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QUANTIZATION OF THE SERRE SPECTRAL SEQUENCE

Jean-Francois Barraud and Octav Cornea

The present paper is a continuation of our earlier work [Lagrangian
intersections and the Serre spectral sequence, Ann. of Math. 166
(2007), 657–722.]. It explores how the spectral sequence introduced
there interacts with the presence of bubbling. As consequences are
obtained some relations between binary Gromov–Witten invariants
and relative Ganea–Hopf invariants, a criterion for detecting the mon-
odromy of bubbling as well as algebraic criteria for the detection of
periodic orbits.
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1. Introduction

In [1] has been introduced an algebraic way to encode the properties of
high-dimensional moduli spaces of trajectories in Morse–Floer type theories.
The basic idea is that, by making use of a “representation” theory of the
relevant moduli spaces

M(x, y)
lx,y−→ G

into some sufficiently large topological monoid G, one can define a “rich”
Morse type chain complex whose differential is of the usual form

dx =
∑

y

ax,yy,

but ax,y, the coefficient “measuring” the moduli space M(x, y), belongs to a
graded ring (for example, the ring of cubical chains of G) and is, in general,
not zero when dim(M(x, y)) > 0. By representation theory, it is meant here
not only that the maps lx,y are continuous but also that they are compatible
in the obvious way with compactification and with the crucial boundary
formula:

(1.1) ∂M(x, y) =
⋃

z

M(x, z) × M(z, y).

The complex constructed this way comes with a natural filtration induced
by the grading of the generators x, y, . . . . The pages of order greater than 1
of the associated spectral sequence are invariant with respect to the various
choices made in the construction and their differentials encode algebraically
the properties of the M(x, y)’s.

This construction is described in the absence of bubbling in [1] and, in
[2], it is shown to be easily extendable to cases when pseudo-holomorphic
spheres and disks exist as long as we work under the threshold of bubbling.

The present paper explores what happens when bubbling does occur.
It is obvious that, to study this case, it is natural to start with the

Hamiltonian version of Floer homology and this is indeed the setting of
this paper. In particular, the moduli spaces M(x, y) consist of Floer tubes
and the monoid G is the space of pointed Moore loops on M , ΩM , with
(M2n, ω) our underlying symplectic manifold. We will also restrict to the
monotone case even if the machinery described here appears to extend to
the general case. The reason for this is that the main phenomena we have
identified are already present in this case and, at the same time, in this way
we avoid to deal with the well-know transversality issues which are present
in full generality.

Here is a short summary of our findings. First, it is not surprising that
when bubbling is possible, only some of the pages of the spectral sequence
mentioned before exist. It is also expectable that the number of pages that
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are defined should roughly be the minimal Chern class, cmin, and that, more-
over, some of these pages should again be independent of the choices made
in the construction.

What is remarkable is that, in general, these pages do not coincide with
those associated to a Morse function: a quantum deformation is generally
present. Given that in the Morse case the resulting spectral sequence is,
as shown in [1], the Serre spectral sequence of the path-loop fibration over
M , we see that this construction provides a new symplectic invariant which
consists of the first cmin pages (together with their differential) of a spectral
sequence which is a quantum deformation of the Serre spectral sequence. One
additional important point is that, on the last defined page, the presumptive
differential, dr, is still defined and invariant but might not verify (dr)2 = 0.

Of course, the next stage is to understand — at least in part — this
quantum deformation in terms of classical Gromov–Witten invariants. In
this respect, we obtain that the quantum part of the first interesting dif-
ferential, d2, can be expressed in terms of binary Gromov–Witten invari-
ants (these are those associated to spheres with two marked points) and,
often times, the classical part of the differential can be expressed in terms of
Ganea–Hopf invariants. In this case, the relation (d2)2 = 0 becomes a relation
between these two types of invariants which takes place in the Pontryagin
ring H∗(ΩM). Undoubtedly, this is just a first step towards understand-
ing the deeper relationships between the combinatorics of Gromov–Witten
invariants and classical algebraic topology invariants encoded in the ring
structure of H∗(ΩM). In a different direction, in the case of a Hamilton-
ian fibration over S2, the components of the differentials involving curves
of degree 1 over the base can be thought of as extensions of the Seidel
morphism [11].

The next interesting point is to understand what happens for the first r
for which (dr)2 �= 0. Clearly, the culprit is bubbling but interestingly enough
what this non-vanishing relation detects is monodromy — the fact that in
the appropriate moduli space the attachment point of the bubbles turns
non-trivially around Floer cylinders — which turns out to interfere with the
representation maps lx,y. The fact that dr is invariant but, simultaneously,
(dr)2 might not vanish is quite remarkable and, indeed, this morphism dr

by itself is already of some interest.
Finally, we also discuss an application of this structure to the detection

of periodic orbits. This provides a sort of algebraic counterpart to the result
of Hofer–Viterbo [6].

The paper is structured as follows. In the second section, we introduce
the main notation and give the precise statements of our results. The third
section contains the proofs. In the last section, we first shortly mention some
possible extensions of the construction, we then provide some examples and,
finally, we discuss the application to periodic orbits.
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2. Notation and statement of results

2.1. Setting and recalls. Fix the symplectic manifold (M2n, ω) and we
suppose for now that M is closed. We also assume that M is monotone
in the sense that the two morphisms ω : π2(M) → R and c1 : π2(M) → Z

are proportional with a positive constant of proportionality ρ. We denote
by cmin the minimal Chern class and by ωmin the corresponding minimal
positive symplectic area (so that we have ωmin = ρcmin).

2.1.1. Binary Gromov–Witten invariants. Fix on M a generic almost
complex structure J which tames ω. The binary Gromov–Witten invariants
we are interested in can be described as follows: pick a generic Morse function
f and a metric on M . Denote by i(x) = indf (x) for each x ∈ Crit(f). For two
critical points x and y and a class α ∈ π2(M) such that i(x)−i(y) + 2c1(α)−
2 = 0, we define GWα(x, y) as the number of elements in the moduli space
M(J, α; x, y) which consists of J-holomorphic spheres in the homology class
α with two marked points, one lying on the unstable manifold of x and
the other on the stable manifold of y, modulo reparametrization. As such
GWα(x, y) is not an invariant (because x, y might not be Morse cycles).
However, if for two Morse homology classes [x] = [

∑
λixi] and [y] = [

∑
μiyi],

we define GWα([x], [y]) =
∑

λiμjGWα(xi, yj) then we obtain an invariant.
For α ∈ π2, let [α] be its image by the morphism π2(M) → H1(ΩM).

2.1.2. The Novikov ring. Let L(M) be the space of contractible loops
in M .

Let Γ be the image of the Hurewicz morphism π2(M) → H2(M, Z/2).
The two forms ω and c1 define morphisms Γ :

ω,c1−−→ R, Z which under our
monotonicity assumption are proportional. Let Γ0 = Γ/ ker(ω). We let Λ be
the associated Novikov ring which is defined as follows

Λ =

⎧
⎨

⎩
∑

α∈Γ0

λαeα

⎫
⎬

⎭,

where the coefficients λα belong to Z/2 such that

∀c > 0, �{α, λα �= 0, ω(α) ≤ c} < + ∞.

The grading of the elements in Λ is given by |eλ| = − 2c1(λ).
We also denote by L̃(M) the covering of L(M) associated to Γ0: it is the

quotient of the space of couples (γ,Δ), where γ ∈ L(M) and Δ is a disk
bounded by γ, under the equivalence relation (γ,Δ) ∼ (γ′, Δ′) if γ = γ′ and
ω([Δ − Δ′]) = c1([Δ − Δ′]) = 0.

Remark 2.1. Here and later in the paper we could also use, alternatively,
rational coefficients as all the moduli spaces involved are orientable and the
orientations are compatible with our formulae.
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2.1.3. Moduli spaces of Floer tubes. Let H : M × S1 → R be a Hamil-
tonian function. The Hamiltonian flow associated to H is the flow of the
(time dependent) vector field XH defined by:

ω(XHt , ·) = − dHt.

All along this paper, the periodic orbits of XH will be supposed to be non-
degenerate. We denote by PH ⊂ L(M) the set of all contractible periodic
orbits of the Hamiltonian flow associated to H and we let P̃H be the covering
of PH which is induced from L̃(M).

For each periodic orbit x ∈ PH , we fix a lift (x,Δx) ∈ P̃H . For a generic
pair (H, J) and x, y ∈ PH , λ ∈ Γ0, we now consider the moduli spaces

M′(x, y; λ) = {u : R × S1 : u verifies (2.1)},

so that the pasted sphere Δx ∪ u ∪ (−Δy) is of class λ and

(2.1)
∂su + J(u)∂tu −J(u)XH(u) = 0, lim

s→−∞
u(s, t) = x(t), lim

s→ + ∞
u(s, t) = y(t).

Of course, these moduli spaces are quite well known in the field and we
refer to [10] for their properties. In particular, they have natural orienta-
tions and, when (x,Δx) �= (y, Δy) they admit a free R-action. We denote the
quotient by this action by M(x, y; λ) and we have

dim M(x, y; λ) = μ ((x,Δx)) − μ ((y, Δy)) + 2c1(λ) − 1,

where μ ((x,Δx)) is the Conley–Zehnder index of the orbit x computed with
respect to the capping disk Δx.

2.1.4. Monodromy of bubbling. Among the standard properties of the
moduli spaces above we recall that they admit a natural topology as well as
natural compactifications, M(x, y; λ), so that the following formula is valid:

(2.2) ∂M(x, y; λ) =
⋃

z,λ′ + λ′′ = λ

M(x, z; λ′) × M(z, y; λ′′) ∪ Σx,y,λ.

Here Σx,y,λ is a set of codimension 2 which consists of Floer tubes with
at least one attached bubble.

We will say that (H, J) has bubbling monodromy if there exist x, y ∈ PH

and λ ∈ Γ0 such that:

H1(Σx,y,λ; Z) �= 0.

This means, in particular, that π1(Σx,y,λ) �= 0 so that there are non-
contractible loops in the space of Floer tubes with bubbles.
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2.1.5. Truncated differentials and spectral sequences. The following
algebraic notions will be useful in the formulation of our results.

We say that the sequence of graded vector spaces (Er, dr), 0 ≤ r ≤ k is a
truncated spectral sequence of order k if (Er, dr) is a chain complex for each
r ≤ k − 1 which verifies H∗(Er, dr) = Er + 1 and dk is a linear map of degree
−1. A truncated spectral sequence of ∞-order is a usual spectral sequence.
A morphism of order k truncated spectral sequences is a sequence of chain
maps φr : (Er, dr) → (F r, dr), 0 ≤ r ≤ k such that H∗(φr) = φr + 1 for
0 ≤ r ≤ k − 1. We say that two truncated spectral sequences are isomorphic
starting from page s is they admit a morphism which is an isomorphism on
page s (and hence on each later page).

The typical example of a truncated spectral sequence appears as follows.
Assume that C∗ is a graded vector space and that F iC is an increasing
filtration of C∗. We say that a linear map d : C∗ → C∗−1 is a truncated
differential of order k compatible with the given filtration if d(F iC) ⊂ F iC
∀i and

(d ◦ d)(F rC) ⊂ F r−2kC

for all r ∈ Z. It is easy to see that a truncated differential of order k induces a
truncated spectral sequence of the same order. Indeed, by using the standard
descriptions of the r-cycles

Zr
p = {v ∈ F pC : dv ∈ F p−rC} + F p−1C

and r-boundaries

Br
p = {dF p + r−1C ∩ F pC} + F p−1C,

it is immediate to see that Br
p ↪→ Zr

p for 0 ≤ r ≤ k which allows us to define
the pages of the truncated spectral sequence by Er

p = Zr
p/Br

p. Obviously, d
induces differentials dr on Er when r < k as well as a degree −1 linear map
dk on Ek.

2.2. Main statement. We will formulate our main statement in a simple
case and we will discuss various extensions at the end of the paper. Therefore,
we assume here that (M, ω) is closed, simply-connected and monotone with
cmin ≥ 2.

Theorem 2.2. There exists a truncated spectral sequence of order cmin,
(Er(M), dr), whose isomorphism type starting from page 2 is a symplectic
invariant of (M, ω) and which has the following additional properties.

(i) As a bi-graded vector space we have an isomorphism

E2 ∼= H∗(M) ⊗ H∗(ΩM) ⊗ Λ.

(ii) The differential d2 has the decomposition

d2 = d2
0 + d2

Q,
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where d2
0 is the differential appearing in the classical Serre spectral

sequence of the path loop fibration ΩM → PM → M and d2
Q is a

H∗(ΩM) ⊗ Λ module map given on each x ∈ H∗(M) by:

d2
Qx=

∑

y,α

GWα(x, y)y[α]eα.

(iii) If (dcmin)2 �= 0, then any regular pair (H, J) has bubbling monodromy.

Remark 2.3. In certain cases, the equation d2 ◦ d2 = 0 (which is veri-
fied, for example, if cmin ≥ 3), translates into relations between binary
Gromov–Witten and certain relative Ganea–Hopf invariants which take
place in the Pontryagin algebra H∗(ΩM). To make these relations explicit,
we first recall the construction of the Ganea–Hopf invariants. They are
defined in the presence of two cofibration sequences Sq−1 r→ X → X ′ and
Sp−1 s→ X ′ → X ′′ ⊂ M (here X, X ′, X ′′ are finite type CW-complexes
included in the ambient manifold M) by the following procedure. There is a
co-action map associated to the first co-fibration sequence, j : X ′ → X ′ ∨Sq,
which we compose with the inclusion X ′ ∨ Sq ↪→ M ∨ Sq to get a map
ĵ : X ′ → M ∨Sq. We then consider the composition j̄ = ĵ◦s : Sp−1 → M ∨Sq

and we see that its projection onto M is null-homotopic. This means that
j̄ lifts to the homotopy fiber of M ∨ Sq → M which is homotopy equiva-
lent to Σq(ΩM + ), where the + indicates the addition of a disjoint base
point and Σ represents the pointed suspension. The homotopy class of
this lift is easily seen to be unique and thus we obtain a homotopy class
H(s, r) ∈ πp−1(Σq(ΩM + )) called the relative Ganea–Hopf invariant associ-
ated to s, r. In case the two cofibration sequences correspond to consecu-
tive cell attachments associated to passage through two consecutive critical
points of a Morse function f , there is a remarkable geometric interpretation
of this invariant: it equals the framed bordism class of the moduli space of
negative gradient flow lines of f which connect these two critical points [5].
Moreover, as shown in [4], under some restrictions these invariants can be
interpreted as differentials in the stable homotopy Atiyah–Hirzebruch–Serre
spectral sequence of the path loop fibration ΩM → PM → M . The purely
homological content of this, [H(s, r)] ∈ Hp−q−1(ΩM), is therefore identified
with the corresponding differential — d2

0 with the notation of the theorem
when p − q = 2 — in the Serre spectral sequence of the same fibration.

To see a particular case of interest here, assume that the symplectic mani-
fold M is simply-connected and has (integral) homology only in even degrees.
This ensures the fact that M admits a perfect Morse function f : M → R

(that is a Morse function whose associated Morse complex has trivial dif-
ferential). Given two critical points a, b such that indf (a) = indf (b) + 2, the
discussion above shows that we may define a relative Ganea–Hopf invariant
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[H(a, b)] = [H(s, r)] ∈ H1(ΩM), where s and r are the attaching maps corre-
sponding, respectively, to the critical points a and b. As the Morse function
is perfect each critical point is a Morse cycle and the classical differential d2

0
is the unique linear extension of the map given by

d2
0(a) =

∑

|b| = |a|−2

[H(a, b)]b.

Finally, the relation d2 ◦ d2 = 0 translates into:

∑

|y| = |x| + 2c1(α)−2, α + β = γ

GWα(x, y)GWβ(y, z) [α] · [β]

+
∑

|y′| = |z| + 2

GWγ(x, y′) [γ] · [H(y′, z)]

+
∑

|y′′| = |x|−2

GWγ(y′′, z) [H(x, y′′)] · [γ] = 0

which is valid for any pair x, z and γ such that |x| − |z| + 2c1(γ) − 4 = 0
(where − · − is the Pontryagin product H1(ΩM) × H1(ΩM) → H2(ΩM)).

The relation with the Seidel homomorphism is seen by considering the
spectral sequence in the case of a symplectic fibration over CP

1.
We also formulate here a very simple version of our application to the

detection of periodic orbits. We specialize to the case when the manifold
M admits a perfect Morse function. We also need the following notion. Let
x, y ∈ H∗(M) and λ ∈ Λ. We will say that x and zeλ (which exist on the E2

page of the spectral sequence in Theorem 2.2) are dr-related if x survives to
the rth level of the spectral sequence and there is some γ ∈ C∗(ΩM) so that
the product γ ⊗ zeλ also survives to the rth page of the spectral sequence
and we have dr([x]) = [γ ⊗ zeλ] + · · · .

Corollary 2.4. Assume that there are homology classes x, z ∈ H∗(M), |x| <
|z|, so that x is dr-related to zeλ and Hk(M)⊗Λq = 0 for |x| > k + q > |zeλ|).
Then for any self-indexed perfect Morse function f on M the set of values
v so that f−1(v) contains a closed characteristic is dense in [f(x), f(z)].

By a self-indexed Morse function f we mean here that the critical points
of the same index have the same critical value and indf (x) > indf (y) implies
f(x) > f(y). This implies that for any homology class a ∈ H∗(M) the
number f(a) is well defined.

There are many ways in which this statement can be extended and some
will be discussed at the end of the paper.
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3. Proof of the main theorem

3.1. Construction of the truncated spectral sequence. In this
section, we fix the 1-periodic Hamiltonian H and almost complex struc-
ture J compatible with ω so that the pair (H, J) is generic (of course, both
are in general time-dependent). For simplicity, we will also assume to start
that the manifold M is simply-connected but we will see later on that this
condition can be dropped with the price that the construction becomes more
complicated.

As in [1], the truncated spectral sequence we intend to discuss is induced
by a natural filtration of an enriched Floer type pseudo-complex. We use the
term pseudo-complex here to mean that we will not have a true differential
but rather a truncated one. The construction of this pseudo-complex is a
refinement of the classical Floer construction in which the coefficient ring is
replaced with the ring of cubical chains over the Moore loops on M . Here is
this construction in more detail.

3.1.1. Coefficient rings. Let C∗ denote the “cubical” chain complex, let
ΩX be the Moore loop space over X (the space of loops parameterized by
intervals of arbitrary length). Consider the space M ′ obtained from M by
collapsing to a point a simple path γ going through the starting point of each
periodic orbit. Notice that C∗(ΩM ′) is a differential ring where the product
is induced by the concatenation of loops. Finally, our coefficient ring is

R∗ = C∗(ΩM ′) ⊗ Λ.

This is a (non-abelian) differential ring, and its differential will be denoted
by ∂.

The (pseudo)-complex we are interested in is a (left) differential module
generated by the contractible periodic orbits of H over this ring,

C(H, J) = ⊕x̃∈P̃H
R∗ x̃/ ∼,

with the identification x̃eλ ∼ x̃�λ, where x̃�λ stands for the capping of x
obtained by gluing a sphere in the class λ to x̃. The grading of an element in
x̃ ∈ P̃H is given by the respective Conley–Zehnder index. There is a natural
filtration of this complex which is given by

F rC(H, J) = C∗(ΩM ′) < x̃ ∈ P̃H : μ(x̃) ≤ r > .

We will call this the canonical filtration of C(H, J).

3.1.2. Truncated boundary operator. The next step is to introduce a
truncated differential on C(H, J). We recall from § 2.1.3 the definition of
the moduli spaces M(x, y; λ) of Floer tubes. We will write M(x̃, ỹ) for the
moduli space of Floer tubes which lift to paths inside L̃(M) joining x̃ ∈ P̃H

to ỹ ∈ P̃H . With these conventions and — as assumed before — for a
generic choice of J and H the moduli spaces M(x̃, ỹ) are smooth manifolds
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of dimension |x̃|−|ỹ|−1 when x̃ �= ỹ, and they have a natural compactification
involving “breakings” of the tubes on intermediate orbits, or bubbling off
of holomorphic spheres. We let M(x̃, ỹ) be the respective compactification.
In our monotone situation, these compactifications are pseudo-cycles with
boundary.

To define the truncated boundary operator we proceed as in the usual
Floer complex, but we intend to take into consideration the moduli spaces
of arbitrary dimensions instead of restricting to the 0-dimensional ones. To
associate to the (compactification of the) moduli spaces coefficients in our
ring R, we first need to represent them into the loop space Ω(M ′), and
then choose chains representing them (i.e., defining their fundamental classes
relative to their boundary).

Let us start with “interior” trajectories, i.e., elements v ∈ M(x̃, ỹ). Let
u : R × S1 → M be a parametrization of v. Since the value of the action
functional

aH : L̃(M) → R, aH((γ,Δ)) = −
∫

D2
Δ∗ω +

∫

S1
H(t, γ(t)) dt

is strictly decreasing along the R direction, it can be used to reparametrize
u by the domain [−a(x̃),−a(ỹ)]×S1, and the restriction of u to the interval
[−a(x̃),−a(ỹ)] × {0} defines a Moore loop in M ′. This defines a map

(3.1) σx̃,ỹ : M(x̃, ỹ) → Ω(M ′)

which is continuous. We will call it the “spine” map.
This map should then be extended to the compactification M(x̃, ỹ) of

M(x̃, ỹ).
It is well known that the objects in M(x̃, ỹ) are constituted by Floer

trajectories possibly broken on some intermediate periodic orbits to which
might be attached some J-holomorphic spheres that have bubbled off.

It is easy to see that the map σx̃,ỹ extends continuously over the part of
this set where no spheres are attached to some tube in a point belonging
to the line R × {0}. Indeed, as in [1], except for these types of elements,
the spine map is compatible with the breaking of Floer tubes in the sense
that the loop associated to a broken trajectory is the product of the loops
associated to each “tube” component.

Let αmin ∈ Γ0 be the class so that c1(αmin) = cmin (by our monotonicity
assumption there is a single such class). By using again the monotonicity
assumption, we see that bubbling off of a sphere in class α ∈ Γ0 can occur
in a moduli space M(x̃, ỹ) with ỹ �= x̃�α only if

|x̃| − |ỹ| ≥ 2c1(α) + 1.

It is also important to note that bubbling of a sphere in the class α is also
possible inside the space M(x̃, x̃�α). In all cases, bubbling of an α sphere is
never possible if |x̃| − |ỹ| ≤ 2c1(α) − 1.
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We summarize this discussion:

Lemma 3.1. The spine map σx̃,ỹ extends continuously to M(x̃, ỹ) if

|x̃| − |ỹ| ≤ 2cmin − 1.

In case |x̃| − |ỹ| = 2cmin and if σ does not have such a continuous extension
to M(x̃, ỹ), then ỹ = x̃�αmin.

The spine map obtained in this way satisfies also a compatibility condi-
tion which we now make explicit. Given the inclusion M(x̃, z̃) × M(z̃, ỹ) ⊂
M(x̃, ỹ), the restriction of σx̃,ỹ on the set on the left of the inclusion equals
m ◦ (σx̃,z̃ × σz̃,ỹ) where

m : ΩM ′ × ΩM ′ → ΩM ′

is loop concatenation.
For pairs (x̃, ỹ) with |x̃| − |ỹ| ≤ 2cmin − 1, we use the map σx̃,ỹ to repre-

sent the moduli spaces M(x̃, ỹ) inside the loop space Ω(M ′). We then choose
“chain representatives” m(x̃, ỹ) ∈ C∗(ΩM ′), i.e., chains generating the fun-
damental class of σ(M(x̃, ỹ)) relative to its boundary, in such a way that

(3.2) ∂m(x̃, ỹ) =
∑

|ỹ|<|z̃|<|x̃|
m(x̃, z̃) ∗ m(z̃, ỹ),

where ∗ is the operation induced on C∗(ΩM ′) by the concatenation of loops.
The key point regarding this formula is that, under our assumption |x̃| −

|ỹ| ≤ 2cmin − 1, the compactified moduli space M(x̃, ỹ) is a manifold with
boundary. Moreover, its boundary verifies the usual formula valid in the
absence of bubbling so that the construction of the m(−,−)s is the same as
that in the non-bubbling setting. We refer to [1] for a complete discussion
of this construction.

We now define the boundary operator d by

(3.3) dx̃=
∑

1≤|x̃|−|ỹ|≤2cmin−1

m(x̃, ỹ) ỹ,

and extend it to the full complex using the Leibniz rule.
It is easy to check that d has degree −1 with respect to the total grading

and that it is compatible with the canonical filtration. Notice first that if
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γ⊗x̃ ∈ C∗(ΩM)⊗P̃H we have d◦d(γ⊗x̃) = (γ⊗(d◦d)(x̃)). We now compute

d ◦ d(x̃) =
∑

|x̃|−|ỹ|≤2cmin−1

d(m(x̃, ỹ) ỹ)

=
∑

1≤|x̃|−|ỹ|≤2cmin−1

∂m(x̃, ỹ) ỹ + m(x̃, ỹ) dỹ

=
∑

1≤|x̃|−|ỹ|≤2cmin−1
|ỹ|+1≤|z̃|≤|x̃|−1

m(x̃, z̃)m(z̃, ỹ) ỹ

+
∑

1≤|x̃|−|ỹ|≤2cmin−1
1≤|ỹ|−|z̃|≤2cmin−1

m(x̃, ỹ)m(ỹ, z̃) z̃

=
∑

1≤|x̃|−|ỹ|≤2cmin−1
|ỹ|−2cmin+1≤|z̃|≤|x̃|−2cmin

m(x̃, ỹ)m(ỹ, z̃) z̃,

and we see that d2 drops the filtration index by at least 2cmin. In the alge-
braic terms of § 2.1.5 we obtain:

Lemma 3.2. With the definition above, d is a truncated differential of order
cmin with respect to the canonical filtration on C(H, J) and thus it induces
a truncated spectral sequence Er(H, J) of the same order so that

E2(H, J) ∼= H∗(M) ⊗ H∗(ΩM) ⊗ Λ.

The isomorphism in the lemma is obvious because E1(H, J) ∼= CF∗(H, J)⊗
H∗(ΩM) and as d1 only involves the 0-dimensional moduli spaces of Floer
tubes we obtain that d1 is just: dF ⊗ id where (CF∗(H, J), dF ) is the usual
Floer complex (with coefficients in the Novikov ring Λ). Thus, we have
constructed our truncated spectral sequence and have proved property (i)
in Theorem 2.2.

Remark 3.3. Without the monotonicity assumption, but still assuming
that the moduli spaces in question are regular, there is no way to avoid the
bubbling phenomenon, even on low-dimensional moduli spaces. However, on
2-dimensional moduli spaces, the bubbling component is 0-dimensional and
hence consists in isolated points: for each of them, the real line R × {0}
can actually be deformed to avoid the point where the bubble is attached.
Interpolating between these perturbed real lines with the standard one in a
small neighbourhood of the “bubbled” trajectories defines a spine map for
the 2-dimensional moduli spaces which satisfies the desired continuity and
compatibility conditions.

3.2. Invariance of the truncated spectral sequence. To show invari-
ance, we will proceed along Floer’s original proof by first constructing a
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comparison morphism between the spectral sequences associated to two
different sets of generic data (Hi, Ji)i = 0,1. We will describe the construction
of this morphism in more detail below but we only mention here one remark-
able fact: despite the fact that in our spectral sequences we might have
dcmin ◦ dcmin �= 0 it is still true that the morphism dcmin is invariant.

The construction uses a homotopy between (H0, J0) and (H1, J1). As in
the usual Floer case, we consider a generic homotopy between them, (G, J̄),
and, for x̃ ∈ P̃H0 and x̃′ ∈ P̃H1 , we consider the moduli spaces N (x̃, x̃′) of
tubes v : R × S1 → M which lift in L̃(M) to a path joining x̃ to x̃′ and
verify the equation

(3.4) ∂su + J̄(s, u(s, t))(∂tu − XG(s, u(s, t))) = 0.

The moduli space N (x̃, x̃′) has properties similar to those of M′(−,−)
except that it has no R-invariance. Its dimension is |x̃| − |x̃′|. Clearly,
bubbling of an α-sphere inside such a moduli space is not possible if
|x̃| − |x̃′| ≤ 2c1(α) − 1. As in § 3.1, sphere bubbling is the only obstruc-
tion to extend the spine map. Assuming that |x̃| − |x̃′| ≤ 2cmin − 1 the spine
map can therefore be extended over these spaces in a way compatible with
the spine maps of (H0, J0) and (H1, J1) (as in [1]).

The chain morphism between the two (truncated)-complexes is defined
by a formula similar to (3.3),

Θ(x̃) =
∑

0≤|x̃|−|x̃′|≤2cmin−1

m′(x̃, x̃′)x̃′,

where m′(x̃, x̃′) is a chain in the loop space representing the moduli space
N (x̃, x̃′) (as in [1]). This morphism clearly respects the canonical filtrations.

We also have:

∂m′(x̃, x̃′) =
∑

|x̃′|≤|ỹ|≤|x̃|−1

m(x̃, ỹ)m′(ỹ, x̃′) +
∑

|x̃′| + 1≤|ỹ′|≤|x̃|
m′(x̃, ỹ′)m(ỹ′, x̃′).

Computing dΘ and Θd we get:

dΘ(x̃) = d

⎛

⎝
∑

0≤|x̃|−|x̃′|≤2cmin−1

m′(x̃, x̃′)x̃′

⎞

⎠

=
∑

0≤|x̃|−|x̃′|≤2cmin−1
1≤|x̃|−|ỹ|≤2cmin−1
0≤|ỹ|−|x̃′|≤2cmin−1

m(x̃, ỹ)m′(ỹ, x̃′)x̃′
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+
∑

0≤|x̃|−|x̃′|≤2cmin−1
0≤|x̃|−|ỹ′|≤2cmin−1
1≤|ỹ′|−|x̃′|≤2cmin−1

m′(x̃, ỹ′)m(ỹ′, x̃′)x̃′

+
∑

0≤|x̃|−|x̃′|≤2cmin−1
1≤|x̃′|−|ỹ′|≤2cmin−1

m′(x̃, x̃′)m(x̃′, ỹ′)ỹ′

and

Θd(x̃) =
∑

1≤|x̃|−|ỹ|≤2cmin−1
0≤|ỹ|−|x̃′|≤2cmin−1

m(x̃, ỹ)m′(ỹ, x̃′)x̃′

such that

dΘ − Θd =
∑

0≤|x̃|−|x̃′|≤2cmin−1
|x̃′|−|ỹ′|≤2cmin−1

|x̃|−|ỹ′|≥2cmin

m′(x̃, x̃′)m(x̃′, ỹ′)ỹ′

−
∑

0≤|x̃|−|ỹ|−1≤2cmin−1
|ỹ|−|x̃′|≤2cmin−1
|x̃|−|x̃′|≥2cmin

m(x̃, ỹ)m′(ỹ, x̃′)x̃′,

which is not 0, but has degree at least −2cmin with respect to the Maslov
index.

It is easy to see that this implies that Θ induces a morphism of truncated
spectral sequences:

Θ̄ : E(H0, J0) → E(H1, J1).

Similarly to the isomorphism in Lemma 3.2 it is easy to see that E1(Θ)
is identified with:

θF ⊗ id : CF (H0, J0) ⊗ H∗(ΩM) → CF (H1, J1) ⊗ H∗(ΩM),

where θF is the Floer comparison morphism. As this morphism induces
an isomorphism in homology we deduce that E2(Θ), and hence all of Θ̄ are
isomorphisms for r ≥ 2 and this shows the invariance claim in the statement
of Theorem 2.2.

Remark 3.4. A morphism of spectral sequences preserves the bi-degree,
therefore to show that Θ̄ is a morphism we only need that dΘ − Θd drops
the filtration degree by cmin. In other words, a considerable part of the
geometric information carried by Θ is actually forgotten in the spectral
sequence. There are some ways to recover it but as this goes beyond the
purpose of the present paper we will not discuss this here.
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3.3. Detection of monodromy. The purpose here is to prove Theorem 2.2
(iii) thus we fix a regular pair (H, J) and we assume that dcmin ◦ dcmin �= 0.

We start by looking again at the calculation for d◦d given before Lemma
3.2. We see from that formula that dcmin ◦ dcmin is given by a linear combi-
nation of terms of the form

S(x̃) =
∑

0≤|x̃|−|ỹ|≤2cmin−1
|ỹ|−2cmin + 1≤|z̃| = |x̃|−2cmin

m(x̃, ỹ)m(ỹ, z̃) z̃.

For each fixed z̃ with |z̃| = |x̃| − 2cmin this last sum can be rewritten as

S(x̃) =
∑

z̃

S(x̃, z̃)

with
S(x̃, z̃) =

∑

|x̃|−1≥|ỹ|≥|x̃|−2cmin−1

m(x̃, ỹ)m(ỹ, z̃) z̃.

Suppose that z̃ �= x̃�αmin. In that case, as indicated in Lemma 3.1, the
spine map is well defined and continuous on the whole space M(x̃, z̃) and
no bubbling is possible inside this space. But this means that we may find
a representing chain m(x̃, z̃) so that, as in formula (3.2),

(∂m(x̃, z̃)) z̃ = S(x̃, z̃)

which means that S(x̃, z̃) vanishes in Er for r ≥ 2.
Thus, the only terms which count in dcmin ◦ dcmin are S(x̃, x̃�αmin) and

if dcmin ◦ dcmin �= 0, then at least one such term survives to Er. To simplify
notation we let x̃�αmin = x̃t. Notice that the moduli space M(x̃, x̃t) is only a
pseudo-cycle with boundary in the sense that it is a stratified set with three
strata:

(i) a co-dimension two stratum

Σx̃,x̃t ⊂ M(x̃, x̃t)

formed by the bubbled configurations,
(ii) a co-dimension one stratum ∂M = ∪z̃ M(x̃, z̃) × M(z̃, x̃t),
(iii) a co-dimension zero stratum M(x̃, x̃t).
Fix now some x̃ and, to simplify notation, let Σ = Σx̃,x̃t and notice that

Σ is a compact manifold. The spine map σ is defined on M(x̃, x̃t) with
the exception of Σ. Notice also that Σ ∩ ∂M = ∅. Suppose that there exists
a continuous deformation σ′ of σ which agrees with σ with the exception
of a neighbourhood of Σ and which extends over Σ. Then, as M(x̃, x̃t) is
a pseudo-cycle, the same argument described above for the case z̃ �= x̃�αmin
applies also here (the point is that as Σ is of co-dimension 2, the construction
of representing cycles is still possible) and it shows that S(x̃, x̃t) does not
play any role in Er for r ≥ 2. To conclude, our assumption dcmin ◦ dcmin �= 0,
implies that there exists at least one x̃ so that such a deformation σ′ of σ
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does not exist. We now want to deduce from this that the first cohomology
group of Σ does not vanish.

Given that by definition c1(αmin) = cmin, it follows that each u ∈ Σ is
represented by a Floer tube R × S1 to which is attached a single sphere in
a point (tu, au) ∈ R × S1 so that the tube is mapped in M on the constant
orbit x̃ and the sphere is mapped to a pseudo-holomorphic sphere in the
class αmin. Thus, there is a continuous map

ξ : Σ → S1

such that ξ(u) = au.
To show that H1(Σ; Z) �= 0 it is enough to show that ξ is not null-

homotopic. Assume that ξ � 0. Then ξ can be lifted to an application
ξ̃ : Σ → R. Fix χ : R → R a smooth function supported on [−1, 1] and such
that χ(0) = 1. For A, s0 in R consider the function

χs0,A : R
Aχ(s−s0)−→ R → S1,

where the second map in the composition is t → eit.
The graph of this function defines a deformed spine

Δ(s0, A) = graph(χs0,A)

on R ×S1 with the property that, if A �= 2kπ, it avoids the point (s0, 0). For
each bubbled curve u ∈ Σ, we consider the deformed line on the tube given
by Δu = Δ(tu, ξ̃(u) + π). This line avoids the point (tu, au) and thus avoids
the “bubble.” We obtain in this way a continuous spine map: σ′ : Σ → ΩM ′

defined by

σ′(u) = u(Δu).

To conclude our proof, it is enough to show that this spine map extends
continuously to M(x̃, x̃t) without modifying the standard spine map on
∂M. Due to by-now standard gluing results [8, 10], for each point x ∈ Σ
there exists a small neighbourhood U(x) ⊂ Σ and an embedding φ : C ×
U(x) → M(x̃, x̃t) such that φ({0} × U(x)) =U(x). As Σ is compact, we can
cover it with a finite number of such neighbourhoods which we denote by
Ui, 1 ≤ i ≤ k with corresponding homeomorphisms φi. Denote Vi = φi(Ui)
and let pi : Vi → Ui be the obvious projection. For a point y ∈ V (x), let
di(y) = d(y, pi(y)) where d(−,−) is (some) distance in M(x̃, x̃t). By possibly
using smaller neighbourhoods Vi, we may assume that di(y) < 1, ∀i, y.
Finally, let hi : Ui → [0, 1], 1 ≤ i ≤ k, be a partition of the unity. We
put U(Σ) = ∪ Vi. We also consider a smooth function η : [0, 1] → R which is
decreasing, supported on [0, 1/2] and so that η(0) = 1. Let d′

i : Vi → R be
given by d′

i(x) = η(di(x)).
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With these notations we now extend σ′ to U(Σ): we let

Δu = Δ

(
∑

i

hi(pi(u))tpi(u),
∑

i

hi(pi(u))d′
i(u)(ξ̄(pi(u)) +π)

)
,

and put σ′(u) = u(Δu). As this map coincides with σ on ∂U(Σ) we may
extend σ′ to a continuous map on all of M(x̃, x̃t) so that it equals σ outside
U(Σ). This concludes the proof.

3.4. Quantum perturbation of the Serre spectral sequence. The
purpose of this subsection is to show point (ii) in Theorem 2.2 and thus
conclude the proof of this theorem.

The page E2 is well defined and invariant, and by Lemma 3.2

E2
p,q

∼= HFp(M ; Λ) ⊗ Hq(Ω(M)).

This is also the first page of the (classical) Serre path-loop spectral
sequence. However, the second differential, d2, on this page is, in general,
different from the classical one. To interpret d2 in terms of binary Gromov–
Witten invariants, we will use the Piunikin–Salamon–Schwarz construction
from [9]. To this end, we start with a quantized-Morse version of the spectral
sequence constructed before.

3.4.1. The quantized-Morse truncated spectral sequence. To a
Morse–Smale pair (f, g) on M , together with a generic almost com-
plex structure J we associate an extended quantized Morse complex
CM∗ = CM∗(f, M, J). This is the free module generated by the critical points
Crit (f) over the ring R together with a differential which will be described
below. The degree of a critical point x ∈ Crit(f) is given by its index.

Given the almost complex structure J on M , a “quantum-Morse” trajec-
tory from a critical point x to a critical point y in class α ∈ Γ0, is a finite
collection ((γ0, . . . , γk), (S1, . . . , Sk)) of paths and spheres in M such that:

(1) each sphere Si is a J-holomorphic sphere with a marked real line
[pi,0, pi,∞] on it, and

∑
i[Si] =α,

(2) ∀i, γi is a piece of flow line of −∇gf , joining Si−1(pi−1,∞) to Si(pi,0)
(with the convention that S−1(p−1,∞) = x and Sk + 1(pk + 1,0) = y).

We denote by Mα(x, y) the set of all such objects. For a generic choice of
(f, g, J), it is a smooth manifold of dimension

dim Mα(x, y) = |x| − |y| + 2c1(α) − 1.

There is no difficulty to prove this as regularity comes down to the usual
transversality of the appropriate evaluation maps [8] (in particular, this is
much simpler than the relative case discussed, for example, in [3]). To verify
the dimension formula notice that there are not only two marked points on
the spheres, but also a real line joining them.
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Such a trajectory defines a path from x to y by concatenation of the flow
lines and the marked real lines on the spheres. Notice that each flow line
segment can be parameterized by the value of −f , while on a holomorphic
sphere u : C ∪ {∞} → CP

1 → M , the map t ∈ [0, + ∞) �→
∫
|z|≤t u∗ω is

strictly increasing and defines a parametrization of the marked real line.
These independent parametrizations of the different segments can now be

shifted and aligned to produce a parametrization of the full respective path
by the segment [−f(x),−f(y) + ω(α)]. We also assume that the path γ used
to define M ′ and associate Moore loops to trajectories goes through all the
critical points of f . As a consequence, we obtain a continuous map

σ : M(x, y) → Ω(M ′).

The space Mα(x, y) of course has a natural Morse–Gromov compactifica-
tion Mα(x, y), and the question arises again of extending σ over it. Clearly,
σ extends continuously over broken trajectories as long as no bubble compo-
nents appear (as in § 3.1.2). However, it might fail to extend over trajectories
where new spheres bubble off. The arguments used in the discussion of this
point for Floer moduli spaces still apply in this situation. Thus, the map
σ can be defined with the desired continuity and compatibility conditions
whenever, as in Lemma 3.1,

|x| − |y| ≤ 2cmin − 1.

Choosing the chain representatives mα(x, y) of σ(Mα(x, y)), we define a
truncated boundary operator on CM∗ in the usual way:

dx =
∑

1≤|x|−|y| + 2c1(α)−1≤2cmin−1

mα(x, y) yeα.

The complex (CM∗, d) admits also a differential filtration defined by the
degree of the elements in Z/2 < Crit(f) > ⊗ Λ. This induces a truncated
spectral sequence in the same way as before. The second differential, d2,
of this spectral sequence has a natural interpretation in terms of Gromov–
Witten invariants.

To see this first notice that if an element u ∈ Mα(x, y) with α �= 0 is so
that it contains k spheres, then the dimension of Mα(x, y) is at least equal
to k. Indeed, the choice of the real line on each of the spheres in u gives rise
to a full S1 parametric family of elements in this moduli space. The first con-
sequence of this remark is that the differential d1 in the spectral sequence is
simply dMorse⊗ id which is defined on Z/2 < Crit(f) > ⊗H∗(ΩM)⊗Λ where
dMorse is the usual Morse differential. Indeed, d1 involves 0-dimensional
quantized-Morse moduli spaces and the remark above shows that when α �= 0
these spaces are never 0-dimensional if non-void.
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Suppose now, to shorten the discussion, that f is a perfect Morse function
(if not, critical points should be replaced by a basis of the Morse homology
of M).

In this case, for a critical point x of f the second differential d2x is defined
and is given by d2x=

∑
α,y[mα(x, y)]y, where the sum is taken over all

(x, y, α) such that Mα(x, y) is 1-dimensional. Notice that we may associate
a homology class in H∗(ΩM) to each such moduli space in this case because
the Morse differential vanishes. We let [mα(x, y)] be this class.

In the expression for d2 the sum of the terms where α is trivial, d2
0, is

given by 1-parametric families of Morse trajectories and, as shown in [1],
this coincides with the second differential in the Serre spectral sequence of
the fibration ΩM → PM → M . On the other hand, when α is non-trivial,
as a second consequence of the remark above, we see that the corresponding
moduli space Mα(x, y) is the set of single holomorphic spheres in class α
with a marked real line [p0, p∞] such that p0 ∈ W u(x) and p∞ ∈ W s(y).

The choice of the real line defines an S1-action on Mα(x, y), and the
quotients are 0-dimensional:

S1 → Mα(x, y) → Mα(x, y)/S1.

Moreover, letting
GWα(x, y) = GWα([x], [y])

be the Gromov–Witten invariants of holomorphic spheres in class α with
two marked points, associated to the homology class of x and the dual class
of y, we have:

GWα(x, y) =
∑

�(Mα(x, y)/S1).

In particular, GWα(x, y) is the number of components of Mα(x, y).
Each component of the space Mα(x, y) defines a loop of loops in M ′,
whose class in H1(ΩM ′) is the image [α] of α under the map π2(M ′) →
H1(ΩM ′). This image is the same for all the components such that
[mα(x, y)] =GWα(x, y)[α] ∈ H1(ΩM). Finally, we have

d2x= d2
0x+

∑

0 	= α∈π2(M)

GWα(x, y)[α]yeα.

3.4.2. Relating the Morse and Floer spectral sequences. To com-
pare the (truncated) spectral sequences given by the extended Floer and
quantized-Morse complexes, we use the technique introduced in [9] to com-
pare Floer and Morse homologies. For a generic pair (H, J), we recall the
construction of the truncated complex C(H, J) from § 3.1.1.

With the notation in that subsection, consider a critical point x of f and
a lift ỹ of a (contractible) periodic orbit y of XH .

A hybrid trajectory from x to ỹ is a quantized-Morse trajectory — as
defined in § 3.4.1 — starting at x but now ending with a disk bounded by y.
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The definition for a hybrid trajectory is as in § 3.4.1, with the following
modifications.

(i) The last sphere Sk is replaced with a disk u with one cylindrical end,
so that in polar coordinates and away from 0:

C
u−→ M with C = {0} ∪ {es + it, (s, t) ∈ R × S1}.

(ii) The map u satisfies a ‘cut off’ Floer equation. For a fixed cut-off
function χ such that χ(s) = 1 for s ≥ 1 and χ(s) = 0 for s ≤ 0 we have

(3.5) ∂su + J(u)(∂tu − χ(s)XH) = 0, lim
s→ + ∞

u(s, t) = y(t).

(iii) The negative gradient flow arc γk ends at u(0).
(iv) The sum of the homotopy class of u with

∑k−1
i = 1[Si] defines the capping

ỹ of y.
For a generic choice of the data, all the relevant sub-manifolds and eval-

uation maps can be made transversal, so that the moduli spaces M(x, ỹ) of
hybrid trajectories are smooth manifolds of dimension

dim M(x, ỹ) = |x| − |ỹ|.
These moduli spaces admit a natural compactification — we refer to [9]

for the proof. We only recall here that the key point for showing compactness
is to derive a uniform bound

E(u) =
∫∫ ∥∥∥∥

∂u

∂s

∥∥∥∥
2

ds dt ≤ a(ỹ) + ‖H‖∞.

for the energy from the “cut off” Floer equation.
To associate to a hybrid trajectory in M(x, ỹ) a path from x to ỹ(0), it

is enough to choose a parametrization of the real line u(R) on the terminal
disk and for that we use the energy of the curve:

(3.6) E(r) =
∫

(−∞,r]×S1

∥∥∥∥
∂u

∂s

∥∥∥∥
2

ds dt.

This choice defines a continuous spine map σ : M(x, ỹ) → Ω(M ′), that
can again be extended to the natural compactification M(x, ỹ) up to dimen-
sion 2cmin − 1. Choosing compatible chain representatives of these spaces,
we obtain chains m(x, ỹ) ∈ C∗(Ω(M ′)) such that:

(3.7) ∂m(x, ỹ) =
∑

0≤|x|−|zeα|−1≤2cmin−1
0≤|zeα|−|ỹ|≤2cmin−1

m(x, zeα)m(zeα, ỹ)

+
∑

0≤|x|−|z̃|≤2cmin−1
0≤|z̃|−|ỹ|−1≤2cmin−1

m(x, z̃)m(z̃, ỹ)
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(where m(x, zeα) = mα(x, z)). Consider now the truncated morphism φ
given by

φ(x) =
∑

|x|−|ỹ|≤2cmin−1

m(x, ỹ)ỹ.

As expected, the map dφ − φd fails to vanish in general, but one easily
checks that (dφ − φd)(x) is supported on elements ỹ with |ỹ| ≤ |x| − 2cmin.
This means that φ induces a morphism Φ between the respective truncated
spectral sequences of order cmin.

Notice that the Φ1 coincides with

φ′ ⊗ id : CMorse(f, g) ⊗ H∗(ΩM) → CF∗(H) ⊗ H∗(ΩM),

where φ′ is the usual PSS morphism and CMorse(f, g) is the Morse complex
of (f, g). But, as φ′ induces an isomorphism in homology, this implies that
Φ2 is an isomorphism which, in particular, proves point (ii) of Theorem 2.2
and concludes the proof of this theorem.

4. Examples, applications and further comments

4.1. Extensions. We recall that the setting considered till now in the
paper was that of a closed, simply-connected, monotone manifold for which
cmin ≥ 2. All the constructions described previously in the paper extend
much beyond this setting. We will only discuss here a few such possibilities
different from those already mentioned in the introduction (use of integer or
rational coefficients and the non monotone case).

4.1.1. π1 �= 0. There are two essential ways to perform our constructions
in the presence of a non-trivial fundamental group. They both stem from
the fact that the only place where the fundamental group of M affects the
construction is in the possible dependence of the resulting homology on the
path γ which is used to define the quotient

M → M ′

as described in § 3.1.1. Of course, at the level of the spectral sequences
π1(M) �= 0 also plays a role as local coefficients might be necessary.

(A) The first way to deal with the fundamental group consists in enlarg-
ing the Novikov ring by tensoring with the group ring Z/2 [π1(M)].
Geometrically, this can be viewed as performing all the topological
constructions on the universal covering, M̃ , of M even though all
equations satisfied by the elements in our new moduli spaces take
place after projection into M . The covering P̃H is replaced by the
covering P̃ ′

H which is the pull-back of M̃ → M over P̃H → PH → M .
In this case, our truncated complex is isomorphic to:

Z/2 < PH > ⊗Λ ⊗ Z/2[π1(M)] ⊗ C∗(ΩM).
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(B) A second possibility is localization or change of coefficients. This is
maybe even more useful in applications than A and consists in replac-
ing in all the construction the coefficient ring C∗(ΩM) by C∗(ΩX),
where X is some simply-connected topological space which is endowed
with a map:

η : M → X.

All our moduli spaces are represented inside Ω(M ′) and, by compo-
sition with the map Ωη : Ω(M ′) → Ω(X), they are also represented
inside Ω(X). The results in Theorem 2.2 remain true after this change
of coefficients except that H∗(ΩM) is replaced by H∗(ΩX) and the
path loop fibration over M is replaced with the fibration of base M
which is obtained by pull-back over the map η from the path-loop
fibration over X, ΩX → PX → X.

4.1.2. cmin =1. It is easy to see that even if cmin = 1 the E2 term of our
spectral sequence is well defined together with the map d2 (which might not
be a differential though) and Theorem 2.2 remains true for the E2 term.
This happens because, to prove the invariance of d2, only moduli spaces of
dimension 2 are needed. In turn, as bubbling is a codimension two phenom-
enon this means that the bubbling points can be avoided when defining the
spine map over these moduli spaces (as also discussed in Remark 3.3).

4.1.3. Non-compactness. Finally, it is obviously possible to extend this
theory to the case when M is not compact if it is convex at infinity. In
that case, the Hamiltonians used should have the form H(r, x) = h(er) near
infinity, where r is the R-coordinate in the symplectization of the boundary,
and h is a function with limr→∞ h′(er) = ∞.

4.2. Examples.

4.2.1. CP
1. Take now M = CP

1, and consider the Morse function having
only one maximum a = ∞ and one minimum b = 0 as critical points. Let us
choose a simple path from b to a to serve as the base point of M ′. As auxiliary
data, we can simply stick to the standard metric and complex structure on
CP

1: one easily checks that genericity is fulfilled for all the moduli spaces
involved in the computations below (namely, only maps CP

1 → CP
1 of

degree 0 and 1 are used; it is enough to observe that the kernel of the
linearization of ∂̄ at a constant map is 1-dimensional, and 3-dimensional at
the identity, so that in both cases the cokernel vanishes).

The page 2 of the spectral sequence is simply H∗(CP
1) ⊗ H∗(ΩS2). Let

α denote the identity map S2 → CP
1. Seen as the S1 family of flow lines

going from a down to b, α defines a cycle [α] that generates H1(Ω(S2)).
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The Novikov ring is generated by the multiples of α:

Λ =

⎧
⎨

⎩
∑

λk∈Z2

λke
kα,

⎫
⎬

⎭.

and we have c1(α) = 2.
To make the differential more explicit, we will “unfold” the spectral

sequence by removing the Novikov ring from the coefficients, and thinking
of {aekα} or {bekα} as free families.

To compute the differential d2, we have to compute all the 1-dimensional
moduli spaces. Because of the invariance of the moduli spaces under the
action of π2(S2) on both ends of the trajectories, we can restrict to spaces
of the form M(x, yekα) with x, y ∈ {a, b}. The dimension of this space is

dim M(x, yekα) = |x| − |y| + 4k − 1,

so there are only two possibilities:

• k = 0, x= a and y = b,
• k = 1, x= b and y = a.

The first moduli space consists in classical flow lines only: it contributes
to the classical part d2

0 of d2, and we have:

d2
0(a) = [α]b, d2

0(b) = 0,

so that the page 2 of the “classical” spectral sequence (tensored by the
Novikov ring) has the following form.

H∗(ΩS2)

Z2

···
Z2 Z2

···
Z2

···
Z2

···

Z2

�����
Z2 Z2

�����������
Z2 Z2

�����������

Z2

�����

aeα
0 Z2

b
0 Z2

a

�����������
0 Z2

be−α

0 Z2
ae−α

�����������

H∗(CP
1) ⊗ Λ

The second moduli space, M(b, aeα), involves holomorphic spheres of
degree 1, and determines the quantum component d2

Q of d2. Since there
are no flow lines going out of b or into a, it consists in holomorphic spheres
of degree 1 with a marked real line from b to a. This is the same cycle as α,
but with reversed orientation. as a consequence, we have

d2
Q(a) = 0 and d2

Q(b) = aeα,
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and the page 2 of the full spectral sequence has the following form.

H∗(ΩS2)

Z2

···
Z2 Z2

···
Z2

···
Z2

···

Z2

�����
Z2

�����������
Z2

�����������
Z2

�����������
Z2

�����������

Z2

�����

aeα
0 Z2

b

�����������
0 Z2

a

�����������
0 Z2

be−α

�����������
0 Z2

ae−α

�����������

H∗(CP
1) ⊗ Λ

Notice that (d2)2a = [α2]aeα �= 0. So some bubbling has to occur in
a 3-dimensional moduli space. Indeed, the moduli space M(a, aeα) is
3-dimensional and consists of flow lines going out of a down to some point
p, and a holomorphic sphere of degree 1 with a marked real line from p to a.
When the point p goes to b, the flow line becomes broken, and we see that
this space is the one relevant in the computation of (d2)2(a). On the other
hand, when the point p goes to a, we are left with the constant trajectory
from a to itself, with an (unparametrized) holomorphic sphere attached to
it. Here, the critical point a is seen as a constant tube with a marked real
line: this marked line is responsible for the bubbling monodromy.

It is interesting to note that this bubbling is in fact equivalent to the
fact that in the Pontryagin algebra H∗(ΩS2; Z/2) the non-vanishing class in
H1(ΩS2; Z/2) has a non-vanishing square.

4.2.2. CP
n for n > 1. A similar computation can be used for CP

n when
n > 1. Notice that the minimal first Chern class is n + 1 ≥ 3 so that the
spectral sequence still exists after the second page. It is an easy verification
to see that the quantum component of the differential d2 is given by

d2
Q[pt] = [Δ] ⊗ [CP

n]eΔ,

where Δ is a complex line in CP
n.

H∗(ΩCP
n)

Z2 Z2

···
Z2

···
. . . Z2

···
Z2

···

Z2 Z2

�����������
Z2

�����������
. . . Z2 Z2

�����������

Z2
[pt]

0 Z2

�����������
0 Z2

�����������
. . . Z2

[CP
n]

0 Z2
[pt]e−Δ

�����������

H∗(CP
n) ⊗ Λ

In particular, the pages of the spectral sequence all vanish after the second
page. The contrast between the situation n = 1 and n > 1 comes from the
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properties of the Pontryagin product in H1(ΩCP
n). This product appears

in the computation of d2 ◦ d2, in particular

d2(d2([pt])) = [Δ] ∗ [Δ] ⊗ an−1e
Δ,

where an−1 is a generator of H2(n−1)(CP
n). What is truly remarkable here is

that as cmin = n + 1, when n > 1, our construction of the truncated spectral
sequence shows that d2 ◦d2 = 0 which implies [Δ]∗ [Δ] = 0 in the Pontryagin
ring. Of course, this relation is well known by purely topological methods
but it is remarkable that it is a consequence of the existence of the quantized
Serre spectral sequence. Moreover, by Theorem 2.2 (ii), d2 can be expressed
in terms of Gromov–Witten invariants together with relative Ganea–Hopf
ones (see also Remark 2.3) and our discussion shows that the relations among
them in the Pontryagin algebra are not trivial.

4.3. Fibrations over S2. Given a loop φ in Ham(M), one can construct a
fibration Eφ over S2, obtained by gluing two trivial fibrations over the disk
via φ.

Seidel [11] used sections of this fibration to associate an invertible endo-
morphism on H∗(M) to each such φ, deriving strong topological restrictions
on elements in π1(Ham(M)). We first give an outline of the construction
of this morphism in the context of Morse homology (see also [7]) and then
explain how it is related to our construction.

Let Ω be a symplectic form on Eφ such that its restriction to the fibres
is (cohomologous to) ω, and let Jφ be an almost complex structure Ω-
compatible on Eφ. We will identify S2 with CP

1, and use an almost complex
structure for which dπ ·Jφ = i ·dπ (see [11] for a discussion on these choices).

Let f : M → R be a Morse function on M , and let f̃ be a Morse function
on Eφ such that

• f̃(z, m) = f(m) + |z2| + cst over a local chart of S2 near 0;
• f̃(τ, m) = f(m) − |τ |2 over a local chart of S2 near ∞;
• f̃ has no other critical point than those in the fibres over 0 and ∞.

If x is a critical point of f , we denote by x+ and x− the corresponding
critical points above ∞ and 0, respectively. We have i(x+ ) = i(x) + 2 and
i(x−) = i(x).

Roughly speaking, the Seidel morphism is obtained by considering
0-dimensional moduli spaces of flow lines going out of a critical point x−,
hitting a Jφ holomorphic section of Eφ, followed by a second flow line flowing
from the section down to a critical point y+ .

To be able to compare homology classes of sections with homology classes
in M we fix a section s0 of the fibration Eφ: the homology classes having
degree 1 over the base are then the classes of the form s0 + i∗α, for α ∈
H2(M) where i is the inclusion M = M × {0} ↪→ Eφ. The Seidel morphism
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Φ will in fact depend on this choice of s0, or more precisely on the class of
s0 in Γ0 = Γ/ ker ω.

Let M(x−, y+ ; s0 + i∗α) be the moduli space of Jφ-holomorphic sections
of Eφ in the class s0 + i∗α intersecting, as described before, the unstable
manifold of x− and the stable manifold of y+ .

For a generic choice of f and Jφ, these spaces are manifolds of dimension
i(x)− i(y) + 2c1(s0 + i∗α)−2, have a natural compactification and are com-
pact when they are 0-dimensional. In this case, let GW (x−, y+ ; s0 + i∗α) =
�M(x−, y+ ; s0 + i∗α).

The relation

Φ(x) =
∑

i(x)−i(y) + 2c1(s0 + i∗α)−2 = 0

GW (x−, y+ ; s0 + i∗α)yeα

defines a map from the Morse complex of M with Novikov coefficients to
itself. It is compatible with the differential, and the Seidel morphism is the
map Φ∗ induced by Φ at the homology level.

We now discuss how to interpret this morphism as a component of the
differential d2 of the truncated spectral sequence associated to Eφ.

We will use the quantized-Morse version of the spectral sequence. With
the notation in § 3.4.1, we write the differential of the quantized-Morse
complex CM(f̃ , Eφ) as dx =

∑
k dk(x) where

dk =
∑

λ, deg(λ) = k

mλ(x, y)yeλ,

with the degree considered over the base.
This decomposition induces an analogous one for the differentials of the

associated truncated spectral sequence which we will denote by

dr =
∑

dr;k

with dr;k induced by dk.
For k = 0, all the moduli spaces involved in d2;0x− lie in the same fibre

as x−: they are all images of the corresponding moduli spaces in M via the
inclusion i of M in Eφ as the fibre over 0. At the homology level, we have
the following commutative diagram.

H∗(M)

i∗
��

d2
�� H∗(M) ⊗ H1(Ω(M))

i∗
��

H∗(Eφ) d2;0
�� H∗(Eφ) ⊗ H1(Ω(Eφ))

Consider now the case k = 1. For dimensional reasons, 1-dimensional mod-
uli spaces of degree 1 quantum trajectories starting at a point x− have to
end in a point of type y+ .
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By Theorem 2.2, the differential d2;1 applied to the critical point x− has
the following form:

d2;1x− =
∑

α∈H2(M)

GW(x−, y+ ; s0 + i∗α) [s0 + i∗α] y+ es0 + i∗α.

Using π : Eφ → S2 to change coefficients and replace Ω(Eφ) by Ω(S2),
and observing that the classes [s0 + i∗α] are all sent to the generator τ of
H1(Ω(S2)), we get the following commutative diagram.

H∗(M)

i∗
��

Φ �� H∗(M) � � Id ⊗[τ ] �� H∗(M) ⊗ H1(Ω(S2))

H∗(Eφ) d2;1
�� H∗(Eφ) ⊗ H1(Ω(Eφ))

∩[M ]⊗π

������������������

This relates the Seidel morphism Φ and the d2;1 component of the differential
of the spectral sequence. From this point of view, when they exist, the higher-
dimensional components dr;1 can be viewed as higher-dimensional analogues
of the Seidel morphism.

More precisely, recall that the choice of a preferred section s0 induces a
map ΩM × ΩS2 i×s0−−−→ ΩEφ × ΩEφ → ΩEφ that is a homotopy equivalence.
Using the projection on the first factor we derive a map ps0 : ΩEφ → ΩM
well defined up to homotopy.

We define a higher-dimensional Seidel morphism by the formula

Φ(x) =
∑

y,α

ps0(m(x−, y+ ; s0 + i∗α)) yeα

where the sum runs over the critical points y and the classes α such that
1 ≤ |x| − |y| + 2c1(s0 + i∗α) − 1 ≤ 2cmin − 1. It induces maps from the
rth page E(r)(M) of the spectral sequence associated to M to itself, like
the Seidel morphism does at the homology level. This morphism should
have the same functorial properties as the classical Seidel morphism, but its
study goes beyond the scope of this paper.

4.4. Non trivial periodic orbits for Morse functions. The construc-
tion of the truncated spectral sequence can be used to exhibit extra periodic
orbits for Morse functions in some particular situations.

4.4.1. Proof of Corollary 2.4. Let (M, ω) be a monotone symplectic man-
ifold, and consider a perfect Morse function f on M which is self indexed.
We may assume that f is as small as we want in C2 norm as the existence
of characteristics is not changed by rescaling. Thus, we now assume that f
is small enough so that the only 1-periodic orbits are the critical points of f
and their Conley–Zehnder index coincides with the Morse index. From the
statement of the Corollary recall that there are two Morse homology classes
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x, z, |z| > |x|, which are dr-related. Due to the self-indexing condition each
of these classes is represented by a linear combination of critical points with
the same critical value, x=

∑
i xi, z =

∑
i zi. We let f(x) = f(xi). Recall

also that we assume that Hk(M) ⊗ Λq = 0 for |zeλ| < k + q < |x|. We now
assume that some interval [a, b] ⊂ [f(x), f(z)] does not contain any closed
characteristic.

For A ∈ R large enough, consider a smooth increasing function φA : R →
R, such that:

• φA(t) = t for t ≤ a + 1/A,
• φA(t) = t + A for t ≥ b − 1/A

and 1/A ≤ (b − a)/3.
For any A, the function fA = φA ◦ f has the same critical points as f

with the same (unparametrized) flow lines, but the critical levels above b
are shifted upward. The critical points of the same index continue to share
the same level hypersurface. Of course, the existence of non-trivial charac-
teristics for f and fA is equivalent.

Given that [a, b] does not contain any closed characteristic, it follows that
Floer theory may be applied to the Hamiltonian fA, the 1-periodic orbits of
fA coinciding with the critical points of f and the Conley–Zehnder index of
these critical points still agrees with their Morse index. Moreover, the (not
extended) Floer and Morse complexes are then the same (indeed, as the
homology of the Floer complex has to be isomorphic with Morse homology
it follows in this case that the Floer differential is also trivial). Thus, x and
z also give Floer homology classes. We now choose the constant A such that
A ≥ ρ(2n + r)/2 where ρ is the monotonicity constant (ω(α) = ρc1(α)).

Consider the truncated spectral sequence associated to the Hamiltonian
XfA

. By hypothesis, we know that x is dr-related to zeλ. This implies that
there is a critical point zj so that there are Floer trajectories from one of the
xis to zje

λ. Indeed, as |x| > k + q > |zeλ| implies that Hk(M) ⊗ Λq = 0 the
differential dr is the first one relating the vertical line through |x| to the one
through |zeλ|. In other words, letting p = |zeλ|, we have Er

p,∗ is a subgroup
of E2

p,∗ and so, if there are no flow lines relating some xi to a zje
λ, then x

and zeλ can not be dr-related.
In view of this we have

|x| − r = |zeλ| = |z| − 2c1(λ),

which means that c1(λ) ≤ n + r/2 and also

f(xi) = fA(xi) ≥ fA(zj) − ω(λ) = f(zj) + A − ω(λ).

But, given of our choice of constant A,

f(zj) + A − ω(λ) ≥ f(zj) + A − ρ(2n + r)/2 > f(xi),

which leads to a contradiction and concludes the proof. �
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Remark 4.1. (a) This corollary applies easily to the case of CPn (see
§ 4.2.2). In this case x corresponds to the minimum so that |x| = 0 and
z to the maximum of the Morse function. Moreover, as cmin = n + 1
we have |zeΔ| = − 2 (where Δ is the class of the complex line) and
Hk(CPn) ⊗ Λq vanishes for k + q = − 1. As seen in § 4.2.2, x and zeΔ

are d2-related so that the corollary applies with the conclusion that for
any perfect, self-indexed, Morse function f on CPn the set of values v
so that f−1(v) contains a closed characteristic is dense in the interval
[min(f), max(f)]. By inspecting the proof, it is easy to see that, in the
case of CPn, this statement remains true even under a much weaker
restriction: it is enough that f be a Morse function so that all its
maxima have the same critical value and all its minima have the same
critical value. Given that any connected hypersurface in CPn can be
viewed as a regular hypersurface of such a function and in view of the
dynamical stability of Hamiltonian flows in tubular neighbourhoods
of contact hypersurfaces, a consequence of this is that any contact
hypersurface in CPn contains a closed characteristic. While this result
is already known by the work of Hofer and Viterbo [6] where it is
obtained by a different technique, the proof provided here illustrates
the power of our method.

(b) The condition that the Morse function f in Corollary 2.4 be per-
fect seems somewhat artificial. However, there is no immediate way
to avoid it in general. The difficulty is that the condition that the
homology classes x and zeλ are dr-related needs to be translated into
the existence of a Floer orbit from a critical point xi of index |x| to
a critical point zj of index |z|. If the Morse function is not perfect,
the Morse and Floer complexes do not have a vanishing differential.
As a consequence, in the spectral sequence, the Floer homology class
[x] might not admit as representative a Floer cycle given by a linear
combination of critical points of index equal to |x| but rather a sum∑

xie
λxi in which some of the λxi are non trivial (in essence, there is

still a Morse cycle representing x but possibly this Morse cycle has a
non-trivial Floer differential). Due to this, the existence of the wanted
Floer trajectory can no longer be deduced. By pursuing further this
argument, it is, however, possible to see that, if c1(λ) = cmin, then this
“perfect Morse function” condition can be dropped.

The same technique applies in many other variants of the situation
described above. The basic idea is to ensure the existence of a sequence
of trajectories, “ending at a higher level than its starting point” (there was
just one such trajectory in the case above) in such a way that the relevant
intermediate points can be shifted out of the action window (as done before
using φA). For this, besides identifying a chain of differentials which relate a
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succession of homology classes in the spectral sequence one also needs to be
able to choose appropriate chains representing these classes (the self index-
ing condition and the homological “gap” condition had this purpose above).
Here is such a variant valid when (dcmin)2 �= 0.

Corollary 4.1. If (dcmin)2(ξ) �= 0, for some ξ ∈ Ecmin
p,q , then for any ε > 0,

any self-indexed Morse function f on M has infinitely many closed charac-
teristics contained in f−1([f(ξ) − ε, f(ξ) + ε]).

Again, as f is self-indexed the value f(ξ) is well-defined (and equal to the
value of f on any of the critical points of index p).

Proof. Fix a self-indexed Morse function f : M → R. As in the previous
proof, we may assume that the critical points of f are nondegenerate periodic
orbits of Xf and their Conley–Zehnder index agrees with the Morse index.
Thus we may apply our construction of the truncated quantized Serre spec-
tral sequence to the Hamiltonian f (together with a generic time-dependent
almost complex structure). For a fixed ε > 0, assume that there are no closed
characteristics in the set f−1([f(ξ) − ε, f(ξ) − ε/2] ∪ [f(ξ) + ε/2, f(ξ) + ε]).

Following the same argument as in the previous proof we may also assume,
after possibly composing f with an appropriate diffeomorphism R → R

which coincides with the identity in the exterior of [f(ξ) − ε, f(ξ) − ε/2] ∪
[f(ξ) + ε/2, f(ξ) + ε], that:

∗ for each critical point x ∈ Critp(f) the interval [f(x) − ρn − ωmin,
f(x) + ρn + ωmin] does not contain any critical values different from
f(x) = f(ξ).

Moreover, all the 1-periodic orbits of Xf are the critical points of f and
their Conley–Zehnder index agrees with the Morse index. Here ρ is as before
the monotonicity constant so that ωmin = ρcmin. From the discussion in § 3.3,
we see that (dcmin)2(ξ) �= 0 implies that for some critical point x ∈ Critp(f)
we have that the moduli space M(x, x#αmin) is non-void and has a non-void
codimension 1 stratum Σ1 consisting of broken Floer trajectories as well as
a non-void codimension 2 stratum Σ2 consisting of Floer trajectories with
some bubble attached.

Assume that among the broken trajectories in Σ1 there is one which joins
x to yeα followed by a second trajectory from yeα to xeαmin .

We then have:

|x| − |y| + 2c1(α) − 1 ≥ 0, |y| − |x| + 2c1(αmin − α) − 1 ≥ 0.

Notice that this implies that |y| �= |x|. Indeed, if |y| = |x|, the first inequal-
ity implies that c1(α) > 0 and the second that c1(α) < cmin which is not
possible.
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There is also an inequality involving the actions:

(4.1) f(x) ≥ f(y) − ω(α) ≥ f(x) − ωmin.

There are two cases to consider now. If |y| > |x|, then c1(α) > 0 so that
c1(α) ≥ cmin and we also need to have 2c1(α) ≤ |y| − |x| − 1 + 2cmin <
2n + 2cmin. By monotonicity, this means f(y) −ω(α) > f(y) − ρ(n + cmin).
At the same time, as f is self-indexed and |y|> |x| we have f(y) > f(x)
and our assumption ∗ on the critical values of f gives that f(y) ≥
f(x) + ρ(n + cmin). In other words, f(y) − ω(α) > f(y) − ρ(n + cmin) ≥ f(x)
which contradicts the first inequality in (4.1). The second case is |y| < |x|.
Then cmin ≥ c1(α) > −n. This means f(y) + ρn > f(y)−ω(α) ≥ f(x)−ωmin
which contradicts ∗ and concludes the proof. �
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It is our great pleasure to submit this paper to the volume of JSG dedicated to Dusa
McDuff’s 60th birthday. Early in this project, we believed, a posteriori without justi-
fication, that the monodromy of bubbling is much less relevant in the sense that the
representation of the Floer tubes inside the Moore loop space of the ambient manifold can
be extended over the codimension 2 stratum containing the bubbled configurations. As
discussed in the paper, this is not the case in general. It is one of Dusa’s questions which
made us reconsider the issue and appreciate the significance of this phenomenon: indeed,
it is precisely due to this obstruction that our spectral sequence is not defined, in general,
after cmin pages. We thank Ely Kerman for a useful comment which made us realize that
the initial statement of Corollary 2.4 was weaker than what our proof implied. Thanks
also to the referee for a careful reading of the paper.


