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LENGTH MINIMIZING PATHS IN THE HAMILTONIAN
DIFFEOMORPHISM GROUP

Peter W. Spaeth

On any closed symplectic manifold, we construct a path-connected
neighborhood of the identity in the Hamiltonian diffeomorphism group
with the property that each Hamiltonian diffeomorphism in this neigh-
borhood admits a Hofer and spectral length minimizing path to the
identity. This neighborhood is open in the C 1-topology. The construc-
tion utilizes a continuation argument and chain level result in the Floer
theory of Lagrangian intersections.

1. Introduction

First, we prove a chain level result in the Floer theory of Lagrangian inter-
sections, Theorem A, that relates the local Floer cap product to the so-called
thin part of the Floer cap product. The proof relies upon Chekanov’s ver-
sion [2] of the Floer continuation argument and a generalized definition of
chain homotopy, called a λ-homotopy. Together with an algebraic result,
Proposition 2.3, this provides the existence of a certain pseudo-holomorphic
curve with prescribed asymptotics, see Proposition 4.2. The existence of
this curve yields numerical identities among certain non-degenerate Hamil-
tonian diffeomorphisms, see Theorem B. Consequently, we achieve the
main goal of the article, namely that the Hamiltonian group of any closed
symplectic manifold exhibits a local flatness property under the Hofer and
spectral norms, see Corollary C and Corollary D. Under the Hofer norm,
Bialy and Polterovich [1] observe this for a neighborhood of the identity of
C1-small Hamiltonians in the group of compactly supported Hamiltonian
diffeomorphisms of R

2n. Lalonde and McDuff [10] and McDuff [12] also
obtain the C1-small flatness on an arbitrary symplectic manifold (M,ω)
under the Hofer norm. Recently, Oh [21] proves the C1-small flatness for
the Hofer and spectral norms.

The neighborhood of the identity we construct is likely larger than has
appeared in the literature. It consists of all engulfable Hamiltonians for
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which the oscillation of the generating function is smaller than half the
minimal energy of a non-constant pseudo-holomorphic sphere in M . This is
an open set in the C1-topology. Engulfability is defined in Definition 1.3.

1.1. Statement of Theorem A. Let (P, ω) be any tame symplectic man-
ifold (not necessarily closed). This means that there is an ω-tame almost
complex structure J0 on P such that the corresponding metric gJ0 has
bounded curvature and whose injectivity radius is bounded from zero from
below. Examples include all closed symplectic manifolds, the cotangent bun-
dle of any closed manifold with the canonical symplectic structure and R

2n

with its standard symplectic structure.
Let L be a connected, closed Lagrangian submanifold of P and fix a

Darboux–Weinstein neighborhood U of L. Denote by σ(L; P, ω) the minimal
area of any non-constant pseudo-holomorphic sphere or disk with boundary
on L in P. Let H : P ×[0, 1] → R be a smooth Hamiltonian function. Assume
that H is normalized, which means that for some compact set K ⊂ P ,

supp H(·, t) ⊂ K, for all t ∈ [0, 1].

In addition, assume that H is non-degenerate; that is

φ1
H(L) � L.

Here φ1
H denotes the time-one map of Hamilton’s equation

(1.1) ż = XH(z, t), z(0), z(1) ∈ L

where the Hamiltonian vector field XH is defined by the equation

XH� ω = dH.

Now suppose s ∈ R satisfies 0 < s � 1 and we now consider the Hamil-
tonian function s · H : P × [0, 1] → R. We recall the set-up to the Floer
theory HF (L, sH; Z2) beginning with the action functional. Fix a reference
path l0 on L. The action functional AsH is defined on the relative analog
of Hofer and Salamon’s [8] Novikov covering ˜Ω0(L, l0; P, ω) = ˜Ω0

π→ Ω0 over
the space Ω0 of smooth contractible paths beginning and ending on L

Ω0 = {l : [0, 1] −→ P | l(0), l(1) ∈ L, l homotopic rel L to l0}.

˜Ω0 consists of equivalence classes [l, l̃] where the map l̃ : [0, 1] × [0, 1] → P
provides the homotopy from l0 to l

l̃(0, t) = l0(t), l̃(1, t) = l(t), l̃(s, 0) ∈ L and l̃(s, 1) ∈ L.

Two pairs (l1, ˜l1) and (l2, ˜l2) are by definition equivalent if both l1 = l2 and

the connected sum along l, ˜l1#˜l2, with the reversed orientation on ˜l2 satisfies

μL(˜l1#˜l2) = 0 = Iω(˜l1#˜l2),
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where μL denotes the Maslov index and Iω the symplectic action
homomorphism on the relative homotopy group π2(P, L). The quotient
group

Γ =
π2(P, L)

ker μL ∩ ker Iω

acts on elements [l, l̃] ∈ ˜Ω by gluing a disk along the reference path l0.
Moreover Γ is a free abelian group.

The action functional is defined as follows

AsH([l, l̃]) = −
∫

[0,1]2
l̃∗ω −

∫ 1

0
H(l(t), t) dt.

Critical points [z, z̃] of the action functional consist of pairs

Crit(AsH) = {[z, z̃] ∈ ˜Ω0 | z satisfies (1.1)}.

Typically we will denote elements of the covering space [l, l̃] or [l, w] while
critical points will be denoted [z, z̃] or [z, w]. Denote CF∗(L, sH) the vector
space of Floer chains generated over Z2. The solutions to equation (1.1) are
in one to one correspondence with the points of intersection of L and φ1

sH(L).
Fix a time-dependent almost complex structure J = Jt on P . The relative

Floer differential is defined by counting finite energy solutions u : R×[0, 1] →
P to the equation

(1.2)

⎧

⎨

⎩

∂u

∂τ
+ J(u, t)

(

∂u

∂t
− XsH(u, t)

)

= 0

u(τ, 0), u(τ, 1) ∈ L

where the energy is defined to be

EJ(u) :=
∫ +∞

−∞

∣

∣

∣

∣

∂u

∂τ

∣

∣

∣

∣

2

dτ =
∫ +∞

−∞

∫ 1

0
ω

(

∂u

∂τ
, J

∂u

∂τ

)

dtdτ

with respect to the metric gJ = ω(·, J ·). The energy of a solution u to
equation (1.2) can also be written

1
2

∫ +∞

−∞

∣

∣

∣

∣

∂u

∂τ

∣

∣

∣

∣

2

+
∣

∣

∣

∣

∂u

∂t
− XH(u, t)

∣

∣

∣

∣

2

dτ.

For generic sH, the finite energy solutions of equation (1.2) converge expo-
nentially to solutions of equation (1.1) (see [24]). We denote the collection
of finite energy solutions

N (L, sH; J) = {u : R × [0, 1] → P | u satisfies (1.2) and EJ(u) < ∞}
and when asymptotic conditions are specified

lim
τ→−∞

u(τ, ·) = [x, x̃], lim
τ→+∞

u(τ, ·) = [y, ỹ] with x̃#u � ỹ,

we write N ([x, x̃], [y, ỹ];J).
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For a general Lagrangian submanifold L, the relative Floer differential
may be obstructed or not square to zero; however, when s is sufficiently small
and J is sufficiently close to an autonomous almost complex structure, the
solutions to equation (1.2) are either thin (written u ∈ N ◦) or thick (resp.
u ∈ N ′) (see also Proposition 3.1 below, Proposition 4.1 [13] and Lemma 6
[2]). The thin part of the Floer differential, ∂◦, is defined by counting the
thin solutions to equation (1.2). And in fact (again when s is sufficiently
small and J is close to an autonomous almost complex structure)

∂◦ ◦ ∂◦ = 0, H∗(∂◦) = HF ◦
∗ (L, sH; Z2) ∼= H∗(L; Z2),

see [2, Lemma 7] and [13, Theorem 4.7].
The Floer cap product is defined by counting solutions to equation (1.2)

passing through a marked point p ∈ L. The collection of these maps we
denote

N (L, sH; J ; p) = {u ∈ N (L, sH;J) | u(0, 0) = p ∈ L}.

Again there is a thick and thin decomposition and the thin Floer cap product
is defined by counting thin elements u ∈ N ◦(L, sH; J ; p). The thin part of
the Floer cap product, for generic p ∈ L, descends to an isomorphism on
HF ◦

∗ (L, sH; Z2), see [15, Lemma 7.4].
Next we could also define a local Floer cap product by counting those

curves u ∈ N (L, sH;J ; p) as above whose image lies in the Darboux neigh-
borhood U of L. These local curves we denote N U (L, sH; J, p). While we
do not know if this local Floer cap product is an isomorphism, it is related
to the thin cap action.

Indeed let

Φ+ : CF∗(L, sH; Z2) −→ CF∗(L, 1 · H; Z2)
Φ− : CF∗(L, 1 · H; Z2) −→ CF∗(L, sH; Z2)

be the usual continuation maps in the Floer theory defined by the Floer con-
tinuation equation (see Section 3). Recall that in [2], Chekanov proves that
if the Hofer length, ||H||, of H is less than σ(L;P, ω), then for s sufficiently
small and generic H, the identity map and the composition Φ− ◦ Φ+

id, Φ− ◦ Φ+ : CF∗(L, sH; Z2) −→ CF∗(L, sH; Z2)

are λ-homotopic, see Section 2 for a review of λ-homotopy.
This motivated us to prove that the maps [L]∩◦

s (·) and Φ−◦ [L]∩U (·)◦Φ+

[L] ∩◦
s (·),Φ− ◦

(

[L] ∩U (·)
)

◦ Φ+ : CFs(L, sH; Z2) → CFs(L, sH; Z2)

are λ-homotopic under a slightly stronger assumption on ||H||.

Theorem A. Suppose that the Hamiltonian diffeomorphism φ = φ1
H is

non-degenerate in the sense that φ1
H(L) meets L transversally, φ1

H(L) � L,
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and satisfies

(1.3) ||H|| <
σ(L;P, ω)

2
,

where ||H|| is Hofer’s length of H. For s sufficiently small, the thin Floer
cap product

[L] ∩◦
s (·) : CF∗(L, sH) −→ CF∗(L, sH)

is λ-homotopic to the composition

Φ− ◦ [L] ∩U (·) ◦ Φ+ : CF∗(L, sH) −→ CF∗(L, sH).

The proof of Theorem A is the subject of Section 3.

1.2. Theorem B and its consequences. Let (M,ω) be a closed sym-
plectic manifold of dimension 2n and H : M × [0, 1] → R be any smooth
Hamiltonian function. The Hamiltonian vector field XH generates a Hamil-
tonian flow φt

H ; that is,
d

dt
φt

H = XH ◦ φt
H , φ0

H = id.

We abbreviate this by writing H �→ φt
H or H �→ φ if we are interested in the

time-one map. Also we denote the isotopy t ∈ [0, 1] �→ φt
H by φH .

Given a second Hamiltonian function G : M × [0, 1] → R with G �→ ψt
G,

the chain rule
d

dt

(

φt
H ◦ ψt

G

)

= ˙(

φt
H

)

+ Tφt
H

˙(

ψt
H

)

implies that the Hamiltonian function

H#G(x, t) := H(x, t) + G((φt
H)−1(x), t)

generates the composed isotopy t �→ φt
H ◦ ψt

G and that the Hamiltonian
function

H(x, t) := −H(φt
Hx, t)

generates the inverse flow t �→ (φt
H)−1. In other words

(1.4)

{

H#G := H + G ◦
(

φt
H

)−1 �→ φt
H ◦ ψt

H

H = −H ◦ φt
H �→

(

φt
H

)−1
.

When the symplectic manifold is closed, a Hamiltonian function H : M ×
[0, 1] → R is normalized if its mean value is zero for each time t

∫

M
H(x, t)dμ(x) = 0 for all t ∈ [0, 1],

where dμ = ωn/n!. The Hofer length of a Hamiltonian isotopy φH , which
does not depend on the normalization, is the mean value (over time) of the
oscillation of the Hamiltonian function H

length(φt
H) = ||H|| =

∫ 1

0
oscx∈MH(x, t) dt,
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where for each t ∈ [0, 1]

oscx∈M (H(x, t)) = max
x∈M

H(x, t) − min
x∈M

H(x, t).

Then the Hofer norm of the Hamiltonian diffeomorphism φ is defined to be

||φ||Hofer = inf
H �→φ

||H||.

Theorem 1.1 (Hofer [7], Polterovich [23], Lalonde and McDuff [9]). The
function || · ||Hofer : Ham(M,ω) → R+ satisfies the following properties. Let
φ, ψ ∈ Ham(M,ω).

1) ||θ φ θ−1|| = ||φ|| for any θ ∈ Symp(M,ω) (symplectic invariance).
2) ||φ|| = ||φ−1|| (symmetry).
3) ||φ ψ|| ≤ ||φ|| + ||ψ|| (triangle inequality).
4) ||φ|| = 0 if and only if φ is the identity (non-degeneracy).

Hofer [7] proves that d(φ, ψ) = ||φ ◦ ψ−1||Hofer defines a bi-invariant non-
degenerate distance on the group of compactly supported Hamiltonian dif-
feomorphisms of R

2n with its standard symplectic structure using infinite
dimensional variational methods. Viterbo [29] later proves this result with
generating functions. Polterovich [23] further generalizes this result to all
tame, rational symplectic manifolds using pseudo-holomorphic curves and
finally Lalonde and McDuff [9] prove the non-degeneracy property, also via
pseudo-holomorphic curves, for any symplectic manifold. Chekanov [2] and
Oh [14] prove the non-degeneracy property for tame symplectic manifolds
via Floer-theoretical techniques.

The association from a Hamiltonian flow to normalized Hamiltonian func-
tion is injective. The normalization is important when studying the critical
values of the associated symplectic action functional. For instance the action
spectrum, Spec(H), i.e., the set of critical values of the action functional AH

depends only on the homotopy class [φ, H], see [20]. And in fact if (M,ω)
is symplectically aspherical, Schwarz [26] proves Spec(H) depends only on
the time-one map φ.

Now in order to review the spectral invariants (see [16] and [21] for a
precise treatment) assume temporarily that the Hamiltonian function H is
1-periodic in time, H : M × R/Z → R. Let Ω0(M) denote the space of
smooth contractible loops l : S1 → M and ˜Ω0(M) → Ω0(M) denote Hofer
and Salamon’s [8] covering space on which the symplectic action functional
is defined. In the closed string setting, ˜Ω0(M) consists of equivalence classes
of pairs (l, w), where w is a disk bounding l. Let w#w′ denote the sphere
obtained from gluing two disks w and w′ (with the opposite orientation)
along a common boundary. Two pairs (l, w) and (l′, w′) are said to be
Γ-equivalent if and only if

l = l′ and
∫

S2
(w#w′)∗ω = 0 =

∫

S2
(w#w′)∗c1(ω).
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The automorphism group of the covering ˜Ω0(M) → Ω0(M)

Γ =
π2(M)

ker ω ∩ ker c1(ω)
is called the Novikov covering group.

We define the action functional AH : ˜Ω0(M) → R by setting

AH([l, w]) = −
∫

D2
w∗ω −

∫ 1

0
H(l(t), t) = dt.

The assignment x ∈ M �→ φt
H(x) is a one to one correspondence between

the set of fixed points, Fix(φ), of φ and Per(XH), the set of 1-periodic orbits
of the Hamiltonian vector field, XH . A well-known calculation shows that
the set of cricital points Crit(AH) is given by

Crit(AH) = {[z, z̃] ∈ ˜Ω0(M) | z ∈ Per(XH)}.

Any constant loop x ∈ Per(XH) admits the canonical constant bounding
disk x̂.

The set of Floer–Novikov chains CF∗(H) consists of all formal sums

(1.5) αH =
∑

[z,z̃]∈CritAH

a[z,z̃] · [z, z̃], a[z,z̃] ∈ Q

such that
#{[z, z̃] | a[z,z̃] 
= 0 and AH([z, z̃]) ≥ r} < ∞

for all r ∈ R. If the critical point [z, z̃] in equation (1.5) has a non-zero
coefficient a[z,z̃], then we say that [z, z̃] contributes to the chain α or write
[z, z̃] ∈ α.

Assume that H is non-degenerate in the Floer-theoretical sense and
denote the Conley–Zehnder index of a critical point [z, z̃] by μH([z, z̃]). The
set of Floer–Novikov chains of index n is denoted CFn(H).

The reader is referred to [21] for a more detailed account of the Floer
homology theory of the action functional. Let J0 denote an almost complex
structure on M and J = J(·, t) be a 1-periodic family of almost complex
structures with J(·, 0) = J0. We only mention that the Floer differential is
defined by counting finite energy solutions to the partial differential equation

(1.6)

⎧

⎨

⎩

u : (τ, t) ∈ R × S1 → u(τ, t) ∈ M
∂u

∂τ
+ J(u, t)

(

∂u

∂t
− XH(u, t)

)

= 0.

Any non-zero quantum cohomology class a ∈ QH∗(M) determines a spec-
tral invariant ρ(H; a) ∈ R by the following mini-max procedure. Fix a
Floer–Novikov cycle α Poincaré dual, written [α]� = a (in a precise sense,
see the “canonical Floer cycle,” [19]) to a. Let its level, λH(α), be the
maximum action of any critical point contributing to the cycle. Then
ρ(H; a) is defined to be the infimal level among all cycles α dual to a. Great
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care must be made to show this number is finite, does not depend on the
various choices involved (such as the almost complex structure) and satisfies
a short list of axioms, see [19, Theorem I].

The non-degenerate spectrality axiom (a theorem by the work of Oh [17]
and Usher [27]) asserts that when H is non-degenerate, ρ(H; a) is a critical
value of the action functional AH . The non-degenerate spectrality axiom
implies that ρ(H; a) only depends on the homotopy class of φH with fixed
endpoints, which in turn allows the spectral invariant to be extended to any,
not necessarily periodic, Hamiltonian function H : M × [0, 1] → R.

Furthermore, ρ(H; a) depends continuously on the Hamiltonian H and
so extends to any smooth function H, non-degenerate or not. The triangle
inequality asserts that

ρ(H#K; a · b) ≤ ρ(H; a) + ρ(K; b)

for any two Hamiltonian functions H and K and where a · b refers to the
quantum product of a and b. Having said all of this, the normalization
axiom then implies

0 = ρ(H#H; 1) ≤ ρ(H; 1) + ρ(H; 1).

The former denotes the spectral length of the isotopy φH ,

lengthγ(φH) = γ(H) = ρ(H; 1) + ρ(H; 1).

The time-reversal t �→ 1− t provides another useful Hamiltonian function
˜H(x, t) := −H(x, 1 − t). The time-one mapping of the vector field X

˜H
is

also (φ1
H)−1 and the two isotopies φt

H
and φt

˜H
are homotopic rel endpoints.

Thus by the homotopy axiom ρ(H; 1) = ρ( ˜H; 1) [21, Lemma 5.2] and so the
spectral length may be written as

γ(H) = ρ(H; 1) + ρ( ˜H; 1).

The infimum over all isotopies ending at a given Hamiltonian φ defines the
spectral norm

γ(φ) := inf
H �→φ

γ(H) .

For the reader’s convenience, we recall

Theorem 1.2 (Schwarz [26], Oh [21]). The spectral norm γ : Ham(M,ω)
→ R+ satisfies the following properties. Let φ, ψ ∈ Ham(M,ω).

(1) γ(θ φ θ−1) = γ(φ) for any θ ∈ Symp(M,ω) (symplectic invariance).
(2) γ(φ) = γ(φ−1) (symmetry).
(3) γ(φ ψ) ≤ γ(φ) + γ(ψ) (triangle inequality).
(4) γ(φ) = 0 if and only if φ is the identity (non-degeneracy).
(5) γ(φ) ≤ ||φ||Hofer
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The spectral norm γ defines a bi-invariant metric on the Hamiltonian
group which is a Floer-theoretical refinement of the Hofer metric. In partic-
ular, the spectral norm is a lower bound for the Hofer norm.

Roughly speaking, the spectral norm of a Hamiltonian diffeomorphism φH

is the smallest action difference among homologically essential critical values
of the action functionals AH and A

˜H
corresponding to critical points [z, w]

and [z̃, w̃] with Conley–Zehnder indices μH([z, w]) = n and μ
˜H
([z̃, w̃]) = n.

For the moment we change the notation briefly and denote critical values
of the action functionals AH and A

˜H
by [z, w] and [z̃, w̃]. Under Poincaré

duality, such Floer cycles correspond with the quantum cohomology class 1.
To reflect the fact that the spectral metric involves only this cohomology

class, Oh introduces the homological area A(φ; 1) which is, again roughly
speaking, the minimal energy of a Floer trajectory connecting the maximum
and minimum of H. The time-reversal applied to the critical point [z̃, w̃] ∈
CritA

˜H
yields a critical point, say [z′, w′] ∈ CritAH and μH [z′, w′] = −n.

Fix a point q ∈ M and Floer cycles αH and β
˜H

of Conley–Zehnder indices
μH([z, w]) = n, μ

˜H
([z̃, w̃]) = n.

Now consider the one-marked stable Floer trajectories u satisfying the
following data

u = u1# · · ·#uN

with each uj a Floer trajectory with finitely many sphere bubbles attached
satisfying

(1.7)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂u

∂τ
+ J(u, t)

(

∂u

∂t
− XH(u, t)

)

= 0,

u1(−∞) = [z, w] ∈ αH , uN (+∞) ∈ [z′, w′] with [z̃, w̃] ∈ β
˜H
,

uj(0, 0) = q for some j = 1, 2, . . . , N.

The energy EJ(u) of a curve u : R × S1 → M satisfying equation (1.7) is
∫ ∞

−∞

∣

∣

∣

∣

∂u

∂τ

∣

∣

∣

∣

2

dτ

with respect to the metric on gJ = ω(·, J ·). The energy of such a u =
u1# · · ·#uN is the sum

∑

k

EJ(uk)

plus the symplectic area of any attached sphere bubbles. Now, the homo-
logical area is defined by the following mini-max procedure, reminiscent of
the definition of σ(M,ω).

Begin by defining

A(φ, J0; J ; αH , β
˜H
; q) = inf{EJ(u) | u satisfies (1.7)}

and then set

A(φ, J0;J ; 1; q) = inf{A(φ, J0;J ; αH , β
˜H
; q) | [αH ]� = 1 = [β

˜H
]�}.(1.8)
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Now define

A(φ, J0; J ; 1) = sup{A(φ, J0; J ; 1; q) | q ∈ M},

A(φ, J0; 1) = sup{A(φ, J0; J ; 1) | J}
and

(1.9) A(φ; 1) = sup{A(φ, J0; 1) | J0}.

Oh proves in Theorem C [21] that any non-degenerate Hamiltonian dif-
feomorphism φ, not necessarily engulfable, satisfies

A(φ; 1) ≤ γ(φ) ≤ ||φ||Hofer.

The graph Δφ of a Hamiltonian diffeomorphism φ is a Lagrangian sub-
manifold of the product (M×M,−ω⊕ω). Let U be a Darboux neighborhood
of the diagonal and Φ be a Darboux chart

Φ : U ⊂ (M × M, −ω ⊕ ω) → V = Φ(U) ⊂ (T ∗(Δ), dΛ),

where Φ∗(dΛ) = −ω ⊕ ω and Λ is the canonical one-form on the cotangent
bundle T ∗Δ.

Recall that a Hamiltonian function H is called quasi-autonomous [1] if
there exist fixed points x+, x− ∈ M with

H(x+, t) = max
x∈M

H(x, t) and H(x−, t) = min
x∈M

H(x, t).

If φF is a Hofer geodesic, then necessarily F must be quasi-autonomous, see
[1, 10, 28].

Motivated by Laudenbach’s work on Lagrangian submanifolds [11], Oh
[21] introduces the following.

Definition and Lemma 1.3 (Oh [21]). A Hamiltonian diffeomorphism
φ is engulfable if it is C0-small in the sense that its graph is contained
in a Darboux–Weinstein neighborhood of the diagonal and its image under
the Darboux chart Φ within the cotangent bundle is the graph of an exact
one-form, dSφ,

Φ(Δφ) = graph dSφ.

When normalized, Sφ is the unique autonomous generating function of φ.

Any C1-small diffeomorphism is engulfable. Let Hφ denote the special
Hamiltonian function defined by the equation

Φ(Δφt
H

) = graph t dSφ,

where Δφt
H

is the graph of φt
Hφ inside (M × M,−ω ⊕ ω). The Hamiltonian

function Hφ is quasi-autonomous and so
∫ 1

0
max
x∈M

Hφ(x, t) − min
x∈M

Hφ(x, t) dt = osc(Sφ) = maxSφ − minSφ.

�
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Of course when φ is also engulfable there is the additional inequality

A(φ; 1) ≤ γ(φ) ≤ ||φ||Hofer ≤ ||Hφ|| = osc(Sφ).

In the setting of the periodic Floer homology there are thick and thin
decompositions of the Floer boundary map and pants product [21, Propo-
sitions 9.1 and 9.3] and in the case of C1-small diffeomorphisms, these thick
and thin decompositions yield the existence of a thin curve u satisfying
equation (1.7) with

(1.10)
{

u1(−∞) = [x−, ˜x−], uN (+∞) = [x+, ˜x+],
EJ(u) = osc(Sφ),

which in turn, after some further analysis, implies A(φ; 1) ≥ osc(Sφ). As a
result

A(φ; 1) = γ(φ) = ||φ||Hofer = osc(Sφ),
see [21, Theorem F and Proposition 9.6].

However, when the diffeomorphism φ is engulfable, the thick and thin
approach does not directly apply and so we must use Theorem A to produce
the existence of a local curve u satisfying (1.7) and (1.10), see Proposition
4.2. This is the main step in the proof of

Theorem B. Let φ be a non-degenerate, engulfable Hamiltonian diffeomor-
phism and assume that the oscillation of its generating function Sφ satisfies

(1.11) osc(Sφ) <
σ(M,ω)

2
·

For such a diffeomorphism, the following string of equalities holds.

(1.12) A(φ; 1) = γ(φ) = ||φ||Hofer = ||Hφ|| = osc(Sφ).

It is not known whether the homological area depends continuously on
the Hamiltonian φ and so Theorem B remains open for degenerate φ. Nev-
ertheless, Theorem B is sufficient to prove

Corollary C. Let φ be any engulfable Hamiltonian, possibly degenerate,
whose generating function Sφ satisfies

osc(Sφ) <
σ(M,ω)

2
.

The path t → φt
Hφ is Hofer and spectral length minimizing. In fact

γ(φ) = ||φ||Hofer = ||Hφ|| = osc(Sφ).

Corollary D. The collection H of all engulfable Hamiltonians satisfying
Condition (1.11)

H ⊂ Ham(M,ω)
is an open, path-connected neighborhood of the identity in the C1-topology
such that any element of H admits a Hofer and spectral length minimizing
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path to the identity. The neighborhood H with either the Hofer or spectral
norm is isometric to the normed vector space C∞

m (M) of mean zero functions
f : M → R with the norm given by the oscillation, osc(f) = max f − min f .

For C1-small Hamiltonians Lalonde and McDuff [10] and McDuff [12]
obtain this result under the Hofer metric, and Oh [21] for both the Hofer
and spectral distances.

Suppose the symplectic manifold is symplectically aspherical. In this
case, hypothesis (1.11) is not restrictive since there are no non-constant
pseudo-holomorphic spheres and σ(M,ω) = +∞. It is also worth compar-
ing Corollary C to Ostrover’s result Theorem 1.2 [22] that when (M,ω) is
symplectically aspherical, there exist Hamiltonian diffeomorphisms (far from
the identity) admitting no Hofer length minimizing path to the identity. An
example of this kind is also given on S2 by Lalonde and McDuff [10].

An explicit description of the size of the neighborhood, N ⊂ Ham(M,ω),
McDuff constructs is explained in [12, Remark 3.5]. It appears that this
description requires some control on both the Hofer length and C2-norm of
the generating Hamiltonian function, which we avoid.

In some cases, the Darboux neighborhood of the diagonal U ⊂ M × M
can be quite large. One may ask if there is a relationship between the diam-
eter of the Hamiltonian diffeomorphism group and the size of the Darboux
neighborhood of the diagonal.

2. λ-Homotopy

Chekanov [2] defines an algebraic framework to prove an existence theo-
rem of Lagrangian intersections. We recall the definitions and prove a new
algebraic result, Proposition 2.3, needed in the proof of Theorem B.

Let Γ be a free abelian group and λ : Γ → R be an injective homomor-
phism. Such a mapping is called a weight function. Denote

(2.1) Γ+ = {g ∈ Γ|λ(g) > 0}, Γ− = {g ∈ Γ|λ(g) < 0}.

Let k be a commutative ring with non-zero unity and K = k(Γ) be the
group ring over k. The group ring K includes the group Γ as a subgroup.

Now let M be a k-module. The group Γ need not act on M , but Γ does
act on M ⊗K via the second factor g(v⊗g) := v⊗g(g). Furthermore, M ⊗K
admits the decomposition

(2.2) M ⊗ K = M+ ⊕ M0 ⊕ M−,

where M+ = Γ+(M ⊗ K), M0 = M and M− = Γ−(M ⊗ K).
The above splitting supports two projections

p+ : M ⊗ K −→ M+ ⊕ M0 and p− : M ⊗ K −→ M0 ⊕ M−,
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p+(v ⊗ g) = v ⊗
∑

p+(αi)gi, where

p+(αi) =
{

0 if λ(gi) < 0,
αi if λ(gi) ≥ 0,

and similarly for p−.
Now assume in addition that (M,∂) is a differential k-module with

∂ ◦ ∂ = 0. Notice that ∂ extends to M ⊗ K by setting ∂(v ⊗ g) = (∂v) ⊗ g.
Also the differential ∂ and the projections p+, p− are commuting operators
because ∂ acts on M while the projections act only on K in M ⊗ K.

Definition 2.1 (Chekanov [2]). Two K-linear maps ψ1,ψ2 :M⊗K → M ⊗K
are called λ-homotopic if there exists a K-linear map h : M ⊗ K → M ⊗ K
such that

(2.3) p+ (ψ1 − ψ2 + h ◦ ∂ + ∂ ◦ h) p− = 0.

Notice that if ψ1, ψ2 were chain homotopic maps in the usual sense, then
equation (2.3) holds. The definition implies that ψ1 and ψ2 are chain maps
from negative to positive weight. The essential algebraic lemma, observed
first by Chekanov, from which this section really follows is

Lemma 2.2 (Chekanov [2]). Let V be the homology of (M,∂). Set W =
V ⊗K. For any non-zero r ∈ W , there exists g ∈ Γ for which g ·r = q0 +q−,
with q0 ∈ V ⊂ M0 non-zero and q− ∈ M−.

Proof. We have r = v ⊗ g ∈ W = V ⊗ K, with g =
∑

αigi, αi ∈ k, gi ∈ Γ.
Let g = gj ∈ Γ be such that

g = g−1
max with λ(gmax) = max

αi 	=0
λ(gi).

The quantity maxαi 	=0 λ(gi) is called the valuation of g. Then by the action
of Γ on K

g(r) = v ⊗
∑

gngj=gi

αngi.

Finally if αn 
= 0, then λ(gi) = λ(gn) + λ(gj) ≤ −λ(gj) + λ(gj) = 0 and
hence λ(gi) ≤ 0. �

What follows below is the main algebraic result of the current paper. An
isomorphism on homology cannot be λ-homotopic to the zero map provided
the isomorphism commutes with the projection p+.

Proposition 2.3. Suppose (M,∂) is a differential k-module with non-
trivial homology. Suppose the linear maps ψ1, ψ2 : M ⊗ K → M ⊗ K are
λ-homotopic. If ψ1 descends to an isomorphism ψ1 : H(M,∂)

∼=→ H(M,∂)
and the induced map commutes with p+ on homology (i.e., up to a boundary
on the chain level), then ψ2 
= 0.
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Proof. Choose a submodule of ∂-cycles V ⊂ M = M0 representing the
homology H(M,∂). Let W = V ⊗K. Note that W is not trivial. By Lemma
2.2 for any non-zero r ∈ W there exists g ∈ Γ for which g · r = q0 + q−, with
q0 ∈ V ⊂ M0 non-zero and q− ∈ M−.

To prove the proposition suppose on the contrary that ψ2 = 0. Applying
equation (2.3) to q0 + q−, we see

0 = p+ (ψ1 − ψ2 + h ◦ ∂ + ∂ ◦ h) p−(q0 + q−)
= p+ (ψ1 − ψ2 + h ◦ ∂ + ∂ ◦ h) (q0 + q−)
= p+(ψ1(q0 + q−)) + p+(h ◦ ∂ + ∂ ◦ h)(q0 + q−)
= p+(ψ1(q0 + q−)) + ∂(p+h(q0 + q−)).

Here we have used the linearity of all the maps that q0 + q− is a cycle
and that the projection p+ commutes with the boundary. By assumption,
p+ and ψ1 commute up to a boundary, say ∂c, and so continuing

0 = ψ1(q0) + ∂c + ∂(p+h(q0 + q−))
= ψ1(q0) + ∂

(

c + p+h(q0 + q−)
)

,

which implies that ψ1(q0) is a boundary. Hence, ψ1 cannot be an isomor-
phism, a contradiction. �

Remark 2.4. The downward Novikov ring Λ↓ is defined to be

Λ↓ =

{

∑

i

αigi | (∀)t ∈ R #{gi | αi 
= 0 and λ(gi) > t} < ∞
}

.

Because the valuation of any element in the downward Novikov ring is finite,
Lemma 2.2 continues to hold with the group ring K replaced with Λ↓. In
other words, the notion of λ-homotopy extends to this coefficient ring.

3. The Proof of Theorem A

Let L be a closed, connected n-dimensional Lagrangian submanifold of the
tame symplectic (P, ω). Let U be a Darboux–Weinstein neighborhood of
L. Fix a reference path l0 on L. Given a (normalized) time-dependent
Hamiltonian function H : P ×[0, 1] → R, the corresponding action functional
AH is real valued on the Novikov covering ˜Ω0(L, l0; P, ω) = ˜Ω0

π→ Ω0 of the
space Ω0 of contractible paths beginning and ending on L. ˜Ω0 consists of
equivalence classes � where the half-disk w provides the homotopy to l0 and
two pairs (l1, ˜l1) and (l2, ˜l2) are equivalent if l1 = l2 and the Maslov index

μL and symplectic action Iω homomorphisms vanish on the glued disk ˜l1#˜l2
(Figure 1). The Maslov index conventions and the Novikov covering are
discussed in greater detail in [5, Chapter 2, Sections 2 and 3].
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Figure 1. Half-disk ˜l with boundary on L.

The choice of sign is

AH(�) := −
∫

˜l∗ω −
∫ 1

0
H(l(t), t) dt.

Denote Γ = Γ(L, l0; P, ω) the automorphism group of this cover, which is a
free abelian group

Γ =
π2(P, L)

ker(μL) ∩ ker(Iω)
.

Γ acts by gluing a disk: g · � = [l,˜l#g]. The symplectic action provides the
weight homomorphism

λ(g) := −
∫

g∗ω.

Let σ(L;P, ω) be the minimal area of a pseudo-holomorphic sphere or
disk with boundary on L in P and assume for the remainder of this section
that the Hofer length of H satisfies ||H|| < σ/2. Let 0 < s � 1 and fix the
constant δ > 0 to satisfy ||H|| < δ/2 < σ/2.

For the parameterized Hamiltonian sH, denote the critical points of the
action functional AsH

Crit(AsH) = CF (L, sH) = CF (s)

and the vector space of Floer chains

CF∗(s) = CF∗(L, sH; Z2) = spanZ2
(CF (s)).

We will make a number of assumptions on the size of the parameter s in the
course of the proof of Theorem A; however, this parameter does not appear
in the statement of Theorem B. The first of these conditions is that

(3.1) φt
sH(L) ⊂ U (∀) t ∈ [0, 1].

Two elements of CF (s) are said to be equivalent (see [2, section 4]) if
they belong to the same connected component of the set

π−1{l ∈ Ω0 : l([0, 1]) ⊂ U} ⊂ ˜Ω0.

The first assumption on the parameter s guarantees that the set of equiv-
alence classes is not empty. Fixing any equivalence class CF ◦(s) yields the
decomposition CF∗(s) = CF ◦

∗ (s) ⊗ K, where CF ◦
∗ (s) = spanZ2

CF ◦(s) and
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K = Z2(Γ) denotes the group ring. Observe that for two equivalent critical
points [x, x̃], [z, z̃] ∈ CF ◦(s) there is a topological (half) cylinder C with
boundary on L contained in U such that x̃#C � z̃. Hence x̃ and z̃ have
equal symplectic area. Thus for equivalent critical points

AsH([x, x̃]) − AsH([z, z̃]) = s

(∫

H(z(t), t) − H(x(t), t) dt

)

,

and so if we assume further that s < δ/(2||H|| + 1), we will have

(3.2) [x, x̃], [z, z̃] ∈ CF ◦(s) =⇒ AsH([x, x̃]) − AsH([z, z̃]) <
δ

2
.

The sets of positive and negative weight critical points are denoted

CF+(L, sH) = Γ+(CF ◦) and CF−(L, sH) = Γ−(CF ◦).

Let J be a (possibly time-dependent) almost complex structure compat-
ible to ω. Again the Floer differential is defined by counting finite energy
solutions of equation (1.2). The full Floer moduli space of finite energy solu-
tions N (L, sH; J, ω) = N (s) ranges over all critical points of AsH . The finite
energy solutions converge exponentially as τ → ±∞ to paths x± : [0, 1] → P
satisfying equation (1.1).

For generic s, N ([x, x̃], [z, z̃]; s) is a smooth manifold of dimension
μL([x, x̃]) − μL([z, z̃]), when it is not empty, see [6].

The length of a Floer trajectory u ∈ N ([x, x̃], [z, z̃], s) is defined to be the
action difference at its ends

(3.3) L(u) := AsH([x, x̃]) − AsH([z, z̃]).

We say that u is somewhat thin if L(u) ≤ ||H|| + δ, thin if L(u) ≤ δ and
local if image(u) ⊂ U . Curves which exit the Darboux–Weinstein neighbor-
hood are called thick. A consequence of Gromov’s compactness theorem
is Oh’s thick and thin decomposition theorem that implies when s is suf-
ficiently small and J is C0-close to a time-independent compatible almost
complex structure that every somewhat thin trajectory is thin and every
(somewhat) thin trajectory is local (see [2, Lemma 6] and [13, Proposition
4.1]). Our third assumption on the size of the parameter s is that it is
small enough to ensure the thick and thin decomposition. We denote the
collection of thin trajectories N ◦(L, sH) and local trajectories N U (L, sH).
After dividing by the time-shift, the thin Floer differential ∂◦ is defined by
N ◦/R := ̂N ◦(L, sH)

∂◦([x, x̃]) =
∑

μL([x,x̃])−μL([z,z̃])=1

#Z2
̂N ◦([x, x̃], [z, z̃], s)[z, z̃].

When s is sufficiently small and the almost complex structure is close
to an autonomous almost complex structure, the thin differential satisfies
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∂◦ ◦ ∂◦ = 0 and the resulting homology is isomorphic to the singular
homology of L

(3.4) H(CF∗(s), ∂◦) := HF ◦
∗ (L, sH; Z2) ∼= H∗(L; Z2),

see [2, Lemma 7] and [13, Theorem 4.7].
The thin Floer cap product [L] ∩◦

s (·) : CF ◦
∗ (s) → CF ◦

∗ (s) is defined by
counting elements u ∈ N ◦(L, sH) passing through a generic point p ∈ L.

N ◦(L, sH; p) = {u ∈ N ◦ | u(0, 0) = p}
[L] ∩◦

s ([x, x̃]) =
∑

μL([x,x̃])−μL([z,z̃])=n #Z2N ◦([x, x̃], [z, z̃], s; p)[z, z̃].

The collection of such maps is denoted N ◦(L, sH; p) (or N ◦([x, x̃],
[z, z̃], s; p) or N U (L, sH; p), etc.). Because of the pointed condition u(0, 0) =
p, the dimension is reduced by n, the dimension of L. Again the thick and
thin decomposition holds.

Proposition 3.1 ([13, Proposition 4.1] and [2, Lemma 6]). Fix a time-
independent compatible almost complex structure J0 on P . There exists s′ > 0
with the property that for any 0 < s < s′ if ||J −J0||C0(P×[0,1]) < s, then any
somewhat thin cap trajectory is thin and any (somewhat) thin cap trajectory
is local.

Proposition 3.1 implies that the moduli space N ◦(L, sH; p) is isolated,
say by the length defined above, within N (L, sH; p). Passing to the cotan-
gent bundle, the work of [3, 4, 15] implies that [L] ∩◦

s (·) descends to an
isomorphism on HF ◦

∗ (L, sH; Z2). (In particular A. Floer originally proved
the injectivity of the cap action.) The next assumption on s is that is it
small enough to ensure

(3.5) [L] ∩◦
s (·) : HF ◦

∗ (L, sH; Z2)
∼=−→ HF ◦

∗−n(L, sH; Z2).

The thin cap product shifts the grading by n, the dimension of the
Lagrangian L.

Setting the parameter s = 1, the local cap product [L] ∩U (·) is defined
by the local curves in the moduli space N U (L, H; p) := {v ∈ N (L, 1 ·
H; p) | Image(u) ⊂ U}.

[L] ∩U ([y, ỹ]) =
∑

μL([y,ỹ])−μL([y′,ỹ′])=n

#Z2N U ([y, ỹ], [y′, ỹ′]; p)[y′, ỹ′].

Within the Darboux neighborhood of L, bubbling-off cannot occur and so
[L]∩U (·) is defined; however, this map need not agree with the singular cap
product. We have thus far fallen short in proving that the moduli space of
local curves is isolated among all curves. This fact is what motivated the use
of λ-homotopy. For the same reason, when s = 1, the local Floer homology
might not be defined. In particular ∂U need not square to zero.

The continuation maps Φ+ and Φ− are constructed by introducing
monotone continuation functions ρ+ and ρ− of τ and a non-autonomous
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Floer equation. We sketch definition of the map Φ+, referring the reader to
[2] for the full details. Let Jρ+

be a τ (and t) dependent almost complex
structure such that it is independent of τ , when |τ | � 0.

Let b+(H) =
∫ 1

0
max

x
H(x, t)dt and b−(H) = −

∫ 1

0
min

x
H(x, t)dt. Let

ρ+ be a smooth increasing function of τ so that ρ+(τ) = 1 for τ � 1 and
ρ+(τ) = s for τ � −1. Consider the continuation equation

(3.6)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂u

∂τ
+ Jρ+

(u, t)
(

∂u

∂t
− Xρ+H(u, t)

)

= 0,

u : R × [0, 1] → P,
u(τ, 0), u(τ, 1) ⊂ L,

and define

Nρ+ = {u : R × [0, 1] → P | EJ(u) < +∞ and u satisfies (3.6)}

The length of a continuation trajectory u+ ∈ Nρ+ can be defined as before
(and could be negative) u+ ∈ Nρ+

L(u+) = AsH([x, x̃]) − AH([y, ỹ]),

where u+(−∞) = [x, x̃] ∈ CF (s) and u+(+∞) = [y, ỹ] ∈ CF (1). The
continuation trajectories u+, u− are called thin if

(3.7)
{

L(u+) ≤ (1 − s) · b+(H) + δ,
L(u−) ≤ (1 − s) · b−(H) + δ,

and the collection of all thin continuation trajectories we denote N ◦
ρ+ and

N ◦
ρ− . Observe that to be thin, a continuation trajectory satisfies a weaker

inequality than is required for a Floer trajectory to be thin.

Lemma 3.2. [2, Lemma 9] If u+ ∈ Nρ+, then L(u+) ≥ −(1 − s) · b−(H).
If u− ∈ Nρ−, then L(u−) ≥ −(1 − s) · b+(H). For the thin continuation
trajectories, E(u±) ≤ ||H|| + δ.

Consequently, the continuation map Φ+ : CF (s) → CF (1) defined by

Φ+([x, x̃]) =
∑

μL([x,x̃])−μL([y,ỹ])=0

#Z2N ◦
ρ+([x, x̃], [y, ỹ])[y, ỹ]

is finite. Again we refer to [2, proof of Lemma 9] for the details of the finite-
ness argument. Notice that a thick and thin decomposition is not needed to
make this definition.
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The important point is that these linear maps provide a bridge from the
Floer complexes corresponding to 0 < s � 1 and s = 1,

(3.8)
Φ+ : CF∗(L, sH) −→ CF∗(L, H) and Φ− : CF∗(L, H) −→ CF∗(L, sH).

The main result in [2] is that when s is sufficiently small and ||H|| < σ,
there exists a λ-homotopy h from the identity to the composition Φ− ◦ Φ+.
As a consequence, the displacement energy of any Lagrangian submanifold
is larger than σ. Our λ-homotopy is defined similarly, where we must also
take into consideration the marked point p ∈ L. We now provide the details.

Let R ∈ [s,+∞) and μR : R → [s, 1] be a smooth function with all the
following properties. First, 0 ≤ μ′

R(τ) for τ ≤ 0 and μ′
R(τ) ≤ 0 for τ ≥ 0

and for R ≥ 1

(3.9) μR(τ) =
{

1, −R ≤ τ ≤ R,
s, |τ | ≥ R + 1,

while when s ≤ R ≤ 1, μR = R · μ1. Let JμR be a τ -dependent almost com-
plex structure that is τ -independent for τ � 0. The λ-homotopy is defined
via the finite energy solutions of the non-autonomous Floer equation

(3.10)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂u

∂τ
+ JμR(u, t)

(

∂u

∂t
− XμR(τ)H(u, t)

)

= 0,

u(τ, 0), u(τ, 1) ⊂ L,
u(0, 0) = p ∈ L.

The collection of all finite energy solutions is denoted NμR = NμR(L, sH; p).
The parameterized moduli space is defined to be Nμ = {(R, v) : v ∈
NμR(L, sH; p)} and by the parameterized index theorem (see [14]), the local
dimension of Nμ is one greater than the difference of Maslov indices of the
asymptotic limits and so defines a map of degree +1. The formula for the
pointed λ-homotopy hp : CF (s) → CF (s) on generators is

(3.11) hp([x, x̃]) =
∑

[y,ỹ]∈CF ◦∪CF+

#Z2 {Nμ([x, x̃], [y, ỹ]; p)} [y, ỹ],

where [x, x̃] ∈ CF− ∪ CF ◦. Because the energy is controlled by the Hofer
norm, bubbling-off does not occur and so the sum is finite. The induced
map is linear over K = Z2(Γ).

We now verify the λ-homotopy equation.

(3.12) p+([L] ∩◦
s (·) − Φ− ◦ [L] ∩U (·) ◦ Φ+ + hp ◦ ∂◦ + ∂◦ ◦ hp)p− = 0

for all [x, x̃] ∈ CF ◦(s). We write the left hand side of equation (3.12) as
∑

#Z2S([x, x̃], [z, z̃])[z, z̃],
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where S([x, x̃], [z, z̃]) is the union of the following four sets. For the
remainder of this section, each of [x, x̃] ∈ CF ◦(s) ∪ CF−(s), [z, z̃] ∈
CF+(s)∪CF ◦(s) and [y, ỹ], [y′, ỹ′] ∈ CF (1) represent generic critical points
of the respective action functionals.

(1) A thin cap trajectory u ∈ N ◦([x, x̃], [z, z̃], s; p).
(2) A triple (u−, v, u+) with u+ ∈ N ◦

ρ+([x, x̃], [y, ỹ]), v ∈ N U ([y, ỹ], [y′, ỹ′]; p)
and u− ∈ N ◦

ρ−([y′, ỹ′], [z, z̃]).

(3) A thin unparameterized gradient trajectory u ∈ ̂N ◦([x, x̃], [z, z̃], s)
and element (R, v) with v ∈ NμR([x, x̃], [z, z̃]; p).

(4) An element (R, v) with v ∈ NμR([x, x̃], [z, z̃]; p) and a thin unpara-
meterized gradient trajectory u ∈ ̂N ◦([x, x̃], [z, z̃], s).

By the Floer gluing theorem, each term above lies at the end of the
one-dimensional portion Q of S. In fact Q is compact and the correspon-
dence is one–one. The compactness of Q follows from the uniform energy
estimate which is a consequence of the assumption ||H||Hofer < σ/2 (see
[2, Lemma 10] and [14, Lemma 2.2]).

On the other hand, by the Gromov–Floer compactness theorem (see [25,
Lemma 6.2]) every end of Q may be compactified by one of the following.

(1) A cap trajectory u ∈ N ◦([x, x̃], [z, z̃], s; p).
(2) A triple (u−, v, u+) with u+ ∈ Nρ+([x, x̃], [y, ỹ]), v ∈ N U ([y, ỹ], [y′, ỹ′]; p)

and u− ∈ Nρ−([y′, ỹ′], [z, z̃]).
(3) An unparameterized gradient trajectory u ∈ ̂N ([x, x̃], [z, z̃], s) and

element (R, v) with v ∈ NμR([x, x̃], [z, z̃]; p).
(4) An element (R, v) with v ∈ NμR([x, x̃], [z, z̃]; p) and an unparameter-

ized gradient trajectory u ∈ ̂N ([x, x̃], [z, z̃], s).

We must show that in each of the above cases, the relevant trajectories
are thin. In fact, this follows from the conjugation by p+ and p− and that
||H|| < σ/2. Moreover, that the limit trajectories are thin in cases (3) and (4)
follows from the proof of Proposition 8 in [2]. To economize the exposition,
we focus on cases (1) and (2).

Let us begin with (1). The asymptotic limits assure us that [x, x̃] =
gx · [x′, x̃′] and that [z, z̃] = gz · [z′, z̃′] with

−
∫

(gz#z̃′)∗ω ≤ 0 and
∫

(gx#x̃′)∗ω ≤ 0.

Hence, the length of u satisfies

L(u) = AsH([z, z̃]) − AsH([x, x̃])

= −
∫

z̃∗ω − s

∫

H(z, t) dt +
∫

x̃∗ω + s

∫

H(x, t) dt
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= −
∫

(gz#z̃′)∗ω − s

∫

H(z, t) dt +
∫

(gx#x̃′)∗ω + s

∫

H(x, t) dt

≤ s

(∫

H(x, t) − H(z, t) dt

)

≤ s

(∫

max
x

H(x, t) − min
x

H(x, t) dt

)

= s||H||
< δ,

which makes it thin.
Figure 2 illustrates the situation of case (2).
To complete the identification we must prove that each u+ and u− is

thin. In other words, we must prove L(u+) ≤ (1 − s) · b+(H) + δ and
L(u−) ≤ (1 − s) · b−(H) + δ. (Remember thin continuation trajectories sat-
isfy equation (3.7).) Toward that end, consider the quantity L(u+)+L(u−).
By definition of length
(3.13)
L(u+) + L(u−) = AsH([x, x̃]) − AH([y, ỹ]) + AH([y′, ỹ′]) − AsH([z, z̃])

=
(∫

g∗
xω − s

∫

H(x, t) dt +
(

AH([y′, ỹ′]) − AH([y, ỹ])
)

−
∫

g∗
zω + s

∫

H(z, t) dt

)

.

The asymptotic conditions imply that
∫

(gx)∗ω ≤ 0 and −
∫

(gz)∗ω ≤ 0,

Figure 2. u+, v, u− and their respective asymptotic limits.
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therefore (3.13) is smaller than

s

(∫

H(z, t) dt −
∫

H(x, t) dt

)

+
(

AH([y′, ỹ′]) − AH([y, ỹ])
)

.

Since v is a local cap trajectory from [y, ỹ] to [y′, ỹ′], we know that

E(v) =
(

AH([y′, ỹ′]) − AH([y, ỹ])
)

,

and furthermore, because v is local, we have E(v) ≤ ||H|| < δ/2. Therefore,

L(u+) + L(u−) ≤ δ.

Finally it follows that u+ is thin. Recall from Lemma 3.2 that L(u−) ≥
−(1 − s) · b+(H) (resp. L(u+) ≥ −(1 − s) · b−(H)) and so if u+ were not
thin, then

δ = −(1 − s) · b+(H) + δ + (1 − s) · b+(H)
< L(u+) + L(u−) ≤ δ

a contradiction. Repeating the argument but interchanging u+ and u−

proves that u− is also thin. In short, the terms in equation (3.12) are in
one–one correspondence with the ends of the compact one-dimensional man-
ifold Q. This implies hp is indeed a λ-homotopy.

4. The Proof of Theorem B and Corollary C

Theorem B is a consequence of Theorem A and Proposition 2.3. Let (M,ω)
be a closed symplectic manifold of dimension 2n and consider the product
symplectic manifold (M × M,−ω ⊕ ω). The diagonal, Δ, is a Lagrangian
submanifold of dimension 2n = dim(M). In this case σ(Δ; M×M,−ω⊕ω) =
σ(M ;ω). Fix a Darboux–Weinstein chart (Φ,U) containing Δ. Let the
almost complex structure on M × M be of the form J = −J2t−1 ⊕ J1−2t.

Throughout this section consider the Hamiltonian deformation of the
diagonal corresponding to the isotopy t �→ graph t dSφ, and assume that
the Hamiltonian function H = Hφ satisfies ||H|| = osc(Sφ) < σ(M,ω)/2.
Recall that the Hamiltonian function Hφ is defined by the equation

Φ
(

Δφt
Hφ

)

= graph t dSφ

and that the Hamiltonian vector field of H has only fixed periodic orbits

Per(XH) ←→ Δ ∩ Δφ.

For any non-degenerate Hamiltonian diffeomorphism we have A(φ; 1) ≤
γ(φ) ≤ ||φ||Hofer ≤ ||H|| = osc(Sφ). Examination of Oh’s proof in the
C1-small case makes clear that the crucial step of the proof is to produce
a Floer trajectory connecting the maximum and minimum of the quasi-
autonomous Hamiltonian H. The trajectory we find is in fact local. A curve
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in M is called local if it is in the image of the association of Lemma 4.1 Once
this is established we go on to show osc(Sφ) ≤ A(φ; 1), completing the proof.

Let F = Fφ : (M × M) × [0, 1] → R be the Hamiltonian function corre-
sponding to Hφ, F φ(p, q, t) = Hφ(q, t). Set y± = (x±, x±) ∈ M × M.

Lemma 4.1. There is an energy preserving one–one correspondence between
the moduli spaces N U (Δ, F φ; J ; (q, q)) and Mlocal(Hφ; J ; q).

Proof. By definition, any curve v ∈ N U (Δ, F φ; J ; (q, q)) with

lim
τ→±∞

v(τ, ·) = [y±, ˜y±] and ˜y−#v � ˜y+

satisfies
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂v

∂τ
+ J(v, t)

(

∂v

∂t
− XF (v)

)

= 0,

v : R × [0, 1] → M × M,

v(τ, 0), v(τ, 1) ⊆ Δ,

v(0, 0) = (q, q) ∈ Δ,

image(v) ⊂ U .

Integration by parts yields EJ(v) = osc(Sφ). Indeed

EJ(v) =
∫ +∞

−∞

∣

∣

∣

∣

∂v

∂τ

∣

∣

∣

∣

2

dτ

=
∫

v∗(−ω ⊕ ω) + ||Fφ||

=
∫

v∗(−ω ⊕ ω) + ||Hφ||.

Since the image of v is contained in U , the first term can be written as
∫

(Φ ◦ v)∗(dΛcan) =
∫

∂(R×[0,1])
(Φ ◦ v)∗Λcan.

By the boundary conditions this integral vanishes. Hence

EJ(v) = ||Hφ|| = osc(Sφ).

We glue the trajectory v = (v1, v2) into a curve to M , u : R × S1 → M ,
as follows

u(τ, t) =

⎧

⎪

⎨

⎪

⎩

v1(2τ, 2t − 1), 0 ≤ t ≤ 1
2
,

v2(2τ, 1 − 2t),
1
2

≤ t ≤ 1.
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The map u is smooth by elliptic regularity and satisfies
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂u

∂τ
+ J(u, t)

(

∂u

∂t
− XH(u)

)

= 0,

u(τ, t) = u(τ, t + 1),

lim
τ→±∞

u(τ, ·) = x±(·),

u(0, 0) = p.

A straightforward chain rule calculation shows that EJ(u) = EJ(v) = osc(Sφ).
�

Now we come to the main step in the proof of Theorem B. Compare with
[21, Proposition 9.6].

Proposition 4.2. There exists an element u ∈ Mlocal([x−, w−], [x+, w+]; p).
Moreover, any local curve with these asymptotics satisfies EJ(u) = osc(Sφ).

Proof. We remind the reader (see [2, Lemma 7] and [13, Theorem 4.7]) that
when s is sufficiently small the thin part of the Floer homology satisfies

HF ◦
2n−j(Δ, sF ; Z2) ∼= Hj(Δ; Z2).

Furthermore, the thin part of the Floer cap action [Δ]∩◦
s (·) agrees with the

standard cap action of [Δ] and this map is an isomorphism. Let j = 2n and
0 and consider the following diagram

(4.1)

HF ◦
0 (Δ, sF ; Z2)

∼= ��

[Δ]∩◦
s(·) ∼=

����

H2n(Δ; Z2)

∼= [Δ]∩(·)
��

HF ◦
2n(Δ, sF ; Z2)

∼= �� H0(Δ; Z2)

The thin cap action by the diagonal, the map [Δ]∩◦
s (·) in equation (4.1),

shifts the grading by the dimension of Δ.
Because Δ is orientable H0(Δ; Z2) ∼= Z2 and H2n(Δ; Z2) ∼= Z2 and so the

thin part of the cap product on the Floer homology HF (Δ, sF ) is actually
an isomorphism on Z2

[Δ] ∩◦
s (·) : Z2

∼=−→ Z2.

As such this map must be the identity. Hence it commutes with the
projection p+ : CF (Δ, sF ) → CF+(Δ; sF ) ⊕ CF ◦(Δ, sF ) and Propo-
sition 2.3 implies in combination with Theorem A that the composition
Φ− ◦ [Δ] ∩U (·) ◦ Φ+ is non-zero. Because all three maps are linear, this
means that the local Floer cap product [Δ] ∩U (·) is non-zero and therefore
the moduli space N U ([(x−, x−), w−], [(x+, x+), w+];F φ; J ; p) must contain
an odd number of elements, where x± are respectively the maximum and
minimum points of F and w± are any bounding disks. In particular, it
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is not empty. Let us denote this element v. By Lemma 4.1, there exists
u ∈ Mlocal([x−, w−], [x+, w+]; q) and EJ(u) = osc(Sφ). �

Proof of Theorem B. We now know that any local curve u ∈ Mlocal(Hφ; p)
satisfying

lim
τ→±∞

u(τ, ·) = x±

has energy equal to osc(Sφ) and this collection is not empty.
On the other hand, if u′ ∈ M([x−, ˜x−], [x+, ˜x+];Hφ; p) is any non-local

curve, then we have

EJ(u′) = EJ ′(v′),

where v′(τ, t) =
(

φt
H

)−1 (u′(τ, t)). One may check that the curve v′(τ, t) =
(

φt
H

)−1 (u′(τ, t)) satisfies the equation

∂v

∂τ

′
+ J ′ ∂v

∂t

′
= 0,

where J ′ = (φt)∗J . Since the periodic orbits of XHφ are all constant, the
glued curve v′#v, where v = v(τ, t) =

(

φt
H

)−1 (u(τ, t)) and u is local
curve we constructed in Proposition 4.2 produces a non-constant pseudo-
holomorphic disk with boundary on the diagonal Δ.

Therefore,
σ(M,ω) < E(v′#v) = E(v′) + ||Hφ||.

Since we assume that

osc(Sφ) = ||Hφ|| <
σ(M,ω)

2
,

it must be that EJ ′(v′) > σ/2. In short, EJ(u′) ≥ ||Hφ||.
Therefore, A(φ, J0; J ; [x−, ˜x−], [x+, ˜x+]; p) = ||Hφ|| = osc(Sφ). Since Hφ

is quasi-autonomous, we then find A(φ, J0;J ; 1; p) = osc(Sφ). Therefore, the
supremum over p, J and J0 is greater than the oscillation; in other words
we have proven

A(φ; 1) ≥ osc(Sφ).
This proves Theorem B. �

Before proving Corollary C, we prove a simple estimate between the C1

norm of a Hamiltonian flow to the Hofer length of a generating Hamiltonian
function. Let J be any ω-compatible almost complex structure and gJ

denote the corresponding metric. With respect to the metric gJ , the C1

norm of the isotopy φH is

(4.2)
||φH ||C1(M×[0,1]) := sup

x,t
||

(

Tφt
H

)

|x || + sup
x,t

|| ˙φt
H(x)||

= sup
x,t

||
(

Tφt
H

)

|x || + sup
x,t

||XH(x, t)||.
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Lemma 4.3. For any Hamiltonian isotopy t �→ φt
H

(4.3) ||H|| ≤ diamgJ (M) · ||φH ||C1(M×[0,1]).

Proof. Let d denote the Riemannian distance on M and x+
t and x−

t be the
points in M where extreme values of H(·, t) occur.

max
x∈M

H(x, t) = H(x+
t , t) and min

x∈M
H(x, t) = H(x−

t , t).

For ε > 0 choose a path σt = σt(s) : [0, 1] → M with

σt(0) = x−
t , σ(1) = x+

t and
∫ 1

0
|σ̇t|gJ ds < ε + d(x−

t , x+
t ).

Next

(4.4)
H(x+

t , t) − H(x−
t , t) =

∫ 1

0

d

ds
H(σ(s), t) ds

=
∫ 1

0
gJ(∇H(σ, t), σ̇) ds.

By the Cauchy–Schwarz inequality, (4.4) is smaller than

||∇H||L∞ · ||σ̇||L1 ≤ ||∇H||L∞(d(x, y) + ε).

Since ε > 0 is arbitrary, it follows that

||H||Hofer ≤ ||∇H||L∞ · d(x−
t , x+

t ) ≤ ||∇H||L∞ · diamgJ (M).

Finally, the compatible almost complex structure J is a gJ isometry, hence
||∇H|| = ||XH ||. This proves the Lemma. �

Proof of Corollary C. A priori we know that

(4.5) γ(φ) ≤ ||φ||Hofer ≤ ||Hφ||.
Let ε > 0 be such that osc(Sφ)+ε < σ(M,ω)/2 and ψt be a non-degenerate

Hamiltonian isotopy with

||φt ◦ (ψt)−1||C1(M×[0,1]) <
ε

diamgJ (M)
.

Theorem B implies γ(ψ) = ||ψ||Hofer = ||Hψ|| and Lemma 4.3 implies

||Hφ#Hψ|| < ε.

By the triangle inequality,

||Hφ|| ≤ ||Hφ#Hψ|| + ||Hψ||
< ε + ||Hψ||
= ε + γ(ψ)

≤ ε + γ(ψ ◦ φ−1) + γ(φ).
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By the symmetry property of the spectral norm, we next see that the above
equals

= ε + γ(φ ◦ ψ−1) + γ(φ)
≤ ε + ||Hφ#Hψ|| + γ(φ).

Hence
0 ≤ ||Hφ|| − γ(φ) < 2ε.

Letting ε approach zero proves ||Hφ|| = γ(φ). Applying equation (4.5) a
second time proves

γ(φ) = ||φ||Hofer = ||Hφ||.
�

Concluding remarks

It can be rather difficult to compute the constant σ(M,ω). For the two-
sphere with total surface area equal to 4π then in fact σ(S2×S2, −ω⊕ω)/2 =
2π. The Hamiltonian function which generates the half-turn rotation about
a diameter has Hofer length 2π. In this sense, the constant σ/2 seems to
be precise. This is plausible as rotation by more than half the way around
a diameter is not Hofer (nor spectral) length minimizing: one can generate
the same diffeomorphism by rotation in the opposite direction. However, it
is not yet known if this situation is engulfable. In some cases, the Darboux
neighborhood of the diagonal can be quite large. For the sphere the author
speculates the largest possible Darboux neighborhood to be the compliment
of the anti-diagonal in S2 × S2.
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[25] D. Salamon and E. Zehnder, Morse theory for periodic solutions of Hamiltonian
systems and the maslov index, Comm. Pure Appl. Math. 45 (1992), 1301–1360.

[26] M. Schwarz, On the action spectrum for closed symplectically aspherical manifolds,
Pacific J. Math. 193 (2000), 1046–1095.

[27] M. Usher, Spectral numbers in Floer theories, Compositio Math., to appear, preprint,
arXiv: 0709.1127.

[28] I. Ustilovsky, Conjugate points on geodesics of Hofer’s metric, Diff. Geom. Appl. 6
(4) (1996), 327–342.

[29] C. Viterbo, Symplectic topology as the geometry of generating functions, Math. Ann.
292 (4) (1992), 685–710.



LENGTH MINIMIZING PATHS IN HAM(M, ω) 187

Department of Mathematics

Penn State University

University Park, PA

USA

E-mail address: spaeth@math.psu.edu

Received 08/06/2007, accepted 05/07/2008
This work formed a portion of my Ph.D. thesis. I wish to thank my advisor Yong-Geun
Oh for his guidance and support. Theorem B is motivated by a version of that result
announced in the preprint [18]. I also wish to thank Joel Robbin and Augustin Banyaga
for many encouraging discussions. A final thanks goes to the referee whose comments
significantly improved the article.




