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EXTENDED FLUX MAPS ON SURFACES AND THE
CONTRACTED JOHNSON HOMOMORPHISM

MATTHEW B. DAY

On a closed symplectic surface ¥ of genus two or more, we give a
new construction of an extended flux map (a crossed homomorphism
from the symplectomorphism group Symp(X) to the cohomology group
H'(3;R) that extends the flux homomorphism). This construction uses
the topology of the Jacobian of the surface and a correction factor
related to the Johnson homomorphism. For surfaces of genus three or
more, we give another new construction of an extended flux map using
hyperbolic geometry.

1. Introduction

1.1. Background. Let ¥ = ¥, . be a closed, oriented surface of genus
g > 2 with a basepoint *. Let ws; be a symplectic form (an area form) on X.
Let Symp(X) = Symp(¥;wy) be the symplectomorphism group of (X, wy),
which is the subgroup of diffeomorphisms ¢ € Diff(¥) with ¢*wy, = wy.
Let Sympy(X) = Sympy(X;ws) be the subgroup of Symp(X) consisting of
symplectomorphisms homotopic to the identity.

There is a homomorphism Flux: Symp,(X) — H(XZ;R) called the flux
homomorphism. By the universal coefficient theorem, we represent Flux as
a homomorphism to Hom(H;(X),R). Let ¢ € Sympg(2), and pick a smooth
homotopy ¢; from the identity to ¢ = ¢1. Represent a class in H1(X) by
7«[SY] for a smooth v: S! — ¥. Define K: S! x [0,1] — ¥ by dragging ~
along ¢; specifically, K (z,t) = ¢¢(vy(x)). Then

P = [ e

Intuitively, Flux(¢)(7«[S']) measures the area that moves across v.[S'] in
flowing from the identity to ¢. See Section 10.2 of McDuff-Salamon [11] for
discussion of flux homomorphisms. Also see Remark 2.1 below.
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A crossed homomorphism from a group G to a G-module M is a map
f: G — M that obeys a twisted homomorphism identity:

flab) =a- f(b)+ f(a), fora,bed.

This is the same thing as a group cohomology 1-cocycle in Z!(G; M). The
group H(Z;R) is a left Symp(X)-module via the action (¢ - )([¢]) =
a(p:te]), for ¢ € Symp(X), a € HY(Z;R) and [c] € Hi(Z;R). An extended
flur map is a crossed homomorphism Symp(X) — H!(¥Z;R) that extends
the flux homomorphism. The study of extended flux maps was initiated by
Kotschick-Morita [9], who showed the existence of a cohomology class of
maps extending flux. McDuff gave a concrete example of an extended flux
map on surfaces in Remark 4.7 of [10].

Let Symp(3, %) = Symp(3, *x;wy) be the subgroup of symplectomor-
phisms in Symp(X) fixing the basepoint x € X, and let Sympg (X, )
be the connected component of the identity. In this paper, we construct
two crossed homomorphisms from Symp(X, ) to Hi(3;R) that agree with
Flux on Sympg (%, ). The first is a modified version of McDuff’s extended
flux map from [10], and the second uses the Jacobian torus of ¥ to mea-
sure flux. We compute the differences of these maps with the restriction
of an extended flux map. Our computation shows that these maps do not
agree with Flux on Symp(3, %) N Sympy(X), which is strictly larger than
Sympg (2, *). We then explain a way to modify these constructions to pro-
duce extended flux maps. We end the paper by giving a new construction of
an extended flux map on a surface of genus g > 3, using hyperbolic geometry.

1.2. Summary of basepoint-preserving constructions. First, we
define a crossed homomorphism on Symp(X,*) that is a slight variation
of McDuff’s definition of an extended flux map on surfaces from [10],
Remark 4.7. One interpretation of Flux is that it measures the area
cobounded by a cycle and its push-forward under a symplectomorphism in
Symp,(X) (so that the push-forward cycle is homologous). This idea can be
extended to arbitrary symplectomorphisms by fixing a set of specific cycles
for reference. Fix a homomorphism s: H;(X) — Z1(X\ {*}) such that the
piecewise-smooth cycle s([c]) represents [c] for each [¢] € H1(X). We define
the section-based area difference map based on s,

Ay Symp(X) — HY(Z;R)
by setting As(¢)([c]) to be the area cobounded by s(¢; ![c]) and ¢ 1s([c]). We
use the basepoint in this construction to decide which of the regions bounded
by these two cycles to measure. We give our definition more precisely and
prove basic lemmas about this map in Section 3.1 below.
Our second construction is a crossed homomorphism on Symp(X, %) that
measures flux in the Jacobian torus of the surface. Let

X = Hy(SR)/H (3 Z) = (SH)%
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be the Jacobian torus of ¥. As we explain in Section 2.3, X has a natural
symplectic structure and there is a symplectic Abel-Jacobi map J: ¥ — X.
We also show in that section that this forces a particular normalization
convention, namely that Area(X,wy) = g.

The action of Symp(X) on H;(X;R) induces a basepoint-preserving,
symplectic action on X. Denote this action by p: Symp(X) — Diff(X).
Note that for any ¢ € Symp(X, *), we have

(Jo gb_l)* = (p(gb_l) oJ)y: m (X, %) — m(X,0).

Since these smooth maps are between aspherical manifolds and they induce
the same map on fundamental groups, we have a smooth homotopy K: ¥ x
[0,1] — X from Jop~! to p(¢~1)o.J, relative to the basepoint. Given a cycle
¢ € Z1(X), we can use K to measure a kind of flux of ¢ across c. Specifically,
define a chain C' € Cy(X) by dragging J.c along K. The Jacobian fluzx
crossed homomorphism

Flux} : Symp(%, %) — H'(Z;R)

is given by Flux} (¢)([c]) = Jowx, with ¢, ¢ and C as above. We state
this definition more precisely in Section 3.2. We also show in that section
that Fluxff is a well-defined crossed homomorphism agreeing with Flux on
Sympg (2, %) and that it is independent of all the choices except J.

1.3. Comparison results. Next we compare A; and Flux()]( to an extended
flux map by computing their differences. Since these maps agree on
Sympg (X, *), their differences are constant on each connected component of
Symp(3, ) and are topological invariants. In Theorems 1.1 and 1.2 below,
we identify these topological invariants.

Let Mod(X, ) = Diff *(X, ¥) /Diff(Z, *) be the mapping class group of X
relative to *, which is the group of orientation-preserving diffeomorphisms
of ¥ fixing * modulo equivalence by homotopy relative to *. The Torelli
group I, = I, is the subgroup of Mod(X, *) of classes acting trivially on
H{(2). There is a homomorphism 7: Z, — A® Hi(2) called the Johnson
homomorphism. We discuss this map in Section 2.4.

Let ISymp(2) denote the subgroup of Symp(X) acting trivially on Hq(X),
and let ISymp(3, %) denote its subgroup fixing *. As we explain in Sec-
tion 4.1, every extended flux map has the same restriction to ISymp(X). The
projection Diff (X, ) — Mod(X, ) restricts to a map p: ISymp(Z, *) — Z,.
Let Dy: H'(X) — H{(X) denote the Poincaré duality map. In Section 2.4,
we discuss the symplectic contraction map ®: A®Hi(X) — Hy(X). The
constants of proportionality in the following theorems depend on our con-
vention that Area(X,wy) = g.
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Theorem 1.1. For any choice of s as above and any extended flux map F,
g _
(AS - F)‘ISymp(E,*) = ﬁDxl oPorTop.

Theorem 1.2. For any choices of s and J as above,
(As — FluX:)]()hSymp(Z,*) = Dil oboTop.

It follows immediately from these theorems that neither A, nor Flux’
agrees with Flux on Symp(X,*) N Sympy(2) (for any choice of s or J).
However, we can use our methods to recover true extended flux maps from
Ay and Fluxff . Of course in the case of A;, McDuff has constructed an
extended flux map this way, but this is an alternative approach.

Corollary 1.1. Let e: Mod(%,*) — HY(X;R) be any crossed homomor-
phism extending ® o1, and let s and J be any choices as above. Then

Ag — %Dg oeop: Symp(Z,*) — H(I;R)
g_

and
1
Fth:)]( + ngE c€eop: Symp(E, *) — Hl(E,R)

extend to extended fluz maps on Symp(X).

Proposition 2.1 below shows that such an € exists.

1.4. An extended flux map via hyperbolic geometry. We conclude
our discussion by using a hyperbolic metric on ¥ to construct an extended
flux map. This construction works only if the genus ¢ of the surface is greater
than or equal to three. We set some more notation before describing it. The
mapping class group Mod(X) = Diff 7 (X)/Diff(X) of ¥ (not preserving
a basepoint) is the group of orientation-preserving diffeomorphisms of 3
modulo equivalence by free homotopy. The group Ham(¥) = Ham(X;wy)
of Hamiltonian symplectomorphisms is the kernel of Flux on Sympgy(X).
The map Flux induces an isomorphism Symp,(X)/Ham(¥) = H(Z;R),
so HY(X;R) embeds in Symp(X)/Ham(X). Therefore there is an exact
sequence:

1 — H'(Z;R) — Symp(X)/Ham(X) — Mod(%) — 1.

The sequence splits because an extended flux map is the first-coordinate
map in an isomorphism Symp(¥)/Ham(X) = H(3;R) x Mod(%).

Let h be a hyperbolic metric on ¥ such that the hyperbolic area form
dV}, is a constant multiple of wy, (we construct such an h in Section 2.5).
Below, we use h to construct a splitting 65,: Mod(X) — Symp(2)/Ham().
We show that the following map is well defined in Section 5.1.
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Definition 1.1. The hyperbolic metric extended fluz map with respect to h
is the crossed homomorphism

Fj: Symp(2) — H'(3;R)
induced by the splitting &y, that is, Fj,(¢) = Flux(¢é,([¢]) ™).

To define this &5, we use Dehn twists. For a simple closed curve a in
Y, the Dehn twist T, € Mod(X) is the element of Mod(X) described by
cutting ¥ along a and regluing by a full twist along this curve to the left.
For our construction, we define a class of representatives of Dehn twists
called symmetric symplectic Dehn twists. These are symplectomorphisms
representing Dehn twists that are symmetrically centered around simple
closed curves. The definition is Section 5.1.

Theorem 1.3. Suppose the genus g of 3 is greater than or equal to three.
Let o: Mod(X) — Symp(X) be any set-map such that for each ¢ € Mod(X),
o(¢) is a composition of symmetric symplectic Dehn twists around simple
closed h-geodesics. Then the map

o Mod(X) — Symp(X)/Ham(X),

given by on(¢) = o(¢) - Ham(X), is an injective homomorphism that is
a section to the natural projection. Further, &3 depends only on h and is
independent of the choice of o.

It is always possible to construct such a o since Mod(X) is generated

by Dehn twists (see Section 2.2.1). The proof of Theorem 1.3 appears in
Section 5.1. The main lemma in this proof is that if a product of symmetric
symplectic Dehn twists around h-geodesics is in Sympg(X), then it is in
Ham(X). We use a presentation of Mod(X) due to Gervais [6] to characterize
such products. The only properties of the hyperbolic metric that we use are
the minimal intersection of geodesics and the Gauss—Bonnet theorem. The
relevant facts about mapping class groups are discussed in Section 2.2 and
the preliminaries on hyperbolic metrics appear in Section 2.5. The proof of
Theorem 1.3 uses the map A; but is otherwise independent of the other
results in the paper.
1.5. Layout of the paper. Section 2 contains preliminary results, conven-
tions, and several results that are quoted from the literature. The definition
of Ag appears in Section 3.1 and the definition of Flux§ is in Section 3.2.
We prove Theorem 1.1 in Section 4.1 and Theorem 1.2 in Section 4.2. The
proof of Corollary 1.1 appears in Section 4.3. The proof of Theorem 1.3 and
discussion of F}, are in Section 5.

2. Preliminaries and conventions

All spaces are assumed to have smooth structures and all maps are assumed
to be piecewise smooth. Homology of spaces is singular homology, and chains
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are assumed to be piecewise smooth. Cohomology of spaces is de Rham coho-
mology, but we often express cohomology classes in H'(X;R) as elements of
Hom(H;(X),R).

2.1. Surfaces.

2.1.1. Moser stability for surfaces. We use the following result.

Theorem 2.1 (Moser stability theorem for surfaces). Given two sym-
plectic forms wi,wa on X, there is an isotopy ¢ € Diff (X) with ¢g the iden-
tity and ¢jwi = wa, if and only if w; and wy determine the same cohomology
class, meaning Area(X,w1) = Area(X,wq). Further, if wi(q) = wa(q) for all
points q on a closed submanifold Q of 3, we may assume that ¢; is the
identity on Q.

This is essentially Exercise 3.21(i) of McDuff-Salamon [11], and it follows
easily from the general Moser stability theorem (Theorem 3.17 of [11]).

Remark 2.1. We refer the reader to Section 10.2 of McDuff-Salamon [11]
for discussion of Flux homomorphisms. As they explain, Flux is a well-
defined homomorphism from the universal cover of Symp,(X) to H(3;R).
For completeness, we mention that Sympy(X) is simply connected. This
follows from Theorem 2.1 and from the theorem of Earle-Eells [3] that the
connected component of the identity in Diff(X) is contractible.

2.1.2. Intersection numbers. We use the algebraic intersection form,
which is a bilinear alternating function 7: A?H(¥) — Z. As usual, to
compute the algebraic intersection number of two classes in H;(X), find rep-
resentative cycles that meet transversely and sum the signs of their finitely
many intersection points. We refer to the extension of 7 to A* H1(X;R) by
the same symbol.

We also use geometric intersection numbers. For a and b closed curves
or homotopy classes of closed curves, we denote the geometric intersection
number of a and b by |aNb|. This is the minimum number intersection points
between any pair of curves representing the homotopy classes of the curves.
2.1.3. A fixed set of homology basis representatives. At this point we
fix a set of representatives for a homology basis in a specific configuration.

Let x1,...,24,91,...,Yq be a set of simple closed curves such that:

o [z1],....[xy],[y1],. .., [yg] is a basis for H{(X;Z),

e i([z;], [yi]) = 1 for each i and all other algebraic intersection numbers
among these basis elements are zero,

e |z; Ny;| =1 for each ¢ and all other geometric intersection numbers
among these basis representatives are zero, and

e the basepoint * does not lie on any x; or y;.

Let x; be a simple closed curve in ¥\ {} that is homotopic to z, in ¥
but not in ¥\ {*}, such that |z, Ny, = 1 and such that 2}, does not intersect
any other basis representative. See Figure 1 for reference.
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Figure 1. A basis and an additional curve.

2.2. Mapping class groups. In our arguments we consider mapping class
groups of closed surfaces, in two flavors: those that respect a basepoint,
and those that do not. The book by Farb and Margalit [5] is an excel-
lent reference. As mentioned in the introduction, the mapping class group
Mod(X) of ¥ is the group of orientation-preserving homeomorphisms of 3,
modulo equivalence by free homotopy. The basepoint-preserving mapping
class group Mod(X, %) of 3 is the group of orientation-preserving homeo-
morphisms of ¥ preserving the basepoint, modulo equivalence by homotopy
relative to the basepoint.

2.2.1. Dehn twists. For a simple closed curve a in ¥, we can find a
neighborhood A of a that is a compact annulus. Visualize ¥ as the bound-
ary of a handlebody in R3, such that A embeds as a long cylinder. We can
describe a homeomorphism of ¥ by cutting along a, rotating A a full twist to
the left on one side, and regluing. The mapping class this defines in Mod ()
is the Dehn twist around a and is denoted T,. This is illustrated in Figure 2.
As long as the basepoint * does not lie on a, we can twist on a neighborhood
of a not containing * to get Dehn twists in Mod (X, *) as well. A more formal
definition appears in Farb—Margalit [5].

We use the convention that positive Dehn twists turn to the left. Since we
have a fixed orientation for X, turning “to the left” is well defined. Two Dehn
twists around homotopic curves represent the same element of Mod(X),
and Dehn twists around curves that are homotopic in ¥\* represent the
same element of Mod (X, %). Therefore we sometimes refer to the Dehn twist
around a curve that is only defined up to homotopy.

A @

Figure 2. A Dehn twist around a simple closed curve a, and
a reference arc crossing a.
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We use the following theorem of Dehn. Farb-Margalit [5] is a reference.

Theorem 2.2 (Dehn). The groups Mod(X) and Mod(X, ) are generated
by finitely many Dehn twists around non-separating simple closed curves.

The following is a standard fact. For a a simple closed curve and T, the
twist around a (in Mod(X) or in Mod (3, %)), we have

(2.1) (Ta)«[b] = [b] +4([0], [a]) a],

for any [b] € H1(X). To verify this, construct a set of basis representatives for
H;(X) in which one of the representatives intersects a once, and the other
representatives are disjoint from a. Then it is enough verify the equation
when b intersects a once, which is easy.

2.2.2. Presenting the mapping class group. We use a presentation of
the mapping class group due to Gervais [6]. Before stating the presentation,
we explain the relations it uses.

The braid relation states that if @ and b are simple closed curves with
laNb] =1 and c is in the homotopy class of T,(b), then

T.=T,T,T; .

The star relation involves simple closed curves ai, a9, as and b such that
the a; are disjoint and each a; intersects b only once and positively. A regular
neighborhood of the union of these curves is a subsurface of genus one with
three boundary components. Let di,d> and d3 be the boundary curves of
this subsurface. This is illustrated in Figure 3. Then the star relation states:

(Ta1 Tag Ta3 Tb)3 == le Td2 Td3 .

This is called a non-separating star relation if each d; is a non-separating
curve.

The chain relation is the star relation when one of dy,ds or d3 bounds a
disk; it is called a non-separating chain relation if the other two are non-
separating.

<«
k&)

Figure 3. The curves of a star relation.
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The following is Theorem B from Gervais [6].

Theorem 2.3 (Gervais’s Theorem). If g > 3, the group Mod(X) has a
presentation with the set of Dehn twists around all free homotopy classes
of essential simple closed curves as its generators and with the following
relations:

1) that T, and Ty commute for all pairs of disjoint simple closed curves
a and b,

2) the braid relations T, = TaTbTa_1 for all pairs of simple closed curves
a and b that intersect once, where c is in the free homotopy class
of Tu(b),

3) a single non-separating chain relation, and

4) a single non-separating star relation.

This presentation has infinitely many generators and infinitely many rela-
tions, even though Mod(X, *) is a finitely presentable group. However, it is
appealing because it is essentially basis independent. Gervais also has a pre-
sentation for the mapping class group of a surface of genus two, but we will
not use it.

Remark 2.2. If a and b are simple closed curves that intersect once, then
Gervais’s braid relation easily implies the relation T, 17T, = TT,Tp. This is
what most authors mean by a “braid relation”.

2.2.3. The Birman exact sequence. For ¢ a diffeomorphism fixing *, ¢
represents classes both in Mod (X, ) and in Mod(X). This defines a natural
map Mod(X, x) — Mod(X).

For an embedding 7: S' — 3 based at %, we can find an isotopy ¢;: 3 X
[0,1] — X such that ¢;(x) = v(¢). The time-one map ¢; is a point-pushing
map of ; it clearly represents the trivial element of Mod(X), but represents
a well-defined, non-trivial element of Mod (X, %) if 4 is not homotopically
trivial.

The following theorem of Birman shows that point-pushing maps generate
the kernel of Mod(%, x) — Mod(X). Farb-Margalit [5] is a reference.

Theorem 2.4 (The Birman exact sequence). There is an exact
sequence
1 — m (3, %) — Mod(X, %) — Mod(X) — 1.

The inclusion map is given on the classes of simple closed loops (which
generate w1 (X, %)) by taking point-pushing maps, and the projection map is
the natural map.

A point-pushing map can be easily expressed as a product of Dehn twists.
In particular, T, /T, !is a point-pushing map, along a curve parallel to Zg.

g
By equation (2.1), T, T, Uis in Z.. Then all point-pushing maps are in Z,,
g

since they are all conjugate in Mod (X, ).
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2.3. The Jacobian. Of course, the study of Jacobian varieties of surfaces
has a long and rich history in algebraic geometry. However, we only consider
the Jacobian from topological and real-geometric perspectives. In keeping
with these perspectives, we directly prove some preliminary results that can
be quoted from sources in algebraic geometry.

2.3.1. Conventions. As in the introduction, we define the Jacobian X
of 3 as

X = Hi(Z;R)/Hi(5; Z).
Note that this is a 2g-dimensional torus.

We use the basis [z1],. .., [z4], [y1], ..., [yq) for Hi(X) from Section 2.1.3.
Fori=1,...,g, we have coordinate functions for [z;] and [y;] on H;(X;R).
By differentiating these functions we get 1-forms on Hy(X;R); these descend
to 1-forms on X since they are Hj(X)-invariant. Let &; and f3; denote the
forms on X built this way from [x;] and [y;], respectively.

Pick a set of 1-forms aq,...,a4,051,...,3, that are basis representatives
for H'(3;R), satisfying the following conditions:

o {[a],[B:]}i is evaluation-dual to {[z;], [yi] }s, meaning fxz o = fyz_ Bi=1
and the other evaluations are 0;

e for each i, a; A [3; is a non-negative multiple of wy;

e for each point p in X, there is some «; A 3; that does not vanish at p.

Lemma 2.1. It is possible to construct «;, 3; as above.

Proof. Let a; be a form representing the class in H'(3; R) that is evaluation-
dual to [x;] with respect to the given Hj(X)-basis, such that a; has only
finitely many vanishing points. Further, we demand that these vanishing
points be distinct for the different a;. Temporarily pick a metric, and define
B to be x(a;), where * is the Hodge operator with respect to this metric.
Then {a, 5;}; satisfy the conditions. O

2.3.2. Properties of the Jacobian.

Lemma 2.2. The algebraic intersection form on Hp(3;R) defines a
symplectic form wx on X. We have

wx :Zo}i/\@.
[

Proof. The tangent space to X at 0 is canonically identified with H;(%;R),
and the tangent space to X at any other point can be canonically translated
to 0 by left-multiplication. So since the algebraic intersection form is a non-
degenerate alternating form on Hi(X;R) = Tp X, it extends smoothly to a
non-degenerate, alternating differential 2—form on all of X.

The expression of wy in terms of {&;, 5;}; follows from evaluations. [



EXTENDED FLUX MAPS AND THE JOHNSON HOMOMORPHISM 455

Lemma 2.3. The action of Symp(%, *) on ¥ induces an action on X that
is symplectic (for wx ) and preserves the basepoint 0.

Proof. The action of Symp(X,*) on ¥ induces an action on H;(X;R) that
preserves Hy(X;7Z) and therefore descends to X. Since symplectomorphisms
of ¥ act on H;(X;R) in a way that preserves intersection number, the action
on X preserves wy at 0. Since the action on H;(X; R) is linear, the derivative
is the same at every point and the action on X is symplectic. O

Definition 2.1. Let p: Symp(X,*) ~ (X,wx) denote the symplectic,
basepoint-preserving action induced by the action of Diff (X, %) on H;(X).

Definition 2.2. The Abel-Jacobi map J: ¥ — X is the map sending p €
to the image in X of the point

(o) (1))

i=1
in H;(3;R), where the integrals are taken over any smooth arc from * to p.

__ This formula certainly gives a well-defined map from the universal cover
3J; since evaluating this sum of integrals along loops in ¥ yields elements
of Hi(3;7Z), it descends to a well-defined map on X. It is also immediate
that J(x) = 0. Of course, J depends on the choices of {«;, 3;}; and the

basepoint .

Lemma 2.4. The map J is an immersion and for each 1,
J* (@) =ca; and J*(f;) = B;.
Proof. 1t follows from elementary calculus that for any tangent vector v to

any point p in X, the derivative at p is

DpJ(v) = ((1)p(v), -+, (ag)p(v), (B1)p(v), -, (Bg)p(v))-

The statement about pullbacks follows immediately. So if J fails to be an
immersion at p, then a; A 3; is trivial at p for every ¢, contradicting our
construction of {a;, 5;}i. O

Lemma 2.5. The form
g
Wy =Y i AB;
i=1

is a symplectic form with Area(X,ws) = g. The map J: (L,w§) — (X,wx)
s a symplectic map.

Proof. Since each a; A B; is a non-negative multiple of wy, and the a; A 5;
do not simultaneously vanish at any point, w§, is a multiple of ws; by a
positive function. Therefore w{ is a symplectic form. Since {[ay], [3i]}i is
evaluation-dual to {[z;], [vi]}: and 2([z;,y;]) = 1, it follows from Poincaré
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duality that [; o; A 3; = 1. Then Area(X,w§;) = g. By Lemma 2.4, J pulls
back wx to wf.. O

We also need one further property of J.

Lemma 2.6. The fundamental group m (X,0) is canonically identified with
Hy(3;7Z) and the induced map Jy: w1 (X, %) — H1(X;Z) is the Hurewicz map
(the abelianization map of w1 (X, *)). The induced action p, of Diff (X, *) on
m1(X,0) is the usual action on Hy(X;Z).

Proof. Since X = H1(3;R)/H(X;Z) and H1(X;R) is contractible, 71 (X, 0)
is naturally isomorphic to H;(3;Z). For a based loop a: [0,1] — %, J.[a] €
H{(Y) is the far endpoint of the lift of J o a to a path on H;(X;R) starting
at 0. Unpacking the definition of J, this endpoint is easily seen to be [a] €
H,(X). The statement about actions also follows. O
2.3.3. A convention on wsy. By the Moser stability theorem (Theo-
rem 2.1), there is a diffeomorphism pulling back w’z = ZZ a; N\ B; to a
constant multiple of wy;. We can therefore pull back all of our constructions
by this diffeomorphism and renormalize, and declare that wy, = w’z. There-
fore wy = >, a5 A B4, the map J: (X,wx) — (X,wx) is symplectic, and
Area(X,wy) = g.

2.4. The Johnson homomorphism. The Johnson homomorphism is a
map from the Torelli group Z, to an abelian group. Johnson introduced this
homomorphism in [7]. In his survey [8], Johnson gives three equivalent def-
initions of the Johnson homomorphism; the “first definition” being the one
in [7]. We will not use the “first definition,” but we mention for context that
it is an algebraic definition, using the action of Z, on a non-abelian nilpo-
tent quotient of m(X). Instead we explain the “third definition” from [8]
and quote some results on the Johnson homomorphism.

2.4.1. The third definition. This definition is well suited to the applica-
tion in this paper. This uses the Jacobian X as defined in Section 2.3. If ¢ €
Diff (X, *) then the map Jo¢: ¥ — X induces the map p(¢).Js: 71 (3, %) —
m1(X,0) on fundamental groups, where p is the action from Definition 2.1.
By Lemma 2.6, m1(X,0) is H;(X) and the action is the usual one. So if ¢
represents a class [¢] € Z,, then the maps J, J o ¢: ¥ — X both induce the
same map on fundamental groups. Since X and X are aspherical, there is a
homotopy K: ¥ x [0,1] — X from J to J o ¢, through basepoint-preserving
maps. Let My be the mapping cylinder of ¢, which is My = ¥ x [0,1]/~,
where (p,0) ~ (é(p), 1). It is easy to check that K defines a continuous map
K: My — X.

Definition 2.3 (Johnson [8]). The Johnson homomorphism 7: Z, —
H3(X) = A® Hy(X) is the map sending [¢] € Z, to 7([¢]) = K.[My], the
push-forward of the fundamental class of My, where My is the mapping
cylinder of ¢ and K: My — X is induced by a homotopy from J to J o ¢.
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This definition is independent of the choices made, which are the repre-
sentative of [¢] and the homotopy K.

2.4.2. Equivariance and an evaluation. The mapping class group
Mod (X, %) acts on H;(X) in the usual way, inducing the diagonal action
on A®Hi(X). Under the induced action by p, H3(X) and A\® Hi(Z) are
isomorphic as Mod(X, *)-modules.

The following is Lemma 2D of Johnson [7].

Theorem 2.5 (Johnson [8]). The Johnson homomorphism is Mod (X, *)-
equivariant: for any [¢] € T, and [¢] € Mod(3, x),

(gl ™) = ] - 7([#))-

The following evaluation is a case of Lemma 4B of Johnson [7]. (In John-
son’s notation, our z; is b; and our y; is —a;.)

Theorem 2.6 (Johnson homomorphism evaluation). The Johnson
homomorphism has the following value:

(T2, T, = (i[ﬁﬂi] A [%]) A [zg].

i=1
As mentioned above, T}, T;,l is a point-pushing map along a simple closed
g
curve freely homotopic to x4 that is based at *.

2.4.3. The contraction. The Mod(%, *)-module A® Hy(X) is not irre-
ducible. In fact, we can use the algebraic intersection form to define a
Mod (%, %)-equivariant map.

Definition 2.4. There is a Mod(X, *)-module contraction

3
o: N\ Hi(D) = Hi(D)
given on generators by
aANbAc— (i(a,b)c+i(b, c)a+i(c,a)b).
The value of ® on a A b A ¢ is invariant under positive-sign permutations
of (a,b,c), so it is well defined. Since i is Mod (2, *)-invariant, the map of

abelian groups given by this formula is indeed a map of Mod (3, x)-modules.
The next statement is used in the proof of Theorem 1.1.

Corollary 2.1. The contracted Johnson homomorphism has the following
value:

D(r(T,, ;")) = (9~ D).
Consequently, if ¢ is a point-pushing map along a simple closed curve a,

we have
o(7([9]) = (9 — 1]al.
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Proof. The first statement follows immediately from Theorem 2.6 and the
definition of ®. The second statement follows from the first statement, from
the equivariance of ® o 7, and from the fact that any point-pushing map on
¥ is conjugate to Ty, T, . U

Zg "y,
We will need the following in the proof of Theorem 1.2.

Lemma 2.7. Under the evaluation pairings (,): Hy(X)® H1(X)* — Z and
(Y NPHU(E) @ AP Hi(2)* — Z, the contraction @ is adjoint to the map

3
Hi(%)* — /\Hl(Z)*
a— 1A .

Therefore for any x € \* Hi(X) and a € Hi(X)*, we have
(o, @(2)) = (I Ao, ).

Proof. Let a,b,c be in our basis for H;(X) and let d* be in the evaluation-
dual basis for Hy(X)*. Then it is a routine computation to verify the identity
forx =a AbAcand a =d*. The lemma follows by linearity. O

2.4.4. Extensions to crossed homomorphisms. We need the following
result for Theorem 1.1 and Corollary 1.1.

Proposition 2.1. The contracted Johnson homomorphism ® o7 extends to
a crossed homomorphism Mod(%, ) — Hp(2;R).

Proof. If r: Mod(2, %) — A® H1(X;R) is a crossed homomorphism extend-
ing 7, then ® o x is such a map. Morita constructed such a x by algebraic
methods in [13] (there is also a topological construction due to the author
in [2]). O

Morita showed in [12], Section 6, that H'(Mod(Z, *); H1(Z;R)) = R.
From this, Proposition 2.1 and the definition of Z,, it follows that any crossed
homomorphism Mod (3, *) — H!(X;R) restricts to a constant multiple of
® o 7 on Z,. Morita also gave a combinatorial construction of a non-trivial
crossed homomorphism Mod(%,*) — H(3;R) in [12]. Finally, we note
that Earle constructed a non-trivial crossed homomorphism Mod (X, x) —
H'(Z;R) in [4].

2.5. Hyperbolic metrics.

2.5.1. Existence of a metric. Let h be a hyperbolic metric such that the
area form dV}, is a constant multiple of ws;. We demand that our basepoint %
does not lie on any closed geodesic. We may do this since there are countably
many closed h-geodesics and their union has measure zero.

Lemma 2.8. Given an area form wy, there is a hyperbolic metric h whose
area form is a constant multiple of wy.



EXTENDED FLUX MAPS AND THE JOHNSON HOMOMORPHISM 459

Proof. Since the genus of X is greater than one, 3 has a hyperbolic metric
h' (for a reference, see Chapter 9.2 of Ratcliffe [14]). By the Moser stability
theorem (Theorem 2.1), there is a diffeomorphism pulling back dVj/ to a
constant multiple of wy,. If we pull back A’ by this same diffeomorphism,
we get another hyperbolic metric h such that dV} is a constant multiple
of wy. O

2.5.2. Properties of hyperbolic metrics.

Theorem 2.7 (Gauss—Bonnet). On a surface with a hyperbolic metric,
the area of a triangle with geodesic boundary and interior angles o, 3,7 is

T—a—[0—".

Further, the total area of a hyperbolic surface (X', h') with geodesic boundary
(possibly without boundary) is —2m times the Fuler characteristic:

Area(Y, dVy) = —2mx(Y).

Ratcliffe [14] is a reference for the Gauss—Bonnet theorem: the first state-
ment is Theorem 3.5.5, and the second is Theorem 9.3.1. We will also
need some well-known facts about hyperbolic geodesics. These appear in
Ratcliffe [14] in Chapter 9.6.

Theorem 2.8. Fach homotopy class of closed curve in % contains a unique
closed h-geodesic.

Theorem 2.9. If a pair of homotopy classes of simple closed curves in X
have geometric intersection number 0, then their geodesic representatives
are disjoint. If a pair of homotopy classes of simple closed curves in ¥ have
geometric intersection number 1, then their geodesic representatives have a
single transverse intersection.

2.6. A homotopy-theoretic argument. We need the following lemma
to prove the well-definedness of Flux’. This is a refinement of a standard
argument.

Lemma 2.9. Suppose Z is an aspherical space with a basepoint x, Y s
a connected CW-complex with a (different) basepoint x, A C'Y is a closed,
connected subcomplex with x € A, and fo, f1: (Y,*) — (Z, %) are two contin-
uous functions such that fola = fila and (fo)x = (f1)«: m (Y, %) — m1(Z, %).
Then there is a homotopy F: Y x [0,1] — Z from fo to fi relative to A.

Proof. Let Y* denote the k-skeleton of Y. If we have constructed F on
YE=1U A for k > 1 and C is a k-cell in Y\ A, then Flacxo,a))s fole and
filc paste together to form a map S¥ — Z. Since Z is aspherical, F' would
then extend to C. So it is enough to construct F on YU A.

Since A is connected, we can build a maximal tree B for Y!' such that
BN A is connected. Then there is a retraction homotopy H: (AUB) x
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[0,1] — AU B relative to A, meaning Hy is the identity and H1(AUB) C A.
Let Flaup: (AUB) x[0,1] — Z be the concatenation of fyo H followed by
f1 0 H in reverse, which is a homotopy from fy|aup to fi]|aup relative to A.
This concatenation is well defined since fo|4 = fi|a-

Now suppose 7: [0,1] — Y! parametrizes an edge in Y\ (AU B). We
have already defined F' on v(0),7(1) € B. Pick paths ¢; in AU B from =
to (i) for i = 0,1. Since fp and f; induce the same map on fundamental
groups, the concatenation (fo)« (7 v00) ™ (f1)« (87 *v00) is trivial in 7y (Z, %).
Define the path 7;(t) = H(v(i),t) for i = 0,1. The loops (f1)«0; '0i(fo)«0;
in are trivial m1(Z, ) for ¢ = 0,1. Then

(fO)vm(fo)sy ™0
is trivial in m(Z, fi(7(1))). This is exactly what we need to extend F' to

a homotopy from fy to fi on the edge 7. Repeating this for each edge, we
extend F to Y. 0

3. Constructions of maps on based symplectomorphisms

3.1. The area-difference map. First, we give a more careful version of the
definition of A from the introduction. Fix a homomorphism s: H;(¥) —
Z1(2\ {*}) that is a section to the projection Z; (X \ {*}) — H1 (X \ {*}) =
H(%).

Definition 3.1. For ¢ € Symp(X,*) and [c] € H;(X), pick a chain C' €
Co(2\ {*}) bounding s(¢;[c]) — ¢51s([c]). The section-based area difference
map based on s,

Ag: Symp(%, %) — HY(Z;R)
is defined by As(¢)([c]) = [, ws.

We denote the support of a map or a chain by supp. Without demanding
* ¢ supp C, this A; would only be defined modulo Area(X, wy); this is why
we consider this map only on Symp(X, *). As mentioned in the introduc-
tion, this is a variation on McDuff’s definition of an extended flux map in
Remark 4.7 of [10]. McDuff’s definition also uses a section s and a term
like Ag, but instead of using the basepoint to choose the chain C with
0C = ¢.s([c]) — s(¢«][c]), she chooses C' arbitrarily and uses a Chern number
as a correction factor.

The goal of this subsection is to show the following.

Proposition 3.1. For a fixed choice of s, the map As is a well-defined
crossed homomorphism extending Flux]sympg(&*).

The proof of this proposition is broken up into several claims.

Claim 3.1. Let ¢ € Symp(X, ) and let [c] € H1(X). Then As(¢)([c]) € R
1s well defined.
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Proof. Since Hy(X \ {*}) = 0, there is a chain in C5(X \ {*}) bounding
the difference of any two chains in Cy(¥ \ {*}) that bound s(¢;'[c]) —
#; 's([c]). The claim then follows from Stokes’s theorem and the fact that wy,
is closed. O

Claim 3.2. Let ¢ € Symp(X, #). Then As(¢) € H'(Z;R).

Proof. The claim follows immediately from the fact that the section s, the
action of Symp(3, %), and the boundary map 0 are all linear. d

Claim 3.3. The map As: Symp(X,x) — HY(Z;R) is a crossed
homomorphism.

Proof. Let ¢, € Symp(E,*) and [¢] € Hi(X). Let D1, Dy € Co(X\ {*})
with 9Dy = s(y; ' [e]) — ¢ 's([c]) and 9Ds = s(¢; 95 e]) — o s (5 [e]).
Note that 9(¢; 1Dy + Da) = s(é; 0 c]) — ¢zt ts([c]). Since ¢ is a
symplectomorphism, we have A(¢)([c]) = [ 61D, WS- By definition, we
have Ag(¢)(w;t[c]) = sz wy, and As(vo)([c]) = f¢>;1D1+D2 wy. Since [c]
was arbitrary, As(¢¢) =1 - As(¢) + As(1). O

Claim 3.4. The map As restricted to Sympg(%, *) is Flux|symp, (s +)-

Proof. Let ¢ € Symp(X, *) and let [¢] € Hi(X). Pick a homotopy ¢; from
the identity to ¢, through maps in Symp(X, *). Obtain a chain C' € Cy(X\
{*}) by dragging s([c]) along ¢;. Because ¢ is homotopic to the identity, we
have s(¢;![c]) = s([¢]). So OC = ¢.s(p5 [c]) — s([¢]). Since ¢ is symplectic,
Jo-icws = Jows. Then [, wy fits the definition of A(¢)([c]), and is
equal to [, ws, which fits the definition of Flux(¢)([c]). O

The previous claim completes the proof of Proposition 3.1.

Proposition 3.2. The cohomology class
[As] € H' (Symp(S, *); H' (2 R))
does not depend on s. Consequently, As|isymp(s,«) does not depend on s.

Proof. Let s1,s2: Hi(X) — Z1(X\{*}) be homomorphic sections to the pro-
jection map. We aim to show that A, — A, is in B (Symp(Z, *); HY(X; R)).
Since s; and sy are both sections to the projection map, we know that
s1 — s2: Hi(X) — Bi(X\ {x}). So we can choose a homomorphism
t: Hi(X) — Co(X\ {*}) with 0ot = s; — s9. Let k € HY(X;R) be
given by k([c]) = ft([c])wg. Let ¢ € Symp(X, ) and let [¢] € Hi(X). Let
C € Cy(%) with 9C = s1(¢5[c]) — é5 s1([c]). Since ¢ is symplectic, we
have x([c]) = ft([c]) wy = f¢:1t([c]) wy,. Using this fact, we have

(As,=0k) (0)([e]) = As, (0)([c]) =l e +r([c]) =

ws.

/C—t(¢;1 [e)+¢x ()
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Note that O(C — t(¢7[d]) + 67 '4([c])) = sa(é7'[c]) — 67 s2((c]). By the
definition of As,, we have Ag,(¢)([c]) = (As, — 0K)(#)([c]). Then since ¢
and [c] were arbitrary, As, — 0k = As,. Since §k|igymp(s,«) = 0, we have also
proven the second statement. O

3.2. The Jacobian extended flux map. In this subsection we freely use
the notation of Section 2.3. As in that section, we fix a basepoint-preserving,
symplectic embedding J: (X,wx) — (X,wx). We start by precisely giving
the definition of Flux’ .

Definition 3.2. Let ¢ € Symp(%, *) and let v: S!' — ¥ be a smooth map.
Let K: ¥ x [0,1] — X be a piecewise-smooth homotopy from J o ¢~! to
p(¢~1)oJ relative to *. Let T be a representative of the fundamental class of
St x [0, 1] relative to its boundary. The Jacobian fluz crossed homomorphism
is the crossed homomorphism

Flux} : Symp(%, %) — H'(Z;R)
defined by
Flu) (6)(:(5)) = [ wx.

Ky (yxid). T
As usual [S'] denotes the fundamental class. Since « is arbitrary, this
defines Flux’ (¢) on any element of H;(X). Note that we know .J o ¢! and
p(¢~1) o J are in the same based homotopy class because they induce the

same map on fundamental groups and X is aspherical. The goal of this
subsection is to show the following.

Proposition 3.3. For a fized J, Flux§ is a well-defined crossed homomor-
phism extending Flux|gymp, (s +)-

The proof is broken up into three claims, which appeal to the following
two lemmas.

Lemma 3.1. Suppose Ty, Ty € Co(S* x [0,1]) are two representatives of the
fundamental class relative to the boundary. If K: S' x [0,1] — X, then

/ wyx = / wx.
K.T1 K.T»

Proof. For i = 0,1, we can find C; € Co(S! x {i}) with Ty — Ty + Cy + C; €
Z5(8t x [0,1]). Since Ha(S! x [0,1]) = 0, we can find a chain D € C3(S! x
[0,1]) bounding this cycle. Since each C; is supported on a 1-dimensional
submanifold, we know that K*wx is degenerate on this submanifold and

0:/ K*wX:/ wx.
Ci *Ci



EXTENDED FLUX MAPS AND THE JOHNSON HOMOMORPHISM 463

So by Stokes’s theorem, we have done

O—/ de—/ w)(—/ wx—/ wx. 0
«D 0K.«D KTy KTy

Fix a representative T' € Z1(S') of the fundamental class [S!]. Let
ig,i1: S1 — S! x [0,1] be the time-zero and time-one inclusions. Let
T’ € Co(S! x [0,1]) represent the fundamental class of St x [0, 1] relative to
its boundary, with 0T = (i1)+T — (ig)+T. By Lemma 3.1, our constructions
do not depend on the choices we just made.

Lemma 3.2. Let [c] € Hi(X) and let K: ¥ x [0,1] — X with symplectic
endpoint maps Ko, K1: ¥ — X. If v0,71: S' — X are two maps with
(70)+[T] = (m)«[T] = [¢], then

/ wx = / wx.
Ky (yoxid)«T K (yxid)«T

Proof. Choose a point p € X\ (Uj=1,25upp (7;)«T") and a chain C' € Cy(X \
{p}) with 9C = (71).T — (70)+T. Let jo,j1: X — X x [0, 1] be the time-zero
and time-one inclusion maps. Let
C" = (jo)+C = (j1)«C + (m x id).T" = (70 x 1d).T" € Co((E\ {p}) x [0, 1]).
Since 9(C") = 0 and Ha((X\ {p}) x [0,1]) = 0, there is a chain D € C3(X x
[0,1]) with 0D = C’. Then

8(K*D) = (K(])*C — (Kl)*C + K*(’yl X ld)*T/ — K*(’YO X ld)*T/

Since K7 and Kj are symplectic, we have

/ wX:/wg:/ wx.
(Ko)«C c (K1)+C

So by Stokes’s theorem,
0=/ deZ/ wX:/ wx—/ wx.
.D 9K.D K. (y1xid) T K. (o xid). T U

Claim 3.5. For ¢ € Symp(%, *) and [c] € Hi (%), the value Flux} (¢)([c])
i R is well defined.

Proof. According to Lemma 3.1, the choice of 7" does not matter. Since
¢~ 1, p(¢p~1) and J are all symplectic, Lemma 3.2 applies to any homotopy
K from Jo ¢! to p(¢~1) o J and the choice of v: S — ¥ with v, [T] = [(]
also does not matter. The only remaining choice is the choice of homotopy.

Fix a choice of v and let K, K’: X x[0,1] — X be two different piecewise-
smooth homotopies relative to the basepoint from J o ¢~ to p(¢~1) o J.
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We invoke Lemma 2.9 with Z = X, Y =X x [0,1], A = (2 x {0,1}) U({x} x
[0,1]), fo = K and f; = K'; this gives us a homotopy L: ¥ x [0,1]? — X
from K to K’ relative to ¥ x {0, 1} and {x} x [0, 1]. By approximation theory,
we may assume this L is piecewise-smooth. Since L is relative to 3 x {0, 1},
we know L(s,0,t) = J(¢~1(s)) and L(s,0,t) = p(¢~1)(J(s)) for any s € X,
t € [0,1]. Then we can find a representative 7" of the fundamental class of
St x [0, 1]? relative to its boundary, such that

O(Lo(y x id),T") = K (v x id),T' — K.(y x id), T’
+ ety (y x 1) T = p(¢7 )i (v x id). T

The maps J o ¢~ ! o (y x id) and p(¢~1) o J o (y x id) factor through maps
S! — X. This means that

/ wx = / wx =0,
Jepi M (yxid).T" P 1w (yxid) T

since these integrals can be computed on S', where the pull-back of wyx is
trivial. So by Stokes’s theorem

0 :/ dwx :/ wx :/
L.T" OL.T" K

wx — / wx.
(yxid) T’ Ky (yxid)T" O

/
*

Claim 3.6. The map Flux§ is a crossed homomorphism.

Proof. Let ¢, € Symp(Z, %) and let v: ST — ¥. Let Ky, Ky: X x [0,1] —
X, with K, a smooth homotopy from J o ¢~ to p(¢~!) o J and K a
smooth homotopy from J o9~ to p(yp~1) o J. Let K: ¥ x [0,1] — X be
the concatenation of Ky o (¢~1 x id) followed by p(1)~1) o K. This makes
sense because K o (¢! x id) ends at p(yp~!) o J o ¢!, which is where
p(p~1)o K4 begins. Then K is a piecewise-smooth homotopy from Jo(¢y)~?

to p(py) o J.
Note that

/ wx = Fluck (4) (67 7. [T)).
(Kyp)x (o7t xid)« (yxid)«T"

Since Symp(3, *) acts symplectically on X,

/ wx = / wx = Flux (6) (1[71).
p(Y™ 1) (K g) s (yxid) 17 (Kg)x(yxid)«T"
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Then we have

Fluxf () (7. [T]) = / oy
Ky (yxid)«T"

/ wx —i—/ wx
P~ 1)x (K )« (yXid)T" (K )« (o7 xid)w (yxid) T

= Fluxy (9) (¢, 9[T]) + Fluxj (¢) ([T]).
Then Flux§ (oY) = - Flux§( (¥) + Flux§ (¢), since v was arbitrary. d
Claim 3.7. The map Flux} agrees with Flux on Sympy(3, *).

Proof. Let v: S* — X and let ¢ € Symp, (X, *). Then p(¢~!) is the identity.
Let K: ¥ x [0,1] — ¥ be a homotopy through Symp,(X) from ¢! to the
identity. Then ¢ o K is a homotopy through Symp,(X) from the identity to

@, S0
Flux(9)( (1) = | os= [ s
B K (i) [T7] K (yxid).[T7]

However, .J o K is a homotopy from J o ¢! to p(¢~') o J, and

Fluxc} (¢) (1[T]) = / ox = / T
T Ko (yxid)« [T"] K (yxid)«[T"]

Since J*wyx = wsy, this proves the claim. O

The previous claim finishes the proof of Proposition 3.3.
Proposition 3.4. The cohomology class
[Fluxy] € H' (Symp(X, #); H' (% R))
does not depend on J. Consequently, Flux§|lsymp(2’*) does not depend on J.

Proof. Let J,J': (X,%) — (X,0) be two different choices of Abel-Jacobi
map. Then there is a smooth homotopy L: ¥ x [0,1] — X from J to J’
relative to *. Let x € H'(3,R) be given by

k(1)) = / wx,
L (yxid) T’

for v: S — ¥. Then by Lemma 3.1, x does not depend on the choice of 17,
and since J and J" are symplectic, Lemma 3.2 applies and x(7.[T]) depends
only on 7,[T], not on . Let K, K': ¥ x [0,1] — X be homotopies relative
to basepoints from J o ¢! to p(¢~1) o J" and from J o ¢! to p(¢p~1) o J',
respectively. By Lemma 2.9, there is a smooth homotopy L: ¥ x 0,12 - X
from Lo (¢~ xid) to p(¢~!) o L, relative to (X x {0,1}) U (x x [0, 1]).
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Now fix v: S' — ¥ and ¢ € Symp(X). We can find a representative 7"
of the fundamental class of C3(2 x [0, 1]?) relative to its boundary with

OLT" = K, (v x id), T’ — K'(y x id), T’
+ p(¢ DL (y x id), T — Lo(¢p 1 x id) 4 (y x id),T".
Note that
wx = k(P 7 [T)).
L (=1 xid)« (yxid)«T"
Since p(¢)*wx = wx, we have

/ wx = K(7[T]).
p(6 1) Lo (yxid) T

So by Stokes’s theorem,

0 2/ dwx
L.D

_ / wx — / wx + K([T)) — £(6 1IT]).
K/ (yxid)T" K. (yxid) T

Since v and ¢ were arbitrary, this shows that Flux§ — Fluxf,g = K, the
coboundary. O

4. Differences of crossed homomorphisms related to flux

4.1. The first difference theorem. The goal of this section is to prove
Theorem 1.1.

Lemma 4.1. All extended flux maps on Symp(X) restrict to the same map
on ISymp(X).

Proof. Kotschick—Morita proved in [9], Theorem 2, that there is a unique
cohomology class of extended flux maps in H'(Symp(X), H'(2;R)). So any
two extended flux maps differ by a coboundary. Since ISymp(X) is the ker-
nel of the action Symp(X) ~ H'(X;R), any such coboundary is trivial on
ISymp(X). O

Lemma 4.2. The group Ham(X) acts transitively on X2 and contains a point-
pushing map for each homotopy class of simple closed curve on X.

Proof. Let : [0,1] — ¥ parametrize a smooth simple closed curve a based
at . Let A be the annulus [—7, 7] x S1, where S is [0, ]/~ for some r, ¢ > 0,
with product area form wy. Let N be a regular neighborhood of v with a
symplectic map (N,wys) — (A4,w4) carrying v to {0} x St

Let f: [-r,r] — R be a smooth function with the following properties:
f(=r) = f(r) = 0; all derivatives of f are zero at —r and r; f(0) = 1; and
J7. f(z)dz = 0. Such a function can easily be constructed as a sum of bump
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functions. Let H: [0,1] x A — A be the homotopy with H; sending (z,y)
to (z,y+Ctf(x)). It is immediate that H, is area-preserving for each ¢. Pull
back H; to N and extend by the identity to get a symplectomorphism ¢;.
It follows that

Flux(o) (b)) = (8], o)) | ¢t (x) dw =0,
for any [b] € H1(X). So each ¢ € Ham(X). Note that ¢; is a point-pushing
map for . Further note that ¢,(x) = ~(¢) for any t. Since y was arbitrary, we
may take 7 to hit any point on ¥, so that Ham(X) acts transitively on ¥. [

Lemma 4.3. Every crossed homomorphism F: Symp(X, %) — H'(X;R)
that agrees with Flux on Symp(X,*) N Sympy(X) extends uniquely to an
extended flur map Symp(X) — H'(Z;R).

Proof. For each ¢ € Symp(X), pick some ¢4 € Ham(X) sending ¢(x) to *
(this is possible by Lemma 4.2). Then 14¢ € Symp(X, *). Define F(¢) =
F(14¢). Note that F(¢) is well defined: if ¢ and 2 both send ¢(*) to
%, then

F(1¢) — F(¢20) = F(10) + (Y20) - F(¢ My h)
= F(119) + (¥19) - F(¢~ w5t
= F(1¢¢~ "3 ") = Flux(vr193 ") = 0.

Further, I is a crossed homomorphism. For ¢, ¢ € Symp(X) and
1,19 € Ham(X) with ¢;¢; € Symp(X, *) for i = 1,2, we have

F(p102) = F((v1¢1¢207 Npr162) = F(h1¢11262),

since Y1¢199¢; " € Ham(X) sends ¢1¢a(x) to *. So F(¢12) = ¢1 - F(¢2) +
F(¢1). 3
Now suppose F: Symp(¥) — HY(3;R) is another crossed homomor-

phism extending F. Let ¢ € Symp(X) and let » € Ham(X) with ¢ €
Symp(2, ). Then
F'(¢) = F'(¢) +¢ - F'(¢)
= F'(y¢) = F(y¢) = F(9).

Finally, we note that for ¢ € Symp,(X), we have F(¢) = Flux(¢), so F
is an extended flux map. O
Lemma 4.4. The group Symp(X, ) N Sympy(X) is generated by the union
of Sympy (X, *) and a finite set of point-pushing maps in Ham(X).

Proof. The group Symp(X, *) N Symp(X) maps to Mod(X, %) via the map
Symp(X, %) — Mod(X, ). The kernel of this map is Sympg (X, ). However,
the composition Symp(X, *) N Sympy(X) — Mod (X, ) — Mod(X) is trivial.
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Therefore Symp(X, %) N Symp,(X) maps to the kernel of the Birman exact
sequence (from Theorem 2.4), which is the copy of 71(%, %) in Mod (3, )
generated by the mapping classes of point-pushing maps along simple closed
curves. Since Symp(X, ) N Symp(X) contains point-pushing maps along all
simple closed curves (by Lemma 4.2), we have an exact sequence

1 — Sympg(X, *) — Symp(Z, %) N Sympy(X) — 71 (2, %) — 1.

Then Symp(X, %) N Sympy(2) is generated by Symp,(X,*) together with
lifts of a finite generating set for 71 (X, *), which we take to be Hamiltonian
point-pushing maps by Lemma 4.2. O

Lemma 4.5. Let s be any section as in the definition of As. Let ¢ € Ham(X)
be a Hamiltonian point-pushing map around a simple closed curve a. Then

for any [b] € Hi(%),
As(9)([b]) = g - i([a], [b])-

Proof. We assume that ¢ is the map constructed in the proof of Lemma 4.2.
The difference of that map and any other point-pushing map along a is
in Ham(3) N Sympy (X, *) (on which Ay is trivial for any s), so we may
assume this without loss of generality. We pick a set of basis representatives
bi,..., by for Hi(X) such that i([a], [;1]) = 1, b1 is a simple closed curve
intersecting a transversely at a single point, and b; does not intersect supp ¢
for ¢ # 1. We also demand that * does not lie on any b;. Let s be the section
sending [b;] to b;; since ¢ € ISymp(X), As(¢p) does not depend on s. Then it
is enough to show that As(¢)([b1]) = g; since we easily have As(¢)([b;]) =0
for ¢ # 1 the result will then follow by linearity.

As in the proof of Lemma 4.2, the point-pushing map ¢ is supported on an
annulus that we model as the annulus A = [—7r, 7] x ([0, ¢]/ ~), and we model
¢ as (z,y) — (z,y + Lf(x)), where f: [—r,7] — R is a smooth function
satisfying certain properties. The point (0,0) € A maps to the basepoint
x € Y. Since we are free to choose a different by in the same homology class,
we demand that b; intersects the support of ¢ on the image of the segment
t+— (t,¢/2) in A. Let the arc ¢ be the intersection of by with the support of ¢.
Recall that ¢ =¢; of a homotopy ¢; from id to ¢, supported on the same
annulus for all t. Let Dy € C2(X) be the chain defined by dragging ¢ along
this homotopy, with 0Dy = ¢.c — ¢; specifically, Dy is the push-forward of
a fundamental domain for [—r, 7] x [0, 1] relative to its boundary under the
map (z,t) — (z,€/2 +tlf(x)) to A, followed by the inclusion A — 3. Since
¢ € Ham(X), we have [, ws = 0.

However, one can also wrap ¢ around A in the opposite direction. Let
H: [-r,r] x [0,1] — A send (z,t) — (z,—¢/2+ (1 — t){f(x) + £t). Let
D € C3(X) be the push-forward under the composition H: [—r,r]x[0,1] —
A — ¥ of a fundamental class for the domain of H, relative to its boundary,
such that Dy — Dy is a fundamental class for the image of A, relative to
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its boundary. Then there is a chain Dy € Co(X) such that Dy — Dy + Do
is a fundamental class for 3. Since the basepoint * is not in the image of
H, it is not in the support of D; or D; + Ds. Since 9(D; + Ds) is ¢.c — ¢,
the chain D; 4+ D9 has the same area as a chain D3 € Co(X \ {*}) with
8D3 == ¢*b1 — bl. So

A, - - - =g
&)([br)) Aleng /D e /D o ws=e g

Proof of Theorem 1.1. Let e: Mod(X,*) — H'(Z;R) be a crossed homo-
morphism extending ® o 7. By Proposition 2.1, such maps exist. Consider
the crossed homomorphism

F=A,- gg%lDil oeop: Symp(X,*) — H (I;R).

Let ¢ be a Hamiltonian point-pushing map along a based simple closed curve
a. By Corollary 2.1, we know

gg%lDil o®oTop(e)([b]) =g-i(al],[b]),

and by Lemma 4.5, we know A, (¢)([b]) also equals g - i([a], [b]) for any [b] €
Hy(X). So F agrees with Flux on any Hamiltonian point-pushing map ¢. We
proved in Section 3.1 that A agrees with Flux on Symp,(2, *). Of course,
T o p is trivial on Sympy(X,*) and therefore F' agrees with Flux on
Sympg (2, %). Then by Lemma 4.4, F' agrees with Flux on a generating set
for Sympy(X) N Symp(X, *); since it is a crossed homomorphism, F' agrees
with Flux on Symp(3, *x) N Sympg(X). Then by Lemma 4.3, F' extends to
an extended flux map F on Symp(X). By Lemma 4.1, all such maps have
the same restriction to ISymp(X, *), and the theorem follows from the defi-
nition of F. O

4.2. The second difference theorem. The goal of this section is to prove
Theorem 1.2. As in Section 2.1.3, {z;,y;} are 1-cycles representing a sym-
plectic basis. Let s: Hi(X) — Z1(X \ {*}) send each [z;] to z; and [y;] to
yi- We also fix an Abel-Jacobi map J. Since Theorem 1.2 concerns only the
restrictions of As; and Fj to ISymp(%, %), it follows from Propositions 3.2
and 3.4 the choices of s and J do not matter.

In this section, we fix ¢ € ISymp(3, %). As in the definition of the Johnson
homomorphism (Definition 2.3), let M = My = ¥ x [0, 1]/~, where (p,0) ~
(¢(p),1). Also as in that definition, we choose a map K: M — X, specified
by a homotopy K: ¥ x [0,1] — X from J to J o ¢.

We construct cycles in Zy(M) that are related to the difference of A
and Fluxf,(. Momentarily fix an index i. Let v: S' — X be a loop and let
T € Z1(S') be a representative of the fundamental class of S!, such that
5([z;]) = T. The map K o (¢! xid) is a homotopy from Jo¢~! to J. Let
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T' € O3(S* x [0, 1]) be a representative of the fundamental class of S x [0, 1],
relative to its boundary, such that:

I(K(p7t xid)o(y x 1d)T") = JopuT — Jugpy 7. T.

Then Flux} (¢)([z]) = ff('*(¢*1><id)*(7><id)*T’ wx. Let f: St x [0,1] — M
be the map induced by (¢! o) x id. Let C € Co(X \ {*}) be a chain
bounding s([z;]) — ¢; 1 s([x;]), so that Ag(¢)([2i]) = [ ws. The following
cycle is important to our argument:

C; = f*T/ — (Zo)*c S ZQ(M).
Note that C; is in Zo(M) because Of.T" = (ig)ss([z:]) — (i0)sd5 ts([z4]).
Define D; the same way, but with z; replaced by ;.

Lemma 4.6. For each i, we have

/c‘ wir = Flux) (9)([2i]) — As(9)([z]),  and

/D_ wnr = Fluc (6) (i) — As(9)(i))-

Proof. This is a computation

/ WM = WM — WM
Ci I+T7 (10)C

:/ (61 xid). (yxid)a T" wx —/sz = Flux’ (¢)([z:]) — As()([4])-

K

The second statement is similar. O

We proceed to compute the Poincaré duals of {[C}], [D;]}:. For clarity in
the computations in this section, we use (,) to denote the evaluation pairing
between cohomology and homology; for [a] € H¥(M;R) represented by a
k-form « and [c¢] € Hy (M) represented by a piecewise-smooth singular cycle,
we have

Let Dyr: H¥(M;R) — Hs_j(M;R) be the Poincaré duality isomorphism.
We denote the fundamental classes of M and ¥ by [M] and [X], respectively.
Recall the defining property of Dy: for [a] € H¥(M) and [3] € H3*(M),
we have

(4.1) ([, Dar((8])) = ([l A B, [M]).

There is a product on H,(M) given by oriented transverse intersections
of representative cycles (since M is 3-dimensional, every homology class has
a representative that is an embedded submanifold). It is well known (see for
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example Bredon [1], p. 367) that Poincaré duality intertwines this product
with the wedge product on cohomology:

(4.2) Du([a A B]) = Du([e]) N Du([8)),
for any [o], [8] € H*(M).

Recall the 1-forms 641,...,&9,31,...,@9 from Section 2.3.1. Let &; =
K*a;, ﬁz =K *BNZ and let wy; = K*wx. Note that the second-coordinate
map X x [0,1] — [0, 1] induces a map M — S'; let § be a 1-form on M that
is the pullback of a representative of the orientation class in H*(S%).

As in Section 2.3.1, the 1-forms {«;, §;}; are the pullbacks via J of the
forms {a;, Bz}z, and are evaluation-dual to {z;,y;};. We have ig: ¥ — M
induced from the time-zero inclusion ¥ — 3 x [0, 1]. Note that K oig = .J.
Let &; = (ig)«x;, J; = (i0)+Yy; be the cycles on M. We map [0, 1] — £ x [0, 1]
by t + (*,t); since ¢ fixes * this defines a map S* — M. Let z € Z;(M) be
the push-forward of a representative of the fundamental class of S along
this map.

Lemma 4.7. The set {[é1],. .., [a,], [B1],-- - [3,), (0]} is a minimal generat-
ing set for HY(M), and the set {[21], ..., [Z4], [th],-- -, 4], [2]} is a minimal
generating set for Hy(M), both of which are torsion-free.

Proof. Since ¢ acts trivially on H;(X), the spectral sequences for the coho-
mology and homology of M from the fibration ¥ — M — S' degenerate
into Kiinneth formulas. The lemma follows. g

Lemma 4.8. For a a closed 2-form on M, we have

/Ma/\Hz/E(io)*a.

Proof. Let i;: ¥ — M be the time — ¢ inclusion. Since the ¢; maps are all
homotopic, the integral [ (i;)*a does not depend on t (by Stokes’s theorem).
Then we compute the integral on ¥ x [0, 1] and the result follows by Fubini’s
theorem. O

Lemma 4.9. We have
D([0]) = (io)«[%],
Dy([a; NO]) = —[05], and
D([8i A 0]) = [].

Proof. The first statement follows immediately from Lemma 4.8. The second
and third statements follow from Lemma 4.8 and Poincaré duality on 3. [

Lemma 4.10. The elements
a1 NG, ... Jag ANO][BL NG, ... [Bg NO]
are linearly independent in H?*(M;R).
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Proof. These classes are linearly independent because their Poincaré duals

are by Lemmas 4.9 and 4.7. U

Lemma 4.11. For each i, we have

[ ow = twn ABL MY, and [ o= = {loas Al (M)
C; D;
Proof. We show the statement for C;. We aim to show that

Dy ([G) = [Bi],
from which the proposition immediately follows. By shifting i(3) to inter-
sect transversely with C;, we see that (ig)«[X] N [C;] = [Z;]. Then by
Lemmas 4.10, 4.9 and equation (4.2),

[6] A Dy ([Ci]) = [B; A 6]
Together with Lemma 4.7, this implies that for some m € R, we have
DyH((Ci)) = m[o] — [B4).

It is also apparent from the definitions that [C;] N [z] = 0. Then applying
equation (4.2), we see that

0=<DX41([0‘]) ar ([2), [M]) = {(m[8] — [3i]) A Dy ([=]), [M])

m([0] A Dy ([ D [M]) = ([B:] A Dy ([2]), [M]).
Since Dyps([0]) = (ig)«[X] and [z] N (ig)«[X] = [*], equation (4.1) tells us

(16) A D3A(), [M]) = (8], [#]) = / =1
Therefore

— (18] A Dy} /ﬁz— [ hi-o

since J,z is supported on {0} C X. Since m = 0, this proves the statement
for Cj, and the proof for D; is similar. d

Recall the contraction ®: A Hy(X) — H,(¥) from Section 2.4.3. Using
canonical isomorphisms, we will regard ® as a map ®: H3(X) — Hi(X).

Lemma 4.12. We have
Z [war A &5, [M]) 5] + (war A B, [M])[y)])-
7j=1

Proof. Definition 2.3 states that 7(p (¢)) K,.[M] € H3(X). Note that [wx]
and 7 define the same element of A H;(X)*. So Lemma 2.7 tells us

([of, @(7(p(#)))) = ([wx N o], K.[M])
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for any closed 1-form « on X. The lemma follows when we pull these

expressions back to M by K. O
Proof of Theorem 1.2. Apply Poincaré duality to Lemma 4.12 to get
g
DM (@(r(p(9))) = Y ({wnr A&yl IMD81] = (fwar A Bl [M])[ay)).
j=1

Fix an index i. Then by Lemma 4.11,
DM@ @) () = —(onr A B, [M)
== [ = Ado) () ~ Pl (@) [

Similarly,

DM @(7(p(0)([yi]) = As()([wi]) — Flux () ([wi])-
This proves the theorem. O

4.3. Constructing extended flux maps.

Proof of Corollary 1.1. Let e: Mod(X,*) — Hi(X;R) be a crossed homo-
morphism extending ® o 7, which exists by Proposition 2.1. Of course it
follows from Theorem 1.1 that the crossed homomorphism:

g -1
F=A,———D
s g1 s 0€op

agrees with Flux on Symp(X, ) NSymp,(X) (in fact, we have already shown
this in the proof of Theorem 1.1). Then by Lemma 4.3, we have that F
extends uniquely to an extended flux map on Symp(X). Lemma 4.3 also
applies to the crossed homomorphism

1
Flux§( + FDEI o€eop,
which agrees with Flux on Symp(%, ) N Sympy(X) by Theorem 1.2. d

5. An extended flux map via hyperbolic geometry

5.1. The hyperbolic metric extended flux map. In this subsection,
we define symmetric symplectic Dehn twists and show that they exist. Then
we proceed to prove Theorem 1.3. We finish by showing F}, is well defined.
We freely use the notation and conventions of Section 2.5. We assume in
this section, unless stated otherwise, that g > 3.

Definition 5.1. Define a symmetric symplectic Dehn twist t, to be a
symplectic representative of a Dehn twist about a simple closed curve a,
supported on a regular neighborhood of a, with the following property:
for any simple closed curve b, there is a chain C € C3(X), with 9C =
b+ i([b], [a])a—(ta)«b, signed area [, ws = 0, and supp C' C supp b U supp tq.
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Recall the hyperbolic metric h from Section 2.5.

Lemma 5.1. Every Dehn twist in Mod(X) has a representative that is a
symmetric symplectic Dehn twist around an h-geodesic.

Proof. Let a be a simple closed geodesic curve in X. Let N.(a) be the open
e-neighborhood of a. Pick € > 0 small enough that the closure N (a) is a
closed annulus. Let ¢ be the length of a and let v: R/¢Z — ¥ be a unit-speed
parametrization of a. We have coordinates

Ne(a) — (R/MZ) x [—¢, €]

as follows. A point ¢ maps to (y~!(proj,(q)),r(¢)d(q,a)), where proj, is
the closest point projection to a, d is the distance, and r(q) € {1,—1,0}
is 1 if g is to the right of a, as viewed from above, and —1 if g is to the
left. Let f: R — [0, 1] be a non-decreasing smooth function such that f is
locally constant outside of [—¢, €], we have f(—z) =1 — f(x) for all x € R,
and f(—€) = 0 (and therefore f(e) = 1). We have a diffeomorphism f of
(R/LZ) x [—¢, €] that fixes the boundary, given by (¢,z) — (t+{f(x),x). Let
ta: ¥ — X be given by the action of f on Nc(a) and by the identity on the
rest of 3.

Then t, is clearly a diffeomorphism of ¥ and a Dehn twist around a.
Let w: (R/¢Z) x (—€,€) — R be the function such that the pullback of the
2-form wdtAdx on (R/0Z)x (—¢, €) to Ne(a) is wy. Since translation along a is
an isometry of N¢(a), the function w(¢, z) is constant in the first coordinate.
Then f*(wdt A dz) = wdt A dz , and therefore t, preserves ws..

To show that ¢, is symmetric, suppose that b is a simple closed curve in
Y. In fact, in showing ¢, is symmetric with respect to b, we may replace our
curve b with any homologous curve supported on suppb U suppt,. To see
this, suppose ¥’ is a closed curve on suppb U suppt, and C' € Cy(suppb U
suppt,) with 9C’" = b — b. If we have a chain C' € Cy(supp b’ U suppt,)
bounding b’ + i([t], [a])a — (ta)«b" with [,ws = 0, then C' — C" + (t4).C’
is a chain supported on supp b U suppt,, bounding b + i([b], [a])a — (ta)+b,
with fcic, H(ta). O WS = 0. So we assume that b is a piecewise-smooth curve
that intersects a minimally, that each component of b N N¢(a) intersects a,
and that each component of b N N(a) is a geodesic segment (we allow b to
intersect ON,(a) arbitrarily).

Let by, ..., bx be the components of b N¢(a). Each b; is an open geodesic
segment and we denote its closure by ¢;. Temporarily fix an ¢. The curves
¢iy (ta)sci and a bound two closed triangular regions R; and Rsy. Let Cj
be a chain supported on Ry U Ra, such that 0C; = ¢; + (¢, a)a — (tg)«Ci-
Let tg € R/{Z be such that ¢; intersects a at the point (). Then (t4).c;
intersects a at the point y(t9+¢/2). Note that the map ¢ from (R/¢Z) x [—e¢, €]
to itself sending (¢, ) to (2tg —t, —z) induces an isometry of N.(a) (if N.(a)
were embedded in R3, this would be an order-two rotation around the axis
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through 7 (t9) and v(to + ¢/2)). The map ¢ stabilizes each of a and ¢;, since
these are geodesics through (o) and the derivative Dy )¢ is minus the
identity. Using the symmetry of f, it is easy to see that f op=4¢o f , SO
¢ also stabilizes (t4)«c;. Then ¢ swaps Ry and Rg, so they have the same
area. The orientation of OC; defines an orientation of dR;, which induces an
orientation on Rj, for j = 1,2. In particular, the orientation of one of these
regions is the same as Y, and the orientation of the other is the reverse
of X. So fCi wy; = 0, the signed area of R; U Ro. Then there is a chain
C’ € Cy(suppb) such that the chain

k
C=0+ Z C; € Co(suppbUsuppty)
i=1

satisfies 9C = b+ 4([b], [a])a — (ta)«b, and [, ws = 0. O

The following proposition easily implies Theorem 1.3. We show how the
theorem follows from the proposition, and then we build up to the proof of
the proposition.

Proposition 5.1. When g > 3, if ¢ € Sympy(X) is a composition of
symmetric symplectic Dehn twists around h-geodesics, then ¢ € Ham(X).

Proof of Theorem 1.3. Let o: Mod(X) — Symp(X) be a set-map section
to the projection Mod(X), sending each mapping class to a composition of
symmetric symplectic Dehn twists around h-geodesics (such a o exists by
Theorem 2.2). Let 65,: Mod(X) — Symp(X)/Ham(X) be induced by o. For
any ¢, € Mod(X), we know that o(¢)o(1)o(é) ™1 € Sympy(X) because o
is a section to the projection. Then by Proposition 5.1, o(¢)o(¢)o(py) 1 €
Ham(X), so 6, is a homomorphism.

If o’ is a second choice of section satisfying the same hypotheses, then
for any ¢ € Mod(X), we have o’(¢)o(¢)~1 € Symp,(X). Again by Proposi-
tion 5.1, it is in Ham(X). So 63, does not depend on the choice of o. O

Our strategy to prove Proposition 5.1 is to use Gervais’s presentation
(Theorem 2.3) to describe elements of Symp,(X) that are compositions of
symmetric symplectic Dehn twists around h-geodesics; then to show that
these elements are in Ham(X), we use A; along with some new ideas we
introduce below.

Following McDuff [10], we define the strange homology group SH;(X) =
SH; (X, ws; Z) to be Z1(X)/~ where ¢; ~ cg if there is a chain C € Cy(X%)
with 9C = ¢ — ¢ and fc wy; = 0. We use an extension of this concept.
Suppose that Y C X is a piecewise-smoothly embedded simplicial complex
in ¥. We denote by SH;(Y) the group Z;(Y)/~y where ¢; ~y ¢y if there
is a chain C' € Co(Y) with 9C = ¢; — ¢p and [ ws = 0. Denote the
SHi(Y) — class of an element ¢ of Z1(Y) by (c), or by (c)y if there is
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potential for confusion. If Y C Y’ and ¢ € Z1(Y), then (c)y C {(c¢)y’, but
the reverse inclusion does not necessarily hold. Note that ¢ +— (c) is linear.
If ¢ € Symp(¥) and ¢ leaves Y invariant, then (¢) = (d) if and only if
(pxc) = (P«d). In particular, this means that Symp(X) acts on SH;(X), and
the subgroup of Symp(X) leaving Y invariant acts on SH; (V).

We can use this notion to restate the definition of a symmetric symplectic
Dehn twist. Suppose t, is a symplectic Dehn twist around a curve a. Then
t, is symmetric if it is supported on a regular neighborhood A of a and for
every simple closed curve b, we have

(5.1) (a)«(0) = (b) +i([b], [a])(a) € SH1(A U suppb).

Note the similarity between the action of symmetric symplectic Dehn twists
on SH; groups and the action of Dehn twists on H;(X), as shown in equa-
tion (2.1).

In the following, for a subsurface ¥/ of %, the group Mod(X/, 93) denotes
the mapping class group of ¥’ relative to its boundary, meaning the group
of diffeomorphisms of ¥’ fixing 9% pointwise modulo equivalence by homo-
topy relative to 0%’. The following lemma plays a key role in the proof of
Proposition 5.1.

Lemma 5.2. Let X/ be a proper subsurface of ¥ and suppose that ¢ €
Symp(X) is supported on X' and [¢p|sy] € Mod(X,0%) is trivial. If Hy(X)
has a set of basis representatives ci,...,caq € Z1(X) with ¢.(c;) = (¢;) €
SH; (X Usupp¢;) for each i, then ¢ € Ham(X).

The lemma fails if we allow ¥ = X. If ¢ € Sympy(Z, %) and ¢ € Z1(X)
such that Flux(¢)([c]) is an integer multiple of Area(X,wy), then ¢.(c) =
(c) € SH1(X). However, ¢ is only in Ham(X) if Flux(¢)([c]) = 0 for each c.

Proof of Lemma 5.2. Since [¢]sv] is the identity class in Mod (¥, 9¥'), there
is a smooth homotopy from ¢|sy to the identity (on ') relative to 9. Pick
apoint ¢ € ¥\ (X' Uec; U---Ucy,). Then by the Moser stability theorem
(Theorem 2.1), there is a smooth homotopy from ¢ to the identity on X,
through elements of Symp(X) that fix q.

Since Ham(X) acts transitively on X, we can choose 1) € Ham(X) with
¥(q) = *. Then ¥¢1p~1 € Symp, (3, ). The hypotheses of the lemma imply
that (Yo~ (Yuc;) = (uc;) € SHi(¢(X' Usuppe;)) for each . So for
each 7, there is a D; € Co(¢(X' Usuppe;)) with 0D; = (¢¥).ci — i
and fDi wy, = 0. In particular, D; € Co(X \ {*}), since ¥(q) = * and ¢q ¢
(X' Uc¢;). We define s: H1(X) — Z1(X\ {*}) by setting s([¢;]) = 1«c; and
extending linearly. The fact that each D; € Co(X \ {*}) then implies that
Ag(hpp~1) = 0. Then since A, extends Flux|gymp, (x,+) and Flux is Symp(%)—
equivariant, we have that Flux(¢) = 0. O
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Lemma 5.3. Ift, and t,, are both symmetric symplectic Dehn twists around
the same geodesic a, then t; 't € Ham(X). In particular, for any ¢1,¢ps €
Symp(X), the maps ¢1tapa and ¢1t,do are in the same coset of Ham(X).

Proof. Since t, and t/, are both supported on regular neighborhoods of a,
we have that t, 't/ is supported on a closed regular neighborhood ¥’ of a. It
is immediate that ¢, 1#/|ss projects to the trivial element of Mod(¥/, 9%).
For any simple closed curve b, it follows from equation (5.1) that:

(ta ta)<(b) = (t2 1)< ((0) + ([t], [a]){a))
= (b) — o([b]; [a])(a) +2([0], [a]){a) = (b),

where these classes are in SH; (X U suppb). So the first statement follows
from Lemma 5.2. The second statement follows immediately from the fact
that Ham(X) is normal in Symp(X). O

Now we analyze the lifts of relations from the mapping class group that
we get by replacing Dehn twists with symmetric symplectic Dehn twists
around h-geodesics. The next two lemmas imply that a braid relation from
Gervais’s presentation lifts to an element of Ham(X).

Lemma 5.4. Suppose t, is a symmetric symplectic Dehn twist around the
geodesic a, the simple closed curveb is a geodesic with |aNb| = 1, and suppose
¢ is the geodesic representative of (tq)«b. Let X' be a subsurface of ¥ of genus
one with a single boundary component, with ¥’ containing a neighborhood of
supp a U supp b U supp c. Then (b) +i([b], [a]){a) = (¢) € SH1(X).

Proof. We proceed by assuming that #([b], [a]) = 1. Then i([c], [a]) = 1 and
i([b], [c]) = 1. Each pair of these geodesics intersects at a single transverse
intersection point. There are then two possibilities: the geodesics intersect
at a single triple-intersection point, or there are three transverse double-
intersections.

If we have a triple-intersection, then the geodesics cut the surface into
two components: a triangle with all three vertices at the intersection point,
and its complement (see Figure 4). The angles around the intersection point
include each of the interior angles of the triangle twice and no other angles.
Then the sum the interior angles of this triangle is 7w, and by the Gauss—
Bonnet theorem, the area of this triangle is zero. This is a contradiction.

So we have three double-intersections. Then the geodesics cut the surface
into three components: two closed triangles R; and Ro, and the rest of .
As seen in Figure 4, each angle in R; is opposite to one of the angles in R».
Then Ry, and Ry have the same angles, so by the Gauss—Bonnet theorem,
they have the same area. By the same reasoning as in the proof of Lemma 5.1,
there is a chain C supported on Ry U Ry with 0C = b+ i([b], [a])a — ¢ and
Jows = 0. A parallel argument applies if ([b], [a]) = —1. O
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Figure 4. An impossible triangle configuration of geodesics
on a hyperbolic surface (left), and a possible configuration
(right).

Lemma 5.5. Let t, be a symmetric symplectic Dehn twist around the
geodesic a. Let the simple closed curve b be a geodesic with |a Nb| = 1,
and let ¢ be the geodesic representative of (tq)«b. Let t, and t. be symmetric
symplectic Dehn twists around b and c respectively. Then ¢ = t; ttpt; ! is
in Ham(X).

Proof. Again, we start by assuming that #([b], [a]) = 1, so that i([c],[a]) =1
and i([b], [c]) = 1. Let ¥’ be a subsurface of ¥ of genus one with a single-
boundary component, such that ¥’ contains a neighborhood of suppa U
supp bUsupp ¢. Then ¥ is a proper subsurface of ¥. By Lemma 5.3, we may
shrink the supports of our twists so that each of t,, ¢, and ¢, is supported
on Y. Since ¢ is the lift of a braid relation (which holds in all mapping class
groups), we know ¢[5 maps to the trivial element in Mod(X', 0%').

We can find a set of representatives of a basis of H;(X) that consists of a,
b, and 2g — 2 curves that are disjoint from Y'. If the cycle z is disjoint from
the support of ¢, then ¢, (z) = (z) € SH; (¥ Usuppz). By equation (5.1),

¢la) = (t- tatty ) (a) = (t- 'tats)+(a)
= (tz 'ta)+({a) = (b)) = (t2)<(= (b)) = (c) — (b),
where these classes are understood to be in SH;(X') (which contains the
curves and the supports of the twists). But by Lemma 5.4, we know that
(¢) = (a) + (b) € SH1(¥'). So we have ¢, (a) = (a) € SH;(X'). Similarly by
equation (5.1) and Lemma 5.4,

Gu(b) = (17 tatuty ) (b) = 2(b) + (a) — (¢) = (b) € SHi(X).
This completes the proof if i([b], [a]) = 1, and a parallel argument applies
if i([b], [a]) = —1. O

Next we prove that a star or chain relation made out of symmetric
symplectic Dehn twists around h-geodesics is also Hamiltonian.

Lemma 5.6. Suppose ¥/ is a subsurface of ¥ of genus one with three-
boundary components, and a1, as, a3 and b are geodesics in X' in the star rela-
tion configuration, as in Figure 5. Suppose tq,,te,, tay and t, are symmetric



EXTENDED FLUX MAPS AND THE JOHNSON HOMOMORPHISM 479

Figure 5. The curves of a star relation and two reference curves.

symplectic Dehn twists around their respective curves. Suppose we have an
additional simple closed curve x in ¥ and some j with |x Na;| = 1 and
i([aj], [z]) = —1, and suppose that x does not intersect the other aj orb. Let
’QD = (ta1ta2ta3tb)3' Then ¢*<a1> = <CL1> € SHl(El)f ¢*<b> = <b> € SHl(E/)}
and ¢, (x) = (x) + (a1) + {a2) + (as) — 3(a;) € SH1 (X' Usuppx).

Proof. This is a standard computation using equation (5.1), similar to the
computations in Lemma 5.5 (but without any use of Lemma 5.4). We leave
this as an exercise for the reader. 0

Lemma 5.7. Suppose t4,,ta,,ta; and ty are as in Lemma 5.6, the non-
separating geodesics dy, do and d3 are as in Figure 5, and tq,, tq, and tg,
are symmetric symplectic Dehn twists around the respective curves. Let ¢ =
—1,-1,—1

tg taty) (taytastasts)®. Then ¢ € Ham(X).

Proof. Let X' be a subsurface of ¥ of genus one with three-boundary com-
ponents, such that ¥’ contains a regular neighborhood of the union of our
seven curves. By Lemma 5.3, we may assume that ¢ is supported on X'.
Because the d; are non-separating, there is a set of representatives for a
basis for H;(X) consisting of the following:
e the curves a; and b;
e a simple closed curve = that does not intersect a1, as, or b, and that
intersects each of ag, di, and ds only once, with #([z], [a2]) = —1,
i[z], [d1]) = =1 and i([z], [d3]) = 1;
e a simple closed curve y that does not intersect ai, ao, or b, and that
intersects each of az, di and dy only once, with ([y], [as]) = —1,
W[yl [da]) = 1 and i([y], [da]) = —1;
e and 2g — 4 cycles with support disjoint from X'.

The curves aq, b,  and y are illustrated in Figure 5. Then by Lemma 5.6 and
equation (5.1), we have ¢x(a1) = (a1) € SHi(X'), ¢+(b) = (b) € SH1(¥'),

¢s(x) = (x) + (a1) — 2{az) + (a3) + (d1) — (ds) € SH1 (X' Usuppz)
and
¢ (y) = (y) + (a1) + (a2) — 2(az) — (d1) + (d2) € SH1 (X' Usuppy).
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Let Dy, Dy and D3 € CQ(E/) with 0D =as — a1 +ds, 0Dy = a3 —as+djy,
and 0D3 = a1 — a3z + ds, such that each D; is supported on a subsurface
of ¥ of genus zero. Each D; has geodesic boundary with three-boundary
components, and the orientation on the boundary of D, induces an ori-
entation on this subsurface that agrees with the orientation of . So by
the Gauss-Bonnet theorem, we know that [, ws = [, ws = [ Dy WS-
In particular, ¢.(xr) = (x) + (0(D2 — D;)), and ng—Dl wy = 0, so
¢«(x) = (x) € SH1(¥ Usuppz). Similarly, ¢.(y) = (y) + (0(D3 — D3)),
so ¢ (y) = (y) € SHy (X' Usuppy). Then ¢ fixes the class in SHy (X' U ¢) of
each element ¢ of our set of basis representatives for H;(X). Since ¢ is a lift
of the star relation, we know 1 = [¢|sy] € Mod(X',0%') (and ¥’ is a proper
subsurface of ¥), so it then follows from Lemma 5.2 that ¢ € Ham(X). O

Lemma 5.8. Suppose tq,,ta,, ty, ta, and tq, are as in Lemma 5.7, the non-
separating geodesics di, and ds are as in Figure 5, and we have a curve
dy as in Figure 5 that bounds a disk. Let ¢ = t;lltggl(taltaztaltb)?’. Then
¢ € Ham(Y).

Proof. Let ¥/ be a subsurface of ¥ of genus one with two-boundary compo-
nents, such that ¥’ contains a regular neighborhood of the union of these
five curves. By Lemma 5.3, we assume that ¢ is supported on ¥'. Let = be
as in the proof of Lemma 5.7. Since d; and ds are non-separating, we have
a set of basis representatives consisting of a1, b, x and 2g — 3 curves that
are disjoint from the support of ¢. By the same reasoning as in the proof of
Lemma 5.7, we have ¢.(a1) = (a1) € SH1(Y'), ¢.(b) = (b) € SH;(¥’), and
¢«{x) = (x) € SH1(X Usuppzx) (Lemma 5.6 still applies, with a; = ag
since dy bounds a disk). Then since ¢, is a lift of the chain relation,
1 = [¢|sy] € Mod(X,0%). Since the genus of X is greater than two, we
know Y’ is a proper subsurface of ¥, and it follows from Lemma 5.2 that
¢ € Ham(X). O

Remark 5.1. Lemma 5.8 and Proposition 5.1 fail if ¢ = 2. Suppose we
have constructed ¥ from the surface in Figure 5 by gluing a disk into do and
gluing d; to ds3 to get a closed, orientable surface. Suppose we have done this
such that the reference arc x becomes a simple closed curve. Let ¢ be as in
Lemma 5.8. Let Y be a union of small regular neighborhoods of the marked
curves. Lemma 5.6 shows ¢.(x) = (z) + 2(a1) — 2(a2) + 2(d1) in SH;(Y).
This means that there is an area-zero 2-chain D1, supported on Y, such that
0D, = x—2a1—2a2+4+2d1 —¢.x. Let Dy be a fundamental class, relative to the
boundary, for the subsurface bounded by the geodesics ai, ag, and di, with
0Dy = a1 + ag — d;. Pick a section s with s([z]) = z, and pick a basepoint
not in Y'Usupp Dz. Then Flux(¢)([z]) = As(¢)([]) = [}, 1op, ws, which is
the area of ¥ and is non-zero. So if g = 2, we have a product of symmetric
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symplectic Dehn twists around h-geodesics that is in Sympy(X) but not in
Ham(X).

Proof of Proposition 5.1. Pick a set S C Symp(X) of symmetric symplectic
Dehn twists around simply closed geodesics, one for each free homotopy
class. By replacing each twist in the composition of ¢ with an element of
SUS™!, we get a new map ¢'. By Lemma 5.3, ¢’ is in the same coset of
Ham(X) as ¢. The composition of ¢’ describes a word @ in S. Let w be the
same word with each letter in S replaced by its image in Mod(X). Since
¢’ € Sympg(X), the word w represents the trivial element of Mod(X), and is
a product of conjugates of the relations in Theorem 2.3. Then since Ham(X)
is normal in Symp(X), ¢’ is in Ham(X) if all of the relations in Theorem 2.3
are in Ham(X), when lifted to Symp(X) using elements of S.

If @ and b are disjoint geodesics and t,,t, € S are twists around them,
then by Lemma 5.3, we may assume that their supports are disjoint, in
which case they commute. This means that relation (2.3) is satisfied. The
other relations are satisfied because of Lemmas 5.5, 5.7 and 5.8. Il

Recall that Fj,(¢) = Flux(¢o([¢]) ).

Proposition 5.2. The map ﬁh 1s a well-defined crossed homomorphism
extending Flux.

Proof. Recall that Flux is a Symp(X)-equivariant homomorphism. Then for
@, € Symp(X), we have

Fy(¢) = Flux(¢o ([¢y]) ™) = Flux(égo ([]) "o ([6]) )
= Flux(¢yo([¥]) o~ do((g) )
= ¢ Flux(go([y]) ) + Flux(¢o([¢]) )
= ¢ Fu(¥) + Fu(9).
Here we are using that Flux(o([¢y)])o([¢]) "to([¢])~!) = 0, which is true by
Theorem 1.3. If ¢ € Sympy(X), then o([¢]) = o(1) € Ham(X), again by
Theorem 1.3. So Fj(¢) = Flux(¢) for ¢ € Sympy(X). Since h-symmetric

sections define a unique homomorphism &, it follows that if we define ﬁh
using a different A-symmetric section o, we get the same map Fp,. O
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