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NOTE ON GEODESIC RAYS AND SIMPLE TEST
CONFIGURATIONS

Song Sun

In this short note, we give a new proof of a theorem of Arezzo-Tian on
the existence of smooth geodesic rays tamed by a special degeneration
with smooth central fiber.

In [7], Donaldson proposed a program to tackle the problem of the existence
and uniqueness of extremal metrics on a Kähler manifold from the perspec-
tive of the infinite dimensional space of Kähler potentials. He observed that
the existence of smooth geodesics connecting two arbitrary Kähler poten-
tials implies the uniqueness of Kähler metrics in the given class with constant
scalar curvature. In [3], Chen proved the existence of C1,1 geodesics join-
ing two arbitrary points in H. Consequently, this established the uniqueness
of extremal Kähler metrics when the first Chern class of the manifold is
non-positive. At present, there is extensive research in this direction. In par-
ticular, the uniqueness problem has been completely settled (cf. [6, 10, 12]).

We shall first give a very brief outline about a small part of this pro-
gram, which is directly relevant to the problem at hand. For more detailed
accounts, readers are referred to [3, 4, 6, 7].

Let (M, ω, J) be an n-dimensional Kähler manifold. Define the infinite
dimensional space of Kähler potentials as

H = {φ ∈ C∞(M)|ωφ = ω +
√

−1∂∂φ > 0}.

In [11] (cf. [7, 16]), Mabuchi first introduced a Weil–Petersson type metric
on H:

(φ1, φ2)φ =
∫

M
φ1φ2

ωn
φ

n!
,
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where φ1, φ2 ∈ TφH � C∞(M). It is easy to see that the geodesic equation
in H is

(1) φ̈ =
1
2
|∇φφ̇|2φ

A straightforward calculation shows (cf. [7, 11, 16]) that the space H is
formally of non-positive curvature. This fact was made rigorously in [2],
where E. Calabi and X-X. Chen proved that H is a non-positively curved
space in the sense of Alexanderov.

According to Semmes [16], by adding a trivial S1 factor, the geodesic
equation could be written as a degenerate complex Monge–Ampère equation
in M ×([0, 1]×S1). Suppose X is a Riemann surface with boundary. Denote
π1 : M ×X → M and π2 : M ×X → X as the two natural projection maps,
and let Ω = π∗

1ω. Then, given φ0 ∈ C∞(M ×∂X) such that Ω +
√

−1∂∂φ0 >
0 on each slice M × {x} for all x ∈ ∂X, we consider the Dirichlet boundary
value problem:

(2)

{
(Ω +

√
−1∂∂Φ)n+1 = 0, on M × X,

Φ = φ0, on M × ∂X.

A solution is of geometric interest if Ω +
√

−1∂∂Φ > 0 when restricted on
each slice M × {x} for all x ∈ X. Since the target manifold H is an infini-
tesimal symmetric space, any smooth solution of (2) can be re-interpreted
(cf. [7]) as a harmonic map from X to H with prescribed boundary map
φ0 : ∂X → H. Any geodesic segment connecting φ1 with φ2 corresponds to
an S1 invariant solution of (2) with X = [0, 1] × S1 and φ0(0, τ) = φ1(τ),
φ0(1, τ) = φ2(τ). The notion of a geodesic ray is similar to the finite dimen-
sional case: a geodesic ray in H is a geodesic segment which can be infinitely
extended in one direction. In other words, a geodesic ray corresponds to an
S1 invariant solution of the following:

(3) (Ω +
√

−1∂∂Φ)n+1 = 0, on M × ([0,∞) × S1) � M × (D \ {0}),

where D is the closed unit disk.
In [7], Donaldson also conjectured that the existence of smooth geodesic

rays where the K energy is strictly decreasing at the infinity is equivalent to
the non-existence of constant scalar curvature metrics in [ω]. Donaldson’s
conjecture certainly motivated the study of the existence of geodesic rays
and related problems. However, the existence of geodesic rays is quite dif-
ferent from that of geodesic segments since the domain involved is naturally
non-compact. More importantly, Donaldson [7] pointed out that the initial
value problem for the geodesic ray equation is not always solvable in the
smooth category. So we need to impose an alternative condition in order to
properly solve equation (3). Following Donaldson’s program [7], this issue
was discussed in [4]. According to [4], the initial Kähler potential together
with the asymptotic direction (given by either an existing geodesic ray or an
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algebraic ray associated to a test configuration) forms a well-posed Dirichlet
boundary value for equation (3). A set of new problems were discussed there
for developing the existence theory of geodesic rays. In particular, it is proved
that the existence of relative C1,1 geodesic rays parallel to a given smooth
geodesic ray under natural geometrical constraints. Unfortunately, there are
few examples of the existence of geodesic rays in the literature, which cre-
ates serious problem for pushing the general existence theory further. In [1],
using Cauchy–Kowalewski theorem, Arezzo and Tian proved the existence
of a smooth geodesic ray asymptotically parallel to a special degeneration
with smooth central fiber, or equivalently, to a simple test configuration
(cf. [5, 9]). One would like to see a more direct PDE proof of this important
theorem. The main purpose of this note is to reprove the same theorem using
perturbation argument. Note that if we only assume the total space of the
test configuration to be smooth, then by [5], it will give rise to a relative C1,1

geodesic ray parallel to the algebraic ray induced by the degeneration. Fur-
thermore, it was shown in [5] that even for tori varieties, the best regularity
one could get is C1,1(see also [17]). There are also other ways of obtaining
geodesic rays from a test configuration, see [14, 15].

Now we introduce the definition of a Kähler fibration and a simple test
configuration.

Definition 1. A Kähler fibration (over the closed unit disk) is a map π :
(M, J,Ω) → D, where J is an integrable complex structure on M, π is a
holomorphic submersion, Ω is a closed two form on M which is compatible
with J and it is a Kähler form on each fiber Mz(z ∈ D) (which is assumed
to be compact without boundary).

Definition 2 (cf. [5, 9]). A (truncated) simple test configuration for a
polarized Kähler manifold L → M is a Kähler fibration π : (M, J,Ω) → D
together with a very ample line bundle L and a C

∗ equivariant embedding
{L → M → D} ↪→ {O(1) → P

N × C → C}, such that {L → M} is
isomorphic {L|M1 → M1}, where we denote Mt = π−1(t). Also, the C

∗ action
on C is given by the standard multiplication, and the map P

N × C → C is
simply the projection to the second factor. In addition, Ω should coincide
with the restriction of the Fubini-Study metric on P

N , while the induced S1

actions on all these spaces are assumed to be unitary. Clearly all the fibers
π−1(t) for t �= 0 are biholomorphic to each other. A simple test configuration
is called product if M is biholomorphic to M × C, and the C

∗ action on M
is also a product action coming from C

∗ action on M and the standard
multiplication on C. It is called trivial if the C

∗ action on M is also trivial.

Remark 3. The above definition of a simple test configuration is essentially
the same as the special degeneration with smooth central fiber studied by
Tian first in [18].
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Theorem 4 (Arezzo–Tian [1]). Given a non-trivial simple test configu-
ration for L → M , there exists a non-trivial geodesic ray tamed by this test
configuration.

According to [4], a geodesic ray is said to be tamed by a test configuration
if it is asymptotically parallel to the algebraic ray defined by pulling back
the Kähler potentials through the C

∗ action on M.
We want to take a different route to prove this theorem. Following [5, 8],

smooth regular solutions to (3) are related to foliations of punctured holo-
morphic discs with some control on the total area. There is a Fredholm
theory associated to the moduli space of holomorphic discs with totally real
boundary condition. Deformation of this moduli space is the central topic
of this note.

Arezzo–Tian’s theorem is a consequence of the following proposition.

Proposition 5. let π : (M, J,Ω) → D be a Kähler fibration, there exists
a smooth function Φ defined in a neighborhood of the central fiber M0 that
solves the complex Monge-Ampère equation (Ω +

√
−1∂∂̄Φ)n+1 = 0 with

Ω +
√

−1∂∂̄Φ being positive on each fiber.

In [1], it was shown that the value of Φ on the central fiber could be
prescribed as long as the corresponding Kähler metric is real analytic. From
the proof of Proposition 5 we shall see that also more is true. We only state
it in the following S1 invariant case, since this gives rise to geodesic rays.
Namely,

Theorem 6. Let π : (M, J,Ω) → D be a non-trivial simple test config-
uration. Denote Mz = π−1(z) for z ∈ D, and ωz = Ω|Mz . For k > 0
sufficiently large, denote H̃0 = {φ ∈ Ck+1(M0; R)|φ is S1 invariant and
ω0 +

√
−1∂∂̄φ > 0}. Given any φ0 ∈ H̃0, there is an open set U in H̃0 and

a number δ(k) > 0, such that for every φ ∈ U there exists a S1 invariant
Φ ∈ Ck(π−1(|z| ≤ δ)) depending on φ that solves the complex Monge-Ampère
equation (Ω +

√
−1∂∂̄Φ)n+1 = 0 with Ω +

√
−1∂∂̄Φ being positive on each

fiber.

The proof of Proposition 5 is based on a perturbation theory first intro-
duced in [8] by Donaldson in the case of a trivial test configuration. In
this note, we follow its generalization in [5]. By the definition of a Kähler
fibration, M is always diffeomorphic to the product M0 × D. So we can for
simplicity assume M = M × D for a 2n dimensional smooth manifold M
and the map π involved in the definition is the projection map to the second
factor. Fix once and for all a cover of M × D by small balls, say {Ui}i∈I .
Following Donaldson’s construction, we can associate a manifold W to any
Kähler fibration, as follows: On each Ui, we choose local holomorphic coor-
dinates to be (z1, . . . , zn, z), where z is simply given by π. Then Ω could be
written as

√
−1∂∂̄ρi for some locally defined function ρi. W is obtained by
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twisting the vertical holomorphic cotangent bundle E = T ∗(M×D)/π∗T ∗D.
More precisely, we glue ξ in E|Ui with ξ + ∂(ρi − ρj) in E|Uj over the cor-
responding fiber. It is easy to see that W is also a fibration over D and
the canonical complex-symplectic structure on the holomorphic cotangent
bundle induces a fiberwise complex-symplectic form on W. Furthermore, Ω
defines an exact LS-graph1 on each vertical fiber.

Of course, our construction of W is not canonical. However, if we fix an
open cover and an initial Kähler fibration, then ρi could be chosen to depend
smoothly on the data Ω and J for a small variation. (Indeed, by the well-
known theorem of Newlander–Nirenberg, holomorphic coordinates could be
made to vary smoothly. Then, one can follow the proof of Dolbeault’s lemma
to show this.) Moreover, by definition, W is always diffeomorphic to E, or
further, to the real vertical cotangent bundle, still denoted by E, which is
independent of Ω and J . Therefore, if we pull back everything to the latter,
a perturbation of Ω and J really gives us a perturbation of the complex-
symplectic structure on E.

Now let φ0 : ∂D → R be a smooth function such that Ω +
√

−1∂∂̄φ0 is
positive on fibers over ∂D. Then it defines exact LS-graphs Λz,φ0 over any
z ∈ ∂D. Following [5, 8], we have a one-to-one correspondence:

(A) A C∞ solution Φ to the homogeneous Monge-Ampère equation: (Ω+√
−1∂∂̄Φ)n+1 = 0 satisfying the boundary condition Φ|∂D = φ0 and such

that Ω +
√

−1∂∂̄Φ still defines a Kähler fibration (together with J).
(B) A smooth map G : M × D → E which covers the identity map on D,

holomorphic in the second variable and satisfies the boundary condition: for
all z ∈ ∂D, G(·, z) ∈ Λz,φ0 . (Alternatively, we could view this as a family of
holomorphic sections of the fibration E → D whose boundary lies in some
totally real submanifold given by

⋃
z∈∂D Λz,φ0 .) In addition, we require that

p1 ◦ G(·, 0) is the identity map, and p1 ◦ G(·, z) is a diffeomorphism for any
z ∈ D, where p1 : E → M is the projection map.

Lemma 7. Perturbation of Ω, J and φ0 preserves a smooth solution to the
above equation, i.e., the compact family of normalized holomorphic discs in
(B) is stable under perturbation.

To prove this lemma, we need to set up a Fredholm theory for holomorphic
discs with totally real boundary conditions. Denote by (D, E)s the space of
maps from D to E which lies in the Sobolev space Hs+1 for some large
s. Let Fs be the subspace of (D, E)s which are sections of the fibration,
i.e., normalized maps. Fix J0 on E, and a totally real submanifold R0 of E
with respect to J0. (For example, in our case, the exact Lagrangian graphs
defined by the known smooth solution restricted on ∂D.) Denote by NR0

1In a complex symplectic manifold (M, Θ), a submanifold L is called an LS-submanifold
if L is Lagrangian with respect to Re Θ, while the restriction of Im Θ on L is a symplectic
form. For more details, see [5, 8].
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the normal bundle of R0 in E with respect to any fixed metric, then a C∞

neighborhood of totally real submanifolds around R0 can be identified with
an open set of the space Γ(NR0) of all smooth sections of NR0. As in [13],
choose ε̄ = {εk}k∈N(εk → 0), and define a Floer norm on Γ(NR0) by

‖ X ‖ε̄=
∑
k∈N

εk max
x∈E

|DkX(x)|.

For r > 0, we also define

Γε̄
r(NR0) = {X ∈ Γ(NR0)| ‖ X ‖ε̄< r}.

This is a Banach space and by choosing r sufficiently small, we can assume
that Γε̄

r(NR0) maps injectively to the space of all totally real submanifolds
of E, under the previous identification. Let N (R0) denote its image. For
each R ∈ N (R0), there is an associated diffeomorphism φR : R → R0 which
extends to a diffeomorphism of E. Moreover, we can choose φR to depend
smoothly on R. Now let B = ∪u∈FsH

s(u∗TE) be an infinite dimensional
vector bundle over Fs, and J be the space of smooth almost complex struc-
tures on E, which are C ε̄ close to J0. Then B × (∂D, E)s− 1

2
is a bundle over

Fs × J × N (R0), with a section s(u, J, R) = (∂̄Ju, φ−1
R ◦ u|∂D). Fix J0, and

let s0 be the restriction of s to the slice Fs × {J0} × N (R0). It is shown
in [13] that s0 is transversal to the submanifold {0} × (∂D, R0)s− 1

2
at a

point (u0, R0) if u0 is not multiply covered, i.e., there exists a z ∈ ∂D, such
that u−1

0 (u0(z)) ∩ ∂D = z and Du0(z) �= 0. So in our particular case s is
transversal to {0} × (∂D, R0)s− 1

2
at (u0, J0, R0) for every disc coming from

a solution of our previous equation (A). Therefore, s−1({0} × (∂D, R0)s− 1
2
)

is smooth Banach manifold near (u0, J0, R0). Standard elliptic regularity
implies that it is actually contained in F∞ × J × N (R0) for s sufficiently
big.

Now consider the projection map s−1({0}× (∂D, R0)s− 1
2
) → J ×N (R0),

which is Fredholm of index 2n (cf. [5, 8]). Given a smooth solution on (M ×
D, J,Ω) as in (A), we have a 2n dimensional compact family of normalized
holomorphic discs into (E, J0), where J0 is defined by J and Ω. Moreover,
the holomorphic discs appearing in the family are all super-regular,2 and in
particular regular. Now if we perturb J , Ω and φ0, we are actually perturbing
J0 and R0. Standard Fredholm theory ensures the existence of a nearby
family of normalized regular holomorphic discs, which proves Lemma 7.

Proof of Proposition 5. For r ∈ (0, 1), let M(r) be the re-scaled Kähler
fibration defined by (M, J,Ω)||z|≤r with πr(w) = π(w)/r. When r is

2For a family of holomorphic discs G : M × D → W parameterized by M , we say that
a disc Gx(x ∈ M) is super-regular if the derivative dp1 ◦ dxG(·, z) : TxM → Tp1◦G(x,z)M
is surjective for all z ∈ D. It is proved in [5, 8], that a super-regular disc is automatically
regular.
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small enough, M(r) is close to the trivial fibration given by the prod-
uct (M0, J |M0 , Ω|M0) × D. The latter has an obvious solution to (A) (just
take Φ = 0). Therefore by Lemma 7, for r small, we obtain a solution to
the equation on M(r), which is the same as a solution near the central
fiber on M. �

Proof of Theorem 4. The limit of the re-scaled test configurations M(r) is
(M0, J |M0 , Ω|M0) × D with a (possibly non-trivial) C∗ action on M0. Any
S1 invariant potential φ0 on M0 yields a trivial solution. We can perturb
φ0 to an S1 invariant function φ on ∂M(r) for small r, then the solution
Φ ensured by Proposition 5 will also be S1 invariant by the uniqueness of
solutions of equation (2), which follows from a standard maximum principle
argument (see Lemma 6 in [7]). Then we obtain a geodesic ray on the fiber
M1 by pulling back the restriction of Ω +

√
−1∂∂̄Φ on each fiber to a fixed

fiber by the C
∗ action, and we also get a foliation by punctured holomorphic

discs on M1 × (D \{0}). Furthermore, if the test configuration is non-trivial,
the corresponding foliation would not be trivial since the C

∗ action on M
is not along the leaf direction given by the orthogonal complement of the
tangent space of the fibers with respect to Ω+

√
−1∂∂̄Φ. Thus, in this case,

we do get a non-trivial geodesic ray. Since Φ is smooth on M, the geodesic
ray is parallel to the algebraic ray defined simply by pulling back Ω through
the C

∗ action. Thus the ray is tamed by the test configuration. �

Proof of Theorem 6. First it is easy to see that the above arguments still go
through if we change the general framework replacing C ε̄ by Ck for k large.
First of all, following the proof of [8], the one-to-one correspondence before
Lemma 7 becomes that a Ck+1 solution Φ corresponds to a map G which is
only Ck along M (i.e., the corresponding exact LS-graph is only of class Ck).
Now we consider Ck neighborhood N k(R0) of a Ck totally real submanifold
R0. This could be identified with an open set of the space Γk(NR0) of all Ck

sections of NR0 (in our case, R0 will be the exact LS-graphs defined over ∂D
corresponding to the boundary value of a Ck+1 solution to the homogeneous
Monge-Ampère equation). More precisely, define

Γk
r (NR0) = {X ∈ Γk(NR0)| ‖ X ‖Ck< r}.

We also choose r sufficiently small, and define N k(R0) to be the image
of Γk

r (NR0) under the above identification. Define Fs, B and J the same
as before, where s should be no bigger than k. The previous section
s(u, J, R) = (∂̄Ju, φ−1

R ◦ u|∂D) is Ck in u, and C∞ in the remaining vari-
ables. The submanifold of (∂D, E)s− 1

2

(∂D, R0)s− 1
2

:= (∂D, E)s− 1
2

∩ C0(∂D, R0)
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is a Ck Banach manifold. So the implicit function theorem implies that
s−1({0} × (∂D, R0)s− 1

2
) is Ck Banach manifold near (u0, J0, R0). Then the

projection map π2 : s−1({0}×(∂D, R0)s− 1
2
) → J ×N k(R0) is a Ck Fredholm

map of index 2n. π−1
2 (J0, R0) is a Ck manifold near (u0, J0, R0) since it

is parametrized by M under the map G. Since these consists of regular
holomorphic discs, we can find a neighborhood V of (J0, R0), such that there
exists a Ck diffeomorphism F : V × M → π−1

2 (V). Furthermore, since s is
smooth in J and N k(R0) direction, F could be chosen to depend smoothly
on V-variable. By using once again the correspondence before Lemma 7, we
arrive at that Ck+1 perturbation of the boundary condition gives rise to a
Ck+1 perturbation of the solution to (A), and the dependence is smooth.

With this at hand, we can define a smooth map S from the open set of
elements (r, φ) in [0, 1] × Ck+1(M ; R) such that φ is the boundary value of
a Ck+1 solution of the homogeneous Monge-Ampère equation for M(r) to
H̃0. Given r and φ ∈ Ck+1(M ; R) in this open set, we take the solution Φ,
and then restrict to the central fiber to obtain an element in H̃0. For the
product test configuration (M0, J |M0, Ω|M0)×D with the C

∗ action on M0,
any φ ∈ H̃0 forms a trivial solution, and S(φ) = φ. The derivative with
respect to the second variable (D2S)(0,φ) : Ck+1(M ; R) → H̃0 is then clearly
surjective, with an obvious right inverse which is the inclusion map. By the
implicit function theorem together with the previous paragraph, we conclude
that for any φ ∈ H̃0, there exists a neighborhood U of φ, an r > 0, and a
smooth map T : U → Ck+1(M(r); R), such that the image of T consists of
solutions to (A) on M(r). �

Remark 8. An interesting question is: Given a sequence of Kähler poten-
tials in H which is bounded in the sense of Cheeger–Gromov, but not
bounded in the holomorphic category. Does there exist a point in the “sphere
at infinity” which reflects this non-compactness or degeneracy?
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