as a family parameterized by
p ∈M . We define

E(M) =
⋃

p∈M

E(M,p)→M

and will provide a fiber bundle structure E(M) → M : It is enough to pro-
vide compatible local trivializations thereof at each p ∈ M . Let U ⊂ M
be a neighborhood of p such that I−1(U) = B2n(r). Without loss of any
generality, we will assume r = 1. We will find a trivialization

Φ : E(M)|U ∼= U × E(M,p)

by defining diffeomorphisms ϕp′p : E(M,p′)→ E(M,p) depending smoothly
on p′ ∈ U . For this purpose, we will use Corollary 8.2 in the Appendix.

Using the fact that the open ball IntB2n(1) is two-point homogeneous
under the action of Möbius transformations we can find a smooth family of
diffeomorphism

ϕp′p : (B2n(1), ∂B2n(1))→ (B2n(1), ∂B2n(1)),
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Figure 4. Explosion of a manifold at p.

which maps p′ → p and is the identity on ∂B2n(1)). Restricting p′ ∈ B2n(1−
κ) for a fixed small κ > 0, and suitably modifying the diffeomorphism on
Int(B2n(1)) \ B2n(1 − κ) once and for all, we can smoothly extend outside
of B2n(1) by setting it to be the identity. This defines a diffeomorphism
ϕI

p′p : (M, {p′}) → (M, {p}) which is the identity outside U . Furthermore
one can easily arrange that as p′ → p, the map ϕpp′ → id in C∞-topology.

By making the above modification on Int(B2n(1)) \B2n(1− κ) once and
for all, the local trivializations over different U will be compatible and hence
we have shown that E(M)→M × R is locally trivial.

One can see this explosion process more vividly if we consider it in the
point of view of Riemannian manifolds (Figure 4). Let g be a given metric
on M and 0 < inj(g) < ∞ be the injective radius of g. Fix a constant ε0
that 0 < ε0 < inj(g). In our case, we will consider the compatible metric
g = ω(·, J ·). We will introduce a family of Riemannian metrics on M for
ε > 0, denoted by gε0,ε,p, in a way that the family satisfies the following
properties:

Proposition 8.1. There exists a family of Riemannian metrics gδ,p on M
for δ > 0 such that

(1) gδ,p ≡ g for δ ≥ 2ε0,
(2) The fiberwise pull-back π∗E(M,p)(gδ,p)|Eδ

over M × R+ \ {0} extends
smoothly to M × R+ by defining the metric g0,p on E0

∼= TpM to be
g0,p = g(p).

Proof. In regard to the expression (8.21) of the coordinate chart applied to
Y = {p}

E(I)(x, ε) = (I(εx), ε),
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we want the family gδ,p to be defined by

gδ,p =
1
δ2
I∗g

for δ near 0. Then the pull-back metric of gδ,p to Eδ is given by

π∗E(M,p)gδ,p(x, δ)|TEδ
=

1
δ2

(E(I) ◦Rδ)∗g(x, δ)

in the coordinate chart E(I) on E(U). Now a straightforward calculation
shows that this family has the coordinate expression as

π∗E(M,p)gδ,p(x, δ)(v) = g(I ◦Rδ(x))(TRδ(x)I(v))

for v ∈ TEδ at (x, δ) with respect to the canonical coordinate E(I) asso-
ciated to the Darboux chart I at p. From this it follows that this family
smoothly extends to E(M,p) across δ = 0, if we set the metric g0,p to be
g(p) : Here we use the condition T0I = id on TpM . �

For any given 0 < ε ≤ ε0, we can interpolate the scaled metric g/ε20 and
g/ε2 on Bε0(p) via cylindrical metric. More precise description of the metrics
is in order.

Using the Darboux family, for any p ∈ M , we define a one-parameter
family of metrics gε0,ε,p on M as the following:

gε0,ε,p =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
ε0

2 g, x ∈M\Bε0(p),
ρ+(x) 1

ε0
2 g + (1− ρ+ − ρ−) I∗(g(p))

(r◦(expI
p)−1)2

+ρ−(x) 1
ε2 I∗(g(p)), x ∈ Bε0(p)\Bε(p),

1
ε2 I∗(g(p)), x ∈ Bε(p),

(8.2)

where the r is the radius function on (TpM, g(p)), the ρ+(x) is a smooth
cut function that ρ+(x) = 1 outside Bε0(p) and ρ(x) = 0 in B 9

10
ε0

(p), while
ρ−(x) is another smooth cut function that ρ−(x) = 0 outside B 11

10
ε(p) and

ρ(x) = 1 in Bε(p).
We equip M\{p} with a metric gε0,p making M\{p} a manifold with one

cylindrical end, where

(8.3) gε0,p =

{
1

ε0
2 g, x ∈M\Bε0(p),

ρ+(x) 1
ε0

2 g + (1− ρ+(x)) I∗(g(p))
(r◦(expI

p)−1)2
, x ∈ Bε0(p).

We also equip TpM with a metric gcyl,ε,p making it to be a manifold with
one cylindrical end as well, where

(8.4) gcyl,ε,p =

{
(1− ρ−(x))g(p)

r2 + ρ−(x) 1
ε2 g(p), x ∈ TpM\Bε(p),

1
ε2 g(p), x ∈ Bε(p).
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Clearly, the scaling map ε : (TpM, gcyl,1,p) → (TpM, gcyl,ε,p), v 
→ v/ε is an
isometry and (TpM, gcyl,1,p) is isometric to (Cn, gcyl,1,0).

Remark 8.1. We have the following observations:

(1) The metric gε0,ε,p on M is the interpolation of the metrics gε0,p and
gcyl,ε,p.

(2) limε→0 gε0,ε,p = gε0,p on M\{p}.
(3) The expression I∗(g(p))

(r◦(expI
p)−1)2

is simply the push-forward of the cylin-

drical metric g
r2 = gR×S2n−1 on TpM\{p} to M by expI

p.
(4) The degenerating metric gε0,ε,p on M given is noncollapsing as ε→ 0,

and

gε0,p = lim
ε→0

gε0,ε,p, on M\{p}.

in the Gromov–Hausdorff topology.

We note that Bε0(p)\Bε(p) is identified with

(0, ln(ε0)− ln ε]× S2n−1 ⊂ R× S2n−1

via the map (r,Θ) 
→ (s,Θ) with s = ln r. In the coordinates (s,Θ), any
point x ∈ Bε0(p) is identified to a pair

(s(x),Θ(x)) ∈ (−∞, 0]× S2n−1.

We call (s,Θ) the cylindrical coordinate chart near p.
Now we equip E(M) ×M × R+ → M × R+ with the structure of Rie-

mannian fibration with its fibers given by
{

(M, gε0,ε,p), for (p, ε) ∈M × R+, ε �= 0,
(TpM, g(p)), for (p, ε) = (p, 0).

This fibration over ε > 0 will host the off-shell Banach manifolds for the
resolved Floer trajectories arising from nodal Floer trajectories, while the
union

E0#(M \ {p}) = TpM#(M \ {p})
regarded as the end-connected sum of two symplectic manifolds E0 and
M \ {p}: Here E0 has convex end and M \ {p} has concave end both with
the unit sphere S1(TpM) as their asymptotic boundaries in the Darboux
chart Ip. This explosion E(M)×M ×R+ →M ×R+ will be implicitly used
to define a Banach manifold that host the enhanced nodal Floer trajectories.
We turn to the description of these off-shell Banach manifolds in the next
couple of subsections.
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8.2. Off-shell formulation for perturbed J -holomorphic discs. The
off-shell formulation of the moduli space MSFT

(0;2,0)(C
n) has been given

in Subsection 5.2. Here we provide the off-shell setting for the per-
turbed J -holomorphic disk moduli spaces M((K−, J−); [z−, w−];A−) and
M((K+, J+); [z+, w+];A+). Note that if the target is the compact manifold
M , then the off-shell Banach manifold hosting perturbed J -holomorphic
curves (or discs) is the standard W 1,p(Σ̇,M). That formulation was used in
“disk-flow-disk” sections.

However, to resolve enhanced nodal Floer trajectories by the scaled gluing
method, we need to blow up every point p in M . Therefore, the off-shell
Banach manifold should incorporate this fact for which we need to consider
a family of Banach manifold, which forms a (locally trivial) fiber bundle over
the target manifold M .

We first introduce the Banach manifold W 1,p
α (Σ̇,M ; p, z+, γ+, τ+) for each

given (p, , z+, γ+, τ+). Here α = α(τ) stands for the weighting function that

(8.5) α(τ) =

{
e2πδ|τ |, τ ≤ 0,
1, τ ≥ 0.

The space W 1,p
α (Σ̇,M ; p, z+, γ+, τ+) consists of elements u : (Σ̇, o+) →

(M,p) satisfying the following:

(1) u ∈W 1,p
loc

(2) In the analytical chart of a positive puncture e+ ∈ Σ, limτ→+∞
u(τ, t) = z+(t) for the periodic orbit z+(t) in M .

(3) For sufficiently large τ , u(τ, t) = expz+(t)(ξ(τ, t)), and ξ(τ, t) ∈
Lp([0,+∞)× S1, z∗+(TM)).

(4) In the analytical chart D+
∼= (−∞, 0] × S1 of the marked point o+,

u(τ, t) is in a cylindrical coordinate chart Bε0(p) of p, with u(τ, t) =
(Θ+(τ, t), s+(τ, t)), satisfying

e
2πδ|τ |

p ‖Θ+(τ, t)− γ+(t)‖S2n−1 ∈W 1,p((−∞, 0]× S1,R),

e
2πδ|τ |

p |s+(τ, t)− 2π(τ − τ+)| ∈W 1,p((−∞, 0]× S1,R)

for the simple Reeb orbit γ+(t) and τ+ ∈ R.

W 1,p
α (Σ̇,M ; p−, z−, γ−, τ−) is defined similarly, but the weight function α is

replaced by α(−τ).
Remark 8.2. We only consider simple Reeb orbits because we have chosen
a generic J so that the nodal point p = u−(o−) = u+(o+) of any nodal
Floer trajectory (u−, u+) is immersed. Translating this to the asymptote of
u± in the cylindrical manifold M\{p}, we only get simple Reeb orbits in
S2n−1. Therefore, to host such u± with immersed at o±, the function spaces
W 1,p

α (Σ̇,M ; p±, z±, γ±, τ±) with simple Reeb orbits γ± are adequate.



FLOER TRAJECTORIES WITH IMMERSED NODES 547

We denote the set of parameterized simple Reeb orbits γ(t) in S2n−1 by
R̃1(λ). By the Hopf fibration S2n−1 → CPn we see R̃1(λ) ∼= S2n−1, because
given any point in S2n−1 to start, the passing S1 fiber is a simple Reeb orbit.

Remark 8.3. Since only finitely many nodal Floer trajectories (u−, u+)
are involved during gluing, we can assume ‖∇u±(o±)‖ (the gradient is with
respect to the metric g on M) is uniformly bounded. Therefore by possibly
shrinking the cylindrical charts O±, we can assume they all satisfy u±(O±) ⊂
Up. Therefore, for (τ, t) ∈ O±, u±(τ, t) is in the cylindrical coordinate of the
target (M\{p}, gδ,p) . This said, in cylindrical coordinates of the domain and
target, the map

u± : O± → Bε0(p) ∼= (−∞, 0]× S2n−1, (τ, t)→ (s±(τ, t),Θ±(τ, t))

has the asymptote satisfying

|∇k(Θ±(τ, t)− γ±(t))|S2n−1 ≤ Cke
−2πck|τ |

p and

|∇k(s±(τ, t)− 2π(τ − τ±))| ≤ Cke
−2πck|τ |

p(8.6)

for some constant Ck and ck, where s± = s ◦ u± and Θ± = Θ ◦ u±. The Ck

and ck can be made uniform for all u± nearby the (finitely many) nodal Floer
trajectories (u−, u+) by the continuity of the ∇k+1u± translated into cylin-
drical coordinate. We chose δ in the definition of W 1,p

α (Σ̇,M ; p±, z±, γ±, τ±)
to be less than ck(k = 0, 1, 2).

Then we let

W 1,p
α (Σ̇,M ; z+) :=

⋃

p∈M

⋃

(γ+,τ+)∈R̃1(λ)×R

W 1,p
α (Σ̇,M, p, z+, γ+, τ+),

where R̃1(λ) is the set of all parameterized simple Reeb orbits in S2n−1. So
W 1,p

α (Σ̇,M ; z+) is the space that hosts all (K−, J−)-holomorphic discs u+

with boundary on the periodic orbit z+(t) in M , and immersion at o+. The
moduli space W 1,p

α (Σ̇,M ; z−) is defined similarly.
We will show W 1,p

α (Σ̇,M ; z+) is a Banach manifold. First, we describe the
tangent space of a given element u in W 1,p

α (Σ̇,M ; z+). Since

π : W 1,p
α (Σ̇,M ; z+)→M

is a fiber bundle with its fiber at p ∈M given by

W 1,p
α (Σ̇,M, p, z+) :=

⋃

(γ+,τ+)∈R̃1(λ)×R

W 1,p
α (Σ̇,M, p, z+, γ+, τ+)

we need to consider both the vertical and horizontal variations for u.



548 Y.-G. OH AND K. ZHU

Let χ+ : (−∞, 0] → [0, 1] be a smooth function such that χ+(τ) = 1 for
τ ≤ −2 and χ+(τ) = 0 for τ ≥ −1. We consider the quadruple (U, V +

R̃1(λ)
,

V +
R
, v+) satisfying

(1) V +

R̃1(λ)
∈Tγ+R̃1(λ), V +

R
∈R=Tτ+R, and v+ ∈ TpM , where p = u(o+);

(2) U ∈W 1,p
loc ((Σ̇, u∗TM);

(3) U ∈W 1,p
δ ([0,+∞)×S1, u∗TM), where [0,+∞)×S1 is the analytical

chart for the positive puncture e+ ∈ Σ;
(4) In the analytical chart D+

∼= (−∞, 0] × S1 of the marked point o+,
u(τ, t) is in the cylindrical chart of p ∈M . Let

Ũ(τ, t) = U(τ, t)− χ+(τ)Palu(τ,t)U(−∞, t),

then e
2πδ|τ |

p |Ũ(τ, t)| ∈W 1,p((−∞, 0)×S1,R). Here U(−∞, t) = V +

R̃1(λ)

(t), and Palu(τ,t)U(−∞, t) is the parallel transport of U(−∞, t) from
u(−∞, t) to u(τ, t) along the minimal geodesic in (M, gε0,p).

Let C0(u) be the set of all such quadruples. It becomes a Banach space
with the norm

‖(U, V +

R̃1(λ)
, V +

R
, v+)‖p1,p,α =

∥
∥
∥
∥e

2πδ|τ |
p Ũ(τ, t)

∥
∥
∥
∥

p

W 1,p

+ |V +
R
|p + |V +

R̃1(λ)
|p + |v+|p.

(8.7)

Then it is standard to check W 1,p
α (Σ̇,M ; z+) is a Banach manifold and

C0(u) = TuW
1,p
α (Σ̇,M ; z+).

Similarly, W 1,p
α (Σ̇,M ; z−) is a Banach manifold. The tangent vector

(U, V −
R̃1(λ)

, V −
R
, v−) ∈ TuW

1,p
α (Σ̇,M ; z−)

is defined similarly, where V −
R̃1(λ)

∈ Tγ−R̃1(λ), V −
R
∈ R = Tτ−R, and v− ∈

TpM , p = u(o−). The Banach norm is

‖(U, V −
R̃1(λ)

, V −
R
, v−)‖p1,p,α =

∥
∥
∥
∥e

2πδ|τ |
p Ũ(τ, t)

∥
∥
∥
∥

p

W 1,p

−|V +
R
|p + |V −

R̃1(λ)
|p + |v−|p.

(8.8)

Remark 8.4. U corresponds to the variation of u within a fixed fiber
M\{p}, and v+ ∈ TpM corresponds to the variation of the fiber M\{p}
in M̃ .

Let

B+ = W 1,p
α (Σ̇,M ; z+), L+ =

⋃

u∈B+

Lp
α(Σ̇,Λ0,1

J+(u∗+(TM))), and

∂(J+,K+) : B+ → L+, (u, p)→ (∂J+u+ (PK+)(0,1)
J+ (u), p).
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Then ∂(J+,K+) is a section of the Banach bundle B+ → L+, and the
perturbed (J+,K+)-holomorphic disk moduli spaceM(J+,K+; z+) can be
written as the zero set

M1(J+,K+; z+) = (∂(J+,K+))
−1(0).

When we consider the moduli space with more topological restrictions on u,
say M1(K+, J+; [z+, w+];A+), we can accordingly restrict to

∂(J+,K+) : B+([z+, w+];A+)→ L+([z+, w+];A+),

and getM1(K+, J+; [z+, w+];A+) = (∂(J+,K+))−1(0). Here

B+([z+, w+];A+) = {u ∈ B+| [u#w+] = A+}
and so B+ = B+(z+) is decomposed into

B+ =
⋃

A+

B+([z+, w+];A+).

And
L+([z+, w+];A+) = L+|B+([z+,w+];A+) → B+([z+, w+];A+)

is the restriction of the bundle L+ → B+ to B+([z+, w+];A+). We also note
that B+([z+, w+];A+) has the decomposition

B+([z+, w+];A+) =
⋃

p∈M

B+([z+, w+], p;A+)

that is a fiber bundle over M with its fiber at p ∈M given by

B+([z+, w+], p;A+) = {(u, o+) | B+([z+, w+];A+), u(o+) = p}.
We now study the linearization of ∂(J+,K+). First we describe the tangent
space T(u,p)B+([z+, w+];A+). It decomposes

T(u,p)B+([z+, w+];A+) = T v
(u,p)B+([z+, w+];A+)⊕ T h

(u,p)B+([z+, w+];A+)

into the vertical and horizontal components for the fibration

B+([z+, w+];A+)→M ; (u, p) 
→ u.

Then we have the canonical identification

T v
(u,p)B+([z+, w+];A+) = T v

(u)B+([z+, w+], p;A+) ∼= W 1,p
α (u∗TM ; p, z+)

where W 1,p
α (u∗TM ; p, z+) is the set of (U, V +

R1(λ), V
+

R
) satisfying the condi-

tions given right above Remark 8.4.
On the other hand, the horizontal space is not canonically given and

so we will choose them by prescribing their fiber components in the given
trivialization of (E(M)|U ∼= U×E(M,p). Take a small convex neighborhood
U of p, and consider the parameterized line γ : [0, 1] → U with γ(0) =
p, γ(1) with constant speed. By the discussion before Proposition 8.1 we
have diffeomorphisms ϕpγ(s) : (M, {p}) → (M,γ(s)). We abbreviate ϕpγ(s)
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by ϕs. Then the fiber component of the horizontal lifting of v ∈ TpM at u
in this trivialization is given by

d

ds

∣
∣
∣
s=0

ϕs ◦ u =: X0 ◦ u,
where Xs is the vector field generating the isotopy ϕs to the direction of
v = �pp′. Therefore using the local trivialization of B+([z+, w+];A+) → M
induced by the family of diffeomorphisms ϕpp′ , the horizontal lifting of v ∈
TpM is precisely (X0 ◦ u, v).

Note that the set of these variations {(X0 ◦ u, v} defines an a 2n-
dimensional subspace of TuB+([z+, w+];A+) isomorphic to TpM . We denote
this subspace by T̃pM ⊂ B+([z+, w+];A+).

Now we are ready to derive the formula for the linearization. When the
variational vector field U is tangent to a fixed targetM\{p}, the linearization
Du∂(J+,K+)(U) at u is computed in a standard way.

Lemma 8.1. We have

Du∂(J+,K+)U ∈ Lp
α(Σ̇,Λ0,1

J+(u∗(TM))).

Proof. In the cylindrical end (−∞, 0]× S2n−1 in M\{p}, the vector field

U − Ũ = χ+(τ)Palu(τ,t)U(−∞, t)
is asymptotically Jp-holomorphic: one way to see this is the following: iden-
tify (−∞, 0]×S2n−1 to C

n\{0} and regard u(τ, t) in C
n\{0}. then the push

forward of Palu(τ,t)U(−∞, t) is very close to the vector field

V +
R
u(z) + 2πe2π(τ−τ++

√−1t)VR1(λ)(0)

in C
n when τ is negative enough. Furthermore, we have limτ→−∞ u(τ, t) = p,

and J(u(τ, t))→ Jp. Therefore, we have

|Du∂(J+,K+)(U − Ũ)| ≤ Ce−c|τ |

and so
U = (U − Ũ) + Ũ ∈W 1,p

α ((−∞, 0]× S1,R).

This finishes the proof. �

When the variational vector field is induced by a change of base point p
in (M,p) in the direction of v ∈ TpM , it is given by the one whose fiber
component of the induced variational vector field at u is given by X0 ◦ u
where Xs is the vector field generating the isotopy ϕs. We denote by Xv the
X0 associated to v ∈ TpM . Of course the component in TpM is just v. Note
that the set of these variations {(Xv ◦ u, v)} defines an a 2n-dimensional
subspace of T(u,p)B+([z+, w+];A+) isomorphic to TpM . We denote this sub-
space by T̃pM ⊂ T(u,p)B+([z+, w+];A+) and (Xv ◦ u, v) := ṽ. With this
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choice, obviously we have the decomposition

T(u,p)B+([z+, w+];A+) = TuB+([z+, w+], p;A+)⊕ T̃pM

= W 1,p
α (u∗TM ; p, z+)⊕ T̃pM.

Now the linearization of the section

∂(J+,K+) : B+([z+, w+];A+)→ L+([z+, w+];A+)

at (u, p) along

ṽ ∈ T̃pM ⊂ T(u,p)B+([z+, w+];A+)

is given by (Du∂(J+,K+)(Xv+ ◦ u), v+) in the above-mentioned trivialization
of T(u,p)B+([z+, w+];A+).

A straightforward calculation gives rise to the following:

Lemma 8.2. We have the formula

Du∂(J+,K+)(Xv+ ◦ u) = (u∗∇)(0,1)(Xv+ ◦ u) + T (0,1)(du,Xv+ ◦ u)
+DPK+(u)(0,1)(Xv+ ◦ u)

where T is the torsion tensor of the almost complex connection ∇ and the
(0, 1)-parts are taken with respect to J+.

Combining all these, we have obtained

Proposition 8.2. For (u, p) ∈M1(K−, J−; [z+, w+];A+),

D(u,p)∂(J+,K+) : T(u,p)W
1,p
α (Σ̇,M ; z+)→ Lp

α(Σ̇,Λ0,1
J+(u∗TM))⊕ TpM

is a Fredholm operator with

indexDu∂(J+,K+) = n− μ([z+, w+]) + 2c1(A+).

Next we prove the following transversality result of the section ∂(J+,K+).

Proposition 8.3. For generic J+ ∈ JωM and any (J+,K+)-holomorphic
curve u,

D(u,p)∂(J+,K+) : T(u,p)W
1,p
α (Σ̇,M ; z+)→ Lp

α(Σ̇,Λ0,1
J+(u∗TM))⊕ TM

is surjective.

Proof. We first consider M\{p} for a fixed p, and a fixed asymptote (γ+, τ+)
in the cylindrical metric on M \{p} near the point p. For the linearization of

∂(·,K+) : W 1,p
α (Σ̇,M ; p, z+, γ+, τ+)× Jω

−→
⋃

u∈W 1,p
α (Σ̇,M ;p,z+,γ+,τ+)

⋃

J+∈Jω

Lp
α(Σ̇,Λ0,1

J+(u∗TM)),
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standard argument shows that the map

Du∂(·,K+) : T(u,J+)(W
1,p
α (Σ̇,M ; p, z+, γ+, τ+)× Jω)→ Lp

α(Σ̇,Λ0,1
J+(u∗TM))

(8.9)

is surjective for any given (J+,K+)-holomorphic curve u.
Now we enlarge the domain of ∂(·,K+) from W 1,p

α (Σ̇,M ; p, z+, γ+, τ+)×Jω

to W 1,p
α (Σ̇,M ; z+)× Jω, i.e.,

∂(·,K+) : W 1,p
α (Σ̇,M ; z+)× Jω

→
⎛

⎝
⋃

u∈W 1,p
α (Σ̇,M ;z+)

⋃

J+∈Jω

Lp
α(Σ̇,Λ0,1

J+(u∗TM))

⎞

⎠⊕ TM.

Then for any given (J+,K+)-holomorphic curve u ∈W 1,p
α (Σ̇,M ; z+),

Du∂(·,K+) : T(u,J+)(W
1,p
α (Σ̇,M ; z+)× Jω)→ Lp

α(Σ̇,Λ0,1
J+(u∗TM))⊕ TM

is surjective because (8.9) is surjective.
Now we consider the projection p: W 1,p

α (Σ̇,M ; z+) × Jω → Jω. Then by
Sard-Smale theorem, for any generic J+ ∈ Jω, specifying to J+ for the above
parameterized family of maps Du∂(·,K+),

Du∂(J+,K+) : TuW
1,p
α (Σ̇,M ; z+)→ Lp

α(Σ̇,Λ0,1
J+(u∗TM))⊕ TM

is surjective. �

To prepare for the next subsection, we define the one-jet evaluation map
for (u, o+) ∈ M1([z+, w+];A+). Recall that in the cylindrical coordinate
chart near p = u+(o+), we use the embedding

1
δ
(expI

x)−1 : Bε0(p)\{p} → (TpM,Jp)\{p} ∼= (Cn, J0)\{0} ∼= R× S2n−1

to express u = (s,Θ) ⊂ R×S2n−1 with the asymptotes Θ(τ, t)→ γ+(t) and
s(τ, t)→ 2π(τ − τ+). We define the tangential evaluation map

ev#
+ : W 1,p

α (Σ̇,M ; z+)→ R×R1(λ), u→ (τ+, γ+).

All the discussion above in this section hold for M1(K−, J−; [z−, w−];A−)
and W 1,p

α (Σ̇,M ; z−) without change of proofs.
Here the α = α(τ) is a similar (but different) weighting function as before:

(8.10) α(τ) =

{
1, τ ≤ 0,
e2π|τ |, τ ≥ 0.

We abuse the notation α and the norm ‖ · ‖1,p,α for u− and u+.
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Figure 5. The enhanced nodal Floer trajectory.

The tangential evaluation map of u ∈W 1,p
δ (Σ̇, M̃ ; z−) is defined similarly

up to the sign of τ−:

ev#
− : W 1,p

δ (Σ̇,M ; z−)→ R×R1(λ), u→ (τ−, γ−).

8.3. Off-shell formulation of enhanced nodal Floer trajectories.
Now we are ready to define the Banach manifold hosting the enhanced nodal
Floer trajectories (Figure 5). For notation brevity, we have set TxM\{0} =
T+

x M and TM\oM = T+M , where oM is the zero section of TM . For
all x in M , identifying each (TxM,Jx) with (Cn, J0), we get a family of
inhomogeneous local models

(8.11) M+
(0;2,0)(Σ̇, TxM) ∼=M(0;2,0)(Σ̇, TxM)⊕ T+

x M,

and the corresponding Banach manifolds hosting them

(8.12) Bx := W 1,p
δ,(0;2,0)(Σ̇, TxM)⊕ T+

x M,

and the Banach bundles

(8.13) Lx :=
⋃

u∈Bx

Lp
δ(Σ̇,Λ

0,1(u∗T (TxM)).

We emphasize that in defining W 1,p
δ,(0;2,0)(Σ̇, TxM), the metric h in the linear

space TxM is cylindrical, like the one we defined in C
n in Section 6: we let
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h(z) = λ(z)g(x), where g(x) is the original Riemannian metric on TxM ,
λ : TpM → R+ is the same radial function as in 6, such that λ(z) = 1

|z|2g
when |z|g is sufficiently large.

The union of these Banach manifolds, which hosts all local models in
different TxM , is

(8.14) Blmd =
⋃

x∈M

Bx :=
⋃

x∈M

W 1,p
δ,(1;2,0)(Σ̇, TxM)⊕ T+

x M

and the corresponding Banach bundle is

Llmd =
⋃

x∈M

Lx.

Here T+
x M is the summand encoding the vector �a = ∇f(x) which is not a

zero vector since we assume that the node of the nodal Floer trajectories
occur outside the set of critical points of the back-ground Morse function f .
We also note that the group

Autlmd(x) := (TxM × (R \ {0}))× R

acts on W 1,p
δ,(1;2,0)(Σ̇, TxM) where the factor TxM corresponds to the transla-

tions on TxM , R\{0} corresponds to multiplication by nonzero real constant
on TxM and the last R-factor corresponds to the domain τ -translations. This
action also induces an action on Llmd.

We let

(8.15) π :
⋃

x∈M

M+
(0;2,0)(Σ̇, TxM)→M

be the projection to the base M , and the symplectic field theory evaluation
map

evSFT = (evSFT
− , evSFT

+ ) :M+
(0;2,0)(Σ̇, TxM)→ R1(λ)×ΔM

R1(λ),

u0 →
(
γ0−, γ0+

)
,

where γ0± are the asymptotic data of the local model u0. Here we use the
fiber product R1(λ) ×ΔM

R1(λ) to emphasize that γ− and γ+ lie in the
same TpM , where p = π(u0). (We recall from Subsection 8.1 and the para-
graph right therebefore that we have made the identification of (TpM,Jp, ωp)
and C

n using the Darboux family I.)
We form the Banach manifold hosting enhanced nodal Floer trajectories

via the fiber product of

πΘ ◦ ev#
− × πΘ ◦ evSFT × πΘev

#
+ : R1(λ)× (R1(λ)×ΔM

R1(λ))×R1(λ)

(u−, u0, u+)→ (πΘ ◦ ev#
− (u−), evSFT(u0), πΘ ◦ ev#

+ (u+)) :
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Let ΔR1(λ) ⊂ R1(λ)×R1(λ) be the diagonal. Then we define

Bnodal :=
(
πΘ ◦ ev#

− × evSFT × πΘ ◦ ev#
+

)−1
(ΔR1(λ) ×ΔM

ΔR1(λ))(8.16)

= {(u−, u0, u+) ∈ B− × Blmd × B+| u−(o−) = u+(o+),

πΘ ◦ ev#
− (u−) = ev−SFT(u0), πΘ ◦ ev#

+ (u+) = ev+
SFT(u0)}

to be the Banach manifold. Due to the action of (TxM × (R \ {0}))× R on
Blmd, the same group acts on Bnodal.

From the matching condition it is clear that for any u = (u−, u0, u+) ∈
Bnodal, its tangent space is

TuBnodal ={(ξ−, ξ0, ξ+) ∈ Tu+B+ × Tu0Blmd × Tu−B−|(8.17)

v− = v+ = v0 = v, V ±
R1(λ) = V 0±

R1(λ)},
where we have the expressions

ξ± = (U±, V ±
R1(λ), V

±
R
, v±) ∈ Tu±B±,

ξ0 = (U0, V
0−
R1(λ), V

0−
R
, V 0+

R1(λ), V
0+

R
, v0) ∈ Tu0Blmd,

and the v0 ∈ TpM correspond to the variation of the base point p.
We have a natural Autlmd(x)-equivariant section

∂(J,K,f) : Bnodal → L− × Llmd × L+,

(u−, u0, u+, p)→
(
∂(J−,K−)u−, ∂(Jp,f)u0, ∂(J+,K+)u+

)
,

where p = u±(o±) is the nodal point, and ∂(Jp,f)u0 = ∂Jpu0 − ∇f(p)dτ +
Jp∇f(p)dt.

If we put more topological restrictions on u− and u+, namely if we let

Bnodal([z−, w−], [z+, w+];A−, A+) = {(u−, u0, u+) ∈ Bnodal| [u±#w±] =A±},
then similarly we have the section

∂(J,K,f) : Bnodal([z−, w−], [z+, w+];A−, A+)(8.18)

−→ L([z−, w−];A−)× Llmd × L([z+, w+];A+),

and the moduli space of enhanced nodal Floer trajectories with the back-
ground Morse function f defined in Subsection 5.1 can be interpreted as

Mnodal([z−, w−], [z+, w+];A−, A+; (K,J), (f, J0)) = (∂(J,K,f))
−1(0)

from (8.18).

Proposition 8.4. For generic J− and J+ in Jω, any enhanced nodal Floer
trajectory u = (u−, u0, u+) ∈ Mnodal([z−, w−], [z+, w+];A−, A+; (K,J), (f,
J0)) is regular, in the sense that

D(u,p)∂(J,K,f) : T(u,p)Bnodal([z−, w−], [z+, w+];A−, A+)

−→ L([z−, w−];A−)× Llmd × L([z+, w+];A+)⊕ TpM
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is surjective. Consequently, there exists a right inverse of D(u,p)∂(J,K,f),

Qε|ε=0 : L([z−, w−];A−)× Llmd × L([z+, w+];A+)⊕ TpM(8.19)

−→ T(u,p)Bnodal([z−, w−], [z+, w+];A−, A+).

Before the proof of the proposition, we state a lemma concerning the
linearization of the inhomogeneous local model equation with respect to the
variation ṽ = (0, v) ∈ T(u0,p)Blmd which is the horizontal lifting of v ∈ TpM
as constructed before for the curves u±.

Lemma 8.3. For any (u0, v) ∈M+
(0;2,0)(Σ̇, TxM) satisfying

∂(Jp,f)u0 = ∂Ju0 −∇f(p)dτ + J∇f(p)dt = 0,

and corresponding to the variation ṽ = (Xv ◦ u0, v) in the trivialization
constructed by the family ϕpp′ with v ∈ TpM , we have

(D(u0,p)∂(Jp,f)(ṽ))
v ∈ Llmd.

Consequently, the map

D(u0,p)∂(Jp,f) : Tu0Blmd → Llmd ⊕ TpM

is surjective.

Now we go back to the proof of the Proposition 8.4:

Proof. Let u = (u+, u0, u−) be an enhanced nodal Floer trajectory with the
nodal point p. In Subsection 8.2, we have proved that for generic J± ∈ Jω,

D(u±,p)∂(J±,K±) : T(u±,p)B([z±, w±];A±)→ Lp
δ(Σ̇,Λ

0,1
J±(u∗±(TM)))⊕ TpM

is surjective. By Proposition 5.4, for generic J± ∈ Jω we have that

ev− × ev+ :M1(J−,K−; [z−, w−];A−)×M1(J+,K+; [z+, w+];A+),
(8.20)

(u−, u+)→ (u−(o−), u+(o+))

is transversal to ΔM ⊂M×M . Therefore, for any η± ∈Lp
δ(Σ̇,Λ

0,1
J±(u∗±(TM))),

there exist ξ± = (U±, V ±
R1(λ), V

±
R
, v±) ∈ Tu±B([z±, w±];A±) such that

Du±∂(J±,K±)ξ± = η± and v− = v+ := v.

Then for any η0 ∈ Λ0,1
Jp

(u∗0(TTpM)), by the transversality of the local
models in C

n ∼= TpM , for u0 in TpM , there exists

ξ0 = (U0, V
0−
R1(λ), V

0+
R1(λ)) ∈ Tu0Bp

such that Du0∂(Jp,f)ξ0 = η0. Hence for (ξ0, v0) ∈ T(u0,v0)Blmd with v0 = v,

Du0∂(Jp,f)(ξ0, v0) = Du0∂Jp,fξ0 = η0.
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The proposition immediately follows from the surjectivity of Du±∂(J±,K±),
Du0∂(Jp,f) and the transversality of the evaluation map

πΘ ◦ ev#
− × πΘ ◦ ev#

+ → R1(λ)×R1(λ)

to the diagonal ΔR1(λ). For any η = (η−, η0, η+), using the above construc-
tion we defineQε|ε=0 is defined to beQε|ε=0(η) = (ξ−, ξ0, ξ+, v). ThenQε|ε=0

is a right inverse of D(u,p)∂(J,K,f) and the proposition follows. �

Remark 8.5. For the purpose of constructing approximate right inverse
later, we define the operators Q−, Q0 and Q+ by

Q−η− := ξ−, Q0η0 := ξ0, Q+η+ := ξ+

for the (η−, η0, η+) and (ξ−, ξ0, ξ+) above.

8.4. Appendix: Explosion. In this appendix, we collect various facts on
the so called, explosion construction of manifolds. We verbatim follow the
exposition in the smooth context given by Weinstein in Section 4 [We2].

Let Y ⊂ X be a submanifold. The explosion of X along Y , denoted by
E(X,Y ), is defined by beginning with the product X × R, removing the
“axis” X × {0}, and replacing it with the normal bundle N(X,Y ) =
TYX/TY to Y in X. The differentiable structure on E(X,Y ) is taken to
be the usual product structure on X × (R× {0}). Charts near X × {0} are
defined with the aid of local coordinates on X. A more precise description
of local charts near X × {0} is in order.

Let X have dimension n and Y have dimension k. We abbreviate the
coordinates (x1, . . . , xn) on R

n by (y, z), where y = (x1, . . . , xk) and z =
(xk+1, . . . , xn). Suppose that Φ is a submanifold fold chart defined on an
open subset U ⊂ X at p ∈ Y ⊂ X, i.e., a chart for the pair (X,Y ) defined
on an open subset U of (Rn,Rk) which is invariant under the retraction
(y, z) 
→ (y, 0). The corresponding chart E(Φ) for E(X,Y ) is defined on the
open subset {(y, z′, ε) | (y, εz′) ∈ U} of R

n+1 by

(8.21) E(Φ)(y, z′, ε) = (Φ(y, εz′), ε)

for ε �= 0 with E(Φ)(y, z′, 0) defined as the projection of the tangent vector
T(y,0)Φ(0, z′) into the normal bundle N(X,Y ). The following theorem is
proved by Weinstein [We2].

Theorem 8.1 (Lemma 4.3, [We2]). Let f : (X,Y ) → (Z,W ) be a smooth
mapping. Then it uniquely induces a smooth mapping E(f) : E(X,Y ) →
E(Z,W ) such that

(1) E(f) extends to the restriction f : X \ Y → Z \W ,
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(2) When Φ and Ψ are local charts of (X,Y ) and (Z,W ) respectively
and the local representative Ψ−1fΦ is written as Ψ−1fΦ = (g, h) :
(Rn,Rk) → (Rm,R	), then the local representation E(g, h) of E(f)
with respect to the charts E(Φ) and E(Ψ) is given for ε �= 0 by the
“partial difference quotient”

E(g, h)(y, z′, e) = (g(y, εz′), (1/ε)h(y, εz′), ε)

and for ε = 0 by the normal derivative

E(g, h)(y, z′, 0) = (g(y, 0), (∂h/∂z′)(y, 0), 0).

Two immediate consequences are also derived in [We2].

Corollary 8.1 (Theorem 4.4, [We2]). Assuming to each pair (X,Y ) the
exploded manifold E(X,Y ) with the differentiable structure described above
defines a covariant functor from the category of pairs of manifolds to the
category of manifolds over R.

Corollary 8.2. The identity map on X × (R \ {0}) extends to a unique
smooth mapping from E(X,Y ) to X×R. The restriction of this mapping to
N(X,Y ) is the bundle projection onto Y × {0}.

This corollary defines a canonical smooth projection map E(X,Y ) →
X × R, which we denote by πE(X,Y ).

Part II. Analysis: scale-dependent gluing and
compactification

9. Smoothing of nodal Floer trajectories I; to “disk-flow-disk”

The disk-flow-disk moduli spaces

Mpara([z−, w−]; f ; [z+, w+];A±), Mε([z−, w−]; f ; [z+, w+];A±)

have been defined in Section 4. Recall that the moduli space of “disk-flow-
disk” elements of flow time ε is

Mε([z−, w−]; f ; [z+, w+];A±) :={(u−, χ, u+) | u± ∈M(K±, J±; �z±;A±),

χ : [0, ε]→M, χ̇−∇f(χ) = 0, u−(o−)

= χ(0), u+(o+) = χ(ε)}.
We give Mε([z−, w−]; f ; [z+, w+];A±) another interpretation through

evaluation maps. This point of view is more suitable for analyzing the tran-
sition from nodal Floer trajectories to “disk-flow-disk” elements. Consider
the deformed evaluation map

φε
fev− × ev+ :M1([z−, w−];A−)×M1([z+, w+];A+)→M ×M(9.1)

(u−, u+)→ (φε
fu−(o−), u+(o+)),
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where φε
f : M → M is the time-ε flow of the Morse function f . Then it is

easy to see

Mε([z−, w−]; f ; [z+, w+];A±) = {(u−, χ, u+) |(9.2)

(u−, u+) ∈ (φε
fev− × ev+)−1(Δ), χ(τ) = φτ

fu−(o−) for 0 ≤ τ ≤ ε}.
Using the above interpretation, if

(9.3) φε
fev− × ev+ is transversal to Δ ⊂M ×M

and if Du±∂(K±,J±) are surjective, then by the inverse function theorem for
(9.1),Mε([z−, w−]; f ; [z+, w+];A±) is a manifold of dimension

dimMε([z−, w−]; f ; [z+, w+];A±)

= dimM([z−, w−];A−) + dimM([z+, w+];A+)− 2n

= (n+ μCZ([z−, w−]) + 2c1(A−)) + (n− μCZ([z+, w+]) + 2c1(A+))− 2n

= μCZ([z−, w−])− μCZ([z+, w+]) + 2c1(A−) + 2c1(A+),

if ε > 0 is sufficiently small.

Assumption: For transversality argument, from now on we assume the
critical points of f do not coincide with the nodal points of nodal Floer
trajectories, this can be achieved by a generic f .

Since we mainly care about the transition from disk-flow-disk elements
to resolved nodal Floer trajectories during the PSS cobordism, only the
disk-flow-disk elements with short-time flows will be considered. So we fix
a sufficiently small ε0 > 0 which is to be determined later, and consider
the “disk-flow-disk” moduli spaces Mε([z−, w−]; f ; [z+, w+];A±) with 0 ≤
ε ≤ ε0. The ε = 0 case corresponds to the moduli space of nodal Floer
trajectories.

Lemma 9.1. Suppose that the almost complex structures J± are generically
chosen so for any nodal Floer trajectory (u−, u+), Du±∂(K±,J±) are surjective,
and u−(o−) and u+(o+) are immersed points as in Theorem 1.2. Then there
exists ε0 > 0, such that for any (u−, χ, u+) ∈ Mε([z−, w−]; f ; [z+, w+];A±)
where ε ∈ [0, ε0], the above property is preserved, i.e. Du±∂(K±,J±) are sur-
jective, and u−(o−) and u+(o+) are immersed points.

Proof. We prove that u−(o−) and u+(o+) are immersed points. Otherwise,
there exist εi→ 0, and (ui−, χi, u

i
+)∈Mεi(K±, J±; [z−, w−], f, [z+, w+];A±),

such that at least one of ui−(o−) and ui
+(o+) is not an immersed point. Pass-

ing to a subsequence we may assume, say dui−(o−), is 0 for any i. Since the
energy of any curves ui± is uniformly bounded due to the boundary condition,
we can take a subsequence again and get a limiting nodal curve (u∞− , u∞+ )
by Gromov-compactness. The images of χi converge to the nodal point. No
bubbling can occur on u∞− or u∞+ , because if a bubble occurs on u∞+ or u∞+ ,
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then by the semi-positive condition and the genericity of J±, we can resolve
the bubble to get a at least two-dimensional family of nodal Floer trajecto-
ries, contradicting with the rigidity assumption on nodal Floer trajectories.
Therefore, the curves (ui−, ui

+) converge to (u∞− , u∞+ ) in C1 topology. This
implies du∞− (o−) = limi→∞ dui−(o−) = 0, contradicting with the immersion
condition at the nodal point.

Since u±(o±) are immersed points, u± are somewhere injective. Then the
genericity of J± implies that Du±∂(K±,J±) are surjective. �

To complete the PSS cobordism from “disk-flow-disk” configurations to
nodal Floer trajectories, we will build a collar neighborhood of

M0([z−, w−], f, [z+, w+];A±)

inMpara([z−, w−]; f ; [z+, w+];A±); More precisely, for some ε0 > 0, we will
construct a differentiable map

G :M0([z−, w−], f, [z+, w+];A±) × [0, ε0)→Mpara([z−, w−];

f ; [z+, w+];A±)

such that for each ε ∈ [0, ε0),

Gε :=G(·, ε) :M0([z−, w−], f, [z+, w+];A±)→Mε([z−, w−]; f ; [z+, w+];A±)

is a diffeomorphism. This problem is reduced to the following finite-
dimensional differential topology lemma:

Lemma 9.2. X,Y, Z are differentiable manifolds, and only X may have
boundary. X is compact, Z is a differentiable submanifold in Y , and I is an
interval containing 0. Let Φ : X × I → Y be a differentiable map. Denote
Φε := Φ(·, ε) for ε ∈ I. If Φ0 : X → Y is transversal to Z with nonempty
intersection, and Φ0(∂X) ∩ Z = ∅, then

(1) There exists ε0 > 0, such that for any ε ∈ [0, ε0], Φε is transversal to
Z;

(2) Furthermore, there exits a differentiable map G : Φ−1
0 (Z) × [0, ε0] →

Φ−1(Z), such that for any ε ∈ [0, ε0], Gε := G(·, ε) gives a diffeomor-
phism from Φ−1

0 (Z) to Φ−1
ε (Z).

Proof. Since X is compact, the compact-open topology in the function space
C1(X,Y ) coincides with the strong topology C1

S(X,Y ) as in [Hir]. Since the
set of maps transversal to Z in C1

S(X,Y ) is open, by the condition of Φ and
Φ0 we conclude that for ε0 sufficiently small,

(9.4) for all ε ∈ [0, ε0],Φε is transversal to Z.

Since Φε(X)∩Y �= ∅, and Φ0(∂X)∩Y = ∅, the pre-image of all intersections
lies in int(X), where int(X) is the interior of X. Therefore for ε0 sufficiently
small, for all ε ∈ [0, ε0]

(9.5) Φε(X) ∩ Y �= ∅
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by analyzing the local behavior of intersections. We also have Φε(∂X) ∩
Y = ∅, using the compactness of ∂X and the continuous dependence of
Φε on ε.

Clearly (9.4) implies Φ : X×[0, ε0]→ Y is transversal to Z. So Φ−1(Z) :=
W is a differentiable submanifold in X × [0, ε0]. Actually it is in int(X) ×
[0, ε0], because Φ(∂X × [0, ε0]) ∩ Z = ∅. So ∂W ⊂ X × {0, ε0}.

Note the following elementary fact during the proof of parameterized
transversality in [Hir]:

(9.6) Φε transversal to Y ⇐⇒ ε is a regular value of π : W → I,

where π : X × I → I is the natural projection. Then we have a submersion
π : W → [0, ε0] by translating (9.4) via (9.6). By (9.5) π is surjective.
Picking any metric on W , then the gradient vector field ∇π never vanishes
on W . Let the time-τ flow of the gradient vector field to be ϕτ

π. By Morse
theory, we have the diffeomorphism ϕε

π : π−1(0)→ π−1(ε) for all ε ∈ [0, ε0],
using that ∂W ⊂ X × {0, ε0}. Noting that π−1(ε) = Φ−1

ε (Z), the map G :=
ϕ

(·)
π : Φ−1

0 (Z)× [0, ε0]→ Φ−1(Z) is desired. �

First we derive

Corollary 9.1. For given generic f and J , there exists a constant ε0 >
0, such that for all (u−, χ, u+) ∈ Mε([z−, w−]; f ; [z+, w+];A±) where ε ∈
(0, ε0], the linearized operator E(u) in Section 5.1 is surjective.

Proof. In the above lemma, takeX =M1([z−, w−];A−)×M1([z+, w+];A+),
Y = M ×M , Z = Δ and Φ : X × I → Y to be

φε
fev− × ev+ :M([z−, w−];A−)×M([z+, w+];A+)→M ×M
(u−, u+)→ (φε

fu−(o−), u+(o+)),

which smoothly extends toM1([z−, w−];A−)×M1([z+, w+];A+). Then X
is a compact manifold, Φ is a differentiable map, and Φ0 = ev− × ev+ is
transversal to Z = Δ by our assumption on J±. Then by the above Lemma
9.2, the condition (9.3) can be achieved for all ε ∈ [0, ε0].

For given generic J±, Lemma 9.1 says Du−∂(K−,J−) and Du+∂(K−,J−) are
surjective for (u−, χ, u+) ∈ Mε([z−, w−]; f ; [z+, w+];A±) where ε ∈ [0, ε0].
Combining the condition (9.3), by Proposition 5.1, the corollary follows. �

Then we prove the central result of this section.

Proposition 9.1. For given generic f and J , there exists a constant ε0 > 0
and a differentiable map

G :M0([z−, w−], f, [z+, w+];A±)× [0, ε0]→M([z−, w−], f, [z+, w+];A±),
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such that for any ε ∈ [0, ε0],

Gε :=G(·, ε) :M0([z−, w−], f, [z+, w+];A±)→Mε([z−, w−]; f ; [z+, w+];A±),

is a diffeomorphism.

Proof. We take X,Y, Z and Φ the same as the above corollary. Then all
conditions in Lemma 9.2 hold except the condition Φ0(∂X) ∩ Z = ∅.
We show this condition also holds. Otherwise, we can find (u−, u+) ∈
∂(M1([z−, w−];A−)×M1([z+, w+];A+)), such that Φ0((u−, u+)) = (ev− ×
ev+)(u−, u+) ∈ Δ. In other words, u−(o−) = u+(o+), and at least one
of u− and u+ is in the compactified space M1(�z±;A±), say u+ ∈ M1

([z+, w+];A+)). Then u+ must contain some bubble. This is impossible
because it contradicts with the rigidity assumption of nodal Floer trajec-
tories, as explained in the proof of Lemma 9.1.

Then we apply part (2) of Lemma 9.2 and get the desired map G. �
From Proposition 9.1, we see the moduli space

Mpara =
⋃

ε∈[0,ε0)

Mε([z−, w−]; f ; [z+, w+];A±)

is a one-dimensional manifold with boundaryM0([z−, w−]; f ; [z+, w+];A±).

Remark 9.1. There is a slight cheating in the proof of Corollary 9.1 and
Proposition 9.1: The X := M1([z+, w+];A+)) × M1([z−, w−];A−) is not
really a compact manifold with boundary. However, for small ε0, we can show
for all ε ∈ [0, ε0], Φε(X − int(X)) ∩Δ = ∅, this is by the same argument as
in Lemma 9.1. Then we can shrink X a bit to Xshr, where Xshr is a compact
manifold with boundary, and Φε(X −Xshr)∩Δ = ∅ for all ε ∈ [0, ε0]. Then
we can replace X by Xshr and apply Proposition 9.1.

10. Smoothing of nodal Floer trajectories II; to Floer trajectories

In this section, we will carry out the gluing of the perturbed J -holomorphic
curves u± and the local model curve and produce ε-dependent one-parameter
family of resolved Floer trajectories.

Let’s recall the domains of these curves. The domain of u+ is a punctured
Riemann surfaces Σ̇+ with a puncture e+ and a marked point o+, where
Σ+
∼= S2, and Σ̇+

∼= C. Similarly, for the domain Σ̇− of u−. Let

E− = {(τ, t)|(τ, t) ∈ (−∞, 0]× S1}, O− = {(τ, t)|(τ, t) ∈ [0,+∞)× S1},
E+ = {(τ, t)|(τ, t) ∈ [0,+∞)× S1}, O+ = {(τ, t)|(τ, t) ∈ (−∞, 0]× S1}

be the analytic charts on Σ± around the punctures e± and marked points
o±, respectively. Then z = e2π(τ+it) is the given analytic coordinates near
e+ and o−, and z = e−2π(τ+it) is the analytic coordinates near e− and o+.
Note that the (τ, t) in different charts are different local coordinates, but to
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keep the notation simple we still denote them by the same variables (τ, t).
We have

u± : Σ̇± → (M,ω, J), u±(o±) = p.

We remark that the analytic charts E±, O± are unique up to τ -translation
and t-rotation.

On the E± and O± we put the metric g(−∞,0]×S1 or g[0,+∞)×S1 in the
obvious way. We extend the metric to the remaining part of Σ̇± in any way,
and then fix it.

For the gluing purpose, we need to consider three metrics on the mani-
fold M : the original metric g, the Darboux-cylindrical metric gδ,p and the
degenerating metric gδ,ε,p. The definitions of these metrics are in order:

Let δ > 0 be a fixed number less than the injective radius of (M, g).
Assume δ is so small that for every p in M , Bδ(p) is contained in a Darboux
neighborhood Up of p. Then

1
δ
(expI

p)
−1 : Bδ(p)→ B1(0) ⊂ (TpM, gp) ∼= (Cn, gst).

Via the diffeomorphism, R × S2n−1 ∼= C
n\{0}; (s,Θ) 
→ (esΘ), we can pull

back the standard metric on R × S2n−1 to define the metric on Bδ(p)\{p}
such that it is isometric to S2n−1 × (−∞, 0].

10.1. Construction of approximate solutions. Given any nodal Floer
trajectory (u−, u+), from (8.6) u± has the asymptote

|∇k(Θ±(τ, t)− γ±(t))|S2n−1 ≤ Ck e
−2πck|τ |

p ,

and

(10.1) |∇k(s±(τ, t)− 2π(τ − τ±))| ≤ Ck e
−2πck|τ |

p ,

where s± = s ◦ u± and Θ± = Θ ◦ u±. Here, the number p > 2 shouldn’t be
confused with the point p on M .

Let f : M → R be a given Morse function. We choose f so that ‖f‖C2 is
sufficiently small. In particular, we assume

(10.2) |∇f | ≤ 1,

which can be always achieved by rescaling f .
Given the nodal Floer trajectory (u−, u+) with the nodal point p, we

construct a normalized local model curves u0 in the following way:

Lemma 10.1. u0 defines a proper map and satisfies

u0 : R× S1 → (TpM,Jp) ∼= (Cn, Jst),

(t, τ)→ (Θ0(τ, t), s0(τ, t)) ∈ R× S2n−1

when |τ | large, and satisfies the followings:
• ∂u0

∂z̄ = ∇f(p).
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• In the cylindrical end of C
n, it has the same asymptote as u± in each

of its ends, in the sense that

e
2πδ|τ |

p |Θ0(τ, t)− γ±(t)|S2n−1 ∈W 1,p(O±) and

e
2πδ|τ |

p |s0(τ, t)− 2π(±τ − τ±)| ∈W 1,p(O±),(10.3)

where

O+
∼= (−∞, 0]× S1, O− ∼= [0,+∞)× S1

are the cylindrical charts of the ends {±∞}×S1 in R×S1 respectively,
• ∫S1 u0(0, t)dt = 0.

Such u0 is unique.

Proof. All the properties are immediate consequences of the expression of
the model curves u(z) = �Az + �B/z + �C + �aτ given in (6.5). Here in (6.5)
we take �A = e−2πτ+γ+(0), �B = e−2πτ−γ−(0) and �a = ∇f(p). We only
comment on the last two properties. For the last one, we have only to choose
�C = 0 in (6.5). On the other hand, for the second property, we use the
fact τ/ez → 0 as τ → ∞ and so the contribution of ∇f(p)τ is negligible
compared to Ae2π(τ+it) +Be−2π(τ+it). (Detailed calculation was carried out
in Section 7). For the uniqueness of u0, notice that w0 := u0 − ∇f(p)τ
is a holomorphic function from S1 × R to C

n, and on o± ∈ D±, w0 can
only have simple pole because the Θ component of w0 converges to simple
Reeb orbits γ±(t) ⊂ S2n−1. Therefore, the Laurent series of w0(z) must be
w0(z) = �Az + �B/z + �C for some constant vectors �A, �B and �C. Since w0 has
the same asymptote as u0, the �A, �B and �C coincides with the ones given in
the beginning of the proof. �

Remark 10.1. From the above lemma, we see u0 can be explicitly given as

(10.4) u0(τ, t) = �Az + �B/z + �aτ,

where �A = e−2πτ+γ+(0), �B = e−2πτ−γ−(0),�a = ∇f(p) and z = e2π(τ+it). We
call u0 the normalized local model, because �C has been normalized to zero.

From the expression of u0, and the definition of �A and �B, we get

(10.5) |∇k(u0(τ, t)− e2π(τ−τ+)γ+(t))| ≤ Ck e
−2πck(τ−τ+)

p , τ > 0.

in the cylindrical metric | · | in C
n for some constants Ck and ck. Similar

result holds for another end of u0 when τ < 0. Note the convergence (10.5)
is stronger than our original requirement (10.3), because δ is chosen to be
smaller than the least ck.

In Theorem 5.1, we have proved that for generic J , for any nodal Floer
trajectory (u−, u+), the [du−(o−)] and [du+(o+)] are linearly independent.
Consequently, �A and �B are linearly independent in C

n for the normalized



FLOER TRAJECTORIES WITH IMMERSED NODES 565

local model u0 sitting in TpM , where p = u+(o+) = u−(o−) is the node.
From the linear independence of �A and �B we get

(10.6) min
t∈S1
|u0(0, t)| ≥ b > 0

for some constant b.

We consider the scaled local model curve

(10.7) uε
0 := εu0 = ε( �Az + �B/z + �aτ).

From the asymptote (10.5) of u0, we derive

(10.8) |∇k(uε
0(τ, t)−e2π(τ−τ+−2R(ε))γ+(t))| ≤ Ck e−2πck(τ−τ+−2R(ε)), τ > 0.

Here

R(ε) = − 1
4π

ln ε.

Similar result holds for another end of uε
0 when τ < 0.

Lemma 10.2. Consider the scaled local model curve uε
0 chosen in (10.7).

For any given 0 < α < 2, there exists δε > ε such that

(10.9) δε → 0, δε/ε→∞
and

uε
0([−αR(ε), αR(ε)]× S1) ⊂ Bp(δε) ⊂M.

Proof. We have when τ → +∞,

|uε
0(αR(ε), t)| ∼ ε · | �A| · e2π·(−α 1

4π
ln ε) = | �A|ε1−α

2 .

Similar result holds for the other end when τ → −∞. So the choice

δε = ε1−
α
2

will do our purpose. �

We choose different cylindrical coordinates near the marked point o± of
u± and get the re-parameterization of the outer curves there (Figure 6)

uε
+ = u+(τ − 2R(ε), t) and uε

− = u−(τ + 2R(ε), t).

We compare the asymptote of uε
0 and uε

+ for τ in the range of [R(ε) −
1, R(ε) + 1]. It turns out that they get close exponentially as ε → 0: in
[R(ε)− 1, R(ε) + 1], by (10.1)

|∇k(uε
+(τ, t)− e2π(τ−τ+−2R(ε))γ+(t))|(10.10)

= |∇k(u+(τ − 2R(ε), t)− e2π(τ−τ+−2R(ε))γ+(t))|

< Ck e
−2πck|τ−τ+−2R(ε)|

p .
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Figure 6. Preglued solution.

Combining (10.8) and (10.10), we see for τ ∈ [R(ε)− 1, R(ε) + 1],

|∇k(uε
0(τ, t)− uε

+(τ, t))| < 2 max
τ∈[R(ε)−1,R(ε)+1]

Ck e
−2πck|τ−2R(ε)−τ+|

p(10.11)

≤ Ck e
−2πck|R(ε)+1−2R(ε)−τ+|

p

= Ck e
−2πck|R(ε)−1+τ+|

p → 0

as ε → 0. Similarly, we can prove the closeness of uε
0 and uε− when τ is in

[−R(ε)− 1,−R(ε) + 1].
Next, we construct the approximate solution

uε
app(τ, t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u−, τ ∈ Σ−\O−,
uε−(τ, t), τ ∈ [−2R(ε),−R(ε)− 1],
χε(τ)uε

0(τ, t)
+ (1− χε(τ))uε−(τ, t), τ ∈ [−R(ε)− 1,−R(ε) + 1],

uε
0(τ, t), τ ∈ [−R(ε) + 1, R(ε)− 1],
χε(τ)uε

0(τ, t)
+ (1− χε(τ))uε

+(τ, t), τ ∈ [R(ε)− 1, R(ε) + 1],
uε

+(τ, t), τ ∈ [R(ε) + 1, 2R(ε)],
u+, τ ∈ Σ+\O+,

(10.12)
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where the cut-off function χε : R→ [0, 1] satisfies

χε(τ) =

{
1, for |τ | ≤ R(ε)− 1,
0, for |τ | ≥ R(ε) + 1,

(10.13)

|χ′
ε(τ)| ≤ 1.(10.14)

In the above formula, the summation “+” is with respect to the linear space
structure of TpM (by the Darboux cylindrical chart, we can think the local
model lies in TpM).

Now by applying a version of the implicit function theorem or the New-
ton’s iteration method, we want to perturb uε

app to a genuine solution uε of
the resolved Floer trajectory equation

(10.15) ∂Ju
ε + (Pεχε(τ)f (uε))(0,1)

J = 0,

where

Pεχε(τ)f (uε) = εχε(τ)(JXf (uε)dτ −Xf (uε)dt)

= εχε(τ)(∇f(uε)dτ − J∇f(uε)dt).

For the simplicity of notations, we write

aε = Pεχε(τ)f (uε)

and then

aε

(
∂

∂τ

)

= εχε(τ)∇f(uε).

In the conformal coordinates (τ, t) and the cylindrical metric, we have the
identity

|aε|2 = 2
∣
∣
∣
∣a

ε

(
∂

∂τ

)∣
∣
∣
∣

2

and so it will be enough to estimate the latter norm. Therefore, we will carry
out estimation of this latter norm below.

10.2. Error estimates of approximate solutions. With the choice of
metric gε0,ε,p in the beginning of this section, we carry out the error esti-
mates, i.e., the point estimate and Lp estimate for the norm

|∂Ju
ε
app − (PKR(ε)

(uε
app))

(0,1)
J |gε0,ε,p .

Convention: In many estimates of this subsection, there are different con-
stants C’s. The exact values are not important; The importance is that all
of them are independent on ε. For this reason, we just denote them by the
same symbol C and shouldn’t cause problems.

We split this estimation into three regions:
(1) the region for |τ | ≤ 2

3R(ε),
(2) the region for 2

3R(ε) ≤ |τ | ≤ R(ε) + 1,
(3) the region for R(ε) + 1 ≤ |τ | ≤ 2R(ε).
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Case 1: For |τ | ≤ 2
3R(ε), uε

app = uε
0. Recall R(ε) = − 1

4π ln ε. By taking
α = 2

3 in Lemma 10.2, we have

uε
0

([

−2
3
R(ε),

2
3
R(ε)
]

× S1

)

⊂ Bδε(p),

where δε = ε
2
3 . The local model uε

0 ⊂ (TpM,Jp) ∼= C
n satisfies ∂Jpu

ε
0 −

ε∇f(p) = 0. Therefore,

∂Ju
ε
app − aε = (∂Ju

ε
0 − aε)− (∂Jpu

ε
0 − ε∇f(p))(10.16)

= (∂Ju
ε
0 − ∂Jpu

ε
0)− ε(χε(τ)∇f(uε

0)−∇f(p))

=
1
2
(J − Jp) duε

0 ◦ i− ε(∇f(uε
0)−∇f(p)).

We have

‖J(x)− Jp‖ ≤ C‖DJ(p)‖Bδε (p) · |x|g,(10.17)

|∇f(x)−∇f(p)| ≤ C‖D2f‖Bδε (p) · |x|g,(10.18)

where |x|g is the Euclidean norm g(p) in the Darboux chart at p.
On the other hand for the normalized local model uε

0 with z = e2π(τ+it),
we have

(10.19)
∣
∣
∣
∣
∂uε

0

∂τ

∣
∣
∣
∣
g

,

∣
∣
∣
∣
∂uε

0

∂t

∣
∣
∣
∣
g

∼ |uε
0|g ≤ Cδε.

Therefore,

(10.20) |duε
0|g ≤ Cδε.

Since uε
0

(
[−2

3R(ε), 2
3R(ε)]× S1

) ⊂ Bδε(p), on the image of uε
0, the almost

complex structure deviates from the standard complex structure Jp on TpM
by

(10.21) ‖J(uε
0)− Jp‖ ≤ C‖DJ(uε

0)‖ · |uε
0|g,

where ‖ · ‖ is the operator norm of linear maps L : V → V . We emphasize
that the norm ‖L‖ is independent on the conformal class of constant metrics
on V . Therefore, (10.21) holds regardless of our choice of metrics g or gδ,ε,p.

On the other hand, we obtain

(10.22) ε|∇f(uε
0)−∇f(p)|g ≤ Cε|uε

0|g.
Now we are ready to estimate |∂Ju

ε
app− aε|gε0,ε,p . By (10.16), (10.21) and

(10.20),

|∂Ju
ε
app − aε|g ≤ 1

2
‖J − J0‖|duε

0|g + ε|∇f(uε
0)−∇f(p)|g(10.23)

≤ C(|uε
0|g|duε

0|g + ε|uε
0|g)

≤ C(δ2ε + εδε).
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Since uε
0(τ, t) ∈ Bδε(p), and noting in Bδε(p) the metric gε0,ε,p ≤ 1

ε2 g, by
(10.23), we have

(10.24) |∂Ju
ε
app − aε|gε0,ε,p ≤

1
ε
|∂Ju

ε
app − aε|g ≤ C(δ2ε/ε+ δε).

Since δε = ε
2
3 , we obtain

(10.25) |∂Ju
ε
app − aε|gε0,ε,p ≤ C(ε

4
3
−1 + ε

2
3 ) ≤ Cε 1

3 .

This error converges to 0 as ε→ 0.

Case 2: For 2
3R(ε) ≤ |τ | ≤ R(ε)+1, by Lemma 10.2 again we have uε

0(τ, t) ∈
Bδε(p), where δε = Cε

1
2 . On the other hand,

(10.26) |uε
0(τ, t)|g ≥ ε ·min{| �A|, | �B|} · e2π· 2

3
R(ε) = βε

2
3 ,

when ε is small. So the image of uε
0(τ, t) is contained in

Bδε(p) \Bβε
2
3
(p),

where the metric gε0,ε,p is cylindrical and so gε0,ε,p(x) = 1
|x|2g g(x). Therefore,

(10.27) |∂Ju
ε
0 − aε|gε0,ε,p =

1
|uε

0(τ, t)|g
|∂Ju

ε
0 − aε|g.

Similar to the second inequality in (10.23), we have

|∂Ju
ε
app − aε|g ≤ 1

2
‖J − J0‖|duε

0|g + ε|χε∇f(uε
0)−∇f(p)|g,(10.28)

≤ C(|uε
0|g|duε

0|g + ε).

Combining (10.26),(10.27) and (10.28) we get

(10.29) |∂Ju
ε
0 − aε|gε0,ε,p ≤ C

(

|duε
0|g +

ε

βε
2
3

)

≤ C(δε + ε
1
3 ) ≤ C ′ε

1
3 .

For |uε
0(τ, t) − uε±(τ, t)|gε0,ε,p , since the metric gε0,ε,p is cylindrical in this

part, we also have from (10.11) (which is in cylindrical metric)

(10.30) |uε
0(τ, t)− uε

±(τ, t)|gε0,ε,p ≤ C e
−2πc0R(ε)

p = Cε
c0
2p .
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Combining the above (10.29) and (10.30), with respect to the metric
gε0,ε,p,

|∂Ju
ε
app − aε|gε0,ε,p(10.31)

=
∣
∣∂J (χε(τ)uε

0 + (1− χε(τ))u±)− aε
∣
∣
gε0,ε,p

≤ χε(τ)|∂Ju
ε
0 − aε|gε0,ε,p + (1− χε(τ))(|∂Ju

ε
±|gε0,ε,p + |aε|gε0,ε,p)

+ χ′
ε(τ)|uε

0 − uε
±|gε0,ε,p

≤ 1 · C ′ε
1
3 + 1 · (0 +

ε

βε
2
3

· |∇f |g) + 1 · Cε
c0
2p ,

≤ Cεmin{ 1
3
,
c0
2p

}
.

In the second of the above inequalities, we have used that uε± = u+(τ −
2R(ε), t) is J -holomorphic, |aε|gε0,ε,p ≤ 1

βε
2
3
|aε|g, and |χ′(τ)| ≤ 1.

Case 3: For R(ε) + 1 ≤ |τ | ≤ 2R(ε), uε
app = uε± are J -holomorphic, and

aε = 0, so

∂Ju
ε
app − aε ≡ 0.

In all, we have obtained the point estimate for any (τ, t) ∈ [−2R(ε), 2R(ε)]×
S1:

Err(ε) := |∂Ju
ε
app − aε|gε0,ε,p ≤ Cε

1
3 .

The Lp
αδ,ε estimate (The weight αδ,ε is defined in the next sec-

tion): Note that on Σ̇±\O± the uε
app coincides with the two original solu-

tions u+ and u−, so we only need to integrate |∂Ju
ε
app − aε|pgε0,ε,p over

[−2R(ε), 2R(ε)]× S1. Note in such region the weight function

|ρε(τ)| ≤ e2πδ·(2R(ε)) = ε−δ.

Therefore, we get

‖∂Ju
ε
app − aε‖pαδ,ε

≤ (Err(ε))p · ε−δ · 4R(ε) = −Cεmin{ p
3
,
c0
2
}−δ ln ε,(10.32)

i.e. ‖∂(Jε,Kε)u
ε
app‖p,αδ,ε

≤ L · (R(ε))
1
p · e−

4πaR(ε)
p ,(10.33)

where L and a are constant independent on ε, and a = min{1
3 ,

c0
2p} − δ

p .
If we choose 0 < δ < min{p

3 ,
c0
2 } in the beginning, then a > 0 and so

‖∂(Jε,Kε)u
ε
app‖p,αδ,ε

→ 0,

as ε → 0, the error estimate is established. For gluing purpose in later
sections, we further assume δ is small in the beginning such that 0 < δ < a.
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10.3. The off-shell setting of resolved nodal Floer trajectories.
We define the Banach manifold to host all resolved nodal Floer trajecto-
ries near the enhanced nodal Floer trajectories u = (u−, u0, u+). The con-
struction is some “smoothing” of the Banach manifold for enhanced nodal
Floer trajectories in Section 8.3. Roughly speaking, We smooth the target
(M\{p})�TpM to (M, gε0,ε,p), smooth the exponential weight for the outer
curves and local model to the exponential weight for the approximate solu-
tion, and smooth the Morse–Bott movements for the outer curves and local
model near their ends. The precise description is in order:

First we define the Banach manifold Bε
res(z−, z+; p) for any ε ∈ (0, δ0) and

p ∈M , where δ0 > 0 is a small constant to be determine later. Bε
res(z−, z+; p)

consists of maps u from Σ̇ to the Riemannian manifold (M, gε0,ε,p) satisfying:

(1) u ∈W 1,p
loc (Σ̇,M).

(2) limτ→+∞ u(τ, t) = z+(t) and limτ→−∞ u(τ, t) = z−(t) for all t ∈ S1.
(3) When τ > 0 is large enough, u(τ, t) = expz+(t) ξ(τ, t) for ξ(τ, t) ∈

W 1,p
δ ([0,∞)×S1, z∗+(TM)). Similarly, for the other end converging to

z−(t).
(4) For each u ∈ Bε

res(z−, z+; p), its tangent space TuBε
res(z−, z+; p) is iden-

tified as W 1,p
αδ,ε(u

∗(TM)), defined as the following: for V be a section
of u∗(TM), we define the W 1,p

αδ,ε norm of V to be

‖V ‖p1,p,αδ,ε
= |V (−R(ε), 0)|p + |V (R(ε), 0)|p

(10.34)

+
∫

[−2R(ε),2R(ε)]×S1

αδ,ε(τ)(|V − V0|p + |∇(V − V0)|p) dτ dt

+
∫

|τ |>2R(ε)
(|V − V0|p + |∇(V − V0)|p) dτ dt,

where in the above identity, all metric | · | are the metric gε0,ε,p, and
V0(τ, t) = β−ε (τ)Palu(τ,t)Palu(−R(ε),t)(V (−R(ε), 0))(10.35)

+ β+
ε (τ)Palu(τ,t)Palu(R(ε),t)(V (R(ε), 0)),

where in the above expression Palu(τ,t)(V (τ ′, t′)) is the parallel trans-
port of V (τ ′, t′) along the minimal geodesic of the metric gε0,ε,p from
u(τ ′, t′) to u(τ, t). The cut-off function β±ε : R → [0, 1] is smooth,
0 ≤ | d

dτ β
±
ε | ≤ 1,

β−ε (τ) =

{
1, for 2 ≤ τ ≤ 2R(ε)− 2,
0, for τ ≤ 1 or τ ≥ 2R(ε)− 1,

β+
ε (τ) =

{
1, for −2R(ε) + 2 ≤ τ ≤ −2,
0, for τ ≥ −1 or τ ≤ −2R(ε) + 1.
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The weight function αδ,ε is smooth,

(10.36) αδ,ε(τ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e2πδ|τ |, for |τ | ≤ R(ε)− 1,
∼ eπδR(ε), for |τ | ∈ [R(ε)− 1, R(ε) + 1],
e2πδ|τ−2R(ε)|, for |τ | ∈ [R(ε) + 1, 2R(ε)],
1, for |τ | ≥ 2R(ε).

In the above the “∼” means that the ratio of αδ,ε(τ) and eπδR(ε) is between
1
2 and 3

2 for |τ | ∈ [R(ε)− 1, R(ε) + 1].

Remark 10.2 (About the “Morse–Bott” variation). The vector field V0 is
induced from the “Morse–Bott” variation V (±R(ε), 0), which is the approx-
imation of the true Morse–Bott variation of the asymptotes (τ±, γ±) at infin-
ity of the enhanced nodal Floer trajectories (u−, u0, u+). Given (τ ′, t′), there
may be different minimal geodesics connecting the points u(τ, t) and u(τ ′, t′)
so the symbol Palu(τ,t) is ambiguous, but such (τ, t) form at most 1 dimen-
sional subset in R× S1 so won’t affect the ‖ · ‖1,p,αδ,ε

norm.

Remark 10.3 (About the cut-off function β±ε ). Recall for the vector field
on u+, we take out the J -holomorphic vector field induced from the Morse–
Bott move when τ < −2, and then measure the remaining part by W 1,p

δ
norm. Similarly for the vector field on any local model, we take out the J -
holomorphic vector field induced from the Morse–Bott move when |τ | > 2
and then measure the remaining part by W 1,p

δ norm. Since uε± = u±(· −
±2R(ε)), the J -holomorphic vector field induced from the Morse–Bott move
V (±R(ε)) on the approximate solution is taken out when 2 ≤ |τ | ≤ 2R(ε)−2.
That is why we design the above cut-off function β±ε .

Remark 10.4 (About the exponential weight function αδ,ε(τ)). Since we
will use the bound of the right inverses of Duε

±∂(J±,K±) and Duε
0
∂(Jp,aε)

to estimate the bound of the right inverse of Duε
app
∂(J±,K±,εf), the weight

function αδ,ε(τ) has to be the concatenation of the weight functions for uε±
and uε

0. Also the ratio between αδ,ε(τ) and them must be uniformly bounded
up and below. That is why we give the above expression for αδ,ε(τ).

Therefore, we have an ε-family of Banach manifolds Bε
res(z−, z+; p), and

an ε-family of equations ∂(Jε,Kε,εf)u
ε = 0 defined on each Banach bundle

π : Lε
res(z−, z+; p)→ Bε

res(z−, z+; p),

where

Lε
res(z−, z+; p) =

⋃

u∈Bε
res(z−,z+;p)

Lp
αδ,ε

(Λ0,1(u∗TM⊗)),
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and each fiber Lp
αδ,ε(Λ

0,1(u∗TM⊗)) consists of sections V of Λ0,1(u∗TM⊗)
such that

(10.37) ‖V ‖p,αδ,ε
=
∫

|τ |≥2R(ε)
|V |pdτdt+

∫

|τ |≤2R(ε)
αδ,ε(τ)|V |pdτdt,

where the norm | · | is in terms of the metric gε0,ε,p.
We define

Bε
res(z−, z+) :=

⋃

p∈M

Bε
res(z−, z+; p).

For u ∈ Bε
res(z−, z+), its tangent space consists of elements U = (V, v) where

V ∈ TuBε
res(z−, z+; p) and v ∈ TpM , with the norm

‖U‖1,p,αδ,ε
= ‖V ‖1,p,αδ,ε

+ |v|.

Here v represents the variation of the target Riemannian manifolds
(M, gε0,ε,p), which are parameterized by M .

Remark 10.5. The trivialization of the family of Riemannian manifolds
⋃

p∈M

(M, gε0,ε,p)

is to regard them as pointed manifolds (M,p) and use the trivialization given
in Subsection 8.1.

Let

Lε
res(z−, z+) :=

⋃

p∈M

Lε
res(z−, z+; p),

then we have a natural section

∂(Jε,Kε,εf) : Bε
res(z−, z+)→ Lε

res(z−, z+).

The linearization of ∂(Jε,Kε) at uε
app

D∂(Jε,Kε,εf)(u
ε
app) : W 1,p

αδ,ε
(u∗TM)→ Lp

αδ,ε
(Λ0,1(u∗TM⊗))

is given by

D∂(Jε,Kε,εf)(u
ε
app) = Du∂J(uε

app) +DPKε(u
ε
app).

The linearization of D∂(Jε,Kε,εf)(uε
app) with respect to v is similar to that

given in Subsections 8.2 and 8.3.
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10.4. Construction and estimates of the right inverse. Given the
approximate solution uε

app, we will construct the approximate right inverse

Qε : Lp
αδ,ε

(Λ0,1(uε
app)

∗TM)→W 1,p
αδ,ε

((uε
app)

∗TM)⊕ TpM

of the differential operator

Du∂(Jε,Kε)(u
ε
app) : W 1,p

αδ,ε
((uε

app)
∗TM)⊕ TpM → Lp

αδ,ε
(Λ0,1(uε

app)
∗TM),

and show Qε is uniformly bounded in operator norm. For notation brevity,
we write Du∂(Jε,Kε) as Du∂ if there is no danger of confusion.

The method is similar to that of gluing two J -holomorphic discs in M
using cylindrical domains, as in Section 29 in [FOOO2]. Indeed, we glue
each of the two ends of our local model u0 with the outer curves u− and
u+, respectively, and the gluing at two ends are somewhat independent, so
locally our construction looks like gluing two curves u0 with u− or u0 with
u+, respectively.

We introduce various cut-off functions to patch the approximate right
inverse.

(10.38) χ+
S (τ) =

{
0, τ ≤ S − 1,
1, τ ≥ S + 1,

with |∇χ+
S | ≤ 1, and put

χ−
S (τ) = 1− χ+

S (τ), χ0
S(τ) = 1− χ+

S (τ)− χ−
−S(τ).

In the following of this section, it is important to let S have the same order
as R(ε)) but smaller than R(ε). For convenience we set

S =
1
4
R(ε).

We also need some “transporting” and “combining” operators to define
the approximate right inverse. Recall that when τ ∈ [12R(ε), 3

2R(ε)], the
shifted outer curve uε

+(τ, t) = u+(τ − 2R(ε), t), the scaled local model
uε

0(τ, t) = εu0(τ, t) and the approximate solution uε
app(τ, t) are exponen-

tially close to each other in the cylindrical metric gε0,ε,p. Therefore, for any
|τ | < 1

2R(ε), we can define the transform

JS
0,ε : Γ(Λ0,1((u0)∗TC

n))→ Γ(Λ0,1((uε
app)

∗TM))

in the following way: given any η in Γ(Λ0,1((u0)∗TC
n)), we push forward

it to Γ(Λ0,1((uε
0)

∗TC
n)) using the scaling ε : C

n → C
n, u0 → uε

0. Then we
cut it by χ0

R(ε)+S and use parallel transport Pal0,ε along minimal geodesics
connecting uε

0(τ, t) and uε
app(τ, t) to get a section on Γ(Λ0,1((uε

app)
∗TM)).

In short, we denote

(10.39) JS
0,εη = Pal0,ε(χ0

R(ε)+S((ε)∗η))).
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Similarly, we can define the transform

JS
+,ε : Γ(Λ0,1((u+)∗TM))→ Γ(Λ0,1((uε

app)
∗TM))

as the following: for any η(τ, t) ∈ Γ(Λ0,1((u+)∗TM)), we shift it to η(τ −
2R(ε)) and regard it as a one-form on uε

+(τ, t) = u+(τ − 2R(ε), t)). We
cut it by χ+

R(ε)−S and use parallel transport Pal+,ε along minimal geodesics
connecting uε

+(τ, t) and uε
app(τ, t) to get a section on Γ(Λ0,1((uε

app)
∗TM)).

In short,

(10.40) JS
+,εη = Pal+,ε(χ+

R(ε)−S(η(τ − 2R(ε), t))).

Similarly, we define

JS
−,ε : Γ(Λ0,1((uε

−)∗TC
n))→ Γ(Λ0,1((uε

app)
∗TM))

to be

(10.41) JS
−,εη = Pal−,ε(χ−

−R(ε)+S(η(τ + 2R(ε), t))).

For the reversed ones

JS
ε,0 : Γ(Λ0,1((uε

app)
∗TM))→ Γ(Λ0,1((u0)∗Cn)),

JS
ε,+ : Γ(Λ0,1((uε

app)
∗TM))→ Γ(Λ0,1((u+)∗TM)),

JS
ε,− : Γ(Λ0,1((uε

app)
∗TM))→ Γ(Λ0,1((u−)∗TM)),

the definitions are similar. For example for JS
ε,+, for any η in Γ(Λ0,1((uε

app)
∗

TM)), we cut it by χ+
R(ε)−S then use parallel transport Palε,+ from

uε
app to uε

+ to get an element in Γ(Λ0,1((uε
+)∗TM)), and then shift it to

Γ(Λ0,1((u+)∗TM)). In short,

(10.42) JS
ε,+η = Palε,+(χ+

R(ε)−S(τ + 2R(ε))(η(τ + 2R(ε), t))).

It is easy to check the following identities:

JS
0,ε ◦ JS

ε,0(χ
0
R(ε)η) = χ0

R(ε)η,

JS
+,ε ◦ JS

ε,+(χ+
R(ε)η) = χ+

R(ε)η,(10.43)

JS
−,ε ◦ JS

ε,−(χ−
R(ε)η) = χ−

R(ε)η.

For an enhanced nodal Floer trajectory u = (u−, u0, u+), the “combining”
operator

IS : TuW
1,p
α → Tuε

app
W 1,p

αδ,ε

is defined as the following: for ξ = (ξ−, ξ0, ξ+) ∈ TuBnoal (defined in (8.17)),
i.e.,

(10.44) ξ− ∈ Tu−W
1,p
α (Σ̇, M̃ ; z−), ξ0 ∈ Tu0Blmd, and ξ+ ∈W 1,p

α (Σ̇, M̃ ; z+)



576 Y.-G. OH AND K. ZHU

with the matching condition

ξ−(+∞, t) = ξ0(−∞, t) = V −(t), ξ+(−∞, t) = ξ0(+∞, t) = V +(t),
(10.45)

then by the above ε-scaling and ±2R(ε) shifting we can regard ξ−, ξ0 and
ξ+ as the elements in Tuε

−W
1,p
αε (Σ̇, M̃ ; z−), Tuε

0
Blmd and Tuε

+
W 1,p

αε (Σ̇, M̃ ; z+),
respectively, with the same matching condition (10.45) (here the weighting
function αε(τ) is the shifting of the weighting function α, namely αε(τ) =
α(τ − ±2R(ε)) for uε±, respectively). For convenience we still denote them
by ξ−, ξ0 and ξ+. Then we define

IS(ξ−, V −, ξ0, V +, ξ+)(τ, t)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ+(τ, t), τ ∈ [54R(ε),+∞),
V + + χ−

R(ε)+S(Pal0,ε(ξ0)− V +)

+χ+
R(ε)−S(Pal+,ε(ξ+)− V +), τ ∈ [34R(ε), 5

4R(ε)],

ξ0(τ, t), τ ∈ [−3
4R(ε), 3

4R(ε)],
V − + χ+

−R(ε)−S(Pal0,ε(ξ0)− V −)

+χ−
−R(ε)+S(Pal−,ε(ξ−)− V −), τ ∈ [−3

4R(ε),−1
4R(ε)],

ξ−(τ, t), τ ∈ (−∞,−5
4R(ε)].

(10.46)

In the above expression the V + should be regarded as a vector field obtained
by the parallel transport of V +(t) to uε

app(τ, t) in the following way: In the
cylindrical coordinate (s,Θ) of M\{p}, write V +(t) = (V +

R
, V +

R1(λ)(t)) ∈
T(τ+,γ+(t))(R × S2n−1). For uε

app close enough to (u−, u0, u+), and |τ | ∈
[34R(ε), 5

4R(ε)], uε
app(τ, t) is in the the cylindrical metric part of (M, gε0,ε,p),

which can be isometrically identified as a part of R × S2n−1. Then we use
the connection of R× S2n−1 to do the parallel transport, namely, transport
V +

R
trivially , and transport V +

R1(λ)(t) along the minimal geodesic connecting
γ+(t) and Θ(uε

app(τ, t)) in S2n−1. We remark that the above intropolation
IS also performs on the common base variation v ∈ TpM shared by ξ−, ξ0
and ξ+, resulting in v again.

Remark 10.6. The somewhat complicated interpolation among V ±, ξ0 and
ξ± using χ±

±R(ε)±S instead of the simple interpolation between ξ0 and ξ±
using χ±

±R(ε) is responsible for the better accuracy of our approximate right
inverse with respect to the exponential weight αδ,ε, because it makes the
interpolation happen at the places τ = ±R(ε) ± S avoiding the “peaks” of
the weight function αδ,ε at τ = ±R(ε). We will see the advantage of this
while doing the estimates of the approximate right inverse later.

Now we define the approximate right inverse Qε for ε > 0 using the right
inverse Qε|ε=0 on (u−, u0, u+) defined (8.19). For η ∈ Lp

αδ,ε(Λ
0,1(uε

app)
∗TM),
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we let

Qε(η) = IS
(
Qε|ε=0(JS

ε,−(χ−
R(ε)η), J

S
ε,0(χ

0
R(ε)η), J

S
ε,+(χ+

R(ε)η))
)

= IS(Q− ◦ JS
ε,−(χ−

R(ε)η), V
−
ε , Q0 ◦ JS

ε,0(χ
0
R(ε)η), V

+
ε , Q+ ◦ JS

ε,+(χ+
R(ε)η))

= IS(ξε,−, V −
ε , ξε,0, V

+
ε , ξε,+, v),

where

ξε,− = Q− ◦ JS
ε,−(χ−

R(ε)η), ξε,0 = Q0 ◦ JS
ε,0(χ

0
R(ε)η), ξε,+ = Q+ ◦ JS

ε,+(χ+
R(ε)η)

(10.47)

and V +
ε , V

−
ε are their matching asymptotes at infinity, namely

V −
ε (t) = ξε,−(+∞, t) = ξε,0(−∞, t), V +

ε (t) = ξε,+(−∞, t) = ξε,0(+∞, t),
and v ∈ TpM is the common base variation shared by ξ−, ξ0 and ξ+.

Convention of uniform constants: In the remaining part of this subsec-
tion, in many estimates there are different constants C’s. The exact values
are not important. The importance is that all of them are independent on ε.
For this reason, we just denote them by the same symbol C and shouldn’t
cause problems.

We show the norm of Qε is uniformly bounded:

Proposition 10.1. There exists a constant C = C(δ) > 0 independent on
ε such that

‖Qε(η)‖1,p,αδ,ε
≤ C‖η‖p,αδ,ε

,

for all η ∈ Lp
αδ,ε(Λ

0,1(uε
app)

∗TM).

Proof. We first show that for (ξ−, ξ0, ξ+) in (10.44) with matching condition
(10.45), and S = 1

4R(ε),

‖IS(ξ−, V −, ξ0, V +, ξ+)‖1,p,αδ,ε
≤ C(‖ξ−‖1,p,α + ‖ξ0‖1,p,δ + ‖ξ+‖1,p,α),

(10.48)

where C is independent on ε.
By the definition of IS , to prove (10.48), it is enough to estimate

the norm of the right-hand side on [−2R(ε), 2R(ε)] × S1. Let ξε
app =

IS(ξ−, V −, ξ0, V +, ξ+)). Then

ξε
app(τ, t) = Pal0,ε(ξ0) + Pal+,ε(ξ+)− V +, for τ ∈ [R(ε)− 1, R(ε) + 1],

ξε
app(τ, t) = Pal0,ε(ξ0) + Pal−,ε(ξ−)− V −, for τ ∈ [−R(ε)− 1,−R(ε) + 1].

By Sobolev inequality and the definitions of the norms ‖ · ‖1,p,δ and ‖ · ‖1,p,α,
we have the point estimate

|ξε
app(±R(ε))− V ±| ≤ C e

−2πδR(ε)
p (‖ξ0‖1,p,δ + ‖ξ±‖1,p,α).
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We also have the energy estimate
[∫

[0,2R(ε)]×S1

αδ,ε · (|∇(Paluε
app(τ,t)(ξ

ε
app(R(ε)))− V +)|p(10.49)

+ |Paluε
app(τ,t)(ξ

ε
app(R(ε)))− V +|p) dτ dt

] 1
p

≤ C(‖ξ−‖1,p,α + ‖ξ0‖1,p,δ + ‖ξ+‖1,p,α)

and a similar inequality for V − in [−2R(ε), 0].
Postponing the proof of (10.49) to the next lemma, it is enough to estimate

∫

[0,2R(ε)]×S1

αδ,ε · (|∇(ξε
app − V +)|p + |ξε

app − V +|p) dτ dt

and ∫

[−2R(ε),0]×S1

αδ,ε · (|∇(ξε
app − V −)|p + |ξε

app − V −|p)dτdt.

Since the above two terms are similar, we only estimate the first term. The
first term is estimated by

C

∫

[0,2R(ε)]×S1

e2πδ|τ | · (|χ−
R(ε)+S(τ)(ξ0 − V +)|p

+ |∇(χ−
R(ε)+S(τ)(ξ0 − V +))|p) dτ dt

+ C

∫

[0,2R(ε)]×S1

α(τ) · (|χ+
R(ε)−S(τ)(ξ+ − V +)|p

+ |∇(χ+
R(ε)−S(τ)(ξ+ − V +))|p) dτ dt.

This is because the weight αδ,ε(τ, t) is estimated by e2πδ|τ | and α(τ), respec-
tively, on the support of χ−

R(ε)+S(τ) and χ+
R(ε)−S(τ) . Then it is easy to

estimate the above expression by the right-hand side of (10.48).
To compete the proof of Proposition 10.1 it is enough to show

(10.50) ‖JS
ε,±(χ±

R(ε)η)‖p,α ≤ B‖η‖p,αδ,ε
, ‖JS

ε,0(χ
0
R(ε)η)‖p,δ ≤ B‖η‖p,αδ,ε

.

for some fixed constant B. Note that

JS
ε,±(χ±

R(ε)η) = Palε,±(χ±
R(ε)η),

JS
ε,0(χ

0
R(ε)η) = Palε,0(χ0

R(ε)η),

and the weight αδ,ε(τ) restricting on the support of χ−
R(ε), χ

0
R(ε), χ

+
R(ε) agrees

with the weights of uε−, uε
0 and uε

+, respectively (more precisely, they agree
in the sense that their ratio remains in the finite interval [12 ,

3
2 ]), (10.50)

follows by taking B = 2. �
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Lemma 10.3. There exists a constant C independent on ε (but may be
dependent on δ) such that

[∫

[0,2R(ε)]×S1

αδ,ε ·
(
|∇(Paluε

app(τ,t)(ξ
ε
app(R(ε)))− V +)|p(10.51)

+ |Paluε
app(τ,t)(ξ

ε
app(R(ε)))− V +|p

)
dτdt

] 1
p

≤ C(‖ξ−‖1,p,α + ‖ξ0‖1,p,δ + ‖ξ+‖1,p,α)

and
[∫

[−2R(ε),0]×S1

αδ,ε ·
(
|∇(Paluε

app(τ,t)(ξ
ε
app(−R(ε)))− V −)|p(10.52)

+ |Paluε
app(τ,t)(ξ

ε
app(−R(ε)))− V −|p

)
dτdt

] 1
p

≤ C(‖ξ−‖1,p,α + ‖ξ0‖1,p,δ + ‖ξ+‖1,p,α).

Proof. We only prove the first inequality; the second one is similar. Put

V (τ, t) = Paluε
app(τ,t)(ξ

ε
app(R(ε)))− Paluε

app(τ,t)V
+.

Then for τ ∈ [R(ε)− S,R(ε) + S],

|V (τ, t)| = |χ−
R(ε)+S(τ)

(
Paluε

app(τ,t)(ξ0(R(ε)))− Paluε
app(τ,t)V

+
)

(10.53)

+ χ+
R(ε)−S(τ)

(
Paluε

app(τ,t)(ξ+(−R(ε)))− Paluε
app(τ,t)V

+
)|

≤ |Paluε
app(τ,t)(ξ0(R(ε)))− Paluε

app(τ,t)V
+|

+ |Paluε
app(τ,t)(ξ+(−R(ε)))− Paluε

app(τ,t)V
+|.

Equation (10.53) still holds outside [R(ε)− S,R(ε) + S] by the definition of
V (τ, t).

For the third row in (10.53), using the invariance of vector norm under
parallel transport from the tangent space at uε

app(τ, t) in M to the tangent
space at uε

0(R(ε)) in M , we get

|Paluε
app(τ,t)(ξ0(R(ε)))− Paluε

app(τ,t)V
+|

= |ξ0(R(ε))− Paluε
0(R(ε))Paluε

app(τ,t)V
+|

≤ |ξ0(R(ε))− V +|+ |V + − Paluε
0(R(ε))Paluε

app(τ,t)V
+|.(10.54)

To estimate the second term of the last inequality, we only need to consider
the parallel transport of V + in the S2n−1 component, since the R component
has trivial connection. We need to compare the difference of the parallel
transport of V +

Rλ
along two different geodesic paths in S2n−1: one is from
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γ+(t) to Θ ◦ uε
0(R(ε), t), the other is from γ+(t) to Θ ◦ uε

app(τ, t) and then
to Θ ◦uε

0(R(ε), t). Since parallel transport is governed by a first-order linear
ODE, from the exponential convergence of Θ ◦ uε

app(τ, t) and Θ ◦ uε
0(R(τ, t)

to γ+(t), and the C0 continuous dependence of solutions of ODE on its
coefficients, we get

|Paluε
app(τ,t)(ξ0(R(ε)))− Paluε

app(τ,t)V
+|(10.55)

≤ |ξ0(R(ε))− V +|+ C e
−2πc(R(ε)−|τ−R(ε)|)

p |V +|.

Similar argument yields

|Paluε
app(τ,t)(ξ+(−R(ε)))− Paluε

app(τ,t)V
+|(10.56)

≤ C|ξ+(−R(ε))− V +|+ C e
−2πc(R(ε)−|τ−R(ε)|)

p |V +|.

It is obvious that (10.55) and (10.56) hold when τ is outside [R(ε)−S,R(ε)+
S], by definitions of the cut functions. Plugging these in (10.53) we have the
point estimate

|V (τ, t)| ≤ C(|ξ0(R(ε))− V +|+ |ξ+(−R(ε))− V +|)(10.57)

+ C e
−2πc(R(ε)−|τ−R(ε)|)

p |V +|

for all τ . Similarly, we can estimate |∇V (τ, t)|, using the C1 continuous
dependence of solutions of ODE on its coefficients, and the C1 exponential
convergence of Θ ◦ uε

app(τ, t) and Θ ◦ uε
0(R(τ, t) to γ+(t). We get

|∇V (τ, t)| ≤ C(|ξ0(R(ε))− V +|+ |(∇ξ0)(R(ε))−∇V +|)(10.58)

+ C(|ξ+(−R(ε))− V +|+ |(∇ξ+)(−R(ε))−∇V +|)
+ C e

−2πc(R(ε)−|τ−R(ε)|)
p |V +|.

Now we integrate (10.57) and (10.58) on [0, 2R(ε)] × S1 to get the W 1,p
αδ,ε

estimate of V (τ, t). We have
∫

[0,2R(ε)]×S1

(|V (τ, t)|p + |∇V (τ, t)|p)αδ,ε(τ) dτ dt

≤ C
[
|ξ0(R(ε))− V +|p + |ξ+(−R(ε))− V +|p

+ |(∇ξ0)(R(ε))−∇V +|p + |(∇ξ+)(−R(ε))−∇V +|p
]e2πδR(ε)

δ

+
C

c− δ e−2π(c−δ)R(ε)|V +|p
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which becomes

C
[(
|ξ0(R(ε))− V +|p + |(∇ξ0)(R(ε))−∇V +|p

)

+
(
|ξ+(−R(ε))− V +|p + |(∇ξ+)(−R(ε))−∇V +|p

)]e2πδR(ε)

δ

+
C

c− δ e−2π(c−δ)R(ε)|V +|p

≤ C
[∫

[R(ε)−1,R(ε)+1]×S1

(
|ξ0(τ, t)− V +|p + |(∇ξ0)(τ, t)−∇V +|p

)

× e−2πδ(R(ε)−τ)dτdt+
∫

[−R(ε)−1,−R(ε)+1]×S1

(
|ξ+(τ, t)− V +|p

+ |(∇ξ+)(τ, t)−∇V +|p
)
e−2πδ(R(ε)+τ)dτdt

]

× e2πδR(ε)

δ
+

C

c− δ e−2π(c−δ)R(ε)|V +|p

≤ C
[ ∫

R×S1

(
|ξ0(τ, t)− V +|p + |(∇ξ0)(τ, t)−∇V +|p

)
e−2πδ|τ | dτ dt

+
∫

R×S1

(
|ξ+(τ, t)− V +|p + |(∇ξ+)(τ, t)−∇V +|p

)
α(τ) dτ dt

]

+
C

c− δ e−2π(c−δ)R(ε)|V +|p,

where in the last inequality we have used Sobolev embedding W 1,p ↪→ C0,
and that e2πδ(R(ε)−τ) restricted on [R(ε) − 1, R(ε) + 1] (or e2πδ(R(ε)+τ)

restricted on [−R(ε) − 1,−R(ε) + 1]) is bounded between constants e−2πδ

and e2πδ independent on ε.
Hence

[∫

[0,2R(ε)]×S1

αδ,ε ·
(
|∇(Paluε

app(τ,t)(ξ
ε
app(R(ε)))− V +)|p

+ |Paluε
app(τ,t)(ξ

ε
app(R(ε)))− V +|p

)
dτdt

] 1
p

≤ C(‖ξ−‖1,p,α + ‖ξ0‖1,p,δ + ‖ξ+‖1,p,α).

The lemma follows. �

To show Qε is an approximate right inverse, we start with the follow-
ing lemma concerning the “uniform stabilization” property of the action
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of Q0 and Q± on compactly supported (or one side compact supported)
one-forms η:

Lemma 10.4. There exist a constant C independent on δ and ε such that
(1) If η0 ∈ Lp

δ(Λ
0,1(u0)∗Cn), then for any ξ0 = Q0(η0) with asymptote V ±

on its two ends, we have

|ξ0(τ, t)− V +| ≤ C e
−2πδ|τ |

p ‖η0‖p,δ, for τ > 1,(10.59)

|ξ0(τ, t)− V −| ≤ Ce
−2πδ|τ |

p ‖η0‖p,δ, for τ < −1,(10.60)

(2) If η± ∈ Lp
α(Λ0,1(u±)∗TM), then for any ξ± = Q±(η±) with the asymp-

tote V ± as τ → ±∞, we have

|ξ+(τ, t)− V +| ≤ Ce
−2πδ|τ |

p ‖η+‖p,α, for τ < −1,(10.61)

|ξ−(τ, t)− V −| ≤ Ce
−2πδ|τ |

p ‖η−‖p,α, for τ > 1,(10.62)

where α is the weighting function we introduced in Subsection 8.2.

Proof. The proofs of the inequalities are similar, so we just prove (10.61). By
definition |ξ+−V +| ∈W 1,p

α (u∗+(TM)). Suppose τ ∈ (L−1, L+1) ⊂ (−∞, 0]

for some L, then |ξ+(τ, t)−V +|e
2πδ|τ |

p ∈W 1,p([L− 1, L+ 1]×S1, u∗+(TM)).
By Sobolev embedding C0([L−1, L+1]×S1, u∗+(TM)) ↪→W 1,p([L−1, L+
1] × S1, u∗+(TM)), there is a constant C independent of L and depending
only on the metric g on the compact M , such that

|ξ+(τ, t)− V +|e
2πδ|τ |

p ≤ C · ‖(ξ+(τ, t)− V +)e
2πδ|τ |

p ‖W 1,p([L−1,L+1]×S1,u∗
+(TM))

≤ C‖ξ+‖1,p,α (see (10.34))

≤ C‖Q+‖‖η+‖p,α (by Proposition 10.1).

Hence,

|ξ+(τ, t)− V +| ≤ C e
−2πδ|τ |

p ‖η+‖p,α.

�
The following lemma concerns the commutativity of the operator D∂ with

the operators IS and JS∗,ε:

Lemma 10.5. For any η ∈ Lp
αδ,ε(Λ

0,1(uε
app)

∗TM) and the corresponding
ξε,−, ξε,0 and ξε,+ defined in (10.47), and S = 1

4R(ε), we have

(10.63) ‖(Duε
app
∂ ◦ IS)(ξε,−, ξε,0, ξε,+)

− ((JS
−,ε + JS

0,ε + JS
+,ε) ◦D(u−,u0,u+)∂(ξε,−, ξε,0, ξε,+))‖p,αδ,ε

≤ C(e−4πδS
p + dist(uε

app, u
ε
−) + dist(uε

app, u
ε
+) + dist(uε

app, u
ε
0)
)‖η‖p,αδ,ε

,

where C is a constant independent on δ and ε.
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Proof. There are three reasons why I and J do not commute with Duε
app
∂

andD(u−,u0,u+)∂. One is that we use the parallel transport along the minimal
geodesics from uε

app(τ, t) to uε
0(τ, t) and uε±(τ, t) and vice versa. The terms

caused by parallel transport are estimated by the second, third and the forth
terms of the right-hand side of the inequality.

The second reason is that on u0 we use Du0∂Jp while on the εu0 portion of
uε

app we useDεu0∂J . The deviation of J from Jp is controlled by dist(εu0(τ, t),
p). The estimate of (10.63) on this part is similar to the ∂uε

app error estimate
we have carried out in Subsection 10.2, which takes care of the deviation
of J from Jp, which we do not repeat. This contribution is of the order

C e
−4πδS

p ‖η‖p,αδ,ε
, if we choose δ < pmin{1

3 ,
c0
2p} in the beginning (see (10.31)

for the relevant estimate).
The third and more essential point is that we have used the cut-off func-

tions. We need to control the terms caused by χ±
±R(ε)±S

′(τ)(Pal±,ε(ξε,±) −
V ±) and χ±

±R(ε)±S

′(τ)(Pal0,ε(ξε,0) − V ±). By the definition of the cut-off
functions, these terms are supported in

±[R(ε)± S − 1, R(ε)± S + 1]× S1 ⊂ R× S1.

For (τ, t) in these regions, by Lemma 10.4, these terms are controlled by
C e−4πδS‖η‖p,αδ,ε

. For example,

|χ+
R(ε)−S

′(τ)(Pal+,ε(ξε,+(τ, t))− V +)|

≤ C e
−2πδ|τ−2R(ε)|

p ‖Q+ ◦ JS
ε,+(χ+

R(ε)η)‖p,α (Lemma 10.4)

≤ C e
−2πδ·(R(ε)+S)

p ‖Q+‖‖JS
ε,+(χ+

R(ε)η)‖p,α

≤ C e
−2πδ·(R(ε)+S)

p ‖Q+‖‖η‖p,αδ,ε
,

where in the last inequality we have used (10.50).
On the other hand, the weight αδ,ε on the support of χ+

R(ε)−S

′(τ) is

e2πδ|τ | ≤ e2πδ·(R(ε)−S+1). Therefore, the Lp
αδ,ε contribution from these terms

is no more than

Ce−2πδ(R(ε)+S)e2πδ(R(ε)−S+1)‖η‖p,αδ,ε
≤ Ce−4πδS‖η‖p,αδ,ε

.

The proposition follows. �
With the above lemmas we can prove that Qε is an approximate right

inverse:

Proposition 10.2. For sufficiently small ε > 0,

(10.64) ‖(Duε
app
∂ ◦Qε)η − η‖p,αδ,ε

≤ 1
2
‖η‖p,αδ,ε

for all η ∈ Lp
αδ,ε(Λ

0,1(uε
app)

∗TM).
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Proof. From the definition of Qε and Lemma 10.5, we have

|(Duε
app
∂ ◦Qε)η − η‖p,αδ,ε

= ‖(Duε
app
∂ ◦ IS)(ξε,−, ξε,0, ξε,+)− η‖p,αδ,ε

≤ ‖(JS
−,ε + JS

0,ε + JS
+,ε) ◦D(u−,u0,u+)∂ ◦ (Q−JS

ε,−χ
−
R(ε)η,Q0J

S
ε,0χ

0
R(ε)η,

Q+J
S
ε,+χ

+
R(ε)η)− η‖p,αδ,ε

+ o(S)‖η‖p,αδ,ε

= ‖(JS
−,ε + JS

0,ε + JS
+,ε) ◦ (JS

ε,−χ
−
R(ε)η, J

S
ε,0χ

0
R(ε)η, J

S
ε,+χ

+
R(ε)η)− η‖p,αδ,ε

+ o(S)‖η‖p,αδ,ε

= ‖χ−
R(ε)η + χ0

R(ε)η + χ+
R(ε)η − η‖p,αδ,ε

+ o(S)‖η‖p,αδ,ε

= o(S)‖η‖p,αδ,ε
,

where o(S) is a term going to 0 when S →∞, and the second-to-last identity
is due to (10.43) and χ−

R(ε) + χ0
R(ε) + χ+

R(ε) = 1.
When ε is sufficiently small, S = 1

4R(ε) is very large and we get

(10.65) ‖(Duε
app
∂ ◦Qε)η − η‖p,αδ,ε

≤ 1
2
‖η‖p,αδ,ε

.

�
By (10.65), Duε

app
∂ ◦Qε is invertible, and

‖(Duε
app
∂ ◦Qε)−1‖ = ‖Σ∞

k=0(Duε
app
∂ ◦Qε − id)k‖ ≤ Σ∞

k=0

1
2k

= 1.

So we can construct the true right inverse for Duε
app
∂ to be Qε ◦ (Duε

app
∂ ◦

Qε)−1. For convenience we still denote it by Qε. From its construction and
Proposition 10.1 we see ‖Qε‖ is bounded by a uniform constant C for all
ε > 0.

Lemma 10.6. For all ε > 0, and ξ ∈ Tuε
app
Bε

res(z−, z+), we have the uniform
Sobolev inequality

(10.66) |ξ|∞ ≤ Cp‖ξ‖1,p,αδ,ε
,

where the constant Cp is independent on ε.

Proof. Since the base variation term |v| appears on both sides of the above
inequality, we can assume v = 0 for ξ. For the maps uε

app : R × S1 →
(M, gε0,ε,p), the domain R× S1 with standard metric is noncollapsing; The
targets (M, gε0,ε,p) for all 0 < ε < ε0 and p ∈M is a family of noncollasping
Riemannian manifolds. Therefore, the Sobolev constant

cp(uε
app) := sup

0
=ξ∈Γ((uε
app)∗TM)

|ξ|L∞

‖ξ‖W 1,p

is uniformly bounded above for all ε, where Γ((uε
app)

∗TM) is the set of all
C∞

0 sections of (uε
app)

∗TM . So we have a uniform constant cp such that
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| · |L∞ ≤ cp‖ · ‖1,p. Certainly this is still true if we change the W 1,p norm to
positive exponential weighted norm: | · |L∞ ≤ cp‖ · ‖1,p,δ, where the weight
δ(τ, t) is e2πδ|τ | on R× S1.

However, our norm ‖ · ‖1,p,αδ,ε
is not the usual weighted Sobolev norm,

because we first take out the “Morse–Bott variation” of ξ and then mea-
sure the remaining part by the weighted Sobolev norm. To get the Sobolev
inequality, notice that

|ξ(τ, t)| ≤ |ξ − β±ε (τ)Paluε
app(τ,t)Paluε

app(±R(ε),t)ξ(±R(ε), 0)|+ |ξ(±R(ε), 0)|.
Apply | · |L∞ ≤ cp‖ · ‖1,p,δ to the first term on the right-hand side of the
above inequality, and recall the definition of the norm ‖ · ‖1,p,αδ,ε

, then we
get

|ξ|∞ ≤ max{cp, 1}‖ξ‖1,p,αδ,ε
.

Letting Cp = max{cp, 1}, the lemma follows. �

Proposition 10.3. For every uε
app ∈ Bε

res(z−, z+), there exist constants
hε = Ke−2πδR(ε), where the constant K is independent on ε, such that for
every 0 < ε ≤ ε0, and every ξ ∈ Tuε

app
(Bε

res(z−, z+)) with ‖ξ‖1,p,αδ,ε
≤ hε, we

have

(10.67) ‖dFuε
app

(ξ)ξ′ − (Duε
app
∂(Jε,Kε))ξ

′‖p,αδ,ε
≤ 1

2C
‖ξ′‖1,p,αδ,ε

for all ξ′ ∈ Tuε
app

(Bε
res(z−, z+)). Here C is the uniform bound for ‖Qε‖.

Proof. The proof is a variation of the Proposition 3.5.3 in [MS]. The point
estimate is the same as [MS]. The main differences are that our norm
‖ · ‖1,p,αδ,ε

is not the usual W 1,p norm in [MS], and our target manifold
(M, gε0,ε,p) is stretching when ε→ 0.

Let Fuε
app

: Tuε
app
Bε

res(z−, z+)→ Lp
αδ,ε(Λ

0,1(uε
app)

∗TM)) be

Fuε
app

(ξ) = (Φuε
app

(ξ))−1(∂(Jε,Kε )(expuε
app

ξ)),

where Φuε
app

(ξ) : (uε
app)

∗TM → (expuε
app

(ξ))∗TM is the parallel transport in
(M, gε0,ε,p) along the geodesics s → expuε

app(z)(sξ(z)). Then the differential
of Fuε

app
satisfies Fuε

app
(0) = Duε

app
∂(Jε,Kε).

For each ε > 0, (M, gε0,ε,p) is a compact Riemannian manifold. The point
estimate in the proof of Proposition 3.5.3 in [MS] yields

(10.68) |dFuε
app

(ξ)ξ′ −Duε
app
∂(Jε,Kε)ξ

′| ≤ A(|du||ξ||ξ′|+ |∇ξ||ξ′|+ |ξ||∇ξ′|).
Here the constant A > 0 is determined by the Sobolev constant Cp, hence
A is uniform for all ε > 0.

By our construction of uε
app, there exists a uniform constant B for all

ε > 0, such that |duε
app(τ, t)|gε0,ε,p ≤ B for all (τ, t) ∈ R × S1. We consider

three cases for ξ:
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Case 1: ξ(±R(ε), 0) = 0, i.e. there is no Morse–Bott variation. In this case,

‖ξ‖1,p,αδ,ε
is the usual weighted Sobolev norm. Multiplying e

2πδ|τ |
p to both

sides of (10.68) and taking the Lp integration over R× S1, we get

‖dFuε
app

(ξ)ξ′ −Duε
app
∂(Jε,Kε)ξ

′‖p,αδ,ε

≤ A (B‖ξ‖1,p,αδ,ε
|ξ′|∞ + ‖ξ‖1,p,αδ,ε

|ξ′|∞ + |ξ|∞‖ξ′‖p,αδ,ε

)

≤ A(B + 2Cp)‖ξ‖1,p,αδ,ε
· Cp‖ξ′‖p,αδ,ε

,

where in the last inequality we have used the Sobolev inequality (10.66).
The proposition is proved by taking hε = (ACp(B + 2Cp))−1 1

2C .

Case 2: ξ(τ, t) = β±ε (τ)Paluε
app(τ,t)Paluε

app(±R(ε),t)ξ(±R(ε), 0), i.e., ξ is
purely induced from the Morse–Bott variation. In this case, ‖ξ‖1,p,αδ,ε

=
|ξ(R(ε), 0)|, and by construction |ξ|∞ ≤ ‖ξ‖1,p,αδ,ε

. We also have

|∇ξ|∞ =
∣
∣
∣∇
(
β±ε (τ)Paluε

app(τ,t)Paluε
app(±R(ε),t)ξ(±R(ε), 0)

)∣
∣
∣
∞

≤ |ξ(±R(ε), 0)|+ |duε
app|∞ · |ξ(±R(ε), 0)|

≤ (1 +B)|ξ(±R(ε), 0)|
= (1 +B)‖ξ‖1,p,αδ,ε

.

Therefore at any (τ, t),

|du||ξ||ξ′|+ |∇ξ||ξ′|+ |ξ||∇ξ′|
≤ B‖ξ‖1,p,αδ,ε

|ξ′|∞ + (1 +B)‖ξ‖1,p,αδ,ε
|ξ′|∞ + ‖ξ‖1,p,αδ,ε

|∇ξ′|.

Multiplying e
2πδ|τ |

p to both sides of the above inequality and taking the Lp

integration over R×S1, and noticing that ξ is supported in τ ∈ [0,±2R(ε)],
we get

‖dFuε
app

(ξ)ξ′ −Duε
app
∂(Jε,Kε)ξ

′‖p,αδ,ε

≤ A(1 + 2B)‖ξ‖1,p,αδ,ε
|ξ′|∞ ·

(∫

[0,±2R(ε)]×S1

e2πδ|τ |dτ dt

) 1
p

+A‖ξ‖1,p,αδ,ε

(∫

R×S1

e2πδ|τ ||∇ξ′|dτ dt
) 1

p

≤ A(1 + 2B)‖ξ‖1,p,αδ,ε
· Cp‖ξ′‖1,p,αδ,ε

·
(

1
2πδ

) 1
p

· e
4πδR(ε)

p

+A‖ξ‖1,p,αδ,ε
‖ξ′‖1,p,αδ,ε

= A

(
(1 + 2B)Cp

(2πδ)
1
p

e
4πδR(ε)

p + 1

)

‖ξ‖1,p,αδ,ε
‖ξ′‖1,p,αδ,ε

≤ K(A,B, δ, Cp)e
4πδR(ε)

p ‖ξ‖1,p,αδ,ε
‖ξ′‖1,p,αδ,ε

,
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where K(A,B, δ, Cp) is a constant independent on ε. Therefore, the propo-

sition is proved by taking hε = (K(A,B, δ, Cp))−1 1
2C · e−

4πδR(ε)
p .

Case 3: For general ξ. We can write ξ = ξ1 + ξ2, where ξ1 is in case 1 and
ξ2 is in case 2. Then we can apply triangle inequality on the terms involving
ξ in the point estimate (10.68), and then Lp integrate the point estimate.
The proof reduces to cases 1 and 2.

Combining the three cases, there exists a constant K independent on ε,

such that for hε := Ke−
4πδR(ε)

p and ‖ξ‖1,p,αδ,ε
≤ hε,

‖dFuε
app

(ξ)ξ′ − (Duε
app
∂(Jε,Kε))ξ

′‖p,αδ,ε
≤ 1

2C
‖ξ′‖1,p,αδ,ε

.

�
Remark 10.7. In our setting, for each ε, the almost complex structure Jε

is (τ, t)-dependent, while in [MS] it is not. But since J(τ, t) ≡ J0 for τ ∈
[−R(ε), R(ε)], and J(τ, t) ≡ J(t) for |τ | > R(ε) + 1, our Jε(τ, t) is actually
a compact family of almost complex structures (smoothly parameterized by
±[R(ε), R(ε)+1]×S1). Therefore, the proof in the compact family of Jε(τ, t)
case is the same as the fixed J case (see the Remark 3.5.4 in [MS]).

Remark 10.8. Unlike [MS], in our case ‖duε
app‖p,αδ,ε

→ ∞, and we only
have |duε

app|∞ ≤ B. In the case 2, |ξ|p,αδ,ε
→ ∞, and we only have |ξ|∞ ≤

|ξ(R(ε), 0)|. The loss of the exponential decay of duε
app and ξ is caused by

the stretching of the target manifold (M, gε0,ε,p) when ε → 0. This is the
reason that our estimate (10.67) is weaker than that in [MS], where the
latter is on a fixed compact Riemannian manifold.

For gluing we need the following abstract implicit function theorem in
[MS]:

Proposition 10.4. Let X,Y be Banach spaces and U be an open set in X.
The map f : X → Y is continuous differentiable. For ξ0 ∈ U , D := df(x0) :
X → Y is surjective and has a bounded linear right inverse Q : Y → X, with
‖Q‖ ≤ C. Suppose that there exists h > 0 such that for all x ∈ Bh(x0) ⊂ U ,

‖df(x)−D‖ ≤ 1
2C

.

Then for ‖f(x0)‖ ≤ h
4C , there exists a unique x ∈ Bh(x0) such that

f(x) = 0, x− x0 ∈ ImageQ, ‖x− x0‖ ≤ 2C‖f(x0)‖.
Now we apply the above implicit function theorem in the following setting:

X = Tuε
app
Bε

res(z−, z+), Y = Lp
αδ,ε

(Λ0,1(uε
app)

∗TM), f = Fuε
app
, x0 = 0.

Then from Proposition 10.3 we have

‖dFuε
app

(ξ)− dFuε
app

(0)‖ ≤ 1
2C
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for ξ in X with ‖ξ‖1,p,αδ,ε
≤ hε := Ke−

4πδR(ε)
p . From (10.33), we have

‖Fuε
app

(0)‖ ≤ L · (R(ε))
1
p · e−

4πaR(ε)
p ,

hence for ε small,

‖Fuε
app

(0)‖ ≤ 1
4C
·Ke−

4πδR(ε)
p =

hε

4C
.

Here we have used our choice of 0 < δ < a in the beginning, so (R

(ε))
1
p · e−

4πaR(ε)
p decays faster than e−

4πδR(ε)
p . By the above abstract implicit

function theorem, we have finished the gluing and prove the following theo-
rem, which is a half of Theorem 5.2.

Theorem 10.1. Let (Kε, Jε) be the family of Floer data defined in (5.34).
Then

(1) There exists a topology onMpara
(0;1,1)([z−, w−], [z+, w+]); {(Kε, Jε)} with

respect to which the gluing construction defines a proper embedding

Glue : (0, ε0)×Mnodal
(0;1,1)([z−, w−], [z+, w+]; (H, J), (f, J0))

→Mpara
(0;1,1)([z−, w−], [z+, w+]); {(K,J)})

for sufficiently small ε0.
(2) The above mentioned topology can be compactified into

Mpara
(0;1,1)([z−, w−], [z+, w+]); {(K,J)})

where Mpara
(0;1,1)([z−, w−], [z+, w+]); {(K,J)}) is given by

Mpara
(0;1,1)([z−, w−], [z+, w+]); {(K,J)})

=
⋃

0<ε≤ε0

M(0;1,1)([z−, w−], [z+, w+]); {(Kε, Jε)}

∪Mnodal
(0;1,1)([z−, w−], [z+, w+]; (H, J), (f, J0))

as a set,
(3) The embedding Glue smoothly extends to the embedding

Glue : [0, ε0)×Mnodal
(0;1,1)([z−, w−], [z+, w+]; (H, J), (f, J0))

→Mpara
(0;1,1)([z−, w−], [z+, w+]); {(K,J)})

that satisfies

Glue(u+, u−, u0; 0) = Glue(u+, u−, u0).

For 0 < ε ≤ ε0, we denote by

Glue(u+, u−, u0; ε) ∈Mpara
(0;1,1)([z−, w−], [z+, w+]); {(Kε, Jε)
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the image of

(u+, u−, u0; ε) ∈ [0, ε0)×Mnodal
(0;1,1)([z−, w−], [z+, w+]; (H, J), (f, J0))

under the embedding Glue.
In the rest of part II of the paper, we will prove that Glue is surjective

onto an open neighborhood ofMnodal
(0;1,1)([z−, w−], [z+, w+]; (H, J), (f, J0)) in

Mpara
(0;1,1)([z−, w−], [z+, w+]); {(K,J)}).

11. Adiabatic degeneration: analysis of the thin part

In this section, we consider a one-parameter family (Kε, Jε) as provided in
Subsection 5.5 with R = R(ε)→∞,

(11.1) εR(ε)→ �

with � ≥ 0 as ε → 0. Motivated by the gluing construction in the previous
section, we will be particularly interested in the case where � = 0, e.g.,

R(ε) = − log ε
4π

.

We recall δε satisfies

(11.2) δε/ε→∞ as ε→ 0.

We use the Hamiltonian defined by

(11.3) Kε(τ, t) =

⎧
⎪⎨

⎪⎩

κ+
ε (τ) ·Ht, τ ≥ R(ε),
ρε(τ) · εf, |τ | ≤ R(ε),
κ−ε (τ) ·Ht, τ ≤ −R(ε).

The Kε(τ, t) was defined before in (5.34), where κ+
ε (τ) was defined in (5.19)

and ρε(τ) was defined in (5.30). We then study the family of equation

(11.4) (du+ PKR(ε)
(u))(0,1)

J = 0

as ε → 0. For the simplicity of notation, we denote Kε(τ, t, x) = Kε. By
definition of Kε and Jε, as ε→ 0, on the domain

[−R(ε) + 1, R(ε)− 1]× S1,

we have Kε(τ, t) ≡ εf and JR(τ, t) ≡ J0, and so (11.4) becomes

∂u

∂τ
+ J0

(
∂u

∂t
− εXf (u)

)

= 0.

Furthermore, Kε(τ, t) ≡ Ht dt, JR(τ, t) ≡ Jt on

R× S1 \ [−R(ε) + 1, R(ε)− 1]× S1.

Equation (11.4) is cylindrical at infinity, i.e., invariant under the translation
in τ -direction at infinity.
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Note that on any fixed compact set B ⊂ R× S1, we will have

B ⊂ [−R(ε), R(ε)]× S1

for all sufficiently small ε. And as ε → 0, Kε → 0 on B in C∞-topology,
and hence equation (11.4) converges to ∂J0u = 0 on B in that J → J0 and
Kε → 0 in C∞-topology. On the other hand, after translating the region
(−∞,−(R − 1

3 ] to the right (resp. [R − 1
3 ,∞) to the left) by 2R − 2

3 in
τ -direction, (11.4) converges to

∂u

∂τ
+ J0

(
∂u

∂t
−XH(u)

)

= 0

on (−∞, 0]×S1 (resp. on [0,∞)×S1) and ∂J0u = 0 on [0, R− 1
3 ]×S1 (resp.

on [−R+ 1
3 , 0]× S1).

Now we are ready to state the meaning of the level-0 convergence for a
sequence un of solutions (du+ PKεn

)(0,1)
Jεn

= 0 as n→∞. After taking away
bubbles, we assume that we have the derivative bound

(11.5) |du| < C <∞,
where we take the norm |du| with respect to the given metric g on M . We
denote

Θε =
[

−R(ε) +
1
3
, R(ε)− 1

3

]

× S1

and consider the local energy

EJ,Θε(u) =
∫ R(ε)−1/3

−R(ε)+1/3

∫

S1

|du|2J dt dτ.

There are two cases to consider:
(1) there exists c > 0 such that EJ,Θεn

(un) > c > 0 for all sufficiently
large n,

(2) limn→∞EJ,Θεn
(un) = 0.

For the case (1), standard argument produces a nonconstant bubble and
so we will mainly consider the case (2). Therefore from now on, we will
assume

(11.6) lim
j→∞

EJ,Θεj
(uj) = 0.

Now we consider the reparameterization

uj(τ, t) = uj

(
τ

εj
,
t

εj

)

on the domain [−εjR(εj), εjR(εj)]×R/2πεjZ. A straightforward calculation
shows that uj satisfies

∂u

∂τ
+ J0

(
∂u

∂t
−Xf (u)

)

= 0
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or equivalently
∂u

∂τ
+ J0

∂u

∂t
+ gradJ0

f(u) = 0

on [−εjR(εj), εjR(εj)] × R/2πεjZ. For the simplicity of notation, we will
sometimes denote

Rj = R(εj).

The following result was proved in Part II of [Oh3]. A similar result was
also obtained by Mundet i Riera and Tian. (See Theorem 1.3 [MT].)

Theorem 11.1 ( [Oh3,MT]). Suppose

� = lim
j→∞

εjR(εj), lim
j→∞

EJ,ΘRj
(uj) = 0.

Then there exists a subsequence, again denoted by uj, such that the reparam-
eterized map uj converges to a χ : [−�, �]→M satisfying χ̇+gradJf(χ) = 0
in C∞-topology. In particular, when � = 0, the original map uj |Θεj

converges
to a point p ∈M .

Under this assumption limε→0EJ,ΘR
(uj) = 0, after taking away bubbles,

the translated sequences uj(· ±Rj +1), ·) : (−∞, Rj ]×S1 →M of solutions
uj of (11.4) as above converge to u−, u+ : R × S1 → M that satisfies the
equation

∂u

∂τ
+ J0

(
∂u

∂t
−XH±(u)

)

= 0

in compact C∞-topology where H± are the Hamiltonians

H+(τ, t, x) = κ+(τ)H(t, x), H−(τ, t, x) = κ−(τ)H(t, x).

We recall (14.1) for the definition of κ±. We phrase this convergence uj

converges to the nodal Floer trajectory (u−, u+).
In the next section, we will carry out a detailed study of microscopic

picture of this convergence near the node p.

12. Controlled nodal degeneration of Floer trajectories

In this section, we will give a precise description of the degeneration of the
solutions

(12.1)
∂u

∂τ
+ J0

(
∂u

∂t
−XKε(u)

)

= 0

to a nodal Floer trajectories as ε → 0, where Kε is the Hamiltonian as
defined in (11.3).

We choose a sequence εj → 0 and let Rj be any sequence such that
εjRj → 0 as j →∞, e.g., Rj = − log εj/2π. We start with the convergence
in the sense of stable maps.
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12.1. Convergence in level 0: stable map convergence. We partition
R× S1 into the union

R× S1 = (−∞,−Rj ] ∪ (−Rj , Rj) ∪ [Rj ,∞).

Let uj be a sequence of solutions of (12.1) for ε = εj . Then we note that
uj satisfies

∂u

∂τ
+ J0

(
∂u

∂t
− χ(τ −Rj + 1))XH(u)

)

= 0

on (−∞,−Rj + 1]× S1,

∂u

∂τ
+ J0

(
∂u

∂t
− χ(−τ + (Rj − 1))XH(u)

)

= 0

on [Rj − 1,∞)× S1, and

∂u

∂τ
+ J0

(
∂u

∂t
− ρRj (τ −Rj)Xεjf (u)

)

= 0

on [−Rj , Rj ]× S1.
If we consider the translated sequence uj(τ − (Rj − 1), t), then it satisfies

the equation
∂u

∂τ
+ J0

(
∂u

∂t
− χ(τ)XH(u)

)

= 0

and ui(·+ (Rj − 1), ·) satisfies

∂u

∂τ
+ J0

(
∂u

∂t
− χ(−τ)XH(u)

)

= 0.

It is important to note that the last two equations do not depend on
the parameters ε (and R) and so carries the well-defined moduli space of
solutions. In the similar vein, we note that as εj → 0, the last equation
“converges” to the equation

∂u

∂τ
+ J0

∂u

∂t
= 0,

which is again independent of the parameters εj .
Now we recall our basic hypothesis

0 = μ([z−, w−];H)− μ([z+, w+];H) = 0 or − 1.

We will also require all the relevant moduli spaces entering in the gluing con-
structions are transversal and the almost complex structure J is generic in
that all the nodes in this dimension are immersed as proven in Theorem 5.1.
This can be always achieved if (M,ω) is semi-positive. In general, we will
apply the machinery of Kuranishi structure [FOn]: Since Theorem 5.1 holds
for a generic choice of J0 when both u± are smooth, and the corresponding
smooth moduli space of Floer trajectories are transversal for a generic choice
of J , we can always put the trivial obstruction bundle on the Floer moduli
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spaces. Nontrivial obstruction bundles will appear only in the sphere bubble
components. Therefore, we may safely assume that for a generic choice of
J , the nodes of all the relevant nodal Floer trajectories are immersed.

We will further assume that ui does not split-off at ±∞. More precisely,
we assume that both ui(· − (Rj − 1), ·) and ui(· + (Rj + 1), ·) uniformly
converge, respectively, as i → ∞. This will follow from the dimensional
restriction by a generic choice of J .

Under these hypotheses, a straightforward dimension counting argument,
Gromov–Floer compactness and Theorem 11.1 imply

(1) |duj |C0 < C for all j and uj converges uniformly in fine C∞ topology
and

(2) uj(· − (Rj + 1), ·)→ u− as j →∞ where u− satisfies

∂u

∂τ
+ J0

(
∂u

∂t
− χ(τ)XH(u)

)

= 0

and uj(·+ (Rj +Kj + 1), ·)→ u+ satisfies

∂u

∂τ
+ J0

(
∂u

∂t
− χ(−τ)XH(u)

)

= 0.

We denote by Glue(u−, u+, u0; ε) the gluing solution constructed in the
previous sections out of u−, u+, u0 and the parameter ε with R = − log ε/2π.
Denote by Glue(ε) the set of the gluing solutions constructed in Section 10.
In the next section, we will prove that provided ε is sufficiently small, any
solution u of (12.1) “sufficiently C0-close to Glue(ε)” will become indeed
Glue(u−, u+, u0; ε) for some choice of (u−, u+) and u0. We now make this
statement precise in the rest of this section.

We fix conformal identifications

ϕ− : Σ− → S2 \ {N}, ϕ−(−∞) = N,

ϕ+ : Σ+ → S2 \ {S}, ϕ+(+∞) = S,

so that they are compatible to the analytic coordinates prescribed near p+ ∈
Σ+ and q− ∈ Σ− in Subsection 3.1. As was shown in Subsection 5.2, this
will determine the unique points o+ ∈ Σ+, o− ∈ Σ−, respectively, such that

ϕ−(o−) = N, ϕ+(o+) = S.

This will in turn determine a unique conformal identification modulo
τ -translations, which we also denote by ϕ±

ϕ− : (Σ−, q−, o−)→ R× S1,

ϕ+ : (Σ+, p+, o+)→ R× S1.



594 Y.-G. OH AND K. ZHU

We then form a disjoint union

Σ̇ = Σ̇− ∪ Σ̇+

with o− and o+ identified.
We now consider the Floer trajectories u± : Σ̇± → M with the node

p = u−(o−) = u+(o+). Since we assume that u− and u+ are immersed at
the node p and J0-holomorphic, there exists a sufficiently small ε0 > 0 such
that both u−1

− (B2n
p (ε0)) and u−1

+ (B2n
p (ε0)) are conformally isomorphic to

D2 \ {0}. Denote

S+ = u−1
+ (B2n

p (ε0)) ⊂ Σ̇+,

S− = u−1
− (B2n

p (ε0)) ⊂ Σ̇−
(12.2)

and S = S− ∪ S+ ⊂ Σ̇− ∪ Σ̇+ = Σ̇.
For further discussion, we will need the following proposition. This is a

standard result whose proof can be derived from [FOn,MT] and so omitted.

Proposition 12.1. We denote by mod(Σ) the conformal modulus of the
annulus Σ. Let (M,ω, J) be an almost Kähler manifold and Σ be a Riemann
surface of annulus type with mod(Σ) = L <∞. Suppose that h : Σ→ M is
a smooth map satisfying

h(Σ) ⊂ B2n
p (ε)

and
∂JR(ε)

h+ (PKR(ε),ε
)(0,1)
JR(ε)

(h) = 0.

Identify Σ ∼= [−L,L] × S1 → M conformally. Then there exist ε′0 > 0 and
C, k > 0 depending only on (M,ω, J) but independent of h, L such that
whenever 0 ≤ ε < ε′0,

(12.3) |du|gJ0
(τ ′, t′) ≤ C e− dist(τ ′,∂[−L,L])

for all τ ′ ∈ [−L+ 1, L− 1], and

(12.4) leng(u(τ ′, ·)) ≤ C e−k dist(τ ′,∂[−L,L]).

We now derive the following lemma from this proposition.

Lemma 12.1. Let k > 0 be the constant given in Proposition 12.1. There
exists ε0 > 0 such that

u−1
j (B2n

p (ε0)) =: Σj(ε0)

has a topological type of annulus and decompose R× S1

Σj,− ∪ Σj(ε0) ∪ Σj,+

such that R× S1 \ Σj(ε0) = Σj,−
∐∪Σj,+.
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Proof. Let ε′0 be the constant given in Proposition 12.1. Theorem 11.1
implies that

(12.5) uj

([

−Rj +
1
3
, Rj − 1

3

]

× S1

)

⊂ B2n(ε′0)

for all sufficiently large j and so the exponential decay (away from the bound-
ary) (12.3) holds. It follows from this that Σj(ε′0) is of annulus type. �

Now we are ready to give the meaning of the stable map convergence of
uj to the nodal Floer trajectories (u−, u+). This is a variation of those given
in [FOn,HWZ4] applied to the current circumstance.

Following [HWZ4], we introduce a definition

Definition 12.1 (Definition 4.1, [HWZ4]). A deformation of a compact
Riemann surface (A, j) of annulus type is a continuous surjection map f :
A→ S onto the nodal surface, so that f−1(o) is a smooth embedded circle,
and

f : A \ f−1(o)→ S \ {o}
is an orientation preserving diffeomorphism. On S \ {o} we have the pushed
forward complex structure f∗j.

For each given nodal surface S, we recall a construction of a family of
deformations in the following way (see [FOn]) parameterized by α ∈ C with
|α| sufficiently small.

Example 12.1 (Fukaya–Ono, [FOn]). We choose the unique biholomorphic
map

Φα : To−S−\{o−} → To+S+\{o+},
such that u ⊗ Φα(u) = α. In terms of analytic coordinates at o− ∈ S− and
o+ ∈ S+, the coordinate expression of Φα is given by the map Φα(z) = α

z .
We denote |α| = R−2

α for |α| sufficiently small and so Rα sufficiently large
so that the composition

exp−1
S− ◦Φα ◦ expS+

: Do+(R
− 1

2
α ) \Do+(R

− 3
2

α )→ Do−(R
− 1

2
α ) \Do−(R

− 3
2

α )

is a diffeomorphism. By composing with the biholomorphism

[− lnR−1/2
α , lnR1/2

α ]× S1 → Do+(R
− 1

2
α ) \Do−(R

− 3
2

α );

(τ, t) 
→ e2π((τ−R)+it) = e−2πRz

with z = e2π(τ+it) the standard coordinate on C, this diffeomorphism
becomes nothing but

[− lnR
− 1

2
α , lnR

1
2
α ]× S1 → [− lnR

− 1
2

α , lnR
1
2
α ]× S1

(τ, t) 
→ (−τ,−t) = (τ ′, t′).
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We glue the metrics on

Do+(R
− 1

2
α )−Do−(R

− 3
2

α )

without changing the metric outside Do+(R
− 1

2
α ) on Σ0. Identify Do+(R

− 1
2

α )
with an open set in C � z with the standard metric. Consider the biholo-
morphism Φα : z → α

z , for which we have

(Φα)∗|dz|2 =
∣
∣
∣
α

z2

∣
∣
∣
2|dz|2.

Note that on |z| = R−1, we have

Φα({z||z| = √α}) = {z||z| = √α},
(Φα)∗|dz|2 = |dz|2.

We choose a function and fix it once and for all

χRα : (0,∞)→ (0,∞)

such that

(1) (Φα)∗(χRα |dz|2) = χRα |dz|2,
(2) χRα(r) ≡ 1, if r > |α|3/8 = R

−3/4
α .

By the definition of χRα , we can replace the given metric go+ = |dz|2 by
χRα(|z|)|dz|2 inside the disc D2(|α|1/4), and denote the resulting metric by
g′v. We would like to emphasize that this modification process is canonical
depending only on the fixed complex charts at the singular points and on
the choice of χRα . As a result, this modification process does not add more
parameters in the description of deformation of stable curves. Hence, we
have constructed a family of stable curves parameterized by a neighborhood
of the origin in To+S+⊗To−S−. We denote the constructed Riemann surface
with the conformal structure constructed in this way by

(Sα, jα).

We set S0 to be the given nodal Riemann surface S. We can define a surjec-
tive continuous map fα : Sα → S by the projection from the graph of w = α

z
to the union of the z-axis and w-axis that is invariant under the diagonal
reflection.

This finishes construction of one-parameter family of deformations of the
given nodal Riemann surface. We call this explicit deformation Fukaya–
Ono’s deformation and will always consider this deformation in the following
discussion.

Definition 12.2 (Real deformation). We call the deformation (Sα, jα; fα)
a real deformation if α ∈ R+.
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We go back to the study of convergence uj : R× S1 ∼= Σ̇→M .
For a given μ > 0 and a collection of sufficiently large Rα, we denote

Wo,α(μ) := (Do+(μ)−Do+(R−1
α ))
⋃

(Do−(μ)−Do−(R−1
α ))

the prescribed neck region in Sα. The following definition is essentially the
same one as the stable map convergence given in Definition 10.2 [FOn].

Definition 12.3 (Level 0 convergence). We say that un converges to
Glue(u−, u+) in level 0 if

(1) for any μ > 0, un|Sn\Wo(μ) → Glue(u−, u+) in C∞ on compact sets,
(2) there exists a sequence of real deformations fn : (Sn, jn)→ (S, j) such

that (fn)∗jn → j± in compact C∞-topology on S \ {o},
(3) limμ→0(lim supn→0 Diam(un(Wo,n(μ)))) = 0.

In terms of this definition, the standard definition of stable map conver-
gence of Floer trajectories to a nodal Floer trajectory as given in [FOn,LT1]
can be translated into

Proposition 12.2. Consider the partitions (−Lj , Lj) associated to the sur-
face Σ0,j = u−1

j (B(ε0, p)). Then the maps uj : Σ0,j → M converge to the
nodal Floer trajectory

Glue(u−, u+)|S(ε0),

where S(ε0) = S−(ε0) ∪ S+(ε0).

Note that the level 0 convergence does not reflect the immersion property
of the nodes. It turns out that the level 0 convergence to nodal trajecto-
ries with immersed nodes has a finer convergence property, which we now
explain.

12.2. One-jet convergence to nodal curves with immersed nodes.
Now we are ready to give the precise meaning of the convergence uj to
(u−, u+, u0), where u0 is a local model obtained in Section 6.

We start with the description of the sequence of Floer trajectories uj

over the central region Σj(ε0). Fix a sufficiently small ε0 > 0, for which
Proposition 12.1 holds. We choose a conformal diffeomorphism

ψj,int : [−Lj , Lj ]→ Σj(ε0)

with 2Lj = mod(Σj(ε0)). We denote the corresponding conformal coordi-
nates by (τ ′, t′). We would like to emphasize that this coordinates (τ ′, t′)
may not be the same one as the original coordinates (τ, t) in R× S1.

Applying Proposition 12.1 to the maps

hj = uj ◦ ψj,int,

we obtain
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Corollary 12.1. There exist ε0 > 0, a sequence ε′i → 0 and a subsequence
ji of j’s in turn so that

(1) ui is embedded on u−1
i (B2n

p (ε0) \B2n
p (ε′i)) and u−1

i (B2n
p (ε0) \B2n

p (ε′i))
is a disjoint union of two components Σ±

i,ε′i≤r≤ε0
of cylindrical type.

(2)
ε′i/εji →∞, mod(Σ±

i,ε′i≤r≤ε0
)→∞.

Proof. The first statement is an immediate consequence of a diagonal
sequence argument from the stable map convergence ui and the immersion
property of u±.

For the second statement, we pick any sequence ε′i → 0 and consider the
modulus mod(u−1

j (B2n
p (ε′i)). By the first statement, we have

lim
j→∞

mod(u−1
j (B2n

p (ε′i)) =∞

for each fixed i. Take the subsequence ji of j so that

ε′i/εji , mod(u−1
j (B2n

p (ε′i))) ≥ i
for each i: this is possible since εj → 0. This finishes the proof. �

By renumbering ji, we will just denote ji by i and so we are given two
sequences

εi, ε
′
i → 0, ε′i/εi →∞

and mod(u−1
i (B2n

p (ε′i)) =: 2L′
i → ∞ as i → ∞. We will assume this for the

rest of this section.
Now we define a rescaled map

ũi,int : [−L′
i, L

′
i]× S1 → C

n

by

ũi,int(z) =
1
εi

(ui ◦ ψi,int)(z)

and study its convergence behavior.
We consider the decomposition of the Riemann surface

R× S1 ∼= Σ̇ = Σi,− ∪ Σi,0 ∪ Σi,+,

where Σi,0 = u−1
i (B2n(ε′i)) and

R× S1 \ Σj,0 = Σj,− ∪ Σj,+.

We denote the translated sequences

u′i,− = ui(· − (Ri + 1), ·) : (−∞, Ri]× S1 →M,

u′i,+ = ui(·+ (Ri + 1), ·) : [−Ri,∞)× S1 →M
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and their conformal reparameterizations by

vi,− = u′i ◦ ϕ− : ϕ−1
− ((−∞, Ri]× S1)→M,

vi,+ = u′i ◦ ϕ+ : ϕ−1
+ ([−Ri,∞)× S1)→M.

It is easy to see from the definitions that we can choose Ri = Ri(εi) so that

ϕ−1
− ((−∞, Ri]×S1) ⊃ S2 \D2

S(Cεi), ϕ−1
− ([−Ri,∞)×S1) ⊃ S2 \D2

N (Cεi)

for some constant C > 0 independent of i.
Now we are ready to give the main definition of the refined convergence.

As before u0 stands for a local model obtained in Section 6.

Definition 12.4 ({εi}-controlled one-jet convergence). We say that a
sequence uεi of solutions for (12.1) converges to (u−, u+;u0) in the {εi}-
controlled way if the following holds :

(1) uεi converges to Glue(u−, u+) in level 0,
(2) we have mod(Σ′

i,0) = 2L′
i →∞,

(3) there exists a sequence of automorphisms gv,λ given by gv,λ(u) =
λu + v for some vectors vi ∈ C

n and λi ∈ R such that we have the
inequality

∣
∣
∣
∣∇k

(

g−1
vi,λi

(
1
εi
ui ◦ ψi,int + τ�a

)

− u0

)

(τ, t)
∣
∣
∣
∣ ≤ min(δk,i, Cke−ck|τ−L′

i|)

(12.6)

on [−L′
i, L

′
i]×S1 in the given Darboux chart at p with respect to the

cylindrical metrics on R× S1 and g′
Cn .

Surjectivity proof will be finished by the following convergence theorem.

Theorem 12.1. Suppose that u−, u+ are immersed at the node

p = u−(o−) = u+(o+).

Let Glue(u−, u+) be the nodal Floer trajectory formed by u− and u+

with nodal points p = u−(o−) = u+(o+). Suppose that un converges to
Glue(u−, u+) in level 0. Then there exists a subsequence uni and a sequence
εi → 0 such that uni converges to (u−, u+;u0) in the {εi}-controlled way.

We will give the proof of this theorem in the next section.
Once we prove this theorem, the well-known argument by Donaldson [D]

proves the following which will finish the proof of surjectivity. We omit the
details of this last step but refer to Section 62.7 of Chapter 10 of [FOOO2]
for relevant details of this last step in a similar context.

Theorem 12.2. Let R(ε) = − 1
2π log ε and Kε be the Hamiltonian as defined

in (11.3). There exists small constants ε1, ε2 with ε1 < ε100
2 such that for any

0 < ε < ε1 and any solution u : R× S1 →M of

∂Jεu+ P
(1,0)
Kε,Jε

(u) = 0
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satisfying
max

z∈R×S1
dist(u,Glue(ε)) < ε2

indeed has the form u = Glue(u−, u+, u0; ε) for some u−, u+ and u0.

Here the choice of exponent “100” is not significant which is made imi-
tating the statement of Theorem 62.2 [FOOO2].

The following proposition will be important in the energy estimates
needed to prove the above theorem. Again this is the analog to Proposi-
tion 62.79 [FOOO2] in the current context. Here since we consider the case
where γ+,j converges to γa+ in C0-topology, we can write

γ+,j(t)− γa+(t) := exp−1
γ+(t)(γ+,j(t))

for the unit vector

a+ := lim
τ→∞

du+
(

∂
∂τ

)

∣
∣du+

(
∂
∂τ

)∣
∣
.

Similar remark applies to γ−,j .
We identify a Darboux neighborhood of p with an open neighborhood of

0 ∈ C
n ∼= TpM .

Proposition 12.3. For each given k, there exist I0, R0 and constant
o(i, R0|k) with

lim
i→∞

lim
R0→∞

o(i, R0|k) =∞

such that for all − 1
2π log ε′i +R0 ≤ s ≤ − 1

2π log ε0 −R0 the followings hold:

(1) s is a regular value of s ◦ ui and the curve ui(Σi(ε0))∩ ({s} × S2n−1)
is parameterized by the union of two disjoint circles γ±i,s : S1 × S2n−1

for which we have

(12.7) |∇k(γ±i,s − γa±)| ≤ o(i, R0|k).
(2) For s1 ∈ [− 1

2π log ε′i +R0,− 1
2π log ε0 −R0], the set

Σi,s1−1≤s≤s1+1 = ui(Σi) ∩ ([s1 − 1, s1 + 1]× S2n−1)

is a disjoint union of two components Σ±
i,s1−1≤s≤s1+1 such that each

of Σ±
i,s1−1≤s≤s1+1 has a parameterization

u±i,s1−1≤s≤s1+1 : [−1/2π, 1/2π]× S1 → Σ±
i,s1−1≤s≤s1+1

for which we have

(12.8) |∇k(u±i,s1−1≤s≤s1+1 − uflat
a±,s1

)| < o(i, R0|k),
where

uflat
a±,s1

(τ, t) = (2πτ + s1, γa±(t)).
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Proof. We first note that regularity of s follows from Corollary 12.1.
Consider the composition

v− := u− ◦ ϕ−1
− : S2 \ {S} →M.

This map v− extends smoothly to S2 and its derivative dv−(S) �= 0 by the
immersion assumption on the node. Now we consider the translated sequence
u′j := uj(· − (Rj + 1), ·) which converges to u− in compact C∞ topology on
(−∞, Rj ]× S1 as j →∞ and define

vj := u′j ◦ ϕ−1
− : ϕ−((−∞, Rj ]× S1)→M

as before. Then by the hypothesis of level zero convergence, S2 \ ϕ−((−∞,
Rj + 1] × S1) shrinks to the point {S} as j → ∞ and vj → v− in compact
C∞ topology and v− is immersed at S.

For the rest of the statements, we will prove them by contradiction. Sup-
pose to the contrary. Then we can choose a sequence si with

si − 1
2π

log ε′i,
1
2π

log ε0 − si →∞
such that one of the following alternatives must hold:

(1) There exist k and c > 0 such that

|∇k(γa+ − γ+
i,si

)| > c

or
|∇k(γa− − γ−i,si

)| > c

for any parameterization γ±i,si
of ui(Σ±

i ) ∩ ({si} × S2n−1).
(2) There exist k and c > 0 such that

|∇k(ui,si−1≤s≤si+1 − uflat
a±,si

)| > c

for any parameterization u±i,si−1≤s≤si+1 of Σ±
i,s1−1≤s≤s1+1.

In terms of r coordinates, we have

[si − 1, si + 1]× S2n−1 ↔ [esi−1, esi+1]× S2n−1

= [ε1/2π
0 e−Ki−1, ε

1/2π
0 e−Ki+1]× S2n−1

for Ki := 1
2π log ε0 − si → ∞. Since v− is immersed at {S} and v−(S) = p,

the subset

v−([ε1/2π
0 e−Kj−1, ε

1/2π
0 e−Ki+1]× S2n−1) := Ai ⊂ S2 \ {S}

is of annulus type and shrinks to the point S as j →∞. Therefore, by taking
a diagonal sequence argument and using the immersion property of v− at
S, if necessary, we may assume

|∇k(vi − v−)|Ai → 0.
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This is then translated into

(12.9) |∇k(ui,si−1≤s≤si+1 − uflat
a±,si

)| → 0

as i→∞. This in particular rules out the second possibility.
On the other hand, the immersion property of u− at o− implies that

|u+(z)− z · a+| = O(|z|2).

Therefore, we have

||u+(z)| − |z||a−|| = |r(u+(z))− r(z · a+)| ≤ O(|z|2).

Since Θ(u+(z)) = u+(z)
|u+(z)| , we obtain

|Θ(u+(z))−Θ(z · a+)| =
∣
∣
∣
∣
u+(z)
|u+(z)| −

z · a+

|z||a−|
∣
∣
∣
∣

≤ |u+(z)− z · a+|
|z||a−| +

||u+(z)| − |z||a−||
|z||a−| ≤ O(|z|).

Similarly, we have

|γ+
j,si
− γa+ | = |Θ(uj,+(z))−Θ(z · a+)|

= |Θ(u+(z))−Θ(z · a+)|+ |Θ(uj,+(z))−Θ(z · a+)|.

For the first term, we have

|Θ(u+(z))−Θ(z · a+)| ≤ O(|z|)

and for the second term, we have

lim
i→∞
|Θ(ui,+(z))−Θ(z · a+)| = 0.

Therefore, we have obtained

(12.10) |Θ(u+(z))−Θ(ui,+(z))| → 0

since z satisfies ε1/2π
0 e−Ki−1 ≤ |z| ≤ ε1/2π

0 e−Ki+1 and Ki →∞ as j →∞.
Combining (12.9) and (12.10), we can prove

|∇k(γa− − γ−i,si
)| → 0

inductively over k = 0, . . . , as γ−i,si
(t) = Θ(u−1

i,+(Bp(esi))). This contradicts
to the hypothesis and so the proposition is proved. �
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13. Surjectivity of the scale-dependent gluing family

The main goal of this section is to prove Theorem 12.1, which will imply that
the enhanced resolutions of Floer nodal trajectories (u−, u+, u0) exhaust
all the solutions of (11.4), which are close to those of the enhanced nodal
trajectories (u−, u+) in a suitable sense.

To prepare the proof, we consider the map

ũi : Σi(ε0)→ TpM

defined by

ũi(τ, t) =
1
εi

(expI
p)

−1 ◦ ui,

where Σi(ε0) = u−1
i (B2n

p (ε0)).
We denote the pull-back almost complex structure on (expI

p)
−1(B2n

p (ε0))
⊂ TpM by J̃i which is defined by

J̃i = (expI
p ◦ Rεi)

∗J0

on B2n
p (ε0/εi) ⊂ TpM . Then ũi satisfies the equation

(13.1) ∂
J̃i
ũi + (P (1,0)

KRi,εi
)
J̃i

(ũi) = 0.

We first describe the metrics on the domain C and the target C
n, with which

we evaluate the Ck norms of ξi’s.
For ε′i chosen before it follows, by choosing ε0 smaller if necessary, that

Σi(ε0) \ Σi(ε′i) is a disjoint union of two domains of cylindrical type. We
denote

ũ−1
i (B2n

p (ε0)) \ ũ−1
i (B2n

p (ε′i)) = Ci,1(ε′i, ε0) ∪ Ci,+(ε′i, ε0).

Whenever there is no danger of ambiguity, we will just denote Ci,± for
Ci,±(ε′i, ε0), respectively.

We recall that we have used the metrics as follows: for the target, we use
the metric, denoted by g′

Cn , to satisfy the following properties:
(1) g′

Cn is a flat Euclidean metric on the Euclidean ball B2n(2) of radius 2.
(2) Outside the (Euclidean) ball B2n(4), it is the standard product met-

ric on [log 4,∞) × S2n−1(3). (Here S2n−1(3) is the round sphere of
radius 3.

(3) gCn is of nonnegative curvature.
For the domain, we require the metric, denoted by g′

C
, to have totally

geodesic boundary and to satisfy the following properties:
(1) g′

C
is a flat Euclidean metric on the Euclidean ball B2(1) of radius 1.

(2) Outside the (Euclidean) ball B2(2) of radius 2, g′
C

is the standard
product metric [0,∞)× [0, 3π/2].

(3) g′
C

is of nonnegative curvature.
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We now recall that for any contact hypersurface (N, ξ) of a symplectic
manifold (M,ω) has the canonical co-orientation. If a smooth map u : Σ→
M from an oriented surface Σ is transversal to a contact hypersurface N ⊂
M , then the preimage u−1(N) has a natural orientation induced by the co-
orientation of N ⊂ M . Call this the induced orientation on u−1(N) and
denote oind.

When Σ is given a complex structure j, it carries the complex orientation
on it and its boundary ∂Σ has the boundary orientation obdy defined by the
convention

�n⊕ obdy = oΣ,

where �n is the unit normal outward to Σ on the boundary.
Now assume that Σ is oriented and ∂Σ =

∐
j ∂jΣ, where each ∂iΣ denotes

a connected component of ∂Σ. If u : Σ → M is transversal to a contact
hypersurfaces Nj ⊂ M and u−1(Nj) = ∂jΣ, then ∂jΣ carries two orienta-
tions oind and obdy.

Definition 13.1. Let (u,Σ) as above. We say that a component ∂iΣ is an
outside boundary if oind = obdy, and an inside boundary if oind = −obdy. We
denote by ∂outΣ the union of outside boundaries and by ∂inΣ the union of
inside boundaries.

Theorem 13.1. Let ũi satisfy (13.1). There exist ai and δk,i > 0, such that
limi→∞ ai,± = a±, limi→∞ δk,i = 0 and ui satisfies the following properties:

(1) There exists an open subset Ui,out of Σi(ε0) containing Ci,+ ∪ Ci,−, a
sequence Li,± →∞ such that there exists a biholomorphic embedding

ψi,neck,+ : [0, 2Li,+]× S1 → Ci,+

ψi,neck,− : [−2Li,−, 0]× S1 → Ci,−

such that ψi,neck,± satisfies

|∇k((ũi ◦ ψi,neck,±)− uflat
ai

))|(τ, t) < Cke−ck min{|τ |,|Li,±±τ |}.

on [0, 2Li,+] × S1 (or on [−2Li,−, 0] × S1, respectively). Here ck, Ck

are independent of i and we put

uflat
ai,±(τ, t) = (2πτ, γai,±(t))

and use the cylindrical metrics for both the domain and the target.
(2) There exist a sequence Li,0 → ∞, open sets Ui,int ⊂ Σi(ε0) and a

biholomorphic map

ψi,int : [−Li,0, Li,0]× S1 → Ui,int

with the following properties:
(a) Ui,int ∩ Ui,out = Im(ψi,int) ∩ Im(ψi,neck).
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(b) ui ◦ ψi,int satisfies Definition 12.4, i.e., there exists a sequence of
automorphisms gvi,λi of C

n such that
∣
∣
∣
∣∇kg−1

vi,λi

(
1
εi
ui ◦ ψi,int(τ, t) + τ�a)

)

− u0(τ, t)
∣
∣
∣
∣

≤ min
(
δk,i, Ck e−ck min{|τ±Li,0|}

)

on [−Li,0, Li,0]×S1 with in the cylindrical metrics on R×S1 and
g′

Cn.

Here we use conformal parameterizations on Ci,+ and Ci,− given as above
because the boundary orientation obdy on Ci,+ ∩ ∂Bp(εi,out) of the complex
orientation on Ci,+ coincide with the above induced orientation oind, while
that of Ci,− is opposite.

The remaining section will be occupied by the proof of this theorem.
We start with the following characterization of small energy cylinders,

which can be proved by the same method as in [Ho,HWZ4,FOOO2]. We
denote by uflat

a,s1
the cylindrical strip defined by

uflat
a,s1

(τ, t) = (s1 + τ, γa(t))

as before.

Theorem 13.2 (Theorem 1.3 [HWZ4], Theorem 62.85 [FOOO2]). Let
R > 0 be given and let u : [−R,R] × S1 → R × S2n−1 be a J0-holomorphic
map. For each E0 > 0 and k there exist positive constants e0, R0, ck and
Ck as follows: Whenever u satisfies

(1) E(u) ≤ E0,
(2) R ≥ R0,
(3) Edλ(u) ≤ e0,
(4) the loop u0(t) := u(0, t) satisfies

∫

u∗0λ ≤ 3π,

we can find a ∈ S2n−1 and s1 ∈ R for which we have

|∇k(u− uflat
a,s1

)|(τ, t) ≤ Ck e−ck(R−|τ |)

on (τ, t) ∈ [−R+ 10, R− 10]× [0, 1].

13.1. Convergence in the neck regions. We define

(13.2) Ui,out = Σi(ε0) \ u−1
i (B2n

p (εi,in)).

In this subsection, we will study convergence of ũi on the neck regions

u−1
i (B2n

p (εi,out)) \ u−1
i (B2n

p (εi,in))

for a choice of two sequences εi,out > εi,in  εi such that

(13.3) εi,out, εi,in → 0, | log εi,out − log εi,in| → ∞
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as i→∞. It follows from Proposition 12.3 that for a suitable choice of εi,out,
u−1

i (B2n
p (εi,out)) define a sequence of open Riemann surfaces which converges

to a conformal cylinder R×S1. Furthermore the standard symplectic area of
the rescaled maps ũi converges to infinity, but its end behavior is controlled
by the hypotheses that ui converges to the nodal curve (u−, u+) whose node
is immersed.

While the standard argument for the closed Riemann surface does not
apply to the sequence of the rescaled maps ũi defined on open Riemann
surfaces Σ′

i = u−1
i (B2n

p (εi,out)), the imposed end behavior enables us to
apply the strategy employed by Hofer [Ho] estimating the horizontal and
vertical energies separately. However in our current circumstance, we need
to apply Hofer’s strategy to the case where the target manifold is neither
complete nor cylindrical but only approximately cylindrical.

We need to concern parameterization of maps ũi on the annular regions

u−1
i (B2n

p (εi,out)) \ u−1
i (B2n

p (εi,in)) = Ci,− ∪ Ci,+,

where both Ci± are of cylindrical type. We prove the following result whose
proof duplicates the one from [FOOO2] used in a similar context.

Proposition 13.1. Let (u−, u+) be a Floer trajectory with immersed nodes
as before and suppose ui converges to (u−, u+) in level 0 and let Ci,± be as
above. Suppose that εi,out, εi,in are chosen so that (13.3) holds. Then we have

mod(Ci,±)→∞.
Proof. Since both cases are essentially the same, we will just treat the case
of Ci,+ = Ci.

Since ui are immersed on Ci, the image ui(Ci) carries the metric
gind induced from the compatible metric gJ on M . We denote by g0 on
[log εi,in, log εi,out] × [0, 2π] the standard product metric. Using Proposi-
tion 12.3, we can find a diffeomorphism

Φi : ui(Ci,+)→ [log εi,in, log εi,out]× [0, 2π]

so that

(1) Φi(ui(Ci) ∩ {s} × S2n−1) = {s} × [0, 2π].
(2) For each sufficiently small ε > 0, we have

|(Φi)∗(gind)− g0|C1 < ε

on [log εi,in, log εi,out]× S1 for all sufficiently large i.

Let ψj,+ : [−Li+, Li+]×S1 → Ci+ be the orientation preserving conformal
diffeomorphism such that

ψi+({±Li+} × S1) ⊂ ∂±Ci.



FLOER TRAJECTORIES WITH IMMERSED NODES 607

Denote by g1 the standard metric on [−Li+, Li+]×S1 and g2 = (ui ◦ ψi+)∗
gind. Since ui ◦ ψi+ is pseudo-holomorphic and so

ui ◦ ψi+ : ([−Li+, Li+]× S1, g1)→ (ui(Ci), gind)

is conformal, we have f2g1 = (ui ◦ ψi+)∗gind and so

g1 = f2g2,

where f : [−Li+, Li+]× S1 × S1 → R is a positive smooth function.
We compute

(∫

[−Li+,Li+]×S1

fΩg2

)2

≤
(∫

[−Li+,Li+]×S1

f2Ωg2

)(∫

[−Li+,Li+]×S1

Ωg2

)
(13.4)

≤ Area([−Li+, Li+]× S1; g1)

× (1 + ε)

(∫

[log εi,in,log εi,out]×S1

Ωg0

)

≤ ((2π) · (2Li+)) · (1 + ε) · ((2π)(log εi,out − log εi,in))

= ((2π) · (2Li+)) · (1 + ε)(2π) · (log εi,out − log εi,in).

On the other hand, we derive
∫

[−Li+,Li+]×S1

fΩg2 ≥ (1 + ε)−1

∫ log εi,out

log εi,in

lengg0
(u−1

i ◦ γi,s) ds.

Since the winding number of the curve u−1
i ◦ γi,s is one and γi,s → γa+ , we

have
lengg0

(u−1
i ◦ γi,s)→ 2π

as i→∞. Hence, we have proved
∫

[−Li+,Li+]×S1

fΩg2 ≥ (1 + ε)−1(log εi,out − log εi,in)× 2π.

Substituting this into (13.4), we obtain
(
(1 + ε)−1(log εi,out − log εi,in)× 2π

)2

≤ ((2π) · (2Li+))× (1 + ε)((2π) · (log εi,out − log εi,in)

and so
log εi,out − log εj,in ≤ (1 + ε)2Li+.

This proves Li+ →∞ as i→∞ since we have chosen εi,out, εi,in so that

| log εi,out − log εi,in| → ∞.
�
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Next, we recall the definition of the energy that Hofer introduced in [Ho],
which we denote by EΣ and Edλ restricted to the case of C

n \ {0} with the
standard symplectic form ω0. If we denote by λ the standard contact form on
S2n−1(1) ⊂ C

n and by (r,Θ) the polar coordinates of C
n ∼= R+ × S2n−1(1),

then we have
ω0 = d(rΘ∗λ).

Using the diffeomorphism R → R+; s 
→ es, we identify C
n \ {0} with

R×S2n−1. Then pull-back of the standard complex structure J0 on C
n \{0}

is invariant under the translation of R-direction on R × S2n−1 as well as
Θ∗dλ and Θ∗λ.

We will pull-back the symplectic form ω on M by the map expI
p := I−1

to ω0 by a Darboux chart I near the nodal point p ∈M such that I∗J(0) =
J(p). The following lemma is immediate whose proof is omitted.

Lemma 13.1. Let J̃ε be the almost complex structure on (TpM,ωp) ∼=
(Cn, ω0) defined by J̃ε = (expI

p ◦ Rε)∗J . Then there exists ε0 > 0 such
that we have

|J̃ε(x)− Jp| ≤ Cε|x|
for all |x| ≤ ε0 where | · | is the norm induced by the standard metric on
C

n ∼= TpM . In particular, we have

|J̃εi(x)− Jp| ≤ Cδi
for all x ∈ 1

εi
B2n

p (δi) ∼= B2n
p (δi/εi) ⊂ TpM for any 0 < δi ≤ ε0.

Now we introduce the following

Definition 13.2 (dλ-energy). Let Σ be a compact surface with boundary
and let u : Σ→ C

n \ {0}. We define the dλ-energy, denoted by Edλ by

Edλ(u) =
∫

Σ
(Θ ◦ u)∗dλ.

We also use another energy denoted by EΣ [Ho]. Consider the interval
[a, b] ⊂ R and let C = C[a,b] be the set of smooth functions

ρ : (a, b)→ [0, 1]

such that
(1) supp ρ is of compact support,
(2)
∫ b
a ρ(u) du = 1.

Then we consider its integral, denoted by ρ̃,

ρ̃(s) =
∫ s

a
ρ(u) du.

Composing ρ̃ with the projection to the R-direction, we regard ρ̃ as a func-
tion on R×S2n−1 ∼= C

n \B2n(1). Note that ρ̃ ≡ 0 near the lower limit s = a
and ρ̃ ≡ 1 near the upper limit s = b.
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Definition 13.3. Let ρ ∈ C and ρ̃ as above. We define EΣ(u; (a, b)) by

EΣ(u; (a, b)) = sup
ρ∈C

∫

Σ
u∗d(ρ̃Θ̃∗λ).

We now prove the following.

Lemma 13.2. Denote Ci = u−1
i (Bp(εi,out) \ Bp(εi,in)) and consider the

restriction of ui on Ci. We have

lim
i→∞

Edλ;Ci(ũi) = 0

and in particular Edλ;Ci(ũi) is uniformly bounded.

Proof. Note that Ci has decomposition

Ci = Ci,1 ∪ Ci,+ :

Ci,−, Ci,+ are surfaces of annular type such that

∂Ci,− = ∂+Ci,− ∪ ∂−Ci,−,
∂Ci,+ = ∂+Ci,+ ∪ ∂−Ci,+,

where ũi(∂+Ci) ⊂ ∂B2n(εi,out/εi) and ũi(∂−Ci) ⊂ ∂B2n(εi,out/εi).
Since both cases can be treated the same, we will focus on Ci,−. By Stokes’

formula, we obtain

Edλ(ũi) =
∫

Ci,−
(Θ ◦ ũi)∗dλ =

∫

∂+Ci,−
(Θ ◦ ũi)∗λ−

∫

∂−Ci,−
(Θ ◦ ũi)∗λ.

Proposition 12.3 implies

lim
i→∞

Θ ◦ ũi|∂+Ci,− = γ−,

lim
i→∞

Θ ◦ ũi|∂−Ci,− = γ−,

where γ− is the Reeb orbit of S2n−1 comes from the tangent cone of u− at
the node. This implies limi→∞Edλ;Ci,−(ũi) = 0.

Since the same argument applies to Ci,+ if we replace γ− by γ+, we have
proved

(13.5) lim
i→∞

Edλ;Ci(ũi) = 0.

�

Next we study ECi(ũi) = ECi(ũi; (log(εi,out/εi), log(εi,in/εi)).

Lemma 13.3. For any given δ > 0, there exists N = N(δ) such that

ECi(ũi) < 2π + δ

for all i ≥ N .
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Proof. Let ρ ∈ C and ρ̃ be the associated integral

ρ̃(s) =
∫ s

0
ρ(u) du.

Noting that ρ̃ ≡ 0 near ∂−Ci, we use Stokes’ theorem to show
∫

Ci

ũ∗i d(ρ̃Θ
∗λ) =

∫

γ∗i,−,outλ+
∫

γ∗i,+,outλ,

where γi,±,out = ũi|∂+Ci,± . Proposition 12.3 implies that γi,±,out → γ±
respectively and so each term converges to 2π as i→∞. Hence there exists
N ∈ Z+ such that if i ≥ N ,

∫

Ci,±
ũ∗i d(ρ̃Θ

∗λ) ≤ 2π + δ

for any ρ ∈ C. Fixing any such N and taking the supremum over ρ ∈ C, we
have proved EΣ(ũi) ≤ 2π + δ for all i. �

Now we take a conformal parameterization ϕi,± : [−Li,±, Li,±]×S1 ∼= Ci,±
and consider the composition ũi ◦ ϕi,± =: vi,±. Proposition 13.1 implies
Li,+ →∞ as i→∞ and Lemma 13.2 implies

lim
i→∞

∫ Li,±

−Li,±

∫

S1

v∗i,±Θ∗dλ = 0, EΣ(vi,±) ≤ 2π + δ.

Once we have these energy bounds and Theorem 13.2, the argument from
[Ho,HWZ4] imply the following proposition when applied to Ci,− and of
Ci,+. (see also Chapter 10 of [FOOO2].)

Proposition 13.2. Let Σ′
i = Ci,− ∪ Ci,+ be the decomposition mentioned

before, and let vi,± be the above map restricted to one of the two components
respectively. Then the sequence vi,± converge to holomorphic cylinders ũ∞,± :
R× S1 → R× S2n−1

p
∼= C

n \ {0} with

ũ∞,± = (s ◦ ũ∞,±,Θ ◦ ũ∞,±)

given by

s ◦ ũ∞,±(τ ′, t′) = (2πτ + s±, γ(2πt+ θ±)) =: uflat
a±,s±

for the real numbers s± and θ±, where γ± are the Reeb orbit associated to
the tangent cone of u− or u+, respectively, on Ci,− on Ci,+.

13.2. Convergence in the central region. Now we focus our attention
on the central region

(13.6) Ui,int := u−1
i (B2n

p (δi)).

By the convergence proved in Theorem 11.1, there exists δi → 0 such that

ui(Ui,int) ⊂ B2n
p (δi)
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and ui satisfies ∂Jui = 0 near u−1
i (∂B2n

p (δi)). We may choose εi,in and εi,out

so that
εi,in < δi < εi,out < ε0.

We denote Σ′′
i = u−1

i (B2n
p (δi)). Then we have the maps ũi that satisfy

ũi(Σ′′
i ) ⊂ B2n

p (δi/εi), ũi(∂Σ′′
i ) ⊂ ∂B2n

p (δi/εi).

In terms of the orientation convention provided in Definition 13.1, both
boundaries of Σ′′

i are outside boundaries.
We again consider the rescaled maps ũi : Σ′′

i → TpM ∼= C
n given by

ũi(z) =
1
εi

(expI
p)

−1 ◦ ui(z).

By definition of J̃ε, this map satisfies

(13.7) (dũi +R∗
εi
Pεif (ũi))

(0,1)

J̃εi

= 0,

where Rε : C
n → C

n is the rescaling map x 
→ εx on C
n.

The following lemma is immediate to check whose proof is omitted.

Lemma 13.4. We can rewrite (13.7) as

(13.8) ∂
J̃εi
ũi + P�a(ũi)

(0,1)
Jp

= Cεi(ũi) · ũi

where �a = ∇f(p), Cεi(ũi) is the obvious operator and we have

(13.9) |J̃εi(ũi)− Jp| ≤ Cεi|ui|, |Cεi(ũi)ũi| ≤ Cδi
as long as |u| ≤ δi/εi.

We now examine the left-hand side of (13.8). We conformally parameterize
Σ′′

i
∼= [−Li, Li]×S1 with conformal coordinates denoted by (τ ′, t′). Then we

prove the following lemma by the same way as Proposition 13.1.

Lemma 13.5. Let mod(Σ′′
i ) be the conformal modulus of Σ′′

i as defined
above. Then mod(Σ′′

i )→∞.

We can write
ũi(τ ′, t′) = −τ ′�a+ ξi(τ ′, t′)

at least as long as |τ�a| < δi/εi, or equivalently for τ satisfying

|τ | ≤ δi
εi|�a| .

With this conformal coordinate, we can write

(∂
J̃εi
ũi + P�a(ũi)

(0,1)
Jp

)
(
∂

∂τ ′

)

=
∂ũi

∂τ ′
+ J̃εi

∂ũi

∂t′
+ �a =

∂ξ

∂τ ′
+ J̃εi

∂ξ

∂t′
.
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Therefore (13.8) is equivalent to

(13.10)
∂ξi
∂τ ′

+ J̃εi

∂ξi
∂t′

= Cεi(ũi)
(
∂

∂τ ′

)

· ũi.

In particular, we derive
∣
∣
∣
∣
∂ξi
∂τ ′

+ J̃εi

∂ξi
∂t′

∣
∣
∣
∣ ≤ Cδi

from (13.9) on B2n(δi/εi). Therefore, if we prove that ξi (or equivalently ũi)
converges locally in C1-topology, then the limit of ξi must be holomorphic
and hence the local limit of ũi will have the form

−τ ′�a+ ξ∞(τ ′, t′), with ∂ξ∞ = 0

as we are expecting. We will now prove this convergence.
Consider the energies of ũi given by

(13.11) Eint(ũi) =
∫

{z∈Σ′′
i | |ũi(z)|Cn≤4}

ũ∗i d(e
2sλ)

and

(13.12) Edλ(ũi;S) :=
∫

{z∈Σ′′
i | |ũi(z)|Cn≥eS)}

ũ∗i dλ.

Next let C be the set of all nonnegative smooth function ρ : R → R whose
support is compact and is contained in [2,∞) and such that

∫
ρ(s) = 1, and

ρ̃ be the function defined by

ρ̃(s) =
∫ s

2
ρ(u) du.

Then we define

(13.13) Eneck(ũi) = sup
ρ∈C

∫

ũ∗i d(ρ̃λ).

Lemma 13.6. Eneck(ũi) and Eint(ũi) are uniformly bounded above over i.

Proof. We recall the energy EΣ(ui; [log εi, log δi]) from Definition 13.3 over
those ρ defined on [log εi, log δi]. Then by the same proof as Lemma 13.3,
we have the uniform upper bound

EΣ(ui; [log εi, log δi]) < C

for some C independent of i. It is easy to see from the scaling property that

Eneck(ũi) ≤ E(ui)

and hence Eneck(ũi) is uniformly bounded.
On the other hand, we have

Eint(ũi) ≤ ε−2
i

∫

u−1
i (B2n

p (2εi))
u∗iω0
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by definition. But Stokes’ formula gives rise to
∫

u−1
i (B2n

p (2εi))
u∗iω0 =

∫

u−1
i (B2n

p (2εi))
u∗i d(r

2Θ∗λ)

=
∫

u−1
i (∂B2n

p (2εi))
(2εi)2Θ∗λ ∼= 4ε2i (2π + 2π)

by the immersion property of the node and the εi-controlled convergence
of ui to (u−, u+, u0) mentioned in the previous section. This finishes the
proof. �

We also prove the following lemma in the same way as Lemma 13.2.

Lemma 13.7. We have

lim
S→∞

lim sup
i→∞

Edλ(ũi;S) = 0.

We can obtain the same kind of estimates for ξi = ũi+τa from the identity

dξi = dũi + a dτ.

Lemma 13.8.

lim
i→0

Eint(ũi) = lim
i→0

Eint(ξi) = 43π,

lim
i→0
|Edλ(ũi;S)− Edλ(ξi;S)| = 0,

lim
i→∞
|Eneck(ũi)− Eneck(ξi)| = 0.

Proof. The proofs for Edλ and Eint are similar. We will just prove the identity
for Eint. By definition, we have

Eint(ũi) =
∫

Σ′′
i ∩ũ−1

i (B2n(4))
ũ∗i d(r

2λ)

= 42

∫

∂(Σ′′
i ∩ũ−1

i (B2n(4)))
(∂ũi)∗λ→ 42

(∫

γ∗+λ+
∫

γ∗−λ
)

= 424π = 43π.

Here we again used the immersion property of nodes and the fact that
both ends of the cylinder are positive. The same applies to ξi because
limi→∞ |�a|/

∣
∣
∣
∂ũi
∂τ

∣
∣
∣→ 0.

Next we examine Eneck. For each ρ ∈ C, we evaluate
∫

ũ∗i d(ρ̃λ) =
∫

∂B2n(δi)
(∂+ũi)∗λ,

where ∂+ũi := ũi|∂+ and ∂+ is the outside boundary of ũ−1
i (∂B2n(δi)).

Therefore, we have obtained

Eneck(ũi)− Eneck(ξi) =
∫

∂B2n(rout)
((∂+ũi)∗λ− (∂+ξi)∗λ)
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for all ρ ∈ C. As i → ∞, the conformal coordinates (τ ′, t′) of the domain
Ci,int := ũ−1

i (B2n(δi) ∼= [−L′
i, L

′
i] × S1 converges to the given coordinates

(τ, t) near τ ′ = L′
i, it follows that we have

∣
∣
∣
∣
∂τ

∂t′

∣
∣
∣
∣ ≤ C

near L′
i as i → ∞ and so |aτ |C1;∂Ci

→ 0 in the cylindrical metrics of the
domain and the target. Therefore, it follows:

|ũi − ξi|C1;∂Ci,int
→ 0

in the cylindrical metric. We note that this convergence is uniform over ρ ∈ C
as long as supp ρ is contained in a ball B2n(r) of common radius r > 0.
Furthermore the convergence of ũi(±L′

i, t)→ γ± as L′
i →∞. Combining all

these, we obtain
lim
i→∞
|Eneck(ũi)− Eneck(ξi)| = 0.

This finishes the proof. �
We note that both Edλ and Eneck are invariant under the automor-

phisms of C
n, i.e., under homothety and translations. By applying a suitable

sequence of automorphisms gvi,λi to ξi we can achieve

(13.14) min
t∈S1
|gvi,λi ◦ ξi(0, t)| = 1

for all i.
We now prove the following derivative bound.

Proposition 13.3. Denote ξi = gvi,λi ◦ ξi. For each L, there exists a con-
stant C = C(L) such that

sup
−L≤|τ ′|≤L

|dξi(τ ′, t′)| < C(L).

Proof. The proof will be given by a bubbling-off analysis which is a variation
of the proof of Proposition 27 [Ho]. Suppose to the contrary that there exists
a sequence zk ∈ [−R0, R0] × S1 ⊂ Σ′′

k
∼= [−Lk, Lk] × S1 with Lk → ∞ such

that
|dξk(zk)| → ∞.

The following is from [HV,FOOO2].

Lemma 13.9 (Lemma 62.149, [FOOO2]). There exists another sequence
z′i ∈ [−R0 − 1, R0 + 1]× S1 satisfying the following properties:

(1) |dξi(z′i)| := Ci →∞
(2) If dg′

C
(z′, z′i) ≤ C−1/2

i for z′ ∈ C, then |dξi|g′
C
,g′

Cn
≤ 2Ci.

The following is a verbatim translation of Lemma 62.151 [FOOO2] in
our context. For readers’ convenience, we duplicate it therefrom with minor
modifications.



FLOER TRAJECTORIES WITH IMMERSED NODES 615

Lemma 13.10 (Lemma 62.151, [FOOO2]). The sequence ξi(z′i) ∈ C
n is

bounded.

Proof. The proof is by contradiction. Suppose to the contrary that

R3,i = |ξi(z
′
i)|Cn →∞.

We put

Di = {u ∈ C | distg′
H
(C−1

i u+ z′i, z
′
i)

< min{C−1
i

√
R3,i/2, C

−1/2
i }, C−1

i u+ z′i ∈ H}.
We note that Di is a convex domain of its diameter with the order of

min{√R3,i/2, C
1/2
i },

which goes to ∞ as i→∞ by the hypotheses.
We define ξ̃i : Di → C

n by

ξ̃i(u) = ξi(C
−1
i u+ z′i).

Then we have

(13.15) |dξ̃i(zi)| ≥ 1.

We now prove

(13.16) inf
u∈Di

|ξ̃i(u)| ≥
√
R3,i

(√
R3,i − 1

)
> 2S0

if i is sufficiently large. We note

|ξ̃i(u)| ≥ |ξ̃i(0)| − |ξ̃i(u)− ξ̃i(0)|(13.17)

= |ξi(z′i)| − |ξ̃i(u)− ξ̃i(0)|.
We have |ξi(z′i)| = R3,i and

|ξ̃i(u)− ξ̃i(0)| ≤
∫ 1

0
|u · ∇ξ̃i(su)| ds

=
∫ 1

0
|u · C ′−1

i ∇ξi(C
′−1
i (su) + z′i)| ds

≤
∫ 1

0
|C ′−1

i u||∇ξi(C
′−1
i (su) + z′i)| ds.

But since su ∈ Di for all s ∈ [0, 1], we have

dist(C ′−1
i (su) + z′i, z

′
i) ≤ C ′−1/2

i .

Then (13.17) implies

|∇ξi(C
′−1
i (su) + z′i)| ≤ 2C ′

i.

Therefore, we have

|ξ̃i(u)− ξ̃i(0)| ≤ 2|u| ≤√R3,i.
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Substituting these into (13.17), we derive

|ξ̃i(u)| ≥ R3,i −
√
R3,i =

√
R3,i(
√
R3,i − 1).

This finishes the proof of (13.16).
Since (Hα−1)

′ ∩ (Cn \ B2n(2S0)) ⊂ R
n ∪ Λ, (13.16) allows us to regard ξ̃i

as a sequence of maps

ξ̃i : Di → R× S2n−1 ∼= C
n\ ⊂ C

n.

We derive from Lemma 13.8

E(ξ̃i) ≤ E0, Edλ(ξ̃i)→ 0.

Then we can find s′i →∞ and a subsequence such that Ts′i ◦ ξ̃i converges to
a map

ξ̃∞ : D∞ → R× S2n−1

in compact C∞ topology. Therefore, we derive |dξ̃∞(z∞)| ≥ 1 from (13.15).
But this gives rise to a contradiction, which finishes the proof. �

Now we go back to the proof of Proposition 13.3.
Define a new map ṽk : Dk → C

n by

ṽk(u) = ξk

(

zk +
u

Ck

)

,

where Dk ⊂ C is defined by

Dk = {u ∈ C | dcyl(z′k + u/Ck, z
′
k) < C

−1/2
k , z′k + u/Ck ∈ [−Lk, Lk]× S1}.

Since z′k ∈ [−R0, R0]× S1, it follows:

z′k + u/Ck ∈ [−R0 + C
−1/2
k , R0 + C

−1/2
k ]× S1

⊂ [−R0 − 1, R0 + 1]× S1 ⊂ [−Lk, Lk]× S1

and so the map ṽk is well defined on Dk
∼= B2(C1/2

k ). Then ṽk satisfies the
following properties:

(1) ṽk(0) = ξk(zk) is bounded,
(2) E(ṽk) < C,
(3)
∫

Dk
ṽ∗kΘ

∗dλ→ 0 as k →∞
(4) |dṽk(u)| ≤ 2 on Dk and |dṽk(0)| = 1
(5) |∂ṽk| → 0 as k →∞.

Therefore, by taking a diagonal subsequence of ṽk converges to a holomor-
phic map ṽ∞ : C→ C

n that satisfies

(13.18)
∫

C

ṽ∗∞Θ∗dλ = 0, E(ṽ∞) <∞
and

(13.19) |dṽ∞(0)| = 1, |dṽ∞(u)| ≤ 2.
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But (13.18) implies ṽ∞ must be constant while (13.19) implies it cannot, a
contradiction. This finishes the proof of Proposition 13.3. �

By the elliptic regularity, we derive from (13.14) and Proposition 13.3 that
the Ck norm of ξi for all k ≥ 0 is uniformly bounded on any bounded subset
of R×S1. Therefore, by Ascoli–Arzela’s theorem, we can find a subsequence
of ξi that converges to a holomorphic map

ξ∞ : R× S1 → C
n

in compact C∞ topology. By (13.14), ξ∞ cannot be a constant map.
The following energy bound is an immediate consequences of Lemma 13.6.

Lemma 13.11. Eint(ξ∞) and Eneck(ξ∞) are finite.

Next we prove the following theorem.

Theorem 13.3. There exists a sequence of vectors vi and a subsequence of
ξi = ξi − vi that converges to a holomorphic map

ξ∞ : R× S1 → C
n

in compact C∞-topology satisfying the following properties:
(1) Eint(ξ∞) and Eneck(ξ∞) are finite.
(2) In the decomposition ξ∞ = (s ◦ ξ∞,Θ ◦ ξ∞) outside B2n(1), we have

lim
τ ′→∞

Θ ◦ ξ(τ ′, t) = γ+(t),

lim
τ ′→−∞

Θ ◦ ξ(τ ′, t) = γ−(t),

where γ± are the Reeb orbits of S2n−1(1) ⊂ C
n ∼= (TpM,ωp, Jp) asso-

ciated to the tangent cones of u+, u− at the node p = u+(∞) =
u−(−∞), respectively.

Proof. We start with the following result proved by Hofer [Ho].

Lemma 13.12 (Theorem 31, [Ho]). Suppose that ξ∞ is a proper non-
constant pseudo-holomorphic with finite EΣ-energy. There exists a closed
Reeb orbit γ : S1 → S2n−1 and a sequence τk →∞ such that γk = ξ∞(τk, ·)
converges in C∞ to γ. Similar statement holds also for τk →∞.

We will now improve this convergence to

Proposition 13.4. ξ∞ is a proper holomorphic cylinder such that

lim
τ→±∞ ξ∞(τ, ·) = γ±

in C∞ where γ± are the Reeb orbits associated to the tangent cones of the
node of (u−, u+).
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Proof. The main tool for such a convergence result is Theorem 13.2 the
characterization of the asymptotics of J0-holomorphic maps with small dλ-
energy Edλ.

Let γa be the Reeb orbit provided in Theorem 13.2 for u = ξ∞. We will
treat only the case as τ → +∞ since the case τ → −∞ will be the same. In
our situation, we have the vector a = a± = du±(o±)

|du±(o±)| .
We will show that there exists a constant s1 ∈ R such that ξ∞ satisfies

|ξ∞(z)− uflat
a,s1

(z)|Ck → 0

in exponential order as |z| → ∞.
Let E0 = Eneck(ξ∞). We take e0 as in Theorem 13.2. Since E(ξ∞) < ∞,

we can choose S such that

E(ξ∞;S) ≤ e0.
Then, we can apply Theorem 13.2 to the restriction of ξ∞ to [S, S + 2R]×
[0, 1].

Note ξ∞([S, S + 2R]× [0, 1]) ⊂ [log 4,∞)× S2n−1. Put

γ(t) = ξ∞(S +R, t), γi(t) = ξi(S +R, t).

Then, by Lemma 13.3, we have:
∫ 1

0
γ∗λ = lim

i→∞

∫ 1

0
γ∗i λ ≤ 3π.

Therefore, we have constants R2,j and s1,j such that R2,j →∞ and

(13.20) |∇k(ξ∞ − uflat
aj ,s1,j

)|(τ, t) ≤ Cke−ck|τ−S−R2,j |

on (τ, t) ∈ [S + 10, S − 10 + 2R2,j ]× S1.
Since the intervals [S + 10, S − 10 + 2R2,j ] are nested as R2,j ↗ ∞, we

should also have s1,j → s1 as j → ∞ for s1 appearing in Theorem 13.2.
Then (13.20) implies

|∇k(ξ∞ − uflat
a∞,s1

)|(τ, t) ≤ C ′
ke

−c′k|τ |,

on (τ, t) ∈ [S + 10,∞)× [0, 1]. Therefore, we have finished the proof. �
Theorem 13.3 follows from Proposition 13.4. �
Since every Reeb orbits of S2n−1 with the action

∫
γ∗λ ≤ 3π is one of γa,

we have γ± = γa± for some a± ∈ S2n−1. To finish the proof of Theorem 12.1,
it remains to prove the ε-controlled convergence (12.10).

We take an isomorphism ψ : R × S1 → R × S1 such that ψ(±∞) = ±∞
and

dg′
Cn

(ξ∞ ◦ ψ(0, 0), 0) = min
(τ,t)∈R×S1

dg′
Cn

(ξ∞(τ, t), 0).

We now define the map

ψi,int : [−∞, Ri)× S1 → H
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for some Ri to be determined later in the proof. Since we have
1
εi

((expI
p)

−1 ◦ ui ◦ ψi,int) + τ ′a = ξi ◦ ψi,int = gvi,λi ◦ ξi ◦ ψi,int

by the definitions of gvi,λi and ξi and gvi,λiξi ◦ ψi,int converges to ξ∞, it

follows that g−1
vi,λi

(
1
εi

((expI
p)

−1 ◦ ui ◦ ψi,int)− τ ′a
)

converges to uflat,s1
a on

compact C∞ topology. For the notational convenience, we will drop (expI
p)

−1

from (expI
p)

−1 ◦ ui ◦ ψi,int and just denote it by ui ◦ ψi,int.
By the diagonal sequence argument, we can choose a sequence Ri → ∞

so that

lim
i→∞

sup
R0≤τ ′≤2Ri

∣
∣
∣
∣∇k

(

g−1
vi,λi

(
1
ε1,i

ui ◦ ψi,int(τ ′, t′) + τ ′a
)

− uflat
a,s1

)∣
∣
∣
∣ = 0.

(13.21)

It follows that there exist S3, I0 such that the following holds for i ≥ I0:
(1)

∫

[S3,2Ri)×[0,1]

(
1
ε1,i

(
g−1
vi,λi
◦ ui ◦ ψi,int

))∗
dλ < e0,

(2) 2Ri − S3 ≥ R0.
We can apply Theorem 13.2 to obtain s′i such that

∣
∣
∣
∣∇k

(

g−1
vi,λi

(
1
εi

(ui ◦ ψi,int(τ ′, t′) + τ ′a
)

− uflat
a′

i,s
′
i
(τ ′, t′)

)∣
∣
∣
∣(13.22)

≤ Cke−ck min{|2Ri−τ |,|τ−S3|}.

Comparing (13.21) with (13.22) we have s′i → s1. Perturbing ψi,int slightly
and re-choosing si, we may assume s′i = 0.

Therefore, we obtain
∣
∣
∣
∣∇k

(

g−1
vi,λi

(
1
εi

(ui ◦ ψi,int(τ ′, t′) + τ ′a
)

− uflat
a′

i,s
′
i
(τ ′, t′)

)∣
∣
∣
∣

≤ Cke−ck min{|2Ri−τ |,|τ−S3|}.

Now the proof of Theorem 12.1 is finished.

Part III. Application: a proof of PSS isomorphism

In this part, we combine the analysis carried out in the previous sections
with the standard cobordism argument to give the proof of Ψ ◦ Φ = id in
homology. For completeness’s sake, we also give an explanation of the proof
Φ ◦ Ψ = id whose proof can be given by a more or less standard argument
in Floer theory. The isomorphism proof in this part is complete as it is
for the semi-positive (M,ω). However, we have been careful to provide our
compactification of the relevant moduli spaces so that one can easily put
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Kuranishi structure [FOn] on them to generalize the isomorphism property
to arbitrary compact (M,ω). Since this is not our main purpose of the paper,
we do not pursue complete details and leave them for interested readers.

Remark 13.1. For example, observing that Proposition 5.2 holds for a
generic choice of almost complex structures on any symplectic manifold,
whether it is semi-positive or not, one can repeat the construction carried
out in [Lu] in our setting instead of in the setting of [PSS] that [Lu] uses.

14. Review of Floer complex and operators

In this section, we give a brief summary of basic operators in the standard
Floer homology theory. Details of construction of these operators are impor-
tant for the argument in our proof of isomorphism property of the PSS map.
While these constructions are standard, we closely follow the exposition pre-
sented in [Oh2,Oh4].

For each nondegenerate H : S1×M → R with φ1
H = φ, we know that the

cardinality of Per(H) is finite. We consider the free Q vector space generated
by the critical set of AH

CritAH = {[z, w] ∈ Ω̃0(M)|z ∈ Per(H)}.
Definition 14.1. Consider the formal sum

(14.1) β =
∑

[z,w]∈CritAH

a[z,w][z, w], a[z,w] ∈ Q.

(1) We call those [z, w] with a[z,w] �= 0 generators of the sum β and write

[z, w] ∈ β.
We also say that [z, w] contributes to β in that case.

(2) We define the support of β by

supp(β) := {[z, w] ∈ CritAH | a[z,w] �= 0 in the sum (14.1)}.
(3) We call the formal sum β a Novikov Floer chain (or simply a Floer

chain) if

(14.2) #(supp(β) ∩ {[z, w] | AH([z, w]) ≥ λ}) <∞
for any λ ∈ R. We denote by CF∗(H) the set of Floer chains.

We now explain the description of CF (H) as a module over the Novikov
ring as in [Fl3,HS]. Consider the abelian group

Γ =
π2(M)

ker c1 ∩ kerω
and the formal sum

R =
∑

A∈Γ

rAq
A, rA ∈ Q.
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We define
supp(R) = {A ∈ Γ | rA �= 0}.

The (upward) Novikov ring defined by

Λω = Λ↑
ω =

{
∑

A∈Γ

rAq
A | ∀λ ∈ R,#{A ∈ Γ | rA �= 0, ω(A) < λ} <∞

}

.

Then we have the valuation on Λω given by

(14.3) v(R) = min{ω(A) | A ∈ supp R}.
We recall that Γ acts on CritAH by “gluing a sphere”

[z, w] 
→ [z, w#(−A)],

which in turn induces the multiplication of Λω on CF (H) by the convolution
product. This enables one to regard CF (H) as a Λω-module. We will try to
consistently denote by CF (H) as a Λω-module, and by CF∗(H) as a graded
Q vector space.

Suppose H is a nondegenerate one-periodic Hamiltonian function and
J a one-periodic family of compatible almost complex structures. We first
recall Floer’s construction of the Floer boundary map, and the transversality
conditions needed to define the Floer homology HF∗(H, J) of the pair.

The following definition is useful for the later discussion.

Definition 14.2. Let z, z′ ∈ Per(H). We denote by π2(z, z′) the set of
homotopy classes of smooth maps

u : [0, 1]× S1 →M

relative to the boundary

u(0, t) = z(t), u(1, t) = z′(t).

We denote by [u] ∈ π2(z, z′) its homotopy class and by C a general element
in π2(z, z′).

We define by π2(z) the set of relative homotopy classes of the maps

w : D2 →M ; w|∂D2 = z.

We denote by π2(M) the second homotopy class of maps u : S2 → M . It
acts on π2(z) and π2(z, z′) (modulo the action of π1(M)) by the obvious
operation of a “gluing a sphere”. Since the action of π1(M) on π2(M) does
not change c1 or the symplectic area, the operation of “gluing a sphere”
induces the deck transformation action of Γω on Ω̃0(M) → Ω0(M) and so
induces the structure of a principal Γ fiber bundle

CritAH → Per(H)

on CritAH .
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Furthermore, there is a natural map of C ∈ π2(z, z′)

(·)#C : π2(z)→ π2(z′)

induced by the gluing map
w 
→ w#u.

More specifically we will define the map w#u : D2 → M in the polar
coordinates (r, θ) of D2 by the formula

(14.4) w#u : (r, θ) =

{
w(2r, θ), for 0 ≤ r ≤ 1

2 ,

w(2r − 1, θ), for 1
2 ≤ r ≤ 1

once and for all. There is also the natural gluing map

π2(z0, z1)× π2(z1, z2)→ π2(z0, z2),

(u1, u2) 
→ u1#u2.

We also explicitly represent the map u1#u2 : [0, 1]×S1 →M in the standard
way once and for all similarly to (14.4).

Definition 14.3. We define the relative Conley–Zehnder index of C ∈ π2

(z, z′) by
μH(z, z′;C) = μH([z, w])− μH([z′, w#C])

for a (and so any) representative u : [0, 1]× S1 ×M of the class C. We will
also write μH(C), when there is no danger of confusion on the boundary
condition.

It is easy to see that this definition does not depend on the choice of
bounding disc w of z, and so the function

μH : π2(z, z′)→ Z

is well defined.
We now denote by

M(H, J ; z, z′;C)
the set of finite-energy solutions of

(14.5)
∂u

∂τ
+ J

(
∂u

∂t
−XH(u)

)

= 0

with the asymptotic condition and the homotopy condition

(14.6) u(−∞) = z, u(∞) = z′; [u] = C.

(See [Fl3,HS].) Here we remark that although u is a priori defined on R×S1,
it can be compactified into a continuous map u : [0, 1] × S1 → M with the
corresponding boundary condition

u(0) = z, u(1) = z′

due to the exponential decay property of finite energy solutions u of (4.2),
recalling we assume H is nondegenerate. We will call u the compactified
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map of u. By some abuse of notation, we will also denote by [u] the class
[u] ∈ π2(z, z′) of the compactified map u.

The Floer boundary map

∂(H,J);CFk+1(H)→ CFk(H)

is defined under the following conditions by studying equation (14.5) for a
Floer-regular pair (H, J) and satisfies ∂∂ = 0, which enables us to take its
homology. The Floer homology is defined by

HF∗(H, J) := ker ∂/ im ∂.

One may regard this either as a graded Q-vector space or as a Λω-module.
Next we describe the Floer chain map. When we are given a family (H, j)

with H = {Hs}0≤s≤1 and j = {Js}0≤s≤1 and a cut-off function ρ : R →
[0, 1], the chain homomorphism

hH = h(H,j) : CF∗(Hα)→ CF∗(Hβ)

is defined by considering the nonautonomous form of (14.5).
Consider the pair (HR, jR) that are asymptotically constant, i.e., there

exists R > 0 such that

J(τ) ≡ J(∞), H(τ) ≡ H(∞)

for all τ with |τ | ≥ R. We will always consider the form

(HR, jR) = {(Hρ(τ), Jρ(τ))},
where (Hs, Js) is a homotopy over s ∈ [0, 1] and ρ : R→ [0, 1] is a function
as defined before. We study the following equation (14.5):

(14.7)
∂u

∂τ
+ Jρ(τ)

(
∂u

∂t
−XHρ(τ)(u)

)

= 0.

We denote by
M(H, j; ρ)

the set of finite-energy solutions of (14.7).
For a Floer-regular pair (H, j), we can define a continuous map of degree

zero
h(H,j;ρ) : CF (Hα)→ CF (Hβ)

by the matrix element n(H,j;ρ)([zα, wα], [zβ, wβ]) similarly as for the bound-
ary map. Then h(H,j) has degree 0 and satisfies the identity

h(H,j;ρ) ◦ ∂(Hα,Jα) = ∂(Hβ ,Jβ) ◦ h(H,j;ρ).

Two such chain maps h(j1,H1), h(j2,H2) are also chain homotopic [Fl3].
Now we examine Floer chain homotopy maps and the composition law

hαγ = hβγ ◦ hαβ
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of the Floer isomorphism

(14.8) hαβ : HF∗(Hα)→ HF∗(Hβ).

Although the above isomorphism in homology depends only on the end
Hamiltonians Hα and Hβ, the corresponding chain map depends on the
homotopy H = {H(η)}0≤η≤1 between Hα and Hβ , and also on the homo-
topy j = {J(η)}0≤η≤1. Let us fix nondegenerate Hamiltonians Hα, Hβ and
a homotopy H between them. We then fix a homotopy j = {J(η)}0≤η≤1 of
compatible almost complex structures and a cut-off function ρ : R→ [0, 1].

We recall that we have imposed the homotopy condition

(14.9) [w+] = [w−#u]; [u] = C in π2(z−, z+)

in the definition ofM(H, J ; [z−, w−], [z+, w+]) and ofM((H, j; ρ); [zα, wα],
[zβ, wβ ]). One consequence of (14.9) is

[z+, w+] = [z+, w−#u], in Γ

but the latter is a weaker condition than the former. In other words, there
could be more than one distinct elements C1, C2 ∈ π2(z−, z+) such that

μ(z−, z+;C1) = μ(z−, z+;C2), ω(C1) = ω(C2).

When we are given a homotopy (j,H) of homotopies with j = {jκ}, H =
{Hκ}, we also define the elongations Hρ of Hκ by a homotopy of cut-off
functions ρ = {ρκ}: we have

Hρ = {Hρκ
κ }0≤κ≤1.

Consideration of the parameterized version of (14.7) for 0 ≤ κ ≤ 1 defines
the chain homotopy map

HH : CF∗(Hα)→ CF∗(Hβ),

which has degree +1 and satisfies

(14.10) h(j1,H1;ρ1) − h(j0,H0:ρ0) = ∂(J1,H1) ◦HH +HH ◦ ∂(J0,H0).

Again the map HH depends on the choice of a homotopy j and ρ =
{ρκ}0≤κ≤1 connecting the two functions ρ0, ρ1. Therefore, we will denote

HH = H(H,j;ρ)

as well. Equation (14.10) in particular proves that two chain maps for differ-
ent homotopies (j0,H0; ρ0) and (j1,H1; ρ1) connecting the same end points
are chain homotopic and so proves that the isomorphism (14.8) in homology
is independent of the homotopies (H, j) or of ρ.

Next, we consider the triple

(Hα, Hβ, Hγ)
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of Hamiltonians and homotopies H1,H2 connecting from Hα to Hβ and Hβ

to Hγ , respectively. We define their concatenation H1#H2 = {H3(s)}1≤s≤1

by

H3(s) =

{
H1(2s), 0 ≤ s ≤ 1

2 ,

H2(2s− 1), 1
2 ≤ s ≤ 1.

We note that due to the choice of the cut-off function ρ, the continuity
equation (14.7) is autonomous for the region |τ | > R, i.e., is invariant under
the translation by τ . When we are given a triple (Hα, Hβ, Hγ), this fact
enables us to glue solutions of two such equations corresponding to the
pairs (Hα, Hβ) and (Hβ , Hγ), respectively.

Now a more precise explanation is in order. For a given pair of cut-off
functions

ρ = (ρ1, ρ2)

and a positive number R > 0, we define an elongated homotopy of H1#H2

H1#(ρ;R)H2 = {H(ρ;R)(τ)}−∞<τ<∞

by

H(ρ;R)(τ, t, x) =

{
H1(ρ1(τ + 2R), t, x), τ ≤ 0,
H2(ρ2(τ − 2R), t, x), τ ≥ 0.

Note that

H(ρ;R) ≡

⎧
⎪⎨

⎪⎩

Hα, for τ ≤ −(R1 + 2R),
Hβ, for −R ≤ τ ≤ R,
Hγ , for τ ≥ R2 + 2R

for some sufficiently large R1, R2 > 0 depending on the cut-off functions
ρ1, ρ2 and the homotopies H1,H2, respectively. In particular this elongated
homotopy is always smooth, even when the usual glued homotopy H1#H2

may not be so. We define the elongated homotopy j1#(ρ;R)j2 of j1#j2 in a
similar way.

For an elongated homotopy (j1#(ρ;R)j2,H1#(ρ,R)H2), we consider the
associated perturbed Cauchy–Riemann equation

{
∂u
∂τ + J

ρ(τ)
3

(
∂u
∂t −XH

ρ(τ)
3

(u)
)

= 0,

limτ→−∞ u(τ) = z−, limτ→∞ u(τ) = z+

with the condition (14.9).
Now let u1 and u2 be given solutions of (14.7) associated to ρ1 and ρ2

respectively. If we define the pre-gluing map u1#Ru2 by the formula

u1#Ru2(τ, t) =

{
u1(τ + 2R, t), for τ ≤ −R,
u2(τ − 2R, t), for τ ≥ R
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and a suitable interpolation between them by a partition of unity on the
region −R ≤ τ ≤ R, the assignment defines a diffeomorphism

(u1, u2, R)→ u1#Ru2

from

M (j1,H1; [z1, w1], [z2, w2])×M (j2,H2; [z2, w2], [z3, w3])× (R0,∞)

onto its image, provided R0 is sufficiently large. Denote by ∂(H,j;ρ) the cor-
responding perturbed Cauchy–Riemann operator

u 
→ ∂u

∂τ
+ J

ρ(τ)
3

(
∂u

∂t
−X

H
ρ(τ)
3

(u)
)

acting on the maps u satisfying the asymptotic condition u(±∞) = z± and
fixed homotopy condition [u] = C ∈ π2(z−, z+). By perturbing u1#Ru2

by the amount that is smaller than the error for u1#Ru2 to be a genuine
solution, i.e., less than a weighted Lp-norm, for p > 2,

‖∂(H,j;ρ)(u1#(ρ;R)u2)‖p
in a suitable W 1,p space of u’s, one can construct a unique genuine solution
near u1#Ru2. By an abuse of notation, we will denote this genuine solution
also by u1#Ru2. Then the corresponding map defines an embedding

M (j1,H1; [z1, w1], [z2, w2])×M (j2,H2; [z2, w2], [z3, w3])× (R0,∞)

→M (j1#(ρ;R)j2,H1#(ρ;R)H2; [z1, w1], [z3, w3]
)
.

Especially, when we have

μHβ
([z2, w2])− μHα([z1, w1]) = μHγ ([z3, w3])− μHβ

([z2, w2]) = 0

both M(j1,H1; [z1, w1], [z2, w2]) and M(j2,H2; [z2, w2], [z3, w3]) are com-
pact, and so consist of a finite number of points. Furthermore, the image of
the above mentioned embedding exhausts the “end” of the moduli space

M (j1#(ρ;R)j2,H1#(ρ;R)H2; [z1, w1], [z3, w3]
)

and the boundary of its compactification consists of the broken trajectories

u1#(ρ;∞)u2 = u1#∞u2.

This then proves the following gluing identity

Proposition 14.1. There exists R0 > 0 such that for any R ≥ R0 we have

h(H1,j1)#(ρ;R)(H2,j2) = h(H1,j1;ρ1) ◦ h(H2,j2;ρ2)

as a chain map from CF∗(Hα) to CF∗(Hγ).
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Here we remind the readers that the homotopy H1#(ρ;R)H2 itself is an
elongated homotopy of the glued homotopy H1#H2. This proposition then
gives rise to the composition law hαγ = hβγ ◦ hαβ in homology.

This finishes the summary of construction of Floer complex and basic
operations in Floer theory. In particular, the chain homotopy map is defined
whenever the family (H, J) where H = {Hκ}, J = {Jκ} are smooth families
over 0 ≤ κ ≤ 1. However, the chain homotopy map used in PSS map that we
have been considering in the present paper is not of this kind but induced
by the concatenation of two noncompact homotopies over −∞ ≤ � < 0 and
0 < ε ≤ 1.

15. Ψ ◦ Φ = id; Floer via Morse back to Floer

Consider the PSS deformation defined over κ ∈ [−∞, 1]. We fix a homo-
topy (Kκ, Jκ) as any generic homotopy from (Kε0 , Jε0) to (K1, J1) =
(H(t, x), J).

Fix a sufficiently small ε0 > 0 and a sufficiently large �0 > 0. We divide
the deformation into the following five pieces

(Kκ, Jκ), for [ε0 ≤ κ ≤ 1],

(KR(ε), JR(ε)), for 0 < κ ≤ ε0,
(Hρ− , Jρ−)o− ∗ (f, J0; [−�, �]) ∗o+ (Hρ+ , Jρ+), for −�0 ≤ � < 0 :

and

(Hρ− , Jρ−)o− ∗ (f, J0; [−�, �]) ∗o+ (Hρ+ , Jρ+), for −∞ ≤ � < −�0 :

Here (f, J0; [−�, �]) stands for the deformation

� ∈ (−∞, 0) 
→ (f, J0; [−�, �]),
where f is a Morse function with respect to the metric gJ0 and we consider
its gradient trajectories over the interval [−�, �].

We denote byMΨΦ
κ ([z−, w−]), [z+, w+]) the moduli space of configuration

corresponding to κ and form the parameterized moduli space

Mpara
ΨΦ ([z−, w−], [z+, w+]; f) =

⋃

κ∈[−1,∞]

MΨΦ
κ ([z−, w−], [z+, w+]).

By the nondegeneracy hypothesis and the index condition, MΨΦ
κ is empty

except at a finite number of points

κ ∈ (−�0,−�1) ∪ (ε0, 1)

but a priori those κ could be accumulated in [−�1, ε0]. The one-jet transver-
sality of the enhanced nodal Floer trajectory moduli space, which corre-
sponds to κ = 0 and the main gluing result of the present paper, proves that
this accumulation cannot be possible. As a result,

MΨΦ
κ ([z−, w−]), [z+, w+]) = ∅
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for all κ ∈ [−�1, ε0] if we choose �1, ε0 sufficiently small. Together with the
main gluing compactness result of the present paper, this discussion proves
the following proposition:

Proposition 15.1. There exist constants �0, �1, ε0 and ε1 such that the fol-
lowings hold:

(1) Suppose μH([z−, w−]) − μH([z+, w+]) = −1. Then Mpara
ΨΦ ([z−, w−]),

[z+, w+]) is a compact zero-dimensional manifold such that

MΨΦ
κ ([z−, w−], [z+, w+]) = ∅

for κ ∈ [−∞,−�0] ∪ [−�1, ε0] ∪ [1− ε1, 1].
(2) Suppose μH([z−, w−]) − μH([z+, w+]) = 0. Then Mpara

ΨΦ ([z−, w−]),
[z+, w+]; f) is a compact one-dimensional manifold with boundary
given by

∂Mpara
ΨΦ ([z−, w−]), [z+, w+]; f)

=M1([z−, w−], [z+, w+]) ∪M−∞([z−, w−], [z+, w+])

∪
⎛

⎝
⋃

[z,w]

Mpara
ΨΦ ([z−, w−], [z, w])#Mκ=1([z, w], [z+, w+])

⎞

⎠

∪
⎛

⎝
⋃

[z,w]

Mκ=1([z−, w−], [z, w])#Mpara
ΨΦ ([z, w], [z+, w+])

⎞

⎠ ,

where the union is taken over all [z, w] with μH([z−, w−]) − μH

([z, w]) = −1 for the first and μH([z, w]) − μH([z+, w+]) = −1 for
the second.

Statement (1) in this proposition allows one to define the matrix coeffi-
cients the order

#Mpara
ΨΦ ([z−, w−]), [z+, w+]; f).

We then define the map

hΨΦ
pss : CF∗(H)→ CF∗+1(H)

by the matrix coefficients

〈hΨΦ
pss ([z−, w−], [z+, w+]〉 := #Mpara

ΨΦ ([z−, w−]), [z+, w+]; f).

Then Statement (2) concerning the description of the boundary of the one
dimensional moduli spaceMpara

ΨΦ ([z−, w−]), [z+, w+]; f) is translated into the
equation

Ψ ◦ Φ− id = ∂ ◦ hΨΦ
pss + hΨΦ

pss ◦ ∂.
This finishes the proof Ψ ◦ Φ = id in homology.
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16. Φ ◦ Ψ = id; Morse via Floer back to Morse

In this section, for each given pair p, q ∈ Crit f , we consider the parameter-
ized moduli space

Mpara
ΦΨ (p, q) =

⋃

0≤R≤∞
MΦΨ

R (p, q) : .

We define MΦΨ
R (p, q) in the following way.

First for each 0 < R <∞, we introduce the moduli spaceM(2;0,0))((KR,

JR)) of finite energy solutions of

(16.1) ∂(KR,JR)u = 0

on Σ which is a Riemann surface with two marked points {o−, o+} so that
Σ \ {o±} ∼= R× S1 conformally. We first define a family of Riemann surface
(Σ, jR) by the connected sum

(D−, o−) ∪ CR ∪ (D+, o+), jR = jD−#jCR
#jD+ ,

where CR is the cylinder [−R,R]×S1, jCR
the standard conformal structure

and jR is the obvious glued conformal structure on D− ∪ CR ∪ D+. We
denote (τ, t) the conformal coordinates onD−∪CR∪D+\{o−, o+} extending
the standard coordinates on CR.

In this conformal coordinates, we fix a family of cut-off functions χR by

χR(τ) =

{
1− κ+(τ −R), for τ ≥ 0,
1− κ−(τ +R), for τ ≤ 0,

for 1 ≤ R < ∞, and χR = Rχ1 for 0 ≤ R ≤ 1. We note that χ0 ≡ 0 and
χR has compact support and χR ≡ 1 on any given compact subset if R is
sufficiently large. Therefore, equation (16.1) is reduced to ∂J0u = 0 near the
marked points o±. Then we define (KR, JR) as in Subsection 5.5.

We have two evaluations

evo± :M(2;0,0)(K
R, JR)→M ; evo±(u) = u(o±).

We denote

M̃−(p; f) = {χ : R×M | χ̇+∇f(χ) = 0, χ(−∞) = p},
M̃+(q; f) = {χ : R×M | χ̇+∇f(χ) = 0, χ(+∞) = q}

and define

M̃−
1 (p; f) = M̃−(p; f)× R,

M̃+
1 (q; f) = M̃+(q; f)× R.

τ0 ∈ R acts on both by the action

(τ0, (χ, τ)) 
→ (χ(∗ − τ0), τ + τ0).
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This action is free and so their quotients

M−
1 (p; f) = M̃−

1 (p; f)/R, M+
1 (q; f) = M̃+

1 (q; f)/R

become smooth manifold of dimension μMorse(p; f) and 2n − μMorse(q; f),
respectively. We have the evaluation maps

ev+ :M+
1 (q; f)→M, ev− :M−

1 (p; f)→M,

whose image has one-one correspondence with the unstable manifold
W u(p; f) and the stable manifold W s(q; f), respectively.

Now we define the moduli space MΦΨ
R (p, q;A) to be the fiber product

MΦΨ
R (p, q;A) =M−

1 (p; f)ev− ×evo− M(2;0,0)(K
R, JR;A)evo+

×ev+ M+
1 (q; f)

= {((χ−, τ−), u, (χ+, τ+)) | χ−(τ−) = u(o−), χ+(τ+) = u(o+)}
and

MΦΨ,para(p, q;A) =
⋃

0≤R≤∞
MΦΨ

R (p, q;A).

A straightforward calculation shows that

dimvirtMΦΨ
R (p, q;A) = μMorse(p)− μMorse(q) + 2c1(A).

Proposition 16.1. Choose a generic pair (f, J0).
(1) Suppose that μMorse(p) − μMorse(q) + 2c1(A) = −1. Then there exist

some ε1 > 0 and R1 > 0 such that Then MΦΨ,para
R (p, q;A) is a com-

pact 0-dimensional manifold such that

MΦΨ
R (p, q;A) = ∅

if 0 ≤ R ≤ ε1 or R ≥ R1.
(2) Suppose that μMorse(p) − μMorse(q) + 2c1(A) = 0. Then MΦΨ,para

(p, q;A) is a compact one-manifold with boundary given by

∂MΦΨ,para(p, q;A) =MΦΨ
0 (p, q;A) ∪MΦΨ

∞ (p, q;A) ∪
⋃

r

MΦΨ(p, r;A)

where the union
⋃

r is taken over r ∈ Crit f such that

μMorse(p)− μMorse(r) + 2c1(A) = −1.

Proof. We recall that when R = 0, equation (16.1) is reduced to ∂J0u = 0.
Since μMorse(p)− μMorse(q) + 2c1(A) = −1 represents the virtual dimension
ofMΦΨ

0 (p, q;A),MΦΨ
0 (p, q;A) must be empty for a generic choice of (f, J0).

Here we emphasize the fact that this moduli space depends only on (f, J0) for
which the genericity argument can be applied independent of the parameter
R. Therefore, the same must be the case when R1 ≤ ε1 for a sufficiently
small ε1 > 0. This finishes the proof.

We leave the proof of Statement (2) to the readers. �
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Using Statement (1), we define the chain homotopy map

hΦΨ
pss : CM∗(f, J0; Λω)→ CM∗+1(f, J0; Λω)

by the matrix element

〈hΦΨ
pss (p), q#(−A)〉 =

∑

(r,A)

#

(
⋃

r

MΦΨ,para(p, r;A)

)

.

Next, we prove the following lemma:

Lemma 16.1. Suppose μMorse(p)− μMorse(q) + 2c1(A) = 0. Then if A �= 0,

dimMΦΨ
0 (p, q;A) ≥ 2

unless MΦΨ
0 (p, q;A) = ∅. And when A = 0, we have

dimMΦΨ
0 (p, q;A) ≥ 1

unless p = q.

Proof. If A �= 0, u is nonconstant in (u; o−, o+) ∈M(2;0,0))((KR, JR)). Then
the conformal automorphism on the domain (Σ; o−, o+) produces at least
a real two-dimensional family which contradicts the index hypothesis. (See
[Fl3,FHS] for the semi-positive case and [FOn,LT1] in general.)

On the other hand, if A = 0, any J0-holomorphic sphere must be con-
stant and so the corresponding configuration (χ−, const, χ+) becomes a full
gradient trajectory χ = χ−#χ+. Unless χ is constant, i.e., unless p = q,
R-translation produces at least one-dimensional family which again contra-
dicts to the index hypothesis. This finishes the proof. �

Now we are ready to finish the proof of the identity

(16.2) Φ ◦Ψ− id = hΦΨ
pss ∂

Morse
(f,J0) + ∂Morse

(f,J0)h
ΦΨ
pss .

A priori, Proposition 16.1 only implies
∑

q,A

〈(Φ◦Ψ− id)(p), q#(−A)〉 =
∑

q,A

〈hΦΨ
pss ∂

Morse
(f,J0) (p)+∂Morse

(f,J0)h
ΦΨ
pss (p), q#(−A)〉.

But the above lemma implies

〈(p), q#(−A)〉 = 0

unless A = 0 and p = q. This finishes the proof of (16.2).
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