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HOLOMORPHIC VECTOR FIELDS AND PERTURBED
EXTREMAL KÄHLER METRICS

Akito Futaki

We prove a theorem which asserts that the Lie algebra of all
holomorphic vector fields on a compact Kähler manifold with a
perturbed extremal metric has the structure similar to the case of an
unperturbed extremal Kähler metric proved by Calabi.

1. Introduction

Let M be a compact symplectic manifold with symplectic form ω. On the
space J of all ω-compatible complex structures J , there is a natural sym-
plectic form with respect to which the scalar curvature S(J) of the Kähler
manifold (M, ω, J) becomes a moment map for the action of the group of
all Hamiltonian diffeomorphisms of (M, ω) acting on J (c.f. [3, 4]). This
means that the problem of finding extremal Kähler metrics can be set in
the framework of stability in the sense of geometric invariant theory. It
was shown in [7] that, perturbing the symplectic form on J and the scalar
curvature incorporating with the higher Chern classes and with a small real
parameter t, the perturbed scalar curvature S(J, t) becomes a moment map
with respect to the perturbed symplectic form on J . Note that the unper-
turbed scalar curvature is the trace of the first Chern class, see Section 2 for
the precise definitions.

Recall that a Kähler metric g is called an extremal Kähler metric if the
(1, 0)-part of the gradient vector field of the scalar curvature S

grad′ S = gij ∂S

∂zj

∂

∂zi

is a holomorphic vector field. Extremal Kähler metrics are critical points of
two functionals. One is the so-called Calabi functional. This is a functional
Ψ on the space Kω0 of all Kähler forms in a fixed de Rham class ω0 with
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fixed complex structure J . If ω ∈ Kω0 and S(ω) denotes the scalar curvature
of ω, then

Ψ(ω) =
∫

M
S(ω)2ωm,

where m = dimC M . Calabi originally defined extremal Kähler metrics to
be the critical points of Ψ. The other functional Φ is defined on J . If S(J)
denotes the scalar curvature of the Kähler manifold (M, ω, J) for J ∈ J ,
then

Φ(J) =
∫

M
S(J)2ωm.

It is easy to see that the extremal Kähler metrics are exactly the critical
points of Φ from the fact that the scalar curvature is the moment map on
J for the action of Hamiltonian diffeomorphisms as mentioned above.

Inspired by a work of Bando [1] the author defined in [7] perturbed
extremal Kähler metrics as follows: the Kähler metric g for (M, ω, J) is
called a perturbed extremal Kähler metric if the (1, 0)-part of the gradient
vector field

grad′ S(J, t) = gij ∂S(J, t)
∂zj

∂

∂zi

is a holomorphic vector field. From the fact that S(J, t) becomes a moment
map on J with respect to the perturbed symplectic structure, one can see
that the critical points of the functional

Φ(J) =
∫

M
S(J, t)2ωm

are J ’s for which the Kähler metric of (M, ω, J) is a perturbed extremal
Kähler metric. A computation in Remark 3.3 in [7] shows that it is not
clear if perturbed extremal Kähler metrics are the critical points of Ψ(ω) =∫
M S(ω, t)2ωm.
In [10], X. Wang explains how one gets the decomposition theorem of

Calabi [2] for the structure of the Lie algebra of all holomorphic vector
fields on compact Kähler manifolds with extremal Kähler metrics in the
finite dimensional setting of the framework of the moment maps, see also
[6]. On the other hand, L. Wang [9] explains how one gets the Hessian
formulae for the Calabi functional and the functional Φ in the finite dimen-
sional setting of the framework of moment maps. Recall that the Hessian
formula for the Calabi functional plays the key role for the proof of Calabi’s
decomposition theorem of the Lie algebra of all holomorphic vector fields
on compact Kähler manifolds with extremal Kähler metrics. Because of the
above mentioned difference between the perturbed case and the unperturbed
case, one can not expect that the same proof as the unperturbed case by
Calabi can be applied to the perturbed case. The purpose of this paper is
to see L. Wang’s finite dimensional arguments provide us a rigorous proof
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of Calabi’s decomposition theorem for compact Kähler manifolds with per-
turbed extremal Kähler metrics. Thus we obtain a similar statement of the
decomposition theorem:

Theorem 1.1. Let M be a compact Kähler manifold with a perturbed
extremal Kähler metric. Let h(M) be the Lie algebra of all holomorphic
vector fields and k be the real Lie algebra of all Killing vector fields of M .
Then
(a) h0(M) := k ⊗ C is the maximal reductive subalgebra of h(M).
(b) The (1, 0)-part of the gradient vector field

grad′ S(J, t) = gij ∂S(J, t)
∂zj

∂

∂zi

of S(J, t) belongs to the center of h0(M).
(c) h(M) has the structure of semi-direct decomposition

h(M) = h0(M) +
∑
λ�=0

hλ(M),

where hλ(M) is the λ-eigenspace of the adjoint action of grad′ S(J, t).

The proof of this theorem is given by following the arguments of L. Wang
almost word for word.

One may try to prove the existence of perturbed extremal Kähler metrics
by extending known results for the unperturbed extremal Kähler metrics.
As for the vector bundle case, Leung [8] has proved the existence of a kind of
perturbed Hermitian-Einstein equation derived from an idea of the moment
map which is related to Gieseker stability.

Throughout this paper, Hermitian inner products are anti-linear in the
first component and linear in the second component.

2. Perturbed extremal Kähler metric

Let M be a compact symplectic manifold of dimension 2m with symplectic
form ω, J the space of all ω-compatible complex structures on M . Then for
each J ∈ J , (M, J, ω) becomes a Kähler manifold. For a pair (J, t), t being
a small real number, we define a smooth function S(J, t) on M by

(2.1) S(J, t) ωm = c1(J) ∧ ωm−1 + tc2(J) ∧ ωm−2 + · · · + tm−1cm(J),

where ci(J) is the i-th Chern form defined by

(2.2) det
(

I +
i

2π
tΘ

)
= 1 + tc1(J) + · · · + tmcm(J),

Θ being the curvature form of the Kähler manifold (M, J, ω). Note that
we use S(J, t) in place of S(J, T )/2mπ in [7] to avoid the clumsy constant
1/2mπ.
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Definition 2.1. The Kähler metric g of the Kähler manifold (M, J, ω) is
called a t-perturbed extremal Kähler metric or simply perturbed extremal
metric if

(2.3) grad′ S(J, t) =
m∑

i,j=1

gij ∂S(J, t)
∂zj

∂

∂zi

is a holomorphic vector field.

The following was proved in [7, Proposition 3.2].

Proposition 2.2. The critical points of the functional Φ on J defined by

(2.4) Φ(J) =
∫

M
S(J, t)2ωm

are the perturbed extremal Kähler metrics.

The proof of this proposition essentially follows from the fact that the per-
turbed scalar curvature S(J, t) gives the moment map for the action of the
group of Hamiltonian diffeomorphisms with respect to a perturbed sym-
plectic structure on J . This perturbed symplectic structure is described
as follows. The tangent space of J at J is identified with a subspace of
C∞(Sym(⊗2T ′′∗M)) of all smooth sections of Sym(⊗2T ′′∗M). For a small
real number t, we define an Hermitian structure on C∞(Sym(⊗2T ′′∗M)) by

(ν, μ)t =
∫

M
mcm

(
νjk μi

�

√
−1
2π

dzk ∧ dz�, ω ⊗ I(2.5)

+
√

−1
2π

tΘ, . . . , ω ⊗ I +
√

−1
2π

tΘ
)

for μ and ν in the tangent space TJJ , where cm is the polarization of the
determinant viewed as a GL(m, C)-invariant polynomial, i.e., cm(A1, . . . ,
Am) is the coefficient of m! t1 · · · tm in det(t1A1 + · · · + tmAm), where I
denotes the identity matrix and Θ = ∂(g−1∂g) is the curvature form of
the Levi–Civita connection, and where ujkμ

i
l̄

should be understood as the
endomorphism of T ′

JM which sends ∂/∂zj to ujkμ
i
l̄
∂/∂zi. When t = 0, (2.5)

gives the usual L2-inner product. The perturbed symplectic form ΩJ,t at
J ∈ J is then given by

ΩJ,t(ν, μ) = �(ν,
√

−1μ)t(2.6)

= �
∫

M
mcm

(
νjk

√
−1μi

�

√
−1
2π

dzk ∧ dz�, ω ⊗ I

+
√

−1
2π

tΘ, . . . , ω ⊗ I +
√

−1
2π

tΘ
)

where � means the real part. In [7] we proved the following:
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Theorem 2.3. [7] If δJ = μ, then

(2.7) δ

∫
M

u S(J, t)ωm = ΩJ,t(2
√

−1∇′′∇′′u, μ).

Namely, the perturbed scalar curvature S(J, t) gives a moment map with
respect to the perturbed symplectic form ΩJ,t for the action of the group of
Hamiltonian diffeomorphisms on J .

Now we can prove Proposition 2.2. From (2.7) we have

δ

∫
M

S(J, t)2 ωm = 2
∫

M
S(J, t)δS(J, t) ωm(2.8)

= 2ΩJ,t(2
√

−1∇′′∇′′S(J, t), μ).

This shows that J is a critical point if and only if

(2.9) ∇′′ grad′ S(J, t) = 0,

i.e., the Kähler metric of (M, ω, J) is a perturbed extremal Kähler metric.
Let g be the complexification of the Lie algebra of the group of Hamiltonian

diffeomorphisms. Then g is simply the set of all complex valued smooth
functions u with the normalization

∫
M

u ωm = 0

with the Lie algebra structure given by the Poisson bracket. The infinitesimal
action of u on J is given by 2i∇′′∇′′u, see Lemma 10 in [3] or Lemma 2.3
in [7]. Define L : C∞(M) ⊗ C (∼= g) → C∞(M) ⊗ C by

(v, Lu)L2 = (∇′′∇′′v,∇′′∇′′u)t(2.10)

=
∫

M
mcm

(
vjku

i
�

√
−1
2π

dzk ∧ dz�, ω ⊗ I

+
√

−1
2π

tΘ, . . . , ω ⊗ I +
√

−1
2π

tΘ
)

.

More explicitly L is expressed as

Lu = mcm

(
ui

�jk

√
−1
2π

dzk ∧ dz�, ω ⊗ I

+
√

−1
2π

tΘ, · · · , ω ⊗ I +
√

−1
2π

tΘ
)

/ωm.
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We define L : C∞(M) ⊗ C → C∞(M) ⊗ C by Lu := Lu. Then L satisfies

(v, Lu)L2 = (∇′′∇′′u, ∇′′∇′′v)t(2.11)

=
∫

M
mcm

(
ujkv

i
�

√
−1
2π

dzk ∧ dz�, ω ⊗ I

+
√

−1
2π

tΘ, . . . , ω ⊗ I +
√

−1
2π

tΘ
)

.

and

Lu = mcm(ujk
i
�

√
−1
2π

dzk ∧ dz�, ω ⊗ I

+
√

−1
2π

tΘ, · · · , ω ⊗ I +
√

−1
2π

tΘ)/ωm.

Lemma 2.4. If v is a real smooth function and δJ = ∇′′∇′′v, then

δS(J, t) = Lv + Lv.

Proof. Let u be also a real smooth function. Then by (2.7)∫
M

u δS(J, t)ωm = �(2
√

−1∇′′∇′′u,
√

−1μ)t

= (∇′′∇′′u, ∇′′∇′′v)t + (∇′′∇′′v,∇′′∇′′u)t

= (u, Lv)L2 + (u, Lv)L2 .

�
Lemma 2.5. Let u and v be real smooth functions and put Xu = 2

√
−1∇′′∇′′u

and Xv = 2
√

−1∇′′∇′′v. Then we have

ΩJ,t(Xu,Xv) = ({u, v}, S(J, t))L2 .

Proof. Consider Xu and Xv as the infinitesimal action of real Hamiltonian
functions u and v on J . Since S(J, t) gives an equivariant moment map

(2.12)
∫

M
uS(σJ, t) ωm =

∫
M

(σ−1∗u)S(J, t) ωm

for a Hamiltonian diffeomorphism σ. If σ is generated by the Hamiltonian
vector field of a Hamiltonian function v, then (2.7) and (2.12) show

(2.13) ΩJ,t(2
√

−1∇′′∇′′u, 2
√

−1∇′′∇′′v) = −
∫

M
S(J, t){v, u}ωm.

�
Lemma 2.6. For any smooth complex valued function u, we have

(L − L)u = −1
2
(S(J, t)αuα − uαS(J, t)α),

where zα’s are local holomorphic coordinates and uα = gαβ∂u/∂zβ, thus the
right hand side being equal to i{u, S(J, t)}/2.
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Proof. It is sufficient to prove when u is a real valued function. Let v be
also a real valued smooth function. From (2.10) and (2.11), we have

(v, Lu − Lu)L2 = (∇′′∇′′u, ∇′′∇′′v)t − (∇′′∇′′v,∇′′∇′′u)t

= (∇′′∇′′v,∇′′∇′′u)t − (∇′′∇′′v,∇′′∇′′u)t.

It follows from this that

2�(∇′′∇′′v, i∇′′∇′′u)t = i(∇′′∇′′v,∇′′∇′′u)t + i(∇′′∇′′v,∇′′∇′′u)t

= −i(v, (L − L)u)L2 .

Let Xu denote the Hamiltonian vector field of u: i(Xu)ω = du. Then Xu = J
gradu and {u, S} = XuS. It then follows that

(v, (L − L)u)L2 = 2i�(∇′′∇′′v, i∇′′∇′′u)t

=
i

2
�(Xv, iXu) =

i

2
ΩJ,t(Xv,Xu)

= − i

2
({u, v}, S(J, t))L2 =

i

2
(v, {u, S(J, t)})L2

=
i

2
(v, XuS(J, t))L2 =

i

2
ω(v, g(Xu, J gradS(J, t)))L2

=
i

2
(v, du(J gradS(J, t)))L2

= −1
2
(v, S(J, t)αuα − uαS(J, t)α)L2 .

�

Lemma 2.7. Let u be a real smooth function and suppose δJ = ∇′′∇′′u.
Then

δ

∫
M

S(J, t)2ωm = 4(u, LS(J, t))L2 = 4(u, LS(J, t))L2 .

Proof. By (2.8)

δ

∫
M

S(J, t)2ωm = 2ΩJ,t(2i∇′′∇′′S(J, t),∇′′∇′′u)

= 4�(∇′′∇′′S(J, t),∇′′∇′′u)t

= 2(∇′′∇′′S(J, t),∇′′∇′′u)t + 2(∇′′∇′′u, ∇′′∇′′S(J, t))t

= 2(u, LS(J, t))L2 + 2(u, LS(J, t))L2 .

But from Lemma 2.6, we have

LS(J, t) = LS(J, t),

from which the lemma follows. �
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Lemma 2.8. Suppose that (ω, J) is a perturbed extremal Kähler metric and
thus that the gradient vector field of S(J, t) is a holomorphic vector field. If
δJ = ∇′′∇′′u for a real smooth function u, then

(δL)S(J, t) = −1
2
L(S(J, t)αuα − uαS(J, t)α) = L(L − L)u.

Proof. Recall that by Lemma 2.3 in [7]

LXJ = 2i∇′′
JX ′ − 2i∇′

JX ′′.

Therefore,

LJXJ = 2i∇′′
J iX ′ − 2i∇′

J(−i)X ′′

= −2(∇′′
JX ′ − ∇′

JX ′′).

This shows that LJXJ ∈ TJJ corresponds to −2∇′′∇′′u ∈ Sym ⊗2 T ′′∗M
via the identification TJJ ∼= Sym ⊗2 T ′′∗M . Thus L−1/2JXu

J corresponds
to ∇′′∇′′u. On the other hand,

(2.14) L 1
2JXu

ω = d

(
i

(
1
2
JXu

)
ω

)

and (
i

(
1
2
JXu

)
ω

)
(Y ) = ω

(
1
2
JXu, Y

)
= ω

(
−1

2
gradu, Y

)

= ω

(
−1

2
Xu, JY

)
= −1

2
du ◦ J = (dcu)(Y ),(2.15)

where dc = i
2(∂ − ∂). From (2.14) and (2.15) it follows that

(2.16) L 1
2JXu

ω = ddcu = i∂∂u.

Let fs is the flow generated by −1
2JXu. Suppose that S is a smooth function

such that grad′ S is a holomorphic vector field and that {Ss} is a family of
smooth functions parameterized by s such that

grad′
s Ss = grad′ S,

∫
M

Ss (f∗
−sω)m =

∫
M

S ωm,

where grad′
s Ss is the (1, 0)-part of the gradient vector field of Ss with respect

to f∗
−sω. It is easy to see that if f∗

−sω = ω + i∂∂ϕ, then Ss = S + Sαϕα.
Then (2.16) shows

(2.17) Ss = S + sSαuα + O(s2).

We have

(2.18) L(fsJ, ω)f∗
s Ss = f∗

s (L(J, f∗
−sω)Ss) = 0.
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Taking the derivative of (2.18) with respect to t at t = 0, we obtain

(2.19) δL · S + L

(
−1

2
(JXu)S + Sαuα

)
= 0.

On the other hand,

JXu · S = g(JXu, gradS) = ω(Xu, gradS) = du(gradS)(2.20)

= (∂u + ∂u)(∇′S + ∇′′S) = uαSα + Sαuα.

It follows from (2.19) and (2.20) that

δL · S = −L

(
−1

2
(uαSα + Sαuα) + Sαuα

)

= −L

(
1
2
(Sαuα − uαSα)

)
.

Applying this with S = S(J, ω) and using Lemma 2.6 complete the proof of
Lemma 2.8. �

Theorem 2.9. Let J be a critical point of Φ, i.e., (ω, J) gives a perturbed
extremal Kähler metric and u be a real smooth function on M . Then the
Hessian of Φ at J in the direction of ∇′′∇′′u and ∇′′∇′′v is given by

Hess(Φ)J(∇′′∇′′u, ∇′′∇′′v) = 8(u, LLv) = 8(u, LLv).

Proof. Let δJ = ∇′′∇′′v. By using Lemma 2.7, Lemma 2.8 and Lemma
2.4 successively, one obtains

Hess(Φ)J(∇′′∇′′u, ∇′′∇′′v) = 4δ(u, LS(J, t))

= 4(u, δL · S(J, t) + LδS(J, t))

= 4(u, L(L − L)v + L(L + L)v)

= 8(u, LLv).

If one uses the third term in Lemma 2.7 and δL = L − L, then one gets the
third term of Theorem 2.9. This completes the proof. �

3. Proof of Theorem 1.1

In this section, we give a proof of Theorem 1.1. Suppose that g is a perturbed
extremal Kähler metric on (M, ω, J). Let X be a holomorphic vector field
and α be the dual 1-form to X, that is

α(Y ) = g(X, Y ), α = αidzi = gjiX
jdzi.
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Since X is a holomorphic vector field

∂α = (∇iαj − ∇jαi)dzi ∧ dzj = 0.

Let α = Hα + ∂ψ be the harmonic decomposition, where Hα denotes the
harmonic part. Then

Lψ = mcm

(
ψi

�jk

√
−1
2π

dzk ∧ dz�, ω ⊗ I +
√

−1
2π

tΘ, . . . , ω ⊗ I +
√

−1
2π

tΘ
)

= mcm

(
(Xi − (Hα)i)�jk

√
−1
2π

dzk ∧ dz�, ω ⊗ I

+
√

−1
2π

tΘ, . . . , ω ⊗ I +
√

−1
2π

tΘ
)

= −mcm

(
(Hα)i

�jk

√
−1
2π

dzk ∧ dz�, ω ⊗ I

+
√

−1
2π

tΘ, . . . , ω ⊗ I +
√

−1
2π

tΘ
)

= −mcm

(
(Hα)i

j�k + (Rj�
i
p(Hα)p)k

√
−1
2π

dzk ∧ dz�, ω ⊗ I

+
√

−1
2π

tΘ, . . . , ω ⊗ I +
√

−1
2π

tΘ
)

.

Note that being ∂-harmonic and being ∂-harmonic are equivalent on com-
pact Kähler manifolds, and thus

(Hα)qj = ∇j(Hα)q = 0.

This implies (Hα)i
j = 0. It follows that

Lψ = −mcm

(
Rj�

i
p,k(Hα)p

√
−1
2π

dzk ∧ dz�, ω ⊗ I(3.1)

+
√

−1
2π

tΘ, . . . , ω ⊗ I +
√

−1
2π

tΘ
)

= −mcm

(
Rj�

i
k,p(Hα)p

√
−1
2π

dzk ∧ dz�, ω ⊗ I

+
√

−1
2π

tΘ, . . . , ω ⊗ I +
√

−1
2π

tΘ
)

= −(Hα)p∇pS(J, t) = −(Hα)q∇qS(J, t),
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where we have used the second Bianchi identity Rj�
i
p,k = Rj�

i
k,p and

∇pS(J, t) = ∇p
1
t

(
cm

(
ω ⊗ I +

i

2π
tΘ

)
− ωm

)

=
1
t
∇pcm

(
ω ⊗ I +

i

2π
tΘ

)

= mcm

(
Rj�

i
k,p

√
−1
2π

dzk ∧ dz�, ω ⊗ I

+
√

−1
2π

tΘ, . . . , ω ⊗ I +
√

−1
2π

tΘ
)

.

Note that ∇qS(J, t) ∂
∂zq is a conjugate holomorphic vector field and that

(Hα)qdzq is a conjugate holomorphic 1-form because Hα is a ∂-harmonic
(0, 1)-form. It follows from (3.1) that Lψ = constant. But since

∫
M Lψωm =

0 by (2.10) we obtain Lψ = 0. This implies that grad′ ψ is a holomorphic
vector field. Then (Hα)i ∂

∂zi = X − grad′ ψ is also holomorphic. It then
follows that

∇k(Hα)j = 0.

But since (Hα) is ∂-harmonic, we also have ∇k(Hα)j = 0. Thus Hα is
parallel.

This proves the direct sum decomposition as a vector space

h(M) = a(M) + h
′(M),

where a(M) is the Lie subalgebra of all parallel holomorphic vector fields
and

h
′(M) = {X ∈ h(M) | X = grad′ u for some u ∈ C∞

C (M)}.

It is easy to see
[a(M), a(M)] = 0;

[a(M), h′(M)] ⊂ h
′(M);

[h′(M), h′(M)] ⊂ h
′(M).

Now by Theorem 2.9 we have LL = LL. Thus L preserves Ker L. Let Eλ

denote the λ-eigenspace of 2L|Ker L. If u ∈ Eλ, then grad′ u ∈ h′(M) and

λu = 2Lu

= 2(L − L)u

= S(J, t)αuα − uαS(J, t)α.

This implies [grad′ S(J, t), grad′ u] = λ grad′ u. We put

grad′(Eλ) := hλ(M) for λ �= 0,

grad′(E0) := h
′
0(M),

h0 = a(M) + h
′
0(M).
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Then we obtain the decomposition

h(M) =
∑

λ

hλ(M),

where hλ(M) is the λ-eigenspace of ad(grad′ S(J, t)). Note that the real and
imaginary parts of an element of a(M) are parallel and Killing and hence
[grad′ S(J, t), a(M)] = 0.

Finally, since E0 = Ker L∩Ker L, the real and imaginary parts are respec-
tively in E0, that is, E0 is the complexification of the purely imaginary func-
tions u such that grad′ u is holomorphic. The real parts of such grad′ u’s are
Killing vector fields, see Lemma 2.8 in [5]. The real parts of the elements of
a(M) are also Killing vector fields. Thus h0(M) is reductive. Obviously,
h0(M) is a maximal reductive subalgebra. This completes the proof of
Theorem 1.1.
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