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WEAK MIRROR SYMMETRY OF LIE ALGEBRAS

Richard Cleyton, Jorge Lauret, and Yat Sun Poon

Weak mirror symmetry relates a manifold with complex structure to
another manifold equipped with a symplectic structure through a quasi-
isomorphism of associated differential Gerstenhaber algebras. The two
manifolds are then mirror partners. In this paper we consider the analo-
gous problem on Lie algebras. In particular we show that the semi-direct
product of a Lie algebra equipped with a torsion-free flat connection
with itself is a mirror partner of a semi-direct product of the same
Lie algebra with its dual space. For nilpotent algebras this analysis on
Lie algebras can be applied to the compact quotients of the under-
lying nilpotent group. We classify mirror pairs among 6-dimensional
nilpotent Lie algebras that have the semi-direct product structure as
well as mirror pairs admitting the more involved special Lagrangian
structure, namely compatible complex and symplectic structures on
the same space.

1. Introduction

It is well known that deformation theory of geometric objects such as com-
plex structures and symplectic structures are dictated by a differential Ger-
stenhaber algebra (a.k.a. DGA) and the associated cohomology theory [23,
30]. Therefore, DGA plays a key role in mirror symmetry. In developing
the algebraic aspects of mirror symmetry, Merkulov proposes the concept
of weak mirror symmetry [25]. If M is a manifold with a complex struc-
ture J and M∨ is another manifold with a symplectic structure ω, then
(M, J) and (M∨, ω) form a weak mirror pair if the associated differential
Gerstenhaber algebras DGA(M, J) and DGA(M∨, ω) are quasi-isomorphic.
The goal of this paper is to construct mirror pairs when the manifolds M
and M∨ are nilmanifolds, J is an invariant complex structure and ω is an
invariant symplectic structure.
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In the SYZ-conjecture, one considers the geometry of special Lagrangian
fibrations in a Calabi–Yau manifold L ↪→ M → B with L being a real three-
dimensional torus. The mirror image is a Calabi–Yau manifold M∨ with the
special Lagrangian fibrations L∗ ↪→ M∨ → B where L∗ is the dual torus
of L [29]. One way to adapt the structure of a Lie group H to resemble
this situation is by insisting that the Lie algebra h is a semi-direct sum of
a subalgebra g with an abelian ideal V . The group H is then a semi-direct
product, namely the product of the group G corresponding to g with V .
By restricting our attention to invariant structures on homogenous spaces
of such groups, the geometry of the fibration of H over G is encoded in the
corresponding objects on the Lie algebra h of H. We shall speak somewhat
sloppily of g as the base and of V as the fiber of the fibration.

Forgetting about the SYZ-conjecture, semi-direct products are still natu-
ral objects to study in connection with “weak mirror symmetry.” This is so
since the direct sum of the bundle of (1, 0)-vectors T (1,0) and bundle of (0, 1)-
forms T ∗(0,1) on a complex manifold carries a natural Lie bracket (Schouten)
such that T (1,0) is a sub-algebra and T ∗(0,1) is an abelian ideal. It is the asso-
ciated exterior algebra of this semi-direct sum and the associated ∂̄-complex
that eventually control the deformations of the complex structure.

It is well known that a symplectic structure defines a torsion-free flat con-
nection on a Lie algebra g [13]. As we shall see, a torsion-free flat connection
on a Lie algebra g also defines a symplectic form ω, not on g but on a semi-
direct product h∨ of g with its dual g∗ [10]. This symplectic form is defined
such that it is Lagrangian with respect to both the base g and the fiber
V ∗ = g∗ and so we call the pair (h∨, ω) a Lagrangian semi-direct product. A
torsion-free flat connection on g also defines a totally real semi-direct product
(h, J) where J is a complex structure on a semi-direct sum of g with itself.
Such complex structures are particular cases of complex product structures
[1]. The observation that both complex structures and symplectic struc-
tures on certain semi-direct products are related to the notion torsion-free
flat connections may be found in [5]. Torsion-free flat connections are also
known as affine structures and as such already have widespread application
in the study of mirror symmetry, see for instance [2, 8, 19]. Left-invariant
torsion-free flat connections on Lie groups are equivalent to (Lie compati-
ble) left-symmetric algebras. Much is known about left-symmetric algebras.
In particular existence problems have been examined and it is known that
no left-symmetric structure exists on semi-simple algebras. Also, certain
nilpotent algebras of dimension greater than nine have no left-symmetric
structures [6, 9, 11, 12].

Therefore we confine the scope of our present paper to deal with solvable
spaces. Recent advance in resolving the Benson–Gordon conjecture means
that when we insist that h should carry a Kähler structure then h is flat
and therefore of a very special solvable type [4, 7, 21]. For a nilpotent
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algebra more is true – it is Kähler only if it is abelian [3, 20]. Therefore
an invariant symplectic form ω on a non-abelian nilpotent algebra is of type
(1, 1) with respect to a complex structure J if and only if ω and J determine
a non-definite metric. We call such a pair a pseudo-Kählerian geometry.

Invariant complex structures, their Dolbeault cohomology and pseudo-
Kählerian geometry on nilmanifolds have been a subject of much investi-
gation in recent years, especially when the complex dimension is equal to
three [15–17, 27, 28]. In particular, with the recent advance in understand-
ing the cohomology theory on nilmanifolds [27], our computation and results
on nilpotent algebras in this paper could be used to provide a full description
of the differential Gerstenhaber algebras of any invariant complex structures
on nilmanifolds in all dimensions.

This paper is organized as follows. In the next section, we briefly review
the construction of differential Gerstenhaber algebras for complex and sym-
plectic structures, the definition of semi-direct products and establish nota-
tions for subsequent computation. In Section 3, we study the complex and
symplectic geometry on semi-direct products. The key observation in this
section is Theorem 3.10, which states that the differential Gerstenhaber
algebra on a totally real semi-direct product is isomorphic to the differ-
ential Gerstenhaber algebra of the Lagrangian dual semi-direct product as
constructed in Proposition 3.2.

In Section 4, we focus on nilpotent algebras of dimension-six. Note that
the two-dimensional case is trivial, and the four-dimensional case is already
tackled in [26]. Our first step in addressing the issue of finding mirror pairs
of special Lagrangian nilpotent algebras in dimension-six begins in the proof
of Theorem 4.1, which identifies the weak mirror image of a totally real semi-
direct product. After an analysis on the existence of special Lagrangian semi-
direct products, the main result is Theorem 4.3, which provides a complete
list of weak mirror pairs of special Lagrangian nilpotent algebras in six-
dimension.

2. Preliminaries

We first recall two well-known constructions of DGA [14, 25, 30]. After a
motivation due to weak mirror symmetry, we recall the definition of semi-
direct product of Lie algebras.

2.1. DGA of a complex structure. Suppose J is an integrable complex
structure on h. i.e., J is an endomorphism of h such that J ◦ J = −1 and

(2.1) [x • y] + J [Jx • y] + J [x • Jy] − [Jx • Jy] = 0.

Then the ±i eigenspaces h(1,0) and h(0,1) are complex Lie subalgebras of
the complexified algebra hC. Let f be the exterior algebra generated by
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h(1,0) ⊕ h∗(0,1), i.e.,

(2.2) f
n := ∧n(h(1,0) ⊕ h

∗(0,1)) and f = ⊕nf
n.

The integrability condition in (2.1) implies that f1 is closed under the
Schouten bracket

(2.3) [x + α • y + β] := [x, y] + ιxdβ − ιydα.

Let d be the Chevalley–Eilenberg (C–E) differential d for the Lie algebra
(h, [−•−]). Then (∧h∗, d) is a differential graded algebra. Similarly, let ∂̄ be
the C-E differential for the complex Lie algebra f

1. As the natural pairing
on (h ⊕ h∗) ⊗ C induces a complex linear isomorphism (f1)∗ ∼= f1, the C–E
differential of the Lie algebra f

1 is a map from f1 to f2. It turns out that
(f, [− • −],∧, ∂) form a differential Gerstenhaber algebra which we denote
by DGA(h, J). The same construction shows that (f, [−•−],∧, ∂) is a DGA,
conjugate linearly isomorphic to DGA(h, J). The above construction could
be carried out similarly on a manifold with a complex structure.

2.2. DGA of a symplectic structure. Let k be a Lie algebra over R.
Suppose that ω is a symplectic form on k. Then the contraction with ω,
ω : k → k∗ is a real non-degenerate linear map. Define a bracket on k∗ by

(2.4) [α • β]ω := ω[ω−1α • ω−1β].

It is a tautology that (k∗, [− • −]ω) becomes a Lie algebra, with the map ω
understood as a Lie algebra homomorphism.

In addition, the exterior algebra of the dual h∗ with the C–E differen-
tial d for the Lie algebra k is a differential graded Lie algebra. In fact,
(∧•k∗, [−•−]ω,∧, d) is a DGA over R. After complexification we denote this
by DGA(k, ω).

2.3. Quasi-isomorphisms and isomorphisms.

Definition 2.1 [25]. The Lie algebra h with an integrable complex structure
J and the Lie algebra k with a symplectic structure ω form a weak mirror
pair if the DGAs DGA(h, J) and DGA(k, ω) are quasi-isomorphic.

Suppose that φ : DGA(k, ω) → DGA(h, J) is a quasi-isomorphism. Since
the concerned DGAs are exterior algebras generated by finite-dimensional
Lie algebras, it is natural to examine the property of the Lie algebra homo-
morphism on the spaces of degree-one elements.

(2.5) φ : k
∗
C → f

1 = h
(1,0) ⊕ h

∗(0,1).

In particular, if the restriction of φ to k∗
C is an isomorphism, it induces an

isomorphism from DGA(h, J) to DGA(k, ω). It turns out that for a special
class of algebras, this is the only situation when quasi-isomorphism occurs.
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Proposition 2.2 [14]. Suppose that h and k are finite-dimensional nilpotent
Lie algebras of the same dimension, J is an integrable complex structure on
h and ω is a symplectic form on k. Then a homomorphism φ from DGA(h, J)
to DGA(k, ω) is a quasi-isomorphism if and only if it is an isomorphism.

This proposition provides a large class of Lie algebras to work on. So in
this paper we focus our attention on a restricted type of weak mirror pairs.
Namely, we seek a pair such that the map φ in (2.5) is an isomorphism on
the degree-one level. Since the Lie algebra k∗ is tautologically isomorphic to
k via ω, we concern ourselves with the non-degeneracy of the map

(2.6) φ ◦ ω : kC → k
∗
C → f

1 = h
(1,0) ⊕ h

∗(0,1).

When this is an isomorphism one immediately obtains conditions on the
structure of k. The reason for this is that with respect to the Schouten
bracket, h(1,0) is a subalgebra of f1 and h∗(0,1) is an abelian ideal. In addition,
dim h(1,0) = dim h∗(0,1). In other words, f1 and k are semi-direct products of
a very particular form.

2.4. Semi-direct products. Let g be a Lie algebra, V a vector space and
let ρ : g → End(V ) be a representation. On the vector space g ⊕ V , define

(2.7) [x + u, y + v]ρ := [x, y] + ρ(x)v − ρ(y)u,

where x, y are in g and u, v are in V . Then this determines a Lie bracket
on g ⊕ V . This structure is a particular case of a semi-direct product. As a
Lie algebra it is denoted by h = h(g, ρ) = g �ρ V . By construction, V is an
abelian ideal and g is a complementary subalgebra.

Conversely, suppose V is an abelian ideal of a Lie algebra h and g a
complementary subalgebra. The adjoint action of g on V then gives ρ : g →
End(V ).

In this paper, we are solely interested in the situation when dim g =
dim V . In particular, when the vector space V is regarded as the underlying
space of the real algebra g or its dual g∗, interesting geometry and other
phenomena arise through the representations of g as described next.

3. Geometry on semi-direct products

Through left translations, there is an one-to-one correspondence between
left invariant connections ∇ and linear maps γ : g → End(g). At the identity
of the Lie group, ∇xy = γ(x)y. The torsion T γ(x, y) of the corresponding
∇ is [x, y] − γ(x)y + γ(y)x, and its curvature Rγ is given by γ([x, y]) −
γ(x)γ(y)+γ(y)γ(x). Since all connections considered here are left-invariant,
linear maps γ : g → End(g) are referred to as connections on g and say that
γ is flat if Rγ = 0 and torsion-free if T γ = 0.
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3.1. Totally real semi-direct products. A complex structure on a real
vector space W is an endomorphism J such that J2 = −1. If V is a subspace
of W such that V ⊕JV = W , we say that J is totally real with respect to V .
Given a totally real J any w in W may be written uniquely as w = x + Jy
for x, y in V . So W ∼= V ⊕V and J may be viewed as the standard complex
structure J0 on V ⊕ V given by (x, y) 	→ (−y, x).

If g = (W, [·, ·]) is a Lie algebra we say that J is integrable if the Nijenhuis
tensor

NJ(x, y) := [x, y] − [Jx, Jy] + J([x, Jy] + [Jx, y])
is zero for all x and y in W . If J is totally real with respect to V then J is
integrable if and only if NJ(x, y) = 0 for all x, y ∈ V . This follows by the
identity NJ(x, y) = JNJ(x, Jy) valid for all x, y ∈ W .

Definition 3.1. Suppose that h(g, ρ) = g �ρ V is a semi-direct product Lie
algebra. A complex structure on g �ρ V is totally real if Jg = V .

Since V is an abelian ideal, [Jx, Jy] = 0 for all x, y in g and so the
Nijenhuis tensor vanishes precisely when

(3.8) [x, y] + Jρ(x)Jy − Jρ(y)Jx = 0.

for all x, y ∈ g. This has the significance that

(3.9) γ(x)y := −Jρ(x)Jy

defines a torsion-free flat connection on g.
On the other hand, take a torsion-free flat connection γ on g. The totally

real complex structure J on h := g�γ g defined by J(x, y) = (−y, x) becomes
integrable with respect to [·, ·]γ . In summary, we have an observation which
is at least implicitly contained in [1].

Proposition 3.2. There is a one-to-one correspondence between torsion-
free flat connections on g and totally real integrable complex structures on
semi-direct products g �ρ V .

3.2. Lagrangian semi-direct products. Let ω be a two-form on an even-
dimensional vector space W , i.e., ω ∈ Λ2W ∗. As a linear map ω : W → W ∗,
ω∗ = −ω. Then ω is non-degenerate if ω : W → W ∗ is invertible.

A subspace V of W is Lagrangian if ω(V ) = Ann(V ). A splitting W =
V ⊕ V ′ of a vector space W into a direct sum is called Lagrangian with
respect to ω if both V and V ′ are Lagrangian with respect to ω.

Let V be a vector space. Then V ⊕ V ∗ carries a two-form ω given by
the canonical pairing ω(x, α) = α(x) for α ∈ V ∗ and x ∈ V . The given
splitting is Lagrangian. It serves as the standard model for any Lagrangian
splitting. Explicitly, if W = V ⊕ V ′ and x ∈ V , x′ ∈ V ′, then the map
f(x + x′) := x + ω(x′) is an isomorphism from W to V ⊕ V ∗, intertwining
the non-degenerate 2-forms.



WEAK MIRROR SYMMETRY OF LIE ALGEBRAS 43

Suppose that g = (W, [·, ·]) is a Lie algebra. Then the derivative of a two-
form ω with respect to the C–E differential of ω is closed if and only if for
all x, y,

(3.10) ω([x, y]) = ad∗(x)(ω(y)) − ad∗(y)(ω(x))

where (ad∗(x)α)(y) = −α([x, y]). If ω is also non-degenerate, ω is a sym-
plectic form.

Definition 3.3. Suppose that h = g�ρ V is a semi-direct product. It is said
to be Lagrangian with respect to a symplectic form ω if the subalgebra g

and the abelian ideal V are both Lagrangian.

When g �ρ V is Lagrangian, then ω(V ) ∼= g∗, and ω(g) ∼= V ∗. Define

(3.11) ρ∗ : g → End(V ∗) by (ρ∗(x)α)(u) = −α(ρ(x)u).

Then (ρ∗(x)ω(y))(u) = −ω(y, ρ(x)u) = (ad∗
ρ(x)ω(y))(u). Comparing to

equation (3.10) it is now clear that ω is closed if and only if

(3.12) ω([x, y]) = ρ∗(x)(ω(y)) − ρ∗(y)(ω(x))

for all x, y ∈ g. It follows that γ(x)y := ω−1(ρ∗(x)ω(y)) defines a torsion-free
flat connection on g.

Conversely, take a torsion-free flat connection γ on g. Let ω be the stan-
dard skew pairing on g⊕g∗: ω(x+u, y+v) = u(y)−v(x). Define the bracket
on g⊕ g∗ as the semi-direct product by representation γ∗. Then dω = 0 and
the semi-direct product is Lagrangian with respect to ω. This gives us the
following result.

Proposition 3.4 [10]. There is a one-to-one correspondence between
torsion-free flat connections ρ on Lie algebras g and Lagrangian semi-direct
products g �ρ V .

3.3. From complex structure to two-form, and back. Propositions 3.2
and 3.4 yield a one-to-one correspondence between certain integrable com-
plex structures and certain symplectic forms via torsion-free flat connections.
It is now easy to construct a direct relation between two-form and complex
structures.

Suppose W = V ⊕ JV . On W∨ := V ⊕ (JV )∗, define

(3.13) ωJ(x + u, y + v) := v(Jx) − u(Jy),

where x, y are in V and u, v are in (JV )∗. Then ωJ is non-degenerate on
W∨ with both V and (JV )∗ being Lagrangian.

Conversely suppose ω is a non-degenerate 2-form on W = V ⊕ V ′ with
both V and V ′ being Lagrangian. Write V ′ = ω−1(V ∗) and set

(3.14) Jω(x + u) = −ω−1(u) + ω(x)

for all x+u in V ⊕V ∗. Clearly, both V and V ∗ are totally real with respect
to Jω. Therefore, we have the following.
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Lemma 3.5. There is a one-to-one correspondence between totally real inte-
grable complex structure J on a semi-direct product h = g �ρ V and sym-
plectic structure Jω on the semi-direct product h∨ = g �ρ∗ V ∗. The corre-
spondence is given by (3.13) and (3.14).
3.4. Special Lagrangian structures. A non-degenerate two-form ω and
a complex structure J on a vector space W are said to be compatible if
ω(Jξ, Jη) = ω(ξ, η) for all ξ, η in W . In such case g(ξ, η) := ω(ξ, Jη) is a
non-degenerate symmetric bilinear form on W , the induced metric for which
J is an orthogonal transformation.

Suppose that ω and J are compatible and a vector subspace V is totally
real with respect J . Then V is isotropic with respect to ω if and only if JV
is isotropic, and the splitting W = V ⊕ JV is orthogonal with respect to
the induced metric. Conversely, let J be a complex structure on W and V
a totally real subspace. Any inner product g on V could be extended to W
by declaring g(Jx, Jy) = g(x, y) for x, y ∈ V and g(x, Jy) = 0. Then ω and
J are compatible.

Suppose that W is a Lie algebra h = (W, [·, ·]), and ω is a symplectic form
and J is an integrable complex structure. If ω and J are compatible, the
pair is called a pseudo-Kähler structure.

Definition 3.6. Let h be a semi-direct product h = g �ρ V Lie algebra.
Let (ω, J) be a pseudo-Kähler structure on h. Then h is said to be special
Lagrangian if g and V are totally real with respect to J and Lagrangian
with respect to ω. We then also call (ω, J) a special Lagrangian structure
on the semi-direct product h.

Proposition 3.7. If (ω, J) is a special Lagrangian structure on a semi-
direct product h = g�ρ V , then (ωJ , Jω) is a special Lagrangian structure on
the dual semi-direct product h∨ = g �ρ∗ V .

Proof. In view of Lemma 3.5, the only issue is to verify that for any
x+ u, y + v in g ⊕ V ∗, ωJ(Jω(x+ u), Jω(y + v)) = ωJ(x+ u, y + v). Given
the compatibility of ω and J , the proof is simply a matter of definitions as
given in (3.13) and (3.14). �

Other than allowing the metric being pseudo-Kähler, Definition 3.6 above
is an invariant version of the usual definition of special Lagrangian structures
found in literature on mirror symmetry if we extend the metric g and the
complex structure J to be left-invariant tensors on the simply connected
Lie groups of h and g (see, e.g., [22]). To illustrate this point, note that
if {e1, . . . , en} is an orthonormal basis of g with respect to the pseudo-
Riemannian metric g, set uj = ej + iJej . Then {u1, . . . , un} is a Hermitian
basis of h. Then the Kähler form ω is

ω = i

n∑

j=1

uj ∧ uj = i
∑

j

(ej + iJej) ∧ (ej − iJej).
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The complex volume form is

Φ = u1 ∧ · · · ∧ un = (e1 + iJe1) ∧ · · · ∧ (en + iJen)

= e1 ∧ · · · ∧ en + inJe1 ∧ · · · ∧ Jen

+ terms mixed with both ej and Jek.

When n is odd the real part of Φ restricts to zero on V and the imaginary
part restricts to a real volume form. Therefore, the fibers of the quotient
map from the Lie group H onto G are special Lagrangian submanifolds.

3.5. Flat connections and special Lagrangian structures. Suppose
(ω, J) is a special Lagrangian structure on h = g�ρV and let g be the induced
metric. Define γ(x) := −Jρ(x)J . Then γ is a torsion-free flat connection on
g. Let γt be the transpose of γ with respect to g. i.e., g(γt(x), y) := g(x, γ(y)).
Since ω is closed and γ is flat, −γt is also a torsion-free flat connection.

On the other hand, suppose that g is equipped with a non-degenerate
bilinear form g. Let γ be a torsion-free flat connection such that γ′ := −γt is
also a torsion-free flat connection. Then, as above the complex structure on
h := g �γ g given by J(x, y) = (−y, x) is integrable. We write x+Jy, x, y ∈
g for the elements in h. Define ω on h by ω(x, y) = ω(Jx, Jy) = 0 and
ω(x, Jy) = g(x, y) = −ω(y, Jx) and set g(Jx, Jy) = g(x, y). Then dω = 0
by virtue of γ′ being flat and torsion-free.

Note that we may equally well choose to work with the integrable complex
structure J ′(x, y) = (−y, x) on h := g �γ′ g and the associated symplectic
form ω′. This is of course precisely the “mirror image” of (h, J, ω). This all
amounts to the next observation.

Proposition 3.8. Let g be a Lie algebra with a non-degenerate bilinear form
g. Then there is a two-to-one correspondence between special Lagrangian
structures on a semi-direct product extending the Lie algebra g and torsion-
free flat connections γ on g such that the dual connection −γt is also torsion-
free and flat.

3.6. Canonical isomorphism of DGAs. Let γ be a torsion-free flat con-
nection on a Lie algebra g. Write V for the associated representation of g on
itself and consider the usual integrable complex structure J on h = g �γ V .
Then f1(h, J) = h(1,0) ⊕ h∗(0,1). Note that J acts on V ∗ by (Jv∗)(x+ u) =
−v∗(Jx+ Ju) = −v∗(Jx). In particular, Jv∗ ∈ Ann(V ) ⊂ h∗.

Now set h∨ := g �γ∗ V ∗ and define φ : h∨
C → f1(h, J) as the tautological

map:
φ(x + v∗) := (1 − iJ)x + (1 − iJ)v∗.

Recall that the restriction of the Schouten bracket on the space f1(h, J)
is a Lie bracket. It is a matter of tracing various definitions to verify the
following.
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Lemma 3.9. The map φ : h∨
C → f1(h, J) is an isomorphism of Lie algebras.

Since the complex structure J on h induces a symplectic structure ωJ

on h∨, the contraction map ωJ : h∨ → (h∨)∗ carries the Lie bracket on
h∨ to a Lie bracket [− • −]ωJ on (h∨)∗. Therefore, φ ◦ ω−1

J is a Lie algebra
isomorphism from (h∨)∗

C
to f1. It induces an isomorphism from the under-

lying Gerstenhaber algebra of DGA(h∨, ωJ) to that of DGA(h, J). Next we
demonstrate that this map is also an isomorphism of differential graded
algebra. i.e.,

(3.15) φ ◦ ω−1 ◦ d = ∂̄ ◦ φ ◦ ω−1.

As φ∗ : (f1)∗ → (h∨
C
)∗, the conjugated map is φ̄∗ : (f̄1)∗ → (h∨

C
)∗. In

the next calculation we implicitly identify the isomorphic Lie algebras (f1)∗

with f̄1 and h∨
C with its conjugate h∨

C. Hence φ̄∗ is identified with the map
φ̄∗ : f1 → (h∨

C
)∗. Then φ̄∗φ is a map from h∨

C to (h∨
C
)∗. According to [14,

Proposition 11], the map φ ◦ ω−1
J yields an isomorphism of differential graded

algebra as in (3.15) if, up to a constant, φ̄∗φ is equal to the contract of ωJ .
Therefore, we have the following computation.

(φ̄∗φ)(x + u∗)(y + v∗)

= (φ̄∗)((1 − iJ)x + (1 − iJ)u∗)(y + v∗)

= ((1 + iJ)x + (1 + iJ)u∗)((1 − iJ)y + (1 − iJ)v∗))

= 2i(u∗(Jy) − v∗(Jx)) = 2iωJ(x + u∗, y + v∗).

This shows that the isomorphism φ defines a DGA structure on the de Rham
complex of h∨

C isomorphic to the one defined by ωJ , since the brackets differ
only by multiplication by a constant. In particular, we have

Theorem 3.10. DGA(h, J) and DGA(h∨, ωJ) are isomorphic.

A similar construction shows that for a Lagrangian symplectic form ω on
h = g�ρ V the associated differential Gerstenhaber algebras DGA(h, ω) and
DGA(h∨, Jω) are isomorphic.

4. Nilpotent algebras of dimension at most six.

In this section, we tackle two problems when the algebra h is six-dimensional
and nilpotent.



WEAK MIRROR SYMMETRY OF LIE ALGEBRAS 47

Problem 1. Let h be a nilpotent algebra. Suppose that it is a semi-direct
product h = g � V and totally real with respect to a complex structure J .
Identify the corresponding algebra h∨ = g�V ∗ and the associated symplectic
structure ωJ .

The next problem raises a more restrictive issue.

Problem 2. Let h be a nilpotent algebra. Suppose that it is a semi-direct
product h = g � V and it is special Lagrangian with respect to a pseudo-
Kähler structure (J, ω). Identify the corresponding algebra h∨ = g � V ∗ and
the associated pseudo-Kähler structure (J∨, ω∨).

We shall exclude the trivial algebra in subsequent computation, although
we may include it for the completeness of a statement in a theorem. The
first even dimension in which a non-abelian nilpotent algebra occurs is four.

There are two four-dimensional non-trivial nilpotent algebras [18]. Only
one of them is a semi-direct product, namely the direct sum of a trivial
algebra with a three-dimensional Heisenberg algebra. It happens to be the
only one admitting integrable invariant complex structures [28, Proposition
2.3]. Up to equivalence, there exists a basis {e1, e2, e3, e4} on the algebra h

such that the structure equation is simply [e1, e2] = −e3. The corresponding
complex structure is determined by J(e1) = e2, J(e3) = e4 etc. A symplectic
form is ω = e1 ∧ e4 + e3 ∧ e2. Consider the subspaces g := 〈e2, e4〉 and
V := 〈e1, e3〉. They determine a semi-direct product h = g �ad V . It is
apparent that this semi-direct product is special Lagrangian, the pair (ω, J)
above. One may now work through our theory to demonstrate that the
mirror image of (h, J, ω) is isomorphic to (h, J, ω) itself. More details could
be found in [26].

4.1. Weak mirror pairs. In our calculation below, we assume that the
algebra h is six dimensional. We often express the structure equation on
h = g �ad V in terms of the C–E differential on the dual basis {e1, . . . , e6}.
In particular we collect (de1, . . . , de6) in an array. We shall also adopt the
shorthand notation that when de1 = ei ∧ ej + eα ∧ eβ, then the first entry
in this array is ij + αβ [28]. To name six-dimensional algebras, we use the
convention developed in [16].

Since the adjoint action of the nilpotent Lie algebra g on the abelian ideal
V is a nilpotent representation, by the Engel Theorem there exists a basis
{e2, e4, e6} of V such that the matrix of any adx, x ∈ g, is strictly lower
triangular.

4.1.1. Assume that g is abelian. There exists a basis {e1, e3, e5} of g

such that with respect to the ordered basis {e2, e4, e6} for V , the adjoint
representation of g on V is given as below

ρ(e1) = −
(

0 0 0
a 0 0
c b 0

)
, ρ(e3) = −

(
0 0 0
0 0 0
d e 0

)
, ρ(e5) = −

( 0 0 0
0 0 0
f 0 0

)
.
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Up to equivalence, we have the following

(4.16) h3 : ρ(e1) = −
(

0 0 0
0 0 0
0 1 0

)
, ρ(e3) = −

(
0 0 0
0 0 0
1 0 0

)
, ρ(e5) = 0.

(4.17) h8 : ρ(e1) = 0, ρ(e3) = −
(

0 0 0
0 0 0
1 0 0

)
, ρ(e5) = 0.

h9 : ρ(e1) = −
(

0 0 0
1 0 0
0 1 0

)
, ρ(e3) = −

(
0 0 0
0 0 0
1 0 0

)
, ρ(e5) = 0.

In addition, h6 is given by b = c = e = f = 0 and a = d = 1. h17 is given by
a = b = 1, c = 0 and ρ(e3) = ρ(e5) = 0.

By taking the dual representation, we find

h
∨
3 = h6, h

∨
6 = h3, h

∨
8 = h8, h

∨
9 = h9, h

∨
17 = h17.

However, h3 does not admit any invariant symplectic form [18], therefore
by the mirror construction, the semi-direct structure on h6 with an abelian
base is not totally real with any invariant complex structure. On the other
hand, h17 does not admit any invariant complex structure [28]. Therefore,
if we assume that the semi-direct product on hn has an invariant complex
structure, we are left with three cases: h∨

3 = h6, h∨
8 = h8 and h∨

9 = h9.

4.1.2. Assume that g is non-abelian. In this case, g is a three-
dimensional Heisenberg algebra. Thus there exists a basis {e1, e3, e5} of g

such that [e1, e3] = −e5, and a basis {e2, e4, e6} of V such that the adjoint
representation of g on V is as follows.

ρ(e1) = −
(

0 0 0
a 0 0
c b 0

)
, ρ(e3) = −

( 0 0 0
d 0 0
f e 0

)
, ρ(e5) = −

( 0 0 0
0 0 0

bd−ae 0 0

)
.

If d �= 0, by choosing {ae3 − de1, e3}, we have a new set of {e1, e3, e5} such
that d = 0. If a �= 0, we may consider the new basis {e1, e3 − d

ae1, e5} for g

and {e2, ae4 + ce6, e6} for V and assume a = 1, d = 0 and c = 0. Then

h = (0, 0, 0, 12, 13, b14 − f23 + e34 + e25).

If e = 0, it is further reduced to h = (0, 0, 0, a12, 13, b14−f23). The following
becomes easy to verify.

h6 : ρ(e1) = −
(

0 0 0
1 0 0
0 0 0

)
, ρ(e3) = 0, ρ(e5) = 0,(4.18)

h7 : ρ(e1) = −
(

0 0 0
1 0 0
0 0 0

)
, ρ(e3) = −

(
0 0 0
0 0 0
1 0 0

)
, ρ(e5) = 0,

h10 : ρ(e1) = −
(

0 0 0
1 0 0
0 1 0

)
, ρ(e3) = 0, ρ(e5) = 0,

h11 : ρ(e1) = −
(

0 0 0
1 0 0
0 1 0

)
ρ(e3) = −

(
0 0 0
0 0 0
1 0 0

)
ρ(e5) = 0.
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If e �= 0, consider the new basis

{
1, . . . , 
6} = {e2e1 − bee3 − bfe5, e2, ee3 + fe5, e
2e4, e

3e5, e
4e6}.

Then the structure equations become (0, 0, 0, 12, 13, 34 + 25). Taking the new
dual basis {e2 − e3, e1, e2 + e3,−e4 + e5, e4 + e5, 2e6}, we find this algebra
isomorphic to h19+. Note that the algebras h19+ and h19− over complex
number.

The last cases are due to a = d = 0. If it is not already equivalent to a
previous case, they are equivalent to one of the following:

h4 : ρ(e1) = −
(

0 0 0
0 0 0
0 1 0

)
, ρ(e3) = −

(
0 0 0
0 0 0
1 0 0

)
, ρ(e5) = 0,

(4.19) h8 : ρ(e1) = 0, ρ(e3) = 0, ρ(e5) = 0.

We could exclude h19+ and h19− for further analysis because they do not
admit any invariant complex structure [28]. When h8 is given in (4.19), the
integrability of a compatible integrable complex structure as given in (3.8)
implies that the algebra g is abelian. This contradiction implies that when h8
admits a semi-direct product structure with a compatible complex structure,
then it is the semi-direct product of an abelian subalgebra and an abelian
ideal, as given in (4.17).

Except for existence, we obtain an answer to Problem 1.

Theorem 4.1. Suppose that h is a six-dimensional nilpotent Lie algebra with
an invariant complex structure J , given as a totally real semi-direct product
g�ρV . Then it is one of the algebras given in the first row of the table below.
Its mirror image is a Lagrangian semi-direct product h∨ = g �ρ V ∗ given in
the corresponding column in the table.

(h, J) h1 h3 h8 h9 h4 h6 h7 h10 h11
(h∨, ωJ) h1 h6 h8 h9 h7 h6 h4 h10 h11

In this table, the first four cases are semi-direct products of an abelian ideal
with an abelian sub-algebra. The next five cases are semi-direct products of
an abelian ideal with the three-dimensional Heisenberg algebra.

We postpone establishing the existence of totally real complex structure
J for the semi-direct product algebras in Theorem 4.1 until a proof of The-
orem 4.3 is completed. In our proof of Theorem 4.3, we shall only use the
“necessity” part of Theorem 4.1. i.e., if a totally real semi-direct structure
exists, it has to be one of those given in the table above.
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4.2. Special Lagrangian pairs. Next among the algebras appearing in
Theorem 4.1, we study the existence and mirror images of special Lagrangian
structures. Since h3 does not admit invariant symplectic structure, the pair
(h3, h6) is excluded.

All other cases require further analysis. We begin with the pair (h6, h6).
The structure equations for h6 as given in (4.18) are de4 = e12 and de5 = e13.
If the semi-direct product is totally real with respect to an invariant complex
structure J , then there exists real numbers aij such that Je2i−1 =

∑
j aije2j

for 1 ≤ i, j ≤ 3. The constraints for J to be integrable are a31 = 0, a32 = a21
and a33 = 0. Therefore,

(4.20) Je5 = a32e4 or a32Je4 = −e5.

In particular, a21 = a32 �= 0.
Let ω be a symplectic structure on h6 such that g and V are both

Lagrangian. If bij := ω(ei, ej), then by using that ω is closed we obtain
that b54 = b56 = 0 (recall that e5 ∈ [h6, h6] and e4, e6 belong to the cen-
ter) and b52 = b43. Let us now assume that ω and J are compatible. Then
ω(Je4, Je3) = ω(e4, e3). It is equivalent to ω(a32Je3, Je3) = a32b43. By
(4.20),

a32b43 = −ω(e5, Je3) = −ω(e5, a21e2 + a22e4 + a23e6)
= −a21b52 = −a21b43 = −a32b43.

Since a32 �= 0, it is possible only when b43 = 0. As b52 = b43 = 0 and
b54 = b56 = 0, ω would have been degenerate. It shows that h6 does not admit
any special Lagrangian structure with respect to any semi-direct product
decomposition.

Since the algebra h8 is simply the direct sum of a three-dimensional
Heisenberg algebra and a trivial algebra, special Lagrangian structures exist
in abundance. For example, the structure equation for h8 is given in (4.17).
i.e., de6 = e3 ∧ e2. Define J and ω by

Je3 = e2, Je6 = e1, Je4 = e5, ω = e36 + e21 + e45.

Then the semi-direct product structure of h8 in (4.17) is special Lagrangian
with respect to this pair of J and ω.

Finally, we establish the existence of special Lagrangian structures on the
algebras h4, h7, h9, h10 and h11. As it turns out, they could be considered
as a family of special Lagrangian structures with “jumping” algebraic Lie
structures, and hence jumping complex and symplectic structures.
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We fix a basis {e1, e2, e3, e4, e5, e6} of a real vector space h and consider
also fixed structures J and ω defined by

(4.21) Je2j−1 = e2j , Je2j = −e2j−1, ω = e16 − e25 + e34.

The 2-form ω is type (1,1) with respect to J , and the non-degenerate
symmetric bilinear form g(−,−) := ω(−, J−) has signature (4, 2). If g =
〈e1, e3, e5〉 and V = 〈e2, e4, e6〉 then g and V are totally real with respect to
J and maximally isotropic with respect to ω.

Let (a, b, c, d) be real numbers. For each member of the family of Lie
brackets

(0, 0, 0, a12, b13, c14 + d23),

the corresponding Lie algebra h is the semi-direct product h = g�V , and the
ideal V is abelian. The constraint on ha,b so that ω is closed is equivalent to
a+ b+ d = 0. To find the constraints on ha,b so that J is integral, we choose
a basis for the (1, 0)-forms with ωj = e2j−1 + ie2j , 1 ≤ j ≤ 3. As dω1 = 0
and dω2 is type (1, 1), the sole constraint is due to ω1 ∧ω2 ∧ dω3 = 0. Given
the structure equations, the integrability of J is equivalent to b − c − d = 0.
It then follows that for any a, b ∈ R,

(4.22)
(
ha,b = (0, 0, 0, a12, b13, (a + 2b)14 − (a + b)23), J, ω

)
,

is a family of special Lagrangian pseudo-Kähler structures on nilpotent Lie
algebras. Since a non-zero scalar multiple of a Lie bracket gives rise to just
a homothetic change in the metric, we will restrict ourselves to the curve
{ha,b : a2 + b2 = 1, b ≥ 0}. The following isomorphisms can be checked by
using the new basis on the right:

h±1,0 � h9, {e2, e1, e5, e3,−e4,−e6};
h0,1 � h4, {e1, e3, e2,

1
2e4, e5, e6};

h− 1√
2
, 1√

2
� h10, {e1, e2, e3,− 1√

2
e4,

1√
2
e5,− 1√

2
e6};

h− 2√
5
, 1√

5
� h7, {e1, e2, e3,− 2√

5
e4,

1√
5
e5,

1√
5
e6};

ha,b � h11 if a, b, a + 2b, a + b �= 0, {re1,
1
re2,

1
re3, ae4, be5, ra(a + 2b)e6},

where r = −
(

a+b
a(a+2b)

)1/3
.

Isomorphism classes of such structures translate themselves in this context
as the orbits of the natural action of the group

U(2, 1) = {ϕ ∈ GL6(R) : ϕJϕ−1 = J, ω(ϕ·, ϕ·) = ω},
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on the space of Lie brackets [24]. Let ha,b, ha′,b′ be two points in the curve
isomorphic as Lie algebras to h11, and assume there exists ϕ ∈ U(2, 1) such
that

ϕ.[·, ·]a,b := ϕ[ϕ−1·, ϕ−1·]a,b = [·, ·]a′,b′ .

By using that ϕ must leave invariant the center z = 〈e5, e6〉R, the derived
subalgebra [h, h] = 〈e4, e5, e6〉R, the subalgebras [h, [h, h]] = 〈e6〉R and {x ∈
h : [x, h] ⊂ z} = 〈e3, e4〉R, as well as their orthogonal complements relative
to both ω and the metric g = ω(·, J ·), one can easily show that the matrix
of ϕ with respect to the basis {e1, e2, ..., e6} is necessarily diagonal, and so it
is a diagonal matrix with entries s, s,±1, ±1, 1/s, 1/s with s �= 0. It follows
that a′ = ± 1

s2 a, b′ = ± 1
s2 b and hence (a′, b′) = ±(a, b).

We summarize the results obtained above in the following proposition.

Proposition 4.2. With complex structure J and symplectic structure ω
given in (4.21), with t ∈ [0, π] the function

(
(0, 0, 0, (cos t)12, (sin t)13, (cos t + 2 sin t)14 − (cos t + sin t)23), J, ω

)

determines a closed curve in the moduli space of isomorphism classes of
special Lagrangian pseudo-Kähler structures on the space of six-dimensional
nilpotent Lie algebras. It contains exactly one structure on each one of h4
(t = π/2), h7 (t = arctan (−1

2)), h9 (t = 0, π), h10 (t = 3π/4), and the
remaining is a continuous family on h11.

As a consequence of Theorem 4.1, the non-existence on special Lagrangian
semi-direct product structures on h3 and h6, and the existence for the other
algebras, we obtain a complete answer to Problem 2.

Theorem 4.3. Suppose that a six-dimensional nilpotent algebra admits a
special Lagrangian semi-direct product structure, then the algebra is iso-
morphic to one of the following: h1, h4, h7, h8, h9, h10, h11. Their weak mirror
images are, respectively, given below:

(h, J, ω) h1 h4 h7 h8 h9 h10 h11
(h∨, ωJ , Jω) h1 h7 h4 h8 h9 h10 h11

In addition,

• All special Lagrangian semi-direct product structure (J, ω) on h1, h8,
h9 and h10 are self-mirror. It means that there is an isomorphism
h�

∼= h∨
� and there are quasi-isomorphisms.

DGA(h∨
� , ωJ) ≈ DGA(h�, ω) ≈ DGA(h∨

� , Jω) ≈ DGA(h�, J).

• The algebras h7 and h4 form a mirror pair of special Lagrangian semi-
direct products.
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• The mirror of a special Lagrangian semi-direct structure on h11 is
again a special Lagrangian semi-direct structure on h11, but the two
pseudo-Kähler structures are not equivalent.

Proof. The isomorphisms between DGA(h, J) and DGA(h∨, ωJ) are given
by Theorem 3.10 and the identification of algebraic mirrors h∨ as given in
Theorem 4.1. The validity of the claim on h11 is due to an analysis in [14,
Section 5.5]. �

4.3. Completing a proof for Theorem 4.1. We need to establish the
existence of totally real semi-direct product structures on each algebra in
the table of Theorem 4.1. Except for h3 and h6, in the last paragraph we
have established the existence of special Lagrangian structures, including a
totally real complex structure.

Our analysis on h6 in Section 4.2 has already indicated the constrains on
a totally real complex structure on the semi-direct product given in (4.18).
For instance, one could choose

Je1 = e2, Je3 = e6, Je5 = e4.

The semi-direct product structure on the algebra h3 is given in (4.16). Its
structure question is de6 = e14 + e32. Up to equivalence, this algebra has a
unique invariant complex structure [28, Proposition 3.4]. In our basis, it is

Je1 = e4, Je3 = e2, Je5 = e6.

It is totally real with respect to the semi-direct structure in (4.16).
Thus, we establish the existence of totally real semi-direct structures on

each algebra given in the table of Theorem 4.1.
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