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GROMOV-WITTEN INVARIANTS OF SYMPLECTIC
QUOTIENTS AND ADIABATIC LIMITS

ANA RITA PIRES GAIO AND DIETMAR A. SALAMON

We study pseudoholomorphic curves in symplectic quotients as adia-
batic limits of solutions to the symplectic vortex equations. Our
main theorem asserts that the genus zero invariants of Hamiltonian
group actions defined by these equations are related to the genus zero
Gromov—Witten invariants of the symplectic quotient (in the monotone
case) via a natural ring homomorphism from the equivariant cohomol-
ogy of the ambient space to the quantum cohomology of the quotient.
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1. Introduction

The main theorem of this paper asserts that under certain hypotheses there
is a ring homomorphism from the equivariant cohomology of a symplectic
manifold M with a Hamiltonian G-action to the quantum cohomology of
the symplectic quotient M such that the following diagram commutes

®p

H*(Mq) QH* (M)
Z

Here GW 5 denotes the genus zero Gromov—Witten invariants of M with
fixed marked points associated to a homology class B € Ho(M;Z) and ®p
denotes the genus zero invariants of Hamiltonian group actions associated to
the equivariant homology class B = x(B) € Ha(Mg; Z). The latter invariant
was introduced in [2, 3, 13, 14]. The homomorphism ¢ is defined indirectly
as a consequence of a comparison theorem for the two invariants. A more
direct definition in terms of vortices over the complex plane with values in
M will be given elsewhere. The proof of the comparison theorem is based
on an adiabatic limit analysis which relates the solutions of the symplectic
vortex equations to pseudoholomorphic curves in the symplectic quotient.
Our hypotheses are that the moment map is proper, that M is convex at
infinity, and that the quotient M is smooth; these hypotheses are needed
to even state the result. We also assume that there are no holomorphic
spheres in the ambient manifold (and hence M is necessarily noncompact);
Corollary 1.2 cannot be expected to be true without it. Finally, we assume
that M is monotone; this hypothesis is of a technical nature and it might be
possible to remove it. But this would require more analysis than is carried
out in the present paper. Before stating the main results more precisely
(Theorem 1.1 and Corollary 1.2), we review the invariants introduced in [2].
Invariants of Hamiltonian group actions. Let (M,w) be a symplec-
tic manifold (not necessarily compact) and G be a compact connected Lie
group with Lie algebra g. We fix an invariant inner product (-,-) on g and
identify g with its dual g*. We assume that G acts on M by Hamilton-
ian symplectomorphisms and that the action is generated by an equivariant
moment map p: M — g. This means that, for every n € g, the vector field
X, € Vect(M) that generates the action is determined by ¢(Xy)w = d(u, n).
Let w : P — X be a principal G-bundle over a compact oriented Riemann
surface (3, jx,dvoly). We fix a smooth family ¥ — Jg(M,w) : z — J, of
G-invariant and w-compatible almost complex structures on M. This deter-
mines a family of metrics (-, -), := w(-, J,-). The invariants are derived from
the equations

(1.1) dya(u) =0, *Fq 4+ p(u) =0,
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for a pair (u, A), where u : P — M is a G-equivariant map and A a connec-
tion on P. Here Fy is the curvature of A and d;4 the nonlinear Cauchy—
Riemann operator twisted by A (see [2, 3| for a detailed explanation). Both
terms in the second identity in equations (1.1) are sections of the Lie alge-
bra bundle gp := P Xaq g- In contrast to the theory of pseudoholomor-
phic curves, equations (1.1) involve the volume form dvoly, (via the Hodge
x-operator in the second equation) and not just the complex structure jy.
Equations (1.1) are invariant under the action of the gauge group G = G(P)
(of equivariant maps from P to G) by

9" (u, A) = (g7 ', g7 'dg + g7 Ag).

From a geometric point of view, the solutions of equations (1.1) correspond
to the absolute minima of the energy functional

1
B A) = 5 [ (dau + [ FaP + [n(u)?) dvols

in a given homotopy class. The solutions of equations (1.1) have energy

B A) = [ (e = dluta), 4)) = . [,

and this number is an invariant of the equivariant homology class represented
by the map u. We impose the following hypothesis throughout this paper.

(H1): The moment map p is proper, zero is a regular value of u, and G acts
freely on p~1(0).
Under this hypothesis the quotient
M :=M)/G := p~1(0)/G

is a compact symplectic manifold. The induced symplectic form will be
denoted by @. The equivariant homology class [u] € Ho(Mg;Z) is defined by
the following diagram, which also shows how it is related to the characteristic
class [P] € Ho(BG;Z) and to the class [a] € Ho(M;Z) in the case pou = 0.
Note that, since G is connected, the class [u] determines the isomorphism
class of the bundle P. We denote Mg := M xg EG.

U

[X] € Ha(X;Z) Ho(M;Z) > [u]

NT i

Hy(Pg: Z) —=>Hy(Ma:;Z) > [u]

T

[P] € Hy(BG;Z)
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Fix a homology class B € Ho(M;Z), let B := x(B) € Hy(Mg;Z), and
denote the space of solutions of equations (1.1) that represent this homology
class by

MVB,E ={(u,A) e C&(P,M) x A(P) |[u] = B, v and A satisfy (1.1)}.

Here P — ¥ denotes a principal G-bundle whose characteristic class [P] €
Hy(BG;Z) is determined by B as above. The quotient by the action of the
gauge group will be denoted by

Mpy = Mpx/G.
We impose another hypothesis which guarantees compactness [2].

(H2): There is a G-invariant almost complex structure J € Jo(M,w), a
proper G-invariant function f : M — [0,00), and a constant ¢ > 0
such that

F() > ¢ = (%VL(),€) + (VieV(2), JE) > 0
for every nonzero vector £ € T, M and

f(@) 2 ¢ = df () J X () (2) = 0.
Moreover, fsg v*w = 0 for every smooth map v : S?> — M.

This hypothesis implies that supp(f o u) < ¢ for every solution (u, A) of
equations (1.1) over any Riemann surface and in any homology class (see [2]).
In [2], it is shown that the moduli space M p y; is a smooth compact manifold
of dimension

dim Mpx = (; dim M — dim G) X(2) + 2(§(T M), B)

for a generic J, provided that hypotheses (H1) and (H2) are satisfied, B is
a nontorsion homology class, and the area of ¥ is sufficiently large. The
latter condition, together with the energy identity, guarantees that every
solution of equations (1.1) is somewhere close to the zero set of the moment
map. The class ¢f(TM) € H?(Mg;Z) in the dimension formula denotes
the equivariant first Chern class of the complex vector bundle (7'M, J).

Examples.

(i) In [3], it is shown that (H2) follows from (H1) in the case of linear
actions on C™.

(ii) The completion of a symplectically aspherical G-manifold M with con-
tact boundary satisfies (H2) whenever it admits a Liouville vector field

X near OM satisfying w(X,,(5), X(z)) > 0 for every x € OM (see [2,

Example 2.9]). A special case is an action of G on a cotangent bundle

T*S that arises from an action on S. Namely, if g — Vect(S) : € — v

is the infinitesimal action on S then a moment map of the action on
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T*Sis (u(z,y), &) = (y,ve(x)) for y € T1S and hence the Liouville vec-
tor field X (x,y) = (0,y) satisfies w(X,(z4), X(2,9)) = (U, Vp(ay) (7)) =

(iii) Let M = E be the total space of a complex vector bundle 7 : E — S

over a compact symplectically aspherical Kéhler manifold .S, equipped
with a Hermitian structure, a unitary G-action, and a Hermitian con-
nection V that preserves the G-action. Suppose that the endomor-
phism iFV (v, Jv) is negative semidefinite for every v € T'S. Then
M admits a G-invariant symplectic structure satisfying (H2) (see [2,
Example 2.10]).

Consider the evaluation map evg : Mpyx — Mg, defined by
eva([u, A]) == [u(po), Oo(u, A)],
where pg € P is fixed and Oy : //\/lng — EG is a smooth map such that
O0(g ™ u, g"A) = g(po) 'O (u, A).

This means that ©g is a classifying map for the principal G-bundle Pp sy —
Mp x obtained as the quotient of Mp s, by the based gauge group

Go:=1{9€G|glpo) = 1}.
Let a € H*(Mg;Z) be a class of degree deg(a) = dim Mp 5, and define

Opy(a) = / evga.
Mps

In [2], it is shown that this integer is independent of the almost complex
structure J, the metric on ¥, and the point pg used to define it.

Now let D := {z € C||z| < 1} and consider the space of maps v : D — M
that map the boundary dD to a G-orbit in x=(0):

V= {v D — M|3g:R/27Z — G 3z € p~1(0) V0 € R () :g(9)x}.

Let m : V — Z denote the function which assigns to each element v € V the
Maslov index of the loop of symplectic matrices obtained from the linear
maps g(0) : T M — Tyg), M in a trivialization along v. Every smooth map
v : 8% — M lifts to a map v € V and in this case the Maslov index m(v)
is equal to the first Chern number (c;(T'M),v,[S?]). The minimal Maslov
number will be denoted by
N = inf  m(v).
veV, m(v)>0

This is a lower bound for the minimal Chern number of M. We impose a
third hypothesis.
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(H3): There exists a constant T > 0 such that

/D v'w = Tm(v)

for everyv € V.

This hypothesis implies that the quotient M is a monotone symplectic
manifold and that the energy of every holomorphic sphere in M is an integer
multiple of & := 7N. The main result of this paper asserts that under
hypotheses (H1) to (H3) the invariant ®p g2 agrees with the corresponding
genus zero Gromov-Witten invariant of M, provided that the cohomology
classes a; have degrees less than 2N.

Theorem 1.1. Assume (H1)-(H3) and let B € Ho(M;Z) and «; €
H¢ (M Z) be given such that deg(o;) < 2N fori=1,...,k and

i 1
Z deg(a;) = (2 dim M — dim G) X(2) + 2(c§ (T M), B),
i=1

where B := k(B) € HY(M;Z). Then
q)B,S2 (061 o Oék) = GWB,S2(ala cee (jék),

where &; := r(a;) € H*(M;Z). If [w — pu] = 7c$(TM) then the assertion
continues to hold for Riemann surfaces X of arbitrary genus.

Remarks.

(i) In the definition of ®py the complex structure on ¥ and the point
po € P at which the map u is evaluated are fixed and the cohomology
class eviae € H*(Mpx;Z) is independent of the choice of complex
structure on ¥ and the point py used in the definition of evg. The
Gromov—Witten invariants in Theorem 1.1 are also to be understood
with a fixed complex structure on X and with fixed marked points
in the definitions of the evaluation maps, and with almost complex
structures that are allowed to depend on the base point z € S2.

(ii) The assertion of Theorem 1.1 does not continue to hold in the case
deg(c;;) > 2N. For example, consider the standard action of S' on
C", let P — S? be an S'-bundle of degree d > 0, and denote by ¢ €
H?(BSY;Z) = HZ,(C";Z) the positive generator. Then the minimal
Chern number is N = n, the dimension of M, g2 is 2nd + 2n — 2, and
we have ®; g2(c™) = 1 whenever m = nd + n — 1. The corresponding
Gromov—Witten invariant (for a k-tuple of classes ¢™ ..., ¢™ with
mq + - --+my = m) counts holomorphic spheres of degree d in CP" !
passing at k given points z1,...,2, € S? through generic copies of
CpPn~1=mi fori =1,...,k. Thus the Gromov-Witten invariant is zero
whenever deg(c™) = 2m; > 2n for some i.
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(iii) The condition deg(a;) < 2N in Theorem 1.1 leads to simplified bub-
bling phenomena which do not require an analysis of bubble trees.
Namely, if we have a sequence of J-holomorphic curves in M passing
through submanifolds dual to the &; at the marked points z;, and a
holomorphic sphere bubbles off at a marked point z;, then the limit
curve (assumed to be in general position) cannot satisfy the remaining
marked point conditions, for dimensional reasons. A similar phenom-
enon occurs in the adiabatic limit € — 0 explained below.

Equivariant and quantum cohomology. Assume M is monotone. Addi-
tively, the quantum cohomology QH* (M) is the cohomology of M with coef-
ficients in the group ring of Ha(M;Z). Write an element of QH* (M) as a
finite sum
a = age”,
BeH(M;Z)
where az € H*(M;R) and

deg <eB) .= 2(e1 (T, B).

Choose an integral basis o, ..., &, of H*(M;R) and let &} denote the dual
basis in the sense that [; & — € = d;;. Then the ring structure on QH* (M)
is defined by

n
~ = ~ ~ _x\= B
aq * Qg 1= Z ZGWB_BI_BQ752(CV131,042B2,e;k)eie :
B17327B i=0
The sum is over all quadruples i, By, By, B satisfying deg(a) 4 deg(az) =
deg(e;) + 2(c1(T'M), B).
The Gromov—Witten invariant associated to a Riemann surface ¥, with

a fixed complex structure jy, and fixed marked points z1,..., 2, can be
extended to a map GWgy, : QH* (M) ® - -- ® QH*(M) — Z by the formula

GWB’E(O_Q, RN o_zk) = Z GWB—Bl—---—Bk,E(O_‘lBlv - ,C_thk).
B;

With this convention the gluing formula for the Gromov-Witten invariants
can be expressed in the form

(1.2) GWBZ(dl,...,dk) :ngz(dl*"‘*@k)
(see [11, Exercise 11.1.14]).

Corollary 1.2. Assume (H1-H3) and suppose that H*(Mg;R) is gener-
ated by classes of degrees less than 2N. Then there exists a unique ring
homomorphism ¢ : H*(Mg;R) — QH*(M) such that

deg(a) < 2N — o(a) = k(a)
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for every a € H*(Mq;R). This ring homomorphism satisfies
P,.(B),52 (a) = GWp g2 (p(a))

for every a € H*(Mg;R) and every B € Ho(M;7Z).

Proof. Let o € H*(Mg;R) and choose o;; € H*(Mg;R) such that

k

(1.3) o= Zaﬂ — ey, deg(aj) < 2N.
i=1

Define

(1.4) o) := Zn(aﬂ) sk k().

=1

We prove that ¢(«) is independent of the choice of ;. To see this, note that,
since the cohomology of M is generated by classes of degree less than 2N,
so is the quantum cohomology. This means that a quantum cohomology
class @ € QH*(M) is zero if and only if GWRSz(d,Bl,...,Bm) = 0 for
every B € Hy(M;Z) and all f1,..., By € H*(M;R) such that deg(3;) <
2N for all j. Now suppose that the expression on the right-hand side of
equation (1.4) is nonzero. Then, by what we have just observed, there exist
cohomology classes 31, ..., Bm of degrees less than 2N and a homology class
B € Hy(M;Z) such that

k
Z GWB,32 (K(Oéil), cee H(aif)v ﬁlv s 7ﬂm) 7& 0.
=1

Since the homomorphism « : H*(Mg;R) — H*(M;R) is surjective (cf. [10]),
there exist classes 3; € H*(Mg;R) (of degrees less than 2N) such that
k(Bj) = B; for every j. Hence, by Theorem 1.1,

k
ZCI)H(B),S2(O‘Z'1 — o— = Pr— = Bn) £ 0,
=1

and hence o # 0. This shows that ¢ is well defined. The map ¢ is obviously
a ring homomorphism. The formula ®p g2(a) = GWp g2(p(a)) follows
immediately from Theorem 1.1 and the gluing formula (1.2) for the Gromov—
Witten invariants. U

Remark 1.3. Under our assumptions, both the Gromov-Witten and the
vortex invariants take integer (not rational) values. Hence the assertion
of Corollary 1.2 continues to hold for (quantum) cohomology groups with
coefficients in Z or Zs, for example.
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Remark 1.4. Let R denote the group ring of Hy(M;Z). Then QH*(M)
is an R-module and the ring structure is compatible with the R-module
structure. Hence the ring homomorphism of Corollary 1.2 extends uniquely
to a homomorphism

¢ H"(Mg;R) — QH"(M)

of rings and R-modules. This extended homomorphism is surjective. This
follows, by an easy induction argument, from the surjectivity of Kirwan’s
homomorphism to the ordinary cohomology of M.

Remark 1.5. The homomorphism ¢ : H*(Mg) — QH*(M) can be defined
geometrically in terms of the vortex equations over C:

(1.5) Osu+ Ly® + J(Opu+ L, V) =0, 0V — 0P + [P, V] + pu(u) = 0.
Here u : C — M and ®,¥ : C — g are smooth functions. Equation (1.5)
is a special case of equations (11.1) with ¥ = C and A = ®ds + ¥d¢. For
every finite energy solution of equations (1.5) in radial gauge there is a loop
g:S' — G and a point xg € p~1(0) such that

(1.6) lim u(re?) = g(e)x

r—00
(see Section 11). Every map u : C — M that satisfies equation (1.6) deter-
mines a class B = [u] € Ha(Mg;Z). Now the moduli space Mp(J) of gauge
equivalence classes of solutions of equations (1.5) and (1.6) that represent
the class B has two evaluation maps evg : Mp — Mg and eve : Mp — M.
The map ¢ can be defined by

n
ola) = ZZ </ evya — ev&ef) eieB.
M5

i=0 B

The details of this construction will be carried out elsewhere.

Outline of the proof of Theorem 1.1. The proof of Theorem 1.1 is based
on an adiabatic limit argument in which the metric on the Riemann surface
is scaled by a large factor 2. Then equations (1.1) have the form

(1.7) d5a(u) =0, *Fa +e 2pu(u) = 0.

The solutions of (1.7) minimize the e-dependent energy

1
FE(u, A) = Q/E(IdAu]2+€2FA]2+€Q\M(u)2) dvols,,

and the value of this functional at a solution of equations (1.7) is independent
of € in a given equivariant homology class. In this paper, we examine the
limit behaviour of the solutions of equations (1.7), as e tends to zero for
Riemann surfaces of any genus. The limit equations have the form

(1.8) dya(u) =0, w(u) = 0.
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The solutions of equations (1.8) can be interpreted as pseudoholomorphic
curves in the symplectic quotient M = 1 ~1(0)/G with respect to the induced
family of almost complex structures .J, (see Section 2). We impose a further
hypothesis that is satisfied for a generic family of G-invariant almost complex
structures on M:

(H4): Ewvery nonconstant J-holomorphic curve u : ¥ — M is reqular, i.e.,
the linearized Cauchy—Riemann operator along u is surjective.

This hypothesis guarantees that the moduli space of holomorphic curves in
M is smooth.

The proof of Theorem 1.1 requires three preliminary theorems which are
of interest in their own rights. Theorem 3.1 constructs a G(P)-equivariant
map

(uo, Ag) — (ue, Ac) =: T¢(ug, Ag),

which assigns to every regular solution of equation (1.8) a nearby solution
of equations (1.7) for € sufficiently small. Theorem 3.2 shows that the map
T¢ constructed in Theorem 3.1 is locally surjective in the sense that every
solution of equations (1.7) that is sufficiently close to a solution (ug, Ag) of
equation (1.8) must be in the image of 7¢. The neighbourhood in which
surjectivity holds depends on €: it becomes smaller as ¢ tends to zero. Theo-
rem 3.3 strengthens the local surjectivity result of Theorem 3.2. We remove
the assumption that the solution of equations (1.7) is close to some given
solution of equation (1.8). However, we consider only solutions of equa-
tions (1.7) that satisfy a suitable L*°-bound on the first derivatives and
prove that every solution of equations (1.7) that satisfies this bound lies
in the image of T¢ for £ small. The proof of Theorem 1.1 is then based
on a bubbling argument in the small € limit which establishes a one-to-one
correspondence between the solutions of equation (1.8) and those of equa-
tions (1.7) in a zero-dimensional setting, where additional conditions have
been imposed.

In Section 2, we review standard results about the moduli space of pseu-
doholomorphic curves in the symplectic quotient M /G and rephrase them
in terms of solutions of equation (1.8). Theorems 3.1 to 3.3 will be stated
in Section 3. The remaining sections are devoted to the proofs of the four
main theorems.

The general outline of the proof of Theorem 1.1 is analogous to the proof
of the Atiyah—Floer conjecture in [5, 6]; there are several new ingredients.

In Sections 4 and 5, we establish the linear and quadratic estimates needed
for the construction of the map 7T¢; this construction is carried out in Sec-
tion 6 where Theorem 3.1 is proved. In contrast to [6] (where the relevant
moduli space is a finite set), care must be taken to establish that the cons-
tants in the estimates depend continuously on the point in M° and we must
control the second instead of just the first derivatives.
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In Section 7, we establish an e-local slice theorem and in Section 8 we
construct a tubular neighbourhood of M¢® and carry out the proof of The-
orem 3.2. The e-local slice theorem is analogous to [6, Proposition 6.2].
The tubular neighbourhood theorem for M? involves an estimate for the
derivative of the map given by the e-local slice theorem; this is where the
estimates for the (2, p, £)-norms are needed. As a result, the entire adiabatic
limit argument has to be carried out for these higher norms. In contrast,
the analogous result in [6, Proposition 6.3] can be disposed of with a simple
time shift argument.

In Section 9, we prove an a priori estimate which asserts that every solu-
tion of equations (1.7) that satisfies a certain L bound must be e2-close
to the zero set of the moment map. As a consequence, we obtain in Theo-
rem 3.3 a strong local surjectivity result for the map 7¢, which is proved in
Section 10.!

In Section 11, we establish the asymptotic behaviour and the quantization
of the energy for solutions of the nonlinear vortex equations on the complex
plane. In Section 12, we construct a classifying map on an open set in
C&(P,M) x A(P), which contains the moduli spaces M¢ for all € € [0, ¢,
with values in a finite-dimensional approximation of EG; we also establish
C'-convergence for the evaluation map and prove Theorem 1.1.

2. Pseudoholomorphic curves

For z € ¥, let J, denote the almost complex structure on M induced by .J.,
let P — M denote the principal G-bundle P := p~'(0) C M, and let A
denote the connection on P determined by w and J. If (u, A) is a solution of
equation (1.8), then u descends to a J-holomorphic curve @ : ¥ — M and A
is the pullback of A under @. Two gauge equivalent solutions descend to the
same map @ and every J-holomorphic curve @ : ¥ — M lifts to a solution of
equation (1.8) for some principal G-bundle P (isomorphic to the pullback
of P under ).

Fix a homology class B € Ho(M;Z), let B := x(B) € H$(M;Z), and
consider the space

MY, = {(u, A) € CF (P, M) x A(P)|[u] = B and (1.8) holds} .

This space is invariant under the action of the gauge group G(P). Under
our standing hypothesis (H4), the quotient

MY s = MY 5 /G(P)

!Compare this with [6, Theorem 8.1]; the strenghthened form of [6, Theorem 8.1] is
needed to close a gap in the bubbling argument in the proof of [6, Theorem 9.1].
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is a smooth manifold of dimension
1
dim M3 5, = (2 dim M — dim G) X(2) + 2((T M), B)

(see [11, Theorem 3.3.4]). Note that Mp », and MOB,z have the same dimen-
sion.

For later reference, we now introduce explicit notation for a local para-
metrization of MY s by the kernel of the linearized operator. Linearizing
equations (1.8) at a solution (u, A) gives rise to the Cauchy—Riemann oper-
ator

DY =Dy, 4): (X, Hy) — Q¥(, H,)
given by
D& := mu Dy, 1),
where D, 4y : QU(E,w*TM/G) — Q" (u*TM/G) is the operator (B.3) in
Appendix B. The bundle H, — ¥ and the projection m, : v*T'M — H, are
defined as follows. Consider the bundle H — ¥ x u~1(0) with fibres
H, , :=kerdu(z) Nkerdu(x)J.
There is an orthogonal decomposition
IyM=imL,®H,,®imJ.L,
for every (z,z) € ¥ x p~1(0), where L, : g — T, M the infinitesimal action,
ie.,
L,n = X, (x).
Its dual operator with respect to the metric determined by .J, is given by
Ly =L =du(x)J,(x).
Now let u : P — p~1(0) be an equivariant map and consider the pullback of
H under the map @ : P — ¥ x u~1(0), given by @(p) := (7(p), u(p)). This
pullback is a G-equivariant vector bundle over P and its quotient
H,=u"H/G— X
is naturally isomorphic to the pullback of the tangent bundle TM under the
induced map @ : ¥ — M. Let m, : w*TM/G — H, denote the orthogonal
projection onto the harmonic part. Thus m,[¢] := [7,&] where the lifted
projection uw*T'M — u*H (also denoted by ) is given by
(2.1) € =& = Lu(LyLu) " Lyg + JLu(LyLu) " Ly J¢
for a G-equivariant section & : P — u*T'M.

Theorem 2.1. Assume (H1) and (H4) and fix a constant p > 2. For every
(ﬁo,flo) € ./\/1037E there exist a sequence of positive constants d,c¢,c1,¢2, ...
and a map

FO = Floo iy BS = My, B :={& €kerDy 1, |llollze < 03,
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such that the following holds.
(i) If & € BY then there exists a unique pair of sections & € Q°(X, Hy,)
and & € Q°(X,im JLg,/G) such that
§1 € Im (D?go,go))*a ”§1||W17p + ||§2”W1»P < CH&]HWLP )

and the pair (ug, Aop), given by

1
ug 1= expgo ) (€0 + &1) = expy, (S0 + &1 + &2),
Ag = — (Lo Luy) ™" Ly duo,

satisfies (1.8). The pair (ug, Ag) is the image of & under F°.
(ii) For every integer k > 1 and every & € BY we have

1€ llwer + [€2llwnn < e €olfmn
| 4o = Ao||yyrn < ek l1€ollypen »
where &1, &2, and Ag are as in (i).

(iii) The map F° is smooth and dF°(0)& = (&, ), where ap € QL(X, gp)
1s uniquely determined by the equation

DéJ,Ao (ﬂo)fo + Xao (ﬂo)o’l =0.

This theorem 2.1 is a standard result in the theory of holomorphic curves
(see, e.g. [11, Theorem 3.5.2]). It follows from Fredholm theory and an
infinite-dimensional version of the implicit function theorem. In most appli-
cations, the moduli space M%,z is not compact. However, it can be
exhausted by the compact subsets

M s (co) := MG 5(co) /G(P),

where ¢ > 0 and

M s(co) = { (u, 4) € M| I daull o + | Fall = < o}

Note that M% s(co) is invariant under the action of G(P). For later refer-
ence, we prove the following lemma.

Lemma 2.2. Fiz a reference connection A € A(P). Then, for every co > 0
and every integer £ € N, there exists a constant ¢ = c(co, ) > 0 such that,

for every (ug, Ag) € MV%E(CO), we have

'f(—l +lg*Ag — A )<.
jont g™ ullce + lg" Ao — Al e ) < c

Proof. Suppose, by contradiction, that there is a sequence (u,,A,) €
/\7%72(00) such that [lg~u, || ce + lg* Ay — Al|le > v for every v and every
g € G(P). By [11, Theorem B.4.2], there exists a subsequence, still denoted
by (uy,,A,), such that the induced maps 4, : ¥ — M /G converge in the
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C*-topology to a smooth J-holomorphic curve. The limit curve represents
the same homotopy class as the approximating curves and hence can be
represented by a pair (u, A) € ./T/l/%vz(co). Since the sequence %, converges
to @: ¥ — M/G in the C**'-topology, there exists a constant vy > 0 such

that, for every v > vy, there exist a gauge transformation g, and a section
¢, € Q%(%, H,) such that

6, uy = exp, (&), T & llgen =0.
The formulae

grA, = —(ngluuLg;luV)—1Lg;1qu(g;1uy), A= —(L:L,) 'Lydu

show that g7 (u,, A,) converges to (u, A) in the C* topology. This contradicts
the choice of the sequence (u,, A,) and hence proves the lemma. O

Theorem 2.3. Assume (H1) and (H4), let B € Hy(M;Z) be a nontorsion
homology class, and let (X, dvoly, jx) be a compact Riemann surface. Then,
for every cg > 0 and every p > 2, there exist positive constants ¢ and § such
that the following holds. If 4 : ¥ — M is a smooth map such that [u] = B
and

Idil|z= < co,  1105(@)]Lr <6,
then there exists a section & € QV(X,u*TM) such that
0j(expy(£)) =0, [[€lwrr < cll0(@)]Lr-

Proof. This is again a standard result for pseudoholomorphic curves and the
proof is almost word by word the same as that of [6, Theorem 2.5]. Here is
a sketch. One argues by contradiction. If the result were false, there would
be a sequence of smooth maps @; : ¥ — M that satisfies

sup ||dig||pe < o0,  lim ||05(w;)||r = 0,
i 71— 00

but which does not satisfy the conclusion of the theorem for any constant c.
This means that the WP-distance of @; to the space of J-holomorphic
curves is not controlled uniformly by the LP-norm of 97(4;). Now, by the
Arzéla—Ascoli and Banach—Alaoglu theorems, a suitable subsequence of ;
converges, strongly with respect to the sup-norm and weakly in WP, to
a J-holomorphic curve . It follows from standard elliptic regularity for
J-holomorphic curves that @; then converges strongly with respect to the
WhPnorm. To see this, write 4; = exp,(&;) and observe that

&l < 1 (I1Da&illze + ||l zv)
< ¢ (107(@:)||lze + |illwro il o) + c1l|&ll 2o

Here the first inequality is the elliptic estimate for the Cauchy-Riemann
operator Dy and the second is the quadratic estimate for d7;. With
this established, it follows from hypothesis (H4) and the implicit function
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theorem for the operator 0 7 that there exists a sequence of J-holomorphic
curves @p; whose W1lP-distance to @; is bounded above by a fixed constant
times the LP-norm of 07(%;) (see [6, Theorem 2.1]). This shows that the
sequence u; does after all satisfy the conclusion of the theorem, in contra-
diction to our assumption. Il

3. Adiabatic limits

Before stating our main results, we introduce some notation. Fix an equi-
variant homology class B € Ha(M;Z), let B := r(B), and denote

B = {(u, A) € CZ(P, M) x A(P) | [u] = B}.
This space is an infinite-dimensional Fréchet manifold with tangent space
Tiun)B = Q(S,u*TM/G) x Q'(, gp).

It carries an action of the gauge group G = G(P) by g*(u, A) = (g~ 'u, g*A).
Consider the vector bundle £ — B with fibres

Eu,ay = QN (E, 0" TM/G) ® Q°(Z, gp),
and the G-equivariant section F* : B — £ given by
Fé(u, A) := (ga(u), xFa + e 2pu(u)).
The zero set of this section is the space
M5 s = {(u, A) € B|u and A satisty (1.7)}.

Its quotient by the action of the gauge group will be denoted by

Sx = M55/G(P).

The following theorem asserts the existence of solutions of equations (1.7)
for sufficiently small ¢ near every regular solution of equation (1.8). The
result is quantitative and the estimates are expressed in terms of suitable e-
dependent norms. Moreover, an operator D¢ : T, 4)B — £y, 4) © 002, gp)
appears. This operator is the augmented vertical differential of F¢. The
operator and the norms will be defined in Section 4.

Theorem 3.1. Assume (H1) and (H4) and let B € Hy(M;7Z) be a non-
torsion homology class. Then, for every co > 0 and every p > 2, there exist
positive constants €g, ¢, and § such that for every e € (0,e9] there exists a
G(P)-equivariant map

TE M%vz(c()) - MEp s

that satisfies the following conditions.
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(a) If (up, Ao) € MBE(C()) then %E(U(),Ao) = (exp,, (&), Ao + ac), where
Ce = (567 Oés) S T(uo,Ao)B satisfies
HC&HQ,p,E;(uO,AO) < 6627 _d:‘:loa&‘ + 6_2[’2058 = 07
(3.1) (. €1im (DfUO7Ao))*'

(b) If (ug, Ao) € MBE(C()) and (u, A) = (exp,, (§), Ao+ a) € ./{/lv‘j'g,,E where
¢ = (& a) € Tiyy,a0)B satisfies (3.1) and
< §e2/P 12

||C 17p72;(u07A0) -

then (u, A) = T¢(ug, Ao).

The map T¢ of Theorem 1.1 descends to a map between the quotient
spaces which we denote by

T MOB,E(CO) — Mps.

Assertion (a) is proved by a Newton-type iteration (see Section 6). It
requires linear and quadratic estimates for the e-dependent norms with cons-
tants that are independent of . These estimates are proved in Sections 4
and 5. Assertion (b) is a strengthened form of the corresponding unique-
ness statement. Here the neighbourhood in which uniqueness holds is larger
than in the existence result (namely it is of radius ce?/P+1/2 instead of ce?).
The uniqueness statement shows that the maps 7°¢ are independent of ¢ in
the sense that two such maps corresponding to different values of ¢y (but
the same value of ) agree on the intersection of their domains. The next
theorem shows that 7°¢ is locally surjective.

Theorem 3.2. Assume (H1) and (H4) and let B € Hy(M;Z) be a non-
torsion homology class. Then, for every co > 0 and every p > 2, there exist
positive constants €9 and § such that the following holds for every e € (0,¢eq].

If
(0, A0) € Mpx(co—1),  (u, A) = (expg, (€), Ao + @) € Mg,
where ( = (§,a) € Tay,40)B satisfies

HCHLp,s (i0,Ap) < 662/p+1/2

then (u, A) € TE(MB (c0))-

This result is restated more precisely in Theorem 8.1. There it is proved
that ¢*(u, A) = T¢(uo, Ao) for some gauge transformation g and some pair
(ug, Ap) in the image of the map FY of Theorem 2.1. Moreover, it is shown
that the distances of g to 1 (in the (2, p, )-norm) and of (ug, Ag) to (ug, Ao)
(in any norm) are controlled by the (1, p,¢)-norm of (.
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Theorem 3.2 strengthens the local uniqueness result of assertion (b) is
Theorem 3.1 in that condition (3.1) is no longer required. The proof relies
on an e-dependent local slice theorem (Section 7) and on the construction of
a tubular neighbourhood of the moduli space M%Z(Co) in which the normal
bundle is the intersection of the e-dependent local slice with the image of
the adjoint operator D°* (Section 8).

The next theorem strengthens the local surjectivity result of Theorem 3.2.
It does not require the solution (u, A) of equations (1.7) to be close to any
solution of equation (1.8). However, it only applies to solutions that satisfy
a uniform L°°-bound on dju and for which u takes values in the compact
set

M :={z e M||u(x)| < C, |n| < C|Lyn| ¥ n € g}.

Theorem 3.3. Assume (H1) and (H4) and let B € Hy(M;7Z) be a nontor-
sion homology class. Then, for every C > 0, there exist positive constants o
and c1 such that the following holds for every e € (0,0]. If (u,A) € M3y
such that

(3.2) |daull~ < C,  w(P)c M¢,
then (u, A) € T*(MY% 5 (c1)).

Under hypotheses (H1) and (H2), the moduli space M3 y; is compact [2].
In this case all solutions of equations (1.7) satisfy ||daul/r~ + ||u(u)||ree <
C. for some e-dependent constant C.. However, this does not guarantee
surjectivity because, on the one hand, the constant C. may diverge to infinity
as € tends to zero and, on the other hand, the solutions of equations (1.7)
may not all satisfy the second condition in the definiton of MY, namely
that the image of u belongs to the set of regular points of u. There may
be sequences (&;,u;, A;) of solutions of equations (1.7) with &; — 0 such
that either u;(P) intersects the set of singular points of p or d4,u; does not
stay bounded, and then bubbling occurs in the small £ limit. Under the
hypotheses of Theorem 1.1 we shall prove that such bubbling cannot occur
and establish a bijection between suitable zero-dimensional moduli spaces.

4. Linear estimates

The estimates in this section follow the ones in [6, Section 4]. In adapt-
ing the proofs to the present context, we encounter additional zeroth-order
terms. These arise from the Levi—Civita connection and the almost complex
structure on M; they are not present in [6] where M is replaced by the space
of connections over a Riemann surface and the almost complex structure by
the Hodge *-operator. We extend the results of [6] by including estimates
for the second derivatives. Moreover, in the present case it is crucial that
the constants depend continuously on the pair (u, A). In [6], the moduli
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space is a finite set and so the question of continuous dependence does not
arise.
For u € C (P, M), we introduce the spaces

X, = QU2 u*TM/G) x Q'(%, gp),
X = Q%2 TM/G) x Q°(2, gp) x Q°(Z, gp).

Thus X, = Ty, 4B and X, = £, a) x Q°(Z, gp) for every A € A(P). If the
map u is understood from the context, then we shall omit the subscript .
It is convenient to introduce the norms

1€

Lpe;(u,A) "= 1€l +€ H@@HLP ’

N s
1€l pesu,a) = 1€l e + € HVAfuLP +¢? HVA VAfHLp7

lally pea = llallp +elldacllps +elldacl o,

latlly pein = llall o + €lldacllpp + € |diallp + & |didaa + dadial 1

for € € QUK u*TM/G), o € QF(2,gp), k= 0,1, and 1 < p < co. Here Vy
denotes the Hermitian connection on u*T'M /G defined by equation (B.2).
For £ =0,1,2, 1 <p < oo, and ¢ = (§,a) € Xy, ¢ = (&, ¢, 0) € X, we
consider the norms

1€ p,500,4) = 1€l p,es0u,2) + € Nl presu,a)

/ R / / /

HC HZ,p,e;(u,A) T H§ HZ,p,s;(u,A) te H(‘D Hﬁ,p,s;(u,A) +e Hﬂ) HZ,p,s;(u,A) )
where ||l c.(u,4) = [I€]l 1> - These norms are gauge-invariant. If the pair
(u, A) is understood from the context, we shall drop it to simplify the nota-
tion. In particular, we abbreviate [|Clo - = [[Cllo c0e5(u,4) -

The augmented vertical differential of F¢ at a zero (u,A) € B is the
operator D =D, 4 : Xy — X! given by

¢ D¢ 4 (Lya)%t
)= smiedie ).
e 2dp(u)é + *dsa

where D = D, 4y : Q(3,u*TM/G) — Q*Y(S,u*TM/G) is the Cauchy—
Riemann operator defined by equation (B.3). The second coordinate in the
definition of D¢ corresponds to the local slice condition for the G-action. For
the definition of the adjoint operator, it is convenient to use the e-dependent
inner products associated to the (0, 2, )-norms. In addition, we use twice the
standard inner product on the space Q%1(X, u*TM/G). Then the adjoint of
De is given by

(4.1) D* (

«

!
e fp, _( 2D + Ly’ + J Ly
25_2[’25/ —dap — *d sy
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Remark 4.1 (Local coordinates). Let v : U — X be a holomorphic coordi-
nate chart defined on an open set U C C and let © : U — P be a lift of v.
In this trivialization the map w, the connection A, the vector field & along
u, and the 1-form « are represented by

u°® == w0, Al .= 5*A = B ds + U dt,
gloc.— ¢op, ol = 0% = pds + 1 dt,

where ®, ¥, p, and ¢ are Lie-algebra-valued functions on U. The volume
form on U is given by A\? dsAdt := v* dvoly, for some function A : U — (0, 00)
and the metric has the form A\?(ds? + dt?). From now on we shall drop the
superscript “loc” and introduce the notation

vs 1= Osu + Xo(u), vy = O + Xy (u),
Va,s€ = Vi€ + Vchp( u), Va i€ = Vil + VgX\p( u),
Vas€ i= Vas€ — (VUSJJr@ J)E, VA& —VAtﬁ—* (Vi J + 0L J)E,
Va,sn = 0sn + [‘1’, nl, Vaum == 0m + [‘1’, nl,
for n: U — g and a vector field £ : U — v*T'M along u. Then
dau = vgds + vy dt, Va§ = Va € ds + Vg £ dt,
*FA=A"20,0 — 0@+ [®,0]),  *daa= A" (Vasth — Vaup),
diha = =27 (Vasp + Vast).

In local coordinates a (0, 1)-form on ¥ with values in «*T'M /G has the form
1/2(&'ds — J€'dt), where £'(s,t) € Tyy(s M. In particular,

5 1

O5a(u) = 5(vs + Ju) ds + 2( JUS) dt,

(Va&)™! =

l\')\l—l[\')\H

(Va,s& + JVa€) ds + - (VA & — JVa6) dt
We represent a (0, 1)-form by twice the coefficient of ds. Then
~ ~ 1 1
Df = vA,sf + JvA,tg + ZN(faUs - Jvt) + i(JasJ - 8t<])§7

where N (&1,&2) = 2J((Vg,J)&1 — (Vg, J)€&2) denotes the Nijenhuis tensor, and

1/ - - 1 1
2D = 13 (—VA,Sg’ + IVpE = 5T (V) (vs = Jvn) + 5 (J0sT — ag)g) .

The Weitzenbock formula has the form D*D¢ = 1/2V4 VA€ + Lo.t. In the
Kahler case, we have V4 = V4, VJ =0, and 0;J = 0;J = 0. Hence in this
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case
1
D*DE = 575 (Vas Vas€ + VaeVaed)
1
— ﬁJR(US,Ut)f - ﬁJ%Xas\p,at¢+[q),\p] (u)

In local coordinates, the operators D¢ and D* have the form

D¢+ Ly + JLyy
DC=| A 2(Vasp+Va)+e2LiE |,
A2 (Vasth — Varp) + e 2du(u)é
9D* + Lyg' + J Lot
D¢ = —Vasp' + Va +e?Lig
—Va,s¥ — Vagp' + e 2dp(u)é

Proposition 4.2. For every p > 2 and every cy > 0, there exist positive
constants €9 and ¢ such that

1€l .p,esu,) < € (ElD*Clope + Imutllzr) ,
1€ = mulll1pesu.a) < ce (ID*Cllope + [muélize) ,
111 .65,y < € (1D llopie + 170l 2)
1S = Tl 1 pesu,a) < e (D= Cllope + Imullze)

for all (u,A) € MY o(c), ¢ = (&0) € Xy, (' = (£,¢,¢) € X, and
e € (0,e9]. Here we abbreviate D = D{, 4y and ¢ = (m4€,0) and 7,¢" :=
(m4€',0,0), where m, is defined by (2.1).

In this paper, we prove Proposition 4.2 only in the case p = 2. The proof
for p > 2 is similar to the proof of an analogous result in [16].

Lemma 4.3.

i) If gJ,A(U) =0 then

2DD*¢ + 26 (L, L€ + (DJ — JD) L'
DD = Ao’ + [¥Fa+e2p(u), ]
Ay — [+Fa + & 2u(u), ') + 267 2L%(D.J — JD)*¢'

forf(/ = (&, ¢, ) € X, where A; := d5da+ e QL*L

(ii) If Osa(u) = 0 and p(u) = 0, then
DD = 2D*DE + e 2L, LEE 4+ e 2J L LX J*€ + Q*ax
a szO[—I_dAdZa—i_siszLua+672Q£ 9
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for ¢ = (£,Q) € X, where Q : Q°(X, u*TM/G) — QY(X, gp) denotes
the zeroth-order operator

Q¢ :=2L; D& — da L)€ — *dadp(u)€
= p(6 dau) — #p(JE, daw) + +LJE + SLIN(E Dpa(w).

Proof. We shall repeatedly use the identities
dhia = —xdax*a, xdadap = [*Fa,¢l,
Ly = dp(u),  du(u)lup = —[p(u), ¢,
for a € QY(2,gp) and ¢ € QYX,gp). To prove (i), note that the triple
(&, ¢, ¢") := DD (&', ', 1)) is given by
§' = D2D'E + Lug' + JLuy) + (Lu(2e Ly’ — day’ — #day)))*!
=2DD*¢ + 267 3L, L€ + DLy’ — (Ludag)™!
+DJLuy — (Ly * day)™,
¢ =e2LL(2D*¢' + Lyp + JLyb) — di (26 2L5¢ — dap — xdav))
= dhdap' + e ?LiLyg + 267 3(DLy — Luyda)*€ + [%Fa + e 2u(u), ¢/,
Y = e 2du(u)(2D*E + Ly’ + JLu') 4 +ds(2e 2 L€ — day’ — *day)’)
= dhda) + e PLEL Y — [xFa + e 2u(u), ¢]
+ 26 2(LEJ*D*E + &y = LiE).
The assertion now follows from the fact that
(4.2) J(Lyo)™ = (Lyx )™, LiJ*¢ = —x Li¢,
for a € QY(X, gp) and ¢ € QUY(B, w*TM/G), and
(4.3) dya(u) =0 = DL,p = (Lydap)™

for ¢ € Q°(X,gp). The first part in equations (4.2) follows from the fact
that *a = —a o Jy for every l-form a on ¥ (with values in any vector
bundle). The second part equations (4.2) follows from the first by duality.
Equation (4.3) follows from the fact that the section (u, A) — 0 4(u) of the
vector bundle over B with fibres Q%1(3, w*TM/G) is G(P)-equivariant.

To prove (ii), note that the pair

(§,6) := DD, @)

is given by
£ = 2D*(DE + (Lya)®Y) + Ly(e72L5¢ — da) + J Ly (e 2dp(u)€ + xd z0)

= 2D*DE + 2e7 3L, Li¢ )™ + (2D* (Lya)! — Lydlia + JLy x dac)

& =26 2L (DE + (Lya)®h) —da(e 2LEE — dhya) — xda(e2dp(u)é + *daa)
= dydaa + dadio+ e 2LELya 4+ e 2 (2L DE — daLiE — xdadu(u)f) .
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Here we have used the fact that p(u) = 0 and hence 2L} (L,a)%! = L% L,a.
The formula for the operator @ := 2L%D — daL} — xdadu(u) follows by
computing in local coordinates. O

Proof of Proposition 4.2 for p = 2. Let
(= ¢ =D
Then, by Lemma 4.3, the formula
D*D¢ = D¢’
is equivalent to
2D*DE 4 e 2Ly Li€ + e 2JL LEJ*¢€ 4+ Q*a = 2D* ¢ + Ly + JL,,

ddpo 4 dadiyo + e 2L Lya 4+ e 2Q€ = 26 2LA¢ — day — *dat)'.

Take the L?-inner product of the first equation with ¢ and of the second
equation with 2. The sum of the resulting identities gives

e 2||LEEN? + €2 | L JEIP + 2| DENP + [ Lual® + €2 |daal® + 2 ||dhal®
= 2(¢', DE) + 2(€', Lya) — 2{a, Q€) + (i, LLE) — (', L3 JE)
— 52<90’, dha) + €2<¢,, xd Q)
< 3|¢'|® + D€ + 271 | Lual® + 8 [l + 6L [|QeI + |||
+ &2 ||| + 27 e 2| L) + 27 e || L e + 27 e e
+ 2712 || da?.

Here all norms are L?-norms and all inner products are L?-inner products.
Choose § > 0 so small that ¢ ||a||? < 471 || Lyal/? for all a. Then

e Lal® + e LaJEl? + |IDEN* + | Lua)) + €2 [|dacl® + & || dial?
<12||¢'|” + 422 ||¢||” + 42 ||| * + 461 1@ 2 €)1
< 12| D(E 20 + 457 QU= €17
Now the required estimates follow from the inequalities
I¥amatlze < e (IVallze + €l 2 )
1€ = muéllp2 < ¢ (NLR8N L2 + 113 €I 2)
VA€l L2 < ¢ (|1 D€l 2 + [I€]I 2) -

The first inequality follows from equations (4.4) below. In the second
inequality, the constant ¢’ can be chosen as an upper bound for the norms
of the linear maps L,(L:L,)~! over all x € p=1(0). The third inequality
is the L?-estimate for the Cauchy-Riemann operator and it follows from
the Weitzenbock formula. The constant ¢’ is gauge-invariant and depends
continuously on the pair (u, A) with respect to the C'-norm and hence can
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be chosen independent of (u, A) € ./{/lv%,z(co). This proves the proposition
in the case p = 2. O

The next lemma expresses the Sobolev inequalities in terms of the e-de-
pendent norms.

Lemma 4.4. For every p > 2 and every cy > 0, there exists a constant
¢ > 0 such that

”C”OO,E < 05_2/p||C 1,p,&;(u,A)>» ||C||1,00,€ < 05_2/p|’C|’2,p,6;(u,A)

for all (u, A) € ./K/lv%yz(co), ¢ € Xy, and e € (0,1).

Proof. Multiply the metric on ¥ by e=2. Then the W*P-norm of (£, o) with
respect to the rescaled metric is equal to e~2/P times the (k,p,e)-norm of ¢,
and the L*-norm with respect to the rescaled metric is equal to the (0o, &)-
norm. Hence the estimates follow from the Sobolev embedding theorem
for the rescaled metric. The constant is gauge-invariant and it depends
continuously on u (with respect to the C'-norm) and A (with respect to the
CY%norm). By Lemma 2.2, the estimate holds with a uniform constant c. [J

Lemma 4.5. For everyp > 2 and every cg > 0, there exist positive constants
€o and ¢ such that

|7, D¢ — DOy
| D¢ — D mul|
D¢ — D (|
D¢ — Dy (|

kpe < cll§ — mué
ke < Cll€llkp,e
kpe < € — € lkpees
kpe < CH§,Hk,p,E;

Jor every (u,A) € MY 5(co), ¢ = (&) € Xy, ¢ = (€9 0)) € X, e €
(0,1], and k = 0,1. Here we abbreviate D := Dy a) fore > 0.

k,p,es

Proof. We prove first that, for every vector field v € Vect(X), there exists a
constant ¢ = ¢(p, ¢p,v) > 0 such that

(4 4) H7Iu@A,v§ - ?A,vﬂuéuwkvp,/l < CH£HW’”’,A:
H7TuvA,v§ - 7"'uVA,vT"ufHW’WD,A < CH& - 7Tug”W’“”,A?

for (u, A) € MOB s(co), € € Q°(Z,u*TM/G), and k = 0,1. Here the WhP-
norm labelled by7 A is understood as the (gauge-invariant) (1, p,e)-norm for
e = 1. To prove equations (4.4), we choose local holomorphic coordinates
s+t on X. Thus &(s,t) € Ty M, and v, vy, Va s, and Va € are as in
Remark 4.1. Write
§ = mu& + Lum + J Lyng,
where 7;(s,t) € g. Define By(s,t) : g — Tyy(s )M and By(s,t) : g — Tyys)M
by
By =V, Xy (u), Byn =V, Xy (u).
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Then
Vaslun = LuNVasn = Bsn,  VagLun — LuNVagn = B,
and hence
Va smué — T Va & = mu(Bst + JBsna + (M, J + 0sJ ) Lynz).
Since my = (L} Ly) " L (€ —mu€) and g = — (L Ly,) "LLE J (€ — &), we have
[Va,smu€ — muVa,s€lle < cll§ — muél|Le.

This proves equations (4.4) for the local vector field 9/ds. For 0/0t the proof
is analogous. Hence the result follows for any linear combination of these
vector fields supported in the given coordinate chart, and hence for every
vector field on 3. For ¢ € QUY(3, u*TM/G) there are similar inequalities.
By equations (4.4), there exists a constant ¢ = ¢/(p, cp) > 0 such that

170 (Va&)® = (Vaomu) o a < l€llwrn a;
170 (Va&)?! = 1 (Vawmu) ko a < ENE = mulllirs a,

for (u, A) € ./K/lv%jx(co), €€ QY% u*TM/G), and k = 0, 1. Since
D¢ == Dy ay¢ = (V&)™ — J(VeJ)dsa(u),

we have

[T DE = Drulllwrwr a < l[Elwrr
[muD(§ — Wuf)”W’“vP,A < €~ 7Tu£||W’€’P,A’

for (u, A) € ./K/lv%’z(co), ¢ € QS u*TM/G), and k = 0, 1. Since
D¢ = m, D¢, DOWUC = mu Dmy§, Dy = (D€, 0,0),

the required estimates for the operator D¢ follow from equation (4.5). The
proof for the adjoint operator is analogous. O

(4.5)

In the following, we use the notation
Vil = (Vau€, Vo), Val = (Vaul', Vauy', Vaot)')

for v € Vect(X), ¢ = (£,a) € Xy, and ¢’ = (&, ¢',¢') € X, where V is the
connection on u*TM/G defined by equation (B.2) and V4 ,a € Q1(Z, gp) is
the covariant derivative induced by the connection A and the Levi—Civita
connection on .

Lemma 4.6. For every p > 2, every cg > 0, and every equivariant vector
field v € Vect(X), there exists a constant ¢ > 0 such that

(4.6) ID* VA€ = VauDCllkpe < e €Ikt p.es
(4.7) ID**Vanl" = Va D7l pe < e M I Nkt pes
for all (u, A) € ./K/lv%yz(co), CeXy, (eXy,ee(0,1], and k=0,1.
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Proof. We compute in local coordinates. Let ¢! = (¢/,¢', ') := D?(. Then

- - 1 1
& = Vas& + TVaek + I N(Evs = Jo) + 5 (J0:T = O I)E + Lup + T Lut,
(4.8)
¢ = A2 (Vasp + Vag) + e °LiE,
W = A2 (Vast) — Viagp) + e 2du(u)e.
Here
A = &ds + Vdt, a = @pds + )dt,

and v, v, Va s, VA &, Vap, and VA +& are as in Remark 4.1. It suffices to
prove the estimate for the local operators VA s and VAt Let ¢! = (&, L, %)
be defined by equations (4.8) with (&, ¢, ¥) replaced by (VA’sf, Va,s, Vast).
Since Vi J = 0, we obtain

Vas — € = J(VasVias€ — VarVas) + Vi, Xo(u) + TV, Xy (u)

1~ 1 -
+ ZVA,S(N(& Us — Jvt)) - ZN(VA,S&-’ Vs — Jvt)

1- 1 .
t 5 Vas((J0sT = 0)E) = 5(JOsT — 0T) Vst

— ST + O (L — TL),

Vase — b =A% (VasVah — VarVash) + (0sA72) (Vase + V)
&2 p(0s,€) — g2 dp(u)(Vey ]+ uT)E,

Vit — 0, = = A% (VasVaup + VaiVas@) + (0sA72) (Vast) — Varp)
— (00, TE) — 5 LV, T + OLTE

Here we have used Lemma C.2. For the vector field 9/0s, multiplied by
any cutoff function, the estimates (4.6) and (4.7) follow from these three
identities. The proof for 9/0t is similar, and so is the proof for the adjoint
operator. O

Lemma 4.7. Let p > 2 and ¢y > 0. Suppose that D° := D?u ) s onto

for every (u, A) € ./(/(v%’z(co). Then there exist positive constants ey and c

such that the operator D* := D, 4 is onto for every (u,A) € MB s(co) and
every € € (0,e0] and

(49) H< HkJerE = ( HDE*C Hk,ps + HWUD&*C,Hk,p,E)’
(410) Hgl - TruC HkJrl,p,E <ce HDE*C Hk,p,a’
for (' e X{L and k=0,1.
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Proof. By elliptic regularity, there exists a constant Cy > 0 such that
(4.11) €]l z» < Coll D" &oll o
for every (u, A) € ./K/lv%yz(co) and every &, € Q%Y(X, H,). Hence

17l [lzr < Col DY o[l o
< Col|muD¥*(||» + Collmu D¢ — D 7 || 1o
< CollmuD**¢' | v + CocrI¢" = mul o p.e
< Col|muD*¢'[| v + Cocrcze (1D Nlope + 17l |l o) -

Here ¢; is the constant of Lemma 4.5 and cy is the constant of Proposi-
tion 4.2. With Cycicee < 1/2, we obtain

(4.12) 1wl e < es(el D¢ llope + ImDCle),

where c¢3 := 2Cpcica. The inequality (4.9) for £ = 0 now follows from
equation (4.12) and Proposition 4.2. To prove equation (4.10) for k = 0 we
use Proposition 4.2 and equation (4.12) again to obtain

1¢" = mulll1pe < c2e (1D Nope + lI7uC Il r)
< c2e(1 + 38) | Do p.e + cacsel|mu D" || e
< c4e| DT lo,pye

where ¢4 := ca(1 + 2c¢3).
Now let v € Vect(X). By definition of the (1,p,e)-norm and equa-
tions (4.4), there exists a constant c¢5 = c5(v, p, ¢p) such that

IVaCllope < cse I

for (u, A) € M%,E(CO), ¢ € Xy, and € € (0,1]. Let cg = cg(v,p,cp) be the
constant of Lemma 4.6. Then, by equation (4.9) with £ = 0 and Lemma 4.6,
we have

el Vawlll1pe < ce (éfHD‘f*WmC'Ho,p,e + !!ﬂuDE*@AmC'HLP)
< ce?| D Vaul' = Vau D Nlope + e[ Va D¢ Nlop.e
+ ce||mu(DTF VA" = Va D7) | o
+ csHTru@A’vDe*C’ - @A,’UWUD(C:*C/”LP + CE/\H@A,’UWUD&*CIHLP
< 2ces (e D7 l1,p,e + 11D 1,p,e) + 2cc6[I¢ 1,6
< 2¢(cs + ccg) (el D Nipe + 7D Nl1pe) -

The last inequality follows again from equation (4.9) with & = 0. The
estimate (4.9) for £ = 1 now follows by taking the sum over finitely many
suitably chosen vector fields v.

1,p,es ||7Tu@A,fu< - @A,UWUCHLP < C5||C||0,p,€7
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To prove equation (4.11) for k = 1 we observe that 7, D** 7, ¢ = D",
and choose ¢y such that ||7,(|l1pe < c7]|C|l1p,e for every ¢ € X,. Let cg
be the constant of Lemma 4.5. Then, by equation (4.9) with £ = 1 and
Lemma 4.5, we have
HC, — ¢’ 2pe S C (5”175*(@“’ - WuC/)Hl,p,e + HWuDE*(C, - WuC/) ‘Lp,é)

< ce (ID7¢ 1pe + 171D N1pe) + ce| Dl

= D7 lpe + el mDC = D mul 1
< o1+ el D Clupe + cesell¢llpe + ecsll¢’ — mud”
< e[| D¢ [l1pee-

Lpe

The last inequality follows from equations (4.9) and (4.10) with £ =0. O

Lemma 4.8. Let p > 2 and ¢y > 0. Suppose that D° := D?u ) is onto for

every (u, A) € /f\;t/%,z(c()). Then there exist positive constants ¢ and ¢ such

that

(4.13) HDE*C/H]Q+1,I%€ < c<6 HDEDE*C/Hk,p,E + H?‘d'uDEDMC/Hk’p,g)7

(4.14)
HDQ*C/_,H_UDS* SCEHDSDS*CIHk

C,Hk—‘,-l,p,z-: ,D,E

for every (u, A) € ./K/lv%x(co), ('e X!, e (0,e)], and k =0, 1.
Proof. The proof has nine steps.

Step 1. Let ¢ > 1 such that 1/p+ 1/¢g = 1. Then there exists a constant
co > 0 such that

l€ollzo + 60l < colléoles 11860 < o [P

La
for every (u, A) € MO co), every &y € ker DO, and every & € QO1(Z, H,).
B,Y 0

These are standard estimates for elliptic PDEs. The first estimate uses L2
regularity for the operator D°, the Sobolev embedding W2 < LP, and the
Holder inequality. The second estimate uses L? regularity for P°* and the
fact that D" is injective.

Step 2. There exists a constant ¢; > 0 such that

DO* / DO* "
< ¢1 sup —< i 0!

DO*/
[>a,, S o

010

for every (u, A) € M% «(co) and every & € QOL(S, H,).
B 0
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Let &1,...,&m be an L?-orthonormal basis of ker D°. Given &) choose ¢ €
LY(X, H,) such that

(€. D"&) = |[p"&)

1€l Lo = 1.

Let & € WH4(3S, A% T*Y ® H,) be the unique section such that
= D¢l + Z £,6)¢;

Then

[ogi], = 2>et. "6

m <D0* //7rDO*£/>
= ||§ - ; NN W

TPgT,,

m * *
<DO ”,DO §/>
1+ E 1651 o 16511 £q W
Jj=1

IN

OHLq

(D¢, D &)

g

< (1 +mep?) |
0flLa

Step 3. There exists a constant ¢y > 0 such that

HWUDE*C/HLP < e <H7ruD€*C/ ~ Dy’ p + HDOWUDE*CHLP>

for every (u, A) € ./K/lv%x(co), every (' € X/, and every ¢ € (0, 1].
For every & € Q%1(%, H,) we have
(D¢, D" mu¢’) (DY, DV mul’ — D) | (&, DOm D)
1D - P& D¢

.o 1Pl

T D m D¢

o

€0l o

1" &

< HDO*WuC/ — 1, D
20

< ’DO*WUC’—MDE* /

0 * -/
e 60 [P m D=, -
Here the last inequality follows from Step 1. Now, by Step 2,
HT‘-UDE*QJHLP < HDO*WuC/ - Wupe* !

+ HDO*TF
r

<D0*7TU</7DO*§6>
+ c1 sup ™
p g [P
Lp + o1 HDOWUDE*CIHLP .

< HDO*WUC/ — D!

<(1+e1) HDO*MC — D
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Step 4. There exist positive constants £y and c3 such that
|70 ¢l1p < es(2 [Pl + [ DDy . + DD 1)

for every (u, A) € //\\/1/0372(00), every ¢’ € X!, and every ¢ € (0,¢&0].
We apply Lemma 4.5 to both operators D¢ and D*. Then, by Step 3,

D¢ < e

+ [ D0m D¢~ m DD, + [ DD )

,n_ufDE*C/ o DO*WHCI

p

< el =mul' . + D¢ = mD=C .
+ w2 )

< (E H,DS*CIHO,p,s te "Dapa*gl“o,p,s + HFU,D&DS*C,HLP)'
The last inequality follows from Lemma 4.7 and Proposition 4.2.
Step 5. We prove (4.13) for k = 0.
By Proposition 4.2 and Step 4,

127°¢ e < (2 [P o + w210
< e(eae [l + (1 + e)e [ D°DC .
+ o3 [mDDC )

for all (u, A) € ./K/lv%x(co), ¢ e X!, and € € (0,e0]. With ccge < 1/2 we
obtain equation (4.13) for k = 0.
Step 6. We prove (4.14) for k£ = 0.
By Proposition 4.2 and Step 4,
|2 = m D¢, < ee(IDD=C |y + [maDC )
< 05(035 HDa*CHO,p,a + (1 + 03)6 HDSD&*C/Ho,p,g

+ o3 |[m DD )
< e || DD
Here the last inequality follows from Step 5.
Step 7. There exist positive constants £y and cg such that
DD, Vald' e < coll¢l|2p,e
Nm D D, V)¢ 1o < 6 (1D D= lope + DD |10 + ¢l 1)
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for every (u, A) € ./K/lv%yz(co), every ¢’ € X!, and every ¢ € (0,¢¢].

The first estimate follows immediately from Lemma 4.6. To prove the second
estimate, recall from Lemma 4.3 that

1 DD = 1,2DD*¢ + 7, (DJ — JD) Lot

where D : QU(S,w*TM/G) — QY13 w*TM/G) is the Cauchy-Riemann
operator defined by equation (B.3) and R := (DJ —JD)L,, is a zeroth-order
operator (Lemma B.5). Hence

2DD*r, ¢ = —2[my, DD*|¢' + 1, D°D*¢' — n, RyY'.

By equations (4.5) in the proof of Lemma 4.5, the commutator [m,, DD*] is
a first-order operator in £’. Hence there exists a constant ¢7 = ¢7(p, ¢p) such
that

IVA™Vamu€ 1o < o7 (7DD |10 + &7 ¢
Moreover, by Lemma 4.7,
IVA™VA(E' = 7l )lzr < e72€" = mutll2pe
< ese D 1 e
< ¢ (ID"D7¢Nlope + e HITD DT lopee) -

1,p,,€) .

The last inequality follows from Step 5. Now the commutator
[6A,v7 WuDE,DE*KI = 2[614,117 WuDD*]gl + [@A,va WuR]wl

is a second-order operator in £ and a zeroth-order operator in ¢’. Hence
the assertion follows from the last two inequalities.

Step 8. We prove (4.13) for k = 1.

Let c¢19 be the constant in equation (4.13) for £ = 0 and ¢;; be the constant
of Lemma 4.6. Then, for every v € Vect(X), we have

e Va D¢ l1pe
< e D*Vaul l1pe + €l VA D¢ — D*Va ol |l1pe
< c10? | DD Vau('llope + cr0e|muD* D" Va ol || o + c11[I¢ 2,0,
< €108?[Va DD [[o,p.e + c102]| Va,wmu D*D*C'|| Lo
+ c108”|[[D* D7, Val¢ lope + cr0el| [mu DD, Vaul¢llzr + 1< ll2pe
< 1082 |Vau DD |J0.pe + 106]|Vaomu DD || 1o
+ c6c10 (€| DD o pe + 17D D" 1r) + (2c6c10 + c11) [ |2
< c12 (e DD 1 pe + 7D D 1pe) -
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The penultimate inequality follows from Step 7, and the last step from equa-
tions (4.9) and (4.13) and the definition of the (1,p,e)-norm. Now equa-
tion (4.13) for k = 1 follows by taking the sum over finitely many vector
fields v € Vect(X).

Step 9. We prove (4.14) for k = 1.

By Step 8, suppose that equation (4.13) holds with & = 1 and ¢ = ¢i3,
choose c14 such that ||7,(ll1,pe < c14]|C|]1,p,c for every ( € &, and let ¢15 be
the constant of Lemma 4.5. Then

D¢ — 1D |2,pe
< c13e| DD = wu D)1 pe + casllmu DT (D¢ = mu D)1 pe
< cu3e (DD (N pe + 17D DT 1p,e)
+ c13e| D' DT = w D DT |1 e + c1sl|(mu DT = DO ) D1
< (1+ c1a)ersel DD l1,p,e
+ crses (D l1pe + D¢ = mD ¢ l1p,e)
< c16e|[ DD |1 p.e-
The last inequality follows from Steps 5 and 6. g

5. Quadratic estimates

Fix p > 2, ¢g > 0, and (u, A) € MOB,E(CO), and consider the map
f‘e’;‘: (EU’A)XH—)X;
given by

p(€)(Ds.a1a(exp,(€)))
(5.1) Fe(€, ) = e 2L — dha
e 2 u(expy (€)) + *Fata
Here p(§) : T, exp, (6)M — Ty M denotes parallel transport along the geodesic

r +— exp,,(r§) with respect to the Hermitian connection
Vi=V- %JVJ

on T'M. The differential of F*¢ at zero is given by
dFe(0) = fu’A).

Let F; denote the ith component of F*¢. Since F35 is a linear map, the
following proposition only deals with the first and third components of F*.

Proposition 5.1. For every p > 2 and every ¢y > 0, thef\e/ exists a constant
¢ > 0 such that the following holds for every (u,A) € M%’E(co), any two

pairs ( = (§,O¢),é = (é, &) € Xy, and every € € (0, 1].
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(0) I €]z + €llzo < 1, then
IFF(C+ ) = FT(Q) = dFF ()¢
< clléllz~ (Il + 1¥aélze + 16120
+ ell€liE (IIVaglzr + lallzo + [ Vallzr + lallzs )-
If. in addition, | Va€llze + |Valle + [l Lo + |&]l e < €271, then
IFF(C+ Q) = Fi(¢) — dF5 ()l
< clléllzee (=7 Ellee + I Vaéls + élzn )
(i) If [|€]] oo + [I€]| o < 1, then
175(¢ + ) = F5(0) = 75 ()l
< c(llalzo |0 + 2l e €] ).
(iit) If [|€]l < 1, then
1475 () = dFFO0)llir < ellélliee (1Ieller + IVl 2o + lallzs )

+ cligllzoe (Il + 1¥aéllze + 160 ).
(iv) If ||€]lee < 1, then

147500 = dF50)Cller < (=€l o liéllzoe + lallzolialo ).

The estimates in Proposition 5.1 differ from the ones in [6] in that the first
derivatives of £ appear on the right-hand sides of the inequalities. This is
because the nonlinearities in the Cauchy—Riemann equations appear in the
first-order terms whereas the nonlinearities in the anti-self-duality equations
only appear in the zeroth-order terms. In our equations, the nonlinear terms
involving « are of zeroth-order. Hence no derivatives of o appear in the
quadratic estimates. This is crucial for our adiabatic limit argument.

Proof of Proposition 5.1. In local holomorphic coordinates s + it on 3, the
map F° is given by

p(€) (Ostie + X o (ue) + J (Opue + Xy ug)))
O = e2L5E + A2 (Vasp + Vagd)) :
e (ug) + A2 (05(U +90) = H(P + ) + [P+, U + )
where
ug :=exp,(§), (= (§9,0), a=pds+pdt
Suppose that
€l oo < 1.
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The second derivatives of F} and F3 satisfy the following pointwise estimates
for suitable constants ¢; = ¢1(u, A, vs,v) and ca = ca(u) (i-e., ca does not
depend on the derivatives of u):

EFE(O (G @) < ea((1+ lal +[Vag]) &l I
(5:2) + [&1] (IVaal + |az]) + €] (IVa&a] + !a1|)>,

(5.3)  |*F5(0)(C, @)l < eaanllaz| + 72l Ee]).

The estimate (5.3) is obvious and equation (5.2) follows from the fact that
F5(¢) is linear and of zeroth-order in ¢ and ¢ and that the first-order terms
in € are independent of ¢ and . Now consider the identities

1
(5.4)  F(C+E) - FQ) - dF(Q)E = /O (1= P)d2F (¢ +rO)(E &) dr,

1
(5.5) 4F(O)C — dFF(0)¢ = /0 EF(r0) (¢, ) dr.

To prove assertions (i) and (ii), replace ((,(1,¢2) by (¢ + rf,é,é) in equa-
tions (5.2) and (5.3), insert the resulting inequalities in equation (5.4), and
integrate over 3. Moreover, to derive the second assertion in (i) from the first
we use the inequality e2/P~1|¢|| L < (e ||€]| L + || VA€l Lr) of Lemma 4.4.
To prove assertions (iii) and (iv), replace (¢, (1,(2) by (rC,C,é) in equa-
tions (5.2) and (5.3), insert the resulting inequalities in equation (5.5), and
integrate over X. Il

Proposition 5.2. For every p > 2 and every cg > 0, theig exists a constant
¢ > 0 such that the following holds for every (u,A) € MOBE(C()), any two

pairs ¢ = (£,0),¢ = (€,&) € Xy, and every e € (0,1].
(@) If lllzoe + [IEllz < 1 and [[[l1pe + [ICll1pe < €22, then
17(C+{) = F2(0) = dF=(O)Cllope < e 722|{J13,...
(i) If [I€]] oo + €]l < 1 and [[Cll2pe + ICll2pe < €22, then
1F2(¢ + €) = FE(C) = dFF(C)Cll1pe < e 2PYCI3 e
(iii) If ||€]|p~ < 1, then
1dF=(0)¢ — dF=(0)¢Nlope < g™ 2/P(|C 1 e
(iv) If €]z < 1 and [|[¢]|1pe < €7, then

1dF=(O)¢ = dF=(0)C 1 pe < e 22)[Cll2pe I C 12 pee-

CHlvpva'
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Proof. Assertions (i) and (iii) follow immediately from Proposition 5.1. To
prove (ii), we observe that in estimating the quadratic terms in JF; we
encounter products of the following forms:

° 0% . é . é and Jy - é . é Here the LP-norms of 9?¢ and Oy can be
estimated by £2/7=2 and the L®-norm of ¢ - £ by 5_4/10"5“%;),5-

© £-0E-06,€-€-0%, €06 ¢, and £ 0¢ - €. The LP-norms of these
products can be estimated by =272/?||C||1 p.c|ICll2.p.e-

© OE-0E-E, -0+ €, and O - ¢ - €. In these cases the LP-norm of 9 is
bounded by £2/?~1 and the L®-norms of 85 . é and ¢ - é are bounded
by e 4P| Cll1pelICll2pe-

Similarly, in estimating the quadratic terms in 0F5 we encounter products
of the following forms:

° 5_25 . 85 and 0¢ - @Z; The LP-norms of these products can be estimated
by e==2/7|I(|3 .

e c729¢ - £ - £. Here the LP-norm of 8¢ bounded by £2/P~1 and the
L°°-norm of £2¢ - € is bounded by e=2-4/7||{| %7])75.

This proves (ii). The proof of (iv) is similar. O

Assertions (i) and (iii) in Proposition 5.2 are weaker than Proposition 5.1;
in the former, the first derivatives of « appear on the right-hand sides of the
estimates. The full strength of Proposition 5.1 will be required in the proof
of Theorem 6.2.

6. Proof of Theorem 3.1

From now on, we assume (H1) and (H4). In this section, we establish the
existence of a G(P)-equivariant map 7° : M%Z(co) — M5 5 that satisfies
the requirements of Theorem 3.1.

Theorem 6.1. For every cg > 0 and every p > 2, there exist positive
constants 9 and ¢ such that for every e € (0,e9] the following holds. For
every (ug, Ag) € ./’\/IVOBE(CO), there exists a unique pair (. = (§-,az) € Xy,
such that

(6.1) (t1e, Ac) := (expy, (£2), Ao + ac) € My,
(6.2) —dy 0 +e°L & =0, (- €im (D, 4))%,
(63) HCE ‘271)’5;(”07140) S 662.

The map (ug, Ao) — (ue, A2) is G(P)-equivariant and will be denoted by T¢.

The next theorem shows that uniqueness holds under a slightly weaker
hypothesis, namely in a larger neighbourhood of (u, A).
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Theorem 6.2. For every cg > 0 and every p > 2, there exist positive
constants § and gy such that for every e € (0,eq] the following holds. Suppose

that (ug, Ag) € ./K/lv%x(co) and (&, ) € Xy, satisfy equations (6.1) and (6.2),
and

(6.4) 1]l e + € lledll o + 2P N1(€ )llg o < 8X/PH2.
Then (expy, (€), Ao + a) = T¢(u, A).

Corollary 6.3. For every co > 0 and every p > 2, there exist positive
constants § and gy such that for every e € (0,eq] the following holds. Suppose

that (ug, Ag) € Mv%’z(co) and ¢ = (§,a) € Xy, satisfy equations (6.1) and
(6.2), and

(6.5) 111 g, g <SP

Then (expy, (€), Ao + a) = T¢(u, A).
Proof. Theorem 6.2 and Lemma 4.4. (|

Proof of Theorem 6.1. The proof is similar to that of Theorem 5.1 in [6].
However, in the present case the nonlinearities (in the quadratic estimates)
appear in the highest-order terms, and we establish estimates for the (2, p, )-
norms and not just the (1,p,e)-norms (as in [6]). We assume throughout
that the exponential map at each point in p~1(0) is defined in a ball of
radius 1.

Abbreviate D¢ := Df

(w0, Ag) and let F= 0 Xy — X, be defined by equa-
tion (5.1). Then
dFe(0) =D, F°(0) = (0,0,%Fa,).

Hence, by Lemma 2.2, there exists a constant Cy > 0, depending only on ¢g
and p, such that

I75(0)

We use Newton iteration to obtain a zero of F¢, and hence a solution of
equation (1.7). Let , = (&, ) € Xy, be the sequence defined recursively
by (g := 0 and

(6.6) o1 =G +&, G eimDT™, DY = —F(G)

We prove by induction over v that there exist positive constants &g, c1, C,
depending only on ¢y and p, such that

(67) ”61/ 2,p,€ < ClHJ:E(CV)Hl,R&
(68) Héy”Q,p,e < 2—1/006182’
(6.9) 1= (Coi1)lpe < CE2P)1Cll2 e

HLP,& =& [|Faoll v + & [dag * Faoll» < Coe.
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for ¢ € (0,60] and v > 0. The constants are chosen such that the linear
estimates of Lemma 4.8 hold for 0 < € < gg with ¢ = ¢; > 1, the quadratic
estimates of Proposition 5.2 hold for 0 < ¢ < 1 with ¢ = ¢ > 1, the L™
estimates of Lemma 4.4 hold for 0 < e <1 with ¢ = ¢ > 1, and

C = 3Cycico, Ccla(l)_z/p <1/2, 300010005(2)_2/73 <1.
For v = 0, the estimates (6.7) and (6.8) follow from Lemma 4.8. Namely,
by equation (4.13) with k£ = 1, we have
1Sol

The estimate (6.9) for v = 0 follows from the identity dF=(0)(y = —F¢(0)
and assertion (ii) of Proposition 5.2. Namely, since Cocreaoe?™2/P < 1, we
have

2pe < 1€[|[FZ(0)]|1p,e < Cocie®.

||§0||2,p,s < 006152 < 62/17, HCAOHOO,E < 006100052_2/p <1

Hence the hypotheses of Proposition 5.2 (ii) are satisfied with ¢ = 0 and
¢ = (p, and hence

172 (¢ hpe = 172 (o) = F(0) — dF*(0)ol
< 625_1_2/])”60”%,;7,5

< Cb0102€172/pH50H1p£-

1pe

Since C' > Cycyca, this proves equation (6.9) for v = 0. Now assume that
the sequences (p, ..., (, and fo, .. ,éy_l have been constructed up to some
integer v > 1 and that the estimates (6.7) to (6.9) have been established for
all integers up to v — 1. Then, by equation (6.8),

v—1 v—1

(6.10) 1Gllape <D 1641 = Gillape = D G 2pe < 2C0e1€%,
=0 j=0

and hence

HCVHOO,E < 2C)c1ca0e? 2P < 1.
This shows that &, (p) lies in the domain of the exponential map at ug(p) for
every p € P and so (, lies in the domain of F¢. Let (, and (,+1 be defined
by equations (6.6). Then, by Lemma 4.8, (, satisfies the estimate (6.7). To
prove equation (6.8) we observe that, by the induction hypothesis,
G ll2p.e < rllF5(C)l1pe
< Cere' P)|Gmt |2 e
S 2_1"61/*1 2,p78
< 2_V000182.
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To prove equation (6.9) we observe that, by equation (6.10),

||Cu||2,p,e+”§g||2,p7€ < 3Cocie? < e,
G llooe + l[Gulloce < BCoer1ecce? 2P < 1.

Thus the hypotheses of Proposition 5.2 (ii) and (iv) are satisfied with { = ¢,
and ¢ = (,. Hence

1= (o)1 pe < 1F(G + &) = F2(G) — dF(Go) ol pee
+ |dF= ()G — dF(0)E0]|1,p,e
< et P (1 ll2 e + 1S ll2.0) 1012
< 300610261_2/]0”61/
= PG ll2pe

This completes the induction.

By equation (6.8), the sequence ¢, is Cauchy in the (2, p,e)-norm, and
hence in the W2P-norm because ¢ is fixed. Moreover, by examining the
second component of ¢ we find that (, satisfies equations (6.2) for every v
and hence so does its limit

‘2,p,6

CE = (€€7a6> = I}E&(fv,au)-

By equation (6.10), this limit also satisfies equation (6.3) with ¢ := 2Cyc;.
Moreover, by equations (6.8) and (6.9), the sequence F¢((,) converges to
zero in the (1,p,e)-norm and hence F¢((;) = 0. Hence (. satisfies equa-
tion (6.1) and it follows from elliptic regularity that (. is smooth. This
proves existence.

We prove uniqueness. Suppose ¢ = (§,a) € X, satisfies equations (6.1)
and (6.2), and ||(|l1,pe < ce?. Then, by Lemma 4.8 and Proposition 5.2 (i)
and (iii),

||C7<E

1pe < a1 D(C = &)
< | FE(Q) = F(Ge) — dF(¢)(C = ) llopie
+ a1[dF(0)(¢ = o) = dF(C)(C = &) llope
< 610287172/p(”< — Cellipe + HC€H17P7€)HC — Cellipe

< 30610261_2/p||C = Celli,pe-

0,p,e

If 3ccicoe!~2/P < 1 then ¢ = (.. This proves uniqueness.
Since the conditions (6.1), (6.2), and (6.3) are gauge-invariant, it follows
that the map (u, A) — (ue, Ac) is G(P)-equivariant. O

Proof of Theorem 6.2. In this proof we drop the subscript 0. Fix two
pairs (u,A) € M%(co) and ¢ = (£,a) € X, that satisfy equations
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(6.2) and (6.4), and
(expu(g)a A + Oé) € MSB,E'

We prove that ( satisfies equation (6.3), provided that § and ¢ are sufficiently

small. By ellipticity of the operator D° := D?u A) there exists a constant

c1 = c1(p, co) > 0 such that

IVamuéllre < e1 ([P muélle + | 7uélle) -

Now let co = c2(p, o) be the constant of Lemma 4.5 and ¢35 = c3(p, ¢p) be
the constant of Proposition 4.2. Then

IVa€llr < e7MIE = mulllipe + IVaTuEl| o

< e M€ = mullipe + er (IP°mullor + [1muéll 1)

< 71”5 - Wulevp,E
+ a1 ([(Pmy — mu D)l r + (|7 D¢l 1o + |7l | 20
(e '+ cre)ll§ = mulllipe + a1 (ImDCllr + Imuéllr)
4 ([ID°Cllop,e + 1€l e),

™

<
<

where ¢4 := c3(1 + ¢1¢2) + ¢1. Hence

IVAEllzr + lallze < sl D°Cllope + calléllr + 71 1¢ = mulllipe
< (ca + ¢5)||DCllop,e + calléll e,

where ¢5 = ¢5(p, co) is the constant of Lemma 4.8. Since
F(C) =0,  F(0)=(0,0,«F4),  D°=dF(0)
we obtain

IVAE|zr + llallze < c6l|FE(C) — F2(0) — dFE(0)Clop.e
(6.11) + ceel|Fallre + callél| e,

where ¢g := ¢4 + ¢5. Now we use the refined quadratic estimate of Proposi-
tion 5.1 with ¢ = ¢7. By equation (6.4), we have

VA€l e + |lal| e < 0*/P71/2 < /Pl
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(provided that 6 < 1). Thus the hypotheses of Proposition 5.1 (i) and (ii)
are satisfied with ¢ = 0 and ¢ replaced by (. Hence, by equation (6.11),

IVagllz + oo < coerll€llz (7 €llo + VA€o + llallz )

+ cocre (|| oo lall oo + e 2[1€] Lo 1€l )
+ coe||FallLr + cal|&]|p

< 3c6¢7[C o0, (6_1||£HLP + || Vaél e + Hal\Lp)
+ coel|Fallr + call€]l e

< 3egerdz/2 (7l + VA€ llir + llallzr )

+ cocge + call€]| e
< 3cgerde!/? (||@Ag|ym + IIaIILP)

+ cocee 4 a0 P2 4 3cger6%E%/P.

Here the last two inequalities follow from (6.4). With 3cgerde'/? < 1/2, we
have

(6.12) IVAE Lo + lledllzo < es(8+e!72/P)e?,

where cg := 2cocg + 2¢4 + 6cgey. Since ¢ satisfies equation (6.2), we can
apply Lemma 4.8 (with ¢ = ¢5) to obtain

€]l pe < e5 (el D°CIlzw + ||TuDC]|r)
(6.13) < 5 (2]|dF5(0)¢]| Lo + €°[|dF5(0)¢] ) -

By Proposition 5.1 (i) with ¢ = ¢7 and equation (6.12), we now have
1475 (0)¢l 0 = 1F5(S) = F5(0) = dF5 ()¢ | s
< crllélzee (€l + 1¥a€lzr + llallzo )
+ erllél (IVagllzr + llallzr )
< 2erl€llzo (€lleo + 1¥agllar + llallzr )
< 261Clloc.e (272 + ey(d + 1 72/P)e27)
< o(3+ 7)1 e

Here we have used the fact that ||€||p < 6e%/?2 < 1. Moreover, the
penultimate inequality follows from equations (6.4) and (6.12) and the last
inequality, with a suitable constant cg = cg(p, ¢p), follows from Lemma 4.4.
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By Proposition 5.1 (ii) with ¢ = ¢7, we have
1dF5(0)¢llze < 175(0) = F5(C) — dF5(0)Cl e + [[Fallzr
< cr (el llalle +e €l I€] o) + | Fallze
< 2¢r (e lellze +e72[1€ ) Le) I€lloo,e + [ Fallr
< 2¢706* P72 [loo e + || Fallo
< 10062l pe + 1 Fal Lo
Here the penultimate inequality follows from equation (6.4) and the last fol-

lows from Lemma 4.4. Combining these two estimates with equation (6.13),
we obtain

1Cllpe < s (209(5 +elTHP) 4 610551/2) I¢111,p.2 + cse? | Fallze-
If 6 and e are sufficiently small, we obtain
I<l1,p.e < 2e5® || FallLe < 2eocse”.

Hence the result follows from the uniqueness argument at the end of the
proof of Theorem 6.1. U

Corollary 6.3 has a slightly stronger hypothesis than Theorem 6.2, how-
ever, it does not seem to have a simpler proof. In order to significantly
simplify the proof we would have to further strengthen the hypothesis and
assume ||Cl[;,. < 6e2/P+1 with a small constant § (instead of 1<l pe <

6e2/P+1/2 a5 in Corollary 6.3). Under this hypothesis, uniqueness can be
established with the same straight forward argument that is used at the end
of the proof of Theorem 6.1. However, such a weaker result just fails to suf-
fice for the proof of Theorem 3.3. Namely, in Section 10 we shall establish
an inequality of the form

HCHl,p,a—: < 662/p+1

under the hypotheses of Theorem 3.3. In this inequality, the constant c is
not small and so the argument in the proof of Theorem 6.1 does not suffice
to give uniqueness. However, if ¢ is chosen so small that ce!/2 < § then we
can use Corollary 6.3 to obtain uniqueness.

7. Relative Coulomb gauge

This section is of preparatory nature. We prove a local slice theorem for
the action of the gauge group G = G(P) on B = C& (P, M) x A(P). The
infinitesimal action is the operator d(, 4) : Q2 gp) — T(u,4)B given by

diu,2yn := (—Lun, dan).
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Denote by dz‘z ) its formal adjoint with respect to the e-inner product, i.e.,
e 2
d?u,A) (&, a) :==e"dja— L

for (¢, a) € T(y, 4)B. The next proposition restates the local slice theorem for
the G-action on B with e-dependent norms for elements (ug, Ag) of the mod-
uli space MOBE. The result continues to hold for every element (ug, 4g) € B
with p(ugp) = 0. However, in this generality, more care must be taken in
determining the norm on B with respect to which the constants ¢ and §
depend continuously on (ug, Ap). In the case of J-holomorphic curves, the
WP_-norm controls all higher derivatives and therefore the choice of the
norm is immaterial.

Proposition 7.1. Assume (H1). For every p > 2 and every cy > 0, there
exist positive constants 6 and c such that the following holds for every € €
(0,1]. Let (ug, Ao) € M%,E(CO) and ¢ = (§, ) € Ty, 4,)B such that

(7.1) 1< es(uo o) < 06777

Denote (u, A) := (exp,,(§), Ao + ). Then there exist a unique pair o =
(60, @0) € T(uy,a0)B and a unique section ny € QO(3, gp) such that

d?ﬂio,AO)CO =0, g*(u’A) = (eXpuo (50)7 Ao + ao), g:=em,

(72) H770H2,p,s;A0 + HCO

Lemma 7.2 (Linear estimate). For every p > 2 and every cy > 0, there is
a constant ¢ > 0 such that the following holds for every (ug, Ag) € //\/lv%x(co)
and every e € (0,1]. If ( = (§,) € WHP(S,ufTM/G) & (T*E @ gp) then
there is a unique n € WP(3, gp) such that

1,p,€5(u0,40) sc HCHl,p,E;(uo,Ao) )

(73) d?’io,Ao)d(umAO)n = d?ZQ,AQ)C'
Moreover, n satisfies the estimates
T4 e Scllloper Moy < cl|dii, ang] -

Lemma 7.3 (Quadratic estimate). For every p > 2 and every ¢y > 0,
there exist positive constants 6 and c such that the following holds for every
(uo, Ap) € M%’E(CQ) and every € € (0,1]. Assume that {y = (£, p) €
Tug,40)B and n € OO(X, gp) satisfy

(7.5) In 2pe T HCOHl,p,g < 6P,

Then there exists a unique pair 1 = (§1,a1) € Ty, 40)B such that

(7.6) (expy, (&1), Ao + a1) = g*(exp,, (&0), Ao + o), g:=¢",
(7.7) 161 = Gollop,e < climllype 1¢1 = Co

1pe S Cllnllgpe -
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Moreover,
(7.8)

c -2
0.0y (61 = 60 = diwg,aom) |, < &7 (ol e + llae ) Il e
Lemma 7.4. For everyp > 2 and every cg > 0, there exist positive constants

d and ¢ such that the following holds for every (ug, Ag) € //\\/1/0372(00) and

every € € (0,1]. If m,m2 € Q°(%, gp) satisfy [mill e < 0 and |Inzll e <0
then there exists a unique element n € Q(X, gp) such that

e =eme® 27 nllpee < llm + 2l < 2100l e -
Moreover, n satisfies the estimate
C_l HnHQ,p,s;Ao < H771 + 772H2,p,5;A0 <c HT/HQ,p,E;AQ :

Proof. For a fixed connection Ag and € = 1, the result is obvious. Choose
c1, ca, and cg such that

e Il < s+ mellys < el

for k = 1,2, 3, whenever 1,72, and n are sufficiently small in the C°-norm
and satisfy e = e e™”. Here the W*P norms are understood with respect
to the connection Ag. It follows that

elldag(m +m2)lle < ecr (ldagnll e +[1nllLe) < erllnllypea,

and hence

”771 + 772’ 1,p,e;40 < (CO + Cl) Hnul,p,E;Ao
for 0 < ¢ < 1. The other three inequalities follow by similar arguments.
This proves the lemma for a fixed connection Ag. The constant ¢ depends
continuously on Ay with respect to the C'-norm, and is gauge-invariant
(with respect to the action of G on Q°(X,gp) by conjugation). Hence,
by Lemma 2.2, it can be chosen independent of Ay as long as (ug, Ag) €
MOBZ(C()) for some wuyg. O
Proof of Lemma 7.2. The operator d?’ig,AO)d(UO»AO) . WAP(X,gp) — LP
(3, gp) is given by

*e 2 g% *

d(uo,AO)d(uO,AO)n = e d}y,dagn + Ly, Lugn-

By our standing hypotheses, ~!(0) is compact and L, : g — T, M is injec-
tive for every z € u~1(0). Hence there exists a constant c¢; > 0 such that

(7.9) crtInl < |Lanl, < exlnl

for every x € p~%(0), every n € g, and every z € X. (Here | - |, denotes the
metric on M induced by J, and w.) Hence the operator d?ZO,AO)d(UO,AO) is

injective and hence, by elliptic regularity, it is bijective.
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Next we prove that there exists a constant ca = c2(p, cp) > 0 such that, for
every pair (ug, Ag) € MOB’E(C()), every n € Q°(3, gp), and every ¢ € (0, 1],
we have

(7.10) ldagnll o < €| dh,dagn| o + c2e™" Inll o -

For a fixed connection Ay € A(P) this follows directly from the interpolation
inequality in [8, Theorem 7.27] and the LP-estimate for the operator Ay, dAg-
Now the identity

dydan — dy,dagn = [A — Ao A dagn] + =[*(A — Ag) A dayn]
— #[da, * (A — Ao),n] + *[x(A = Ao) AN[A = Ao, n]]

shows that the constant in equation (7.10) depends continuously on A with
respect to the Cl-norm. Moreover, the inequality (7.10) is gauge-invariant.
Hence it follows from Lemma 2.2 (with ¢ = 2) and the Arzéla—Ascoli theorem
that equation (7.10) holds with a uniform constant co for all (ug, Ag) €

M s (co)-
Using the identity

[P~ = (p = 2) [n"~" (n,dagn) € Q' (%)
for n € Q°(X, gp) and integration by parts, we obtain

— - * —4 2
L dan = [ s = 0 =2) [ P~ o dagn)
The last term on the right is negative. Now equation (7.3) is equivalent to
82dj‘40a - Lzof = 52d*AOdAO77 + LZOLuon.

Hence, by the previous identity and equation (7.9), we have

— —2 2

[ (e + 2 P2 dapnl?)
- 2
< [P (1Ll + 2 dagnl)

< [P e dagn + Ly L)
(7.11)
= [P e - 20,0

=/E!77\”_2 (e%(dagn, a) +€*(p — 2)|n|~*((n, dagn), (n, @) — (Lugn, €))
<o / Pl + 52<p ) / 02 |dagn o

<o / P je + S =D / P~ o2 + & / 072 |dagnl?
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Therefore, by Holder’s inequality,
2 2
— —1 ep-1) -2 2
e nllge < cillnlfs 1€l + — 5 Il el
— -1~ ~ * *

€1 2 Hn”ip < ||77||7£p HUHLP y M= 52dA0dA077 + LuoLuon'
The last inequality follows from the third line in equation (7.11). Hence
e*(p—1)°

2
—L lal,.

2 e < exlnll o €N Lo +
and hence, using } [l €] < 1/2 |nl12, +1/2¢5 €]2, we obtain
Inl7s < & 1€170 + e (0 = 1) lallZ, -
Thus we have proved the inequalities
(7.12) 1l < er max{p =1, Y [Cllgpes  Inllpe < Il
By equations (7.9), (7.10), and (7.12),

2pesao = Inllze + € ldagnll o + € [|da, dagn|
< (1+c2) [l + 2% || diydagn])
< (I+cp+28) 71 2o + 217 1»
< (2 + (14 cp+ 20%)) 170l e -

lIm

This proves the second estimate in equations (7.4).

To prove the first estimate in euations (7.4), we use a rescaling argument
in local holomorphic coordinates on X. Cover X by finitely many open
sets, each of which is holomorphically diffeomorphic to the unit square in
C, suppose that the coordinate charts extend to a closed square of side
length two, and choose trivializations of the bundle P over each of these
(extended) open sets. In these coordinates, we write the metric in the form
A\2(ds? + dt?), and we write A := Ag = ®ds + VUdt, a = pds + P dt.
Moreover, u := ug : [0,2]*> — M, £ : [0,2]> — TM is a vector field along wu,
and 7 : [0,2]> — g. In this notation, equation (7.3) has the form

)\ 2
(7.13) VsV + ViVin = Vs + Vi + <5> L} (Lyn+ ),

where Vi := Visn = 0sn + [®,n] and Vjn := Vgitn =0 + [¥, n]. Now we
introduce new functions, defined on the square [0,2/¢]?, by

Mi(s,t) = nles,et), As,t) = Mes,et),
&(s,t) = &(es,et), a(s,t) = ules,et),
P(s,t) = eples,et), O(s,t) = eD(es,et),
(s, t) = ep(es,et), U(s,t) = eW(es,et).
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Then equation (7.13) is equivalent to

VoVidi + ViNaii = Vo@ + Vit + N L3 (Lai) + &),
where V,ij := 957 + [®,7] and Vi7j := 8,7 + [¥,7]]. With A := 9,05 + 9,0,
this equation can be written in the form

A =0 f +0g+h, fi=¢-2(®,0], §:=1—2[¥,17,

hi= NLy(Lai+ &) + (@, — [&,7]] + [, ¢ — [¥, 7] + [0 + 0, ¥, 7).
Hence there exists a constant c3 > 0 such that, for all real numbers a, b such
that 1/2 <a < b <2/e —1/2, we have

[ (%ap =+ ) < e [ (1P +1ap -+ Bl +1ilP)
[avb]z [a_1/27b+1/2]2

Here the constant c3 is independent of @ and b. It follows that

[ (%l ap) e < e (16l + 1) 327
[a,b]2 [a—1/2,b+1/2]2

=y (1é + 1) 32,
[a—1/2,b+1/2)2

where the constant ¢4 depends on the metric and on the C'-norms of ®
and ¥. With a =1/2e, b =3/2¢, and 0 < ¢ < 1 we obtain

e / (Nnl? + [VinlP) 2P < e / (ol + [b[P) A2
(1/2,3/2]2 [

2]2

)

e / (el + ) A2.
[0,2]2

)

Hence, by taking the sum over the coordinate charts,

elldagnlle < NYPey (el + 1€l o + 11l 0) -

Here N is the number of open sets in the cover and the constant ¢4 depends
continuously on Ay with respect to the C'-norm. Hence, by Lemma 2.2,
¢4 can be chosen independent of the pair (ug, Ag) € M%,Z(CO)- Combining
the last inequality with equations (7.12), we obtain the first estimate in
equations (7.4) as claimed. O

In the following proof, we use the identity

(7.14) (eN*A—A—dan= i (=1)"
' AT k)

for A € A(P) and n € Q°(X, gp), where ad(n)a := [, a] for a € QY (X, gp).

ad(n)*dan
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Proof of Lemma 7.3. We denote by c1, co, ¢3, ... positive constants depend-
ing only on p and c¢y. Fix a pair (ug, Ag) € MOBE(CO) and choose a positive
constant dg that is smaller than the injectivity radius of M on the compact
set ug(P). Suppose that n € Q%(X, gp) and o = (&0, ap) € Tug,A0) B satisty
the hypotheses of Lemma 7.3 with a sufficiently small constant § > 0. Let
c1 be the constant of Lemma 4.4. Then, by equation (7.5),

€0l oo + 17ll poe < c28™2/7 <||§0H1,p,z-: + ||77||2,p7€> < ad.

If § is sufficiently small, it follows that the C°-distance between e~ exp,,
(&) and ug is smaller than &y for every r € [0, 1]. Hence there exists a unique
smooth path [0, 1] = T(y 40)B : 7+ ¢ = (&, ;) starting at (o such that

(expuO (&), Ao+ ar) = g% (u, A),
where
(715) (uv A) = (eXpuo (60)7 Ao + 060), g=ce"

The endpoint (; of this path obviously satisfies equation (7.6). We prove
the inequalities

(716)  10:Glope S cllllipes 10l < clmllye
(7.17)
[ tcs,00) @G = dtunao) |, < ™7 (Il e + Wl ) Nl

for 0 < r < 1, where the constant ¢ depends only on ¢y and p. Then the
inequalities (7.7) and (7.8) follow by integrating the function r — 9,(, over
the interval 0 < r <1.
For every u € C& (P, M) whose C’-distance to ug is less than dy, we
define the linear operator Z(u) : Q°(%, gp) — QO(Z, uiTM/G) by
Z(u)n:=d exp;()l (u) Lyn
for h € Q°(X, gp). Then

(718) aTCT" = (_Z(g_lu)nadg*AnO)a

where (u, A) and g are as in equations (7.15). We prove the first inequality
in equation (7.16). Since A = Ay + ap we have

(7.19) dg-an = dagn + [g" Ao — Ao, n) + [ ang, 7],
and we must estimate the three terms on the right with g := €. Since
Nl ;e < 19 it follows from equation (7.14), with n replaced by 77, that

-1-2/p

* 2
Ilg™ Ao = Ao, 1]l e < c2l|dagnll o [19ll oo < cae 17117 e -

Moreover,

H[g_lozgg, 77] HLp < 8_1_2/}7 HCO 0,p,e Hn“l,p,e .
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Hence, by equations (7.5) and (7.19), ||dg=anll, < cae™" |Inll;, . and hence
the first inequality in equation (7.17) follows from equation (7.18).
Next we prove the second inequality in equations (7.16) and (7.17). Using
the identity
daolg™ awg, ] = [97" (daga0)g. 1] + [[(Ao — 9" Ao) A g™ aog), 1)
— [97 g A dagn],

and equation (7.14), we obtain

1 1

g~ aog.1lll, . = [llg™ a0g. 1]l 1y + & [[daolo™ a0g, ]|,
+ € HdAo [*g_laogv 77] HLP
< ese PN Goll e Il e -
Similarly, using the identity
da,[(Ao — 9" Ao),n| = [da, (Ao — 9" Ao),n] — [(Ao — g7 Ao) A dagn],
and equation (7.14) we obtain
I1(Ao — 9" Ao)snllly e < e 27 In

Hence, by equation (7.19),

l2pe 11l]1 e -

g an = dagily o < 022777 (UGoly e + llz e ) Il e -

Moreover, since Z(ug) = Ly, we have
129 un = Lugn]
< |2(g™ w)n — Z(upnl|,, . + 1Z2(w)n — Z(uo)nll; .-

< s (Il e 190 e + €00l e Il e + ol e I

14%8)
< coe™ 7 (1ol e + Il ) I

Here we have used the inequality [|7]|;~ < ¢1d from equation (7.5) and
Lemma 4.4. The constants c¢; and cg in the last two estimates depend
continuously on the pair (ug, Ag) with respect to the C'-norm and are
gauge-invariant. Hence, by Lemma 2.2, they can be chosen independent
of (ug,Ao) € M%}E(co). Hence the second inequality in equation (7.16)

follows from equation (7.18). To prove equation (7.17), we observe that

1.pe-

d??io,A())aTCT - d??io,Ao)d(u07A0)77
- €2d.*40 (dg*An - dAOTI) + L:,o (Z(gilu)n - Luon) I
where (u, A) and g := €"" are as in equation (7.15). The terms on the right-

hand side have been estimated above and this proves equation (7.17). Thus
we have proved the existence of ;. The inequality (7.7) with § sufficiently
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small guarantees that the C? distance between v and exp,, (£1) is smaller
than the injectivity radius. This proves uniqueness. O

Proof of Proposition 7.1. The proof is based on a Newton-type iteration.
Let
(ula Al) = (U, A) = (expu0(£)7A0 + Oé), G1:=¢.
For v > 2, we define ¢, = (£, aw) € T(y,,4,)B inductively by
(eXPuo (Ev+1)s Ao + i) i= (Upt1, Avs1) = gy (uw, Ay),
where (u,, Ay) := (exp,,(§), Ao+ aw), gy := e and 7, € QY(%, gp) is the
unique solution of the equation
d?ZO7A0)d(“07AO)ﬁV + dz('lio,Ao)CV =0

To construct these sequences, we must ensure that in each step ¢, and 7,
satisfy the hypotheses of Lemma 7.3 so that (,4+1 can be chosen as in the
assertion of Lemma 7.3. We shall prove this below. And we shall also prove
that these sequences satisfy the following estimates:

(7.20) 1Goll1 pe < ClICH e s

(721) uo,Ao CV < 0672/1” ”CV—IHlp’ d*e )CV_IHLP )
1-v *s

(7.22) Lo a0) || o =277 || Do, 40)

(7.23) ||77u||2,p,a <27 HCHLP@'

The constants C' and § are chosen as follows. Suppose that the constants
c1,C2,¢3,¢4,¢5 > 1 and dg, 93,04 € (0, 1] satisfy the following conditions.

e The injectivity radius of M on wug(P) is bigger than dy.

e The inequality (7.9) holds with ¢; for every z € p~1(0).

e The assertion of Lemma 7.2 holds for 0 < ¢ < 1 with ¢ replaced by ca.

e The assertion of Lemma 7.3 holds for 0 < e < 1 with ¢ replaced by c3
and ¢ replaced by Js.

e The assertion of Lemma 7.4 holds for 0 < e < 1 with ¢ replaced by ¢4
and ¢ replaced by 4.

e The assertion of Lemma 4.4 holds for 0 < ¢ < 1 with ¢ replaced by cs.

Now choose positive constants C' and ¢ such that

6162(1 + 262)63 <, 202(1 + 62)6305 <1, 2C6 < 63,
4C4C5C(5 S (54.
We prove that the estimates (7.20) to (7.23) hold for v = 1. Since C/2 >
c1¢2, the inequality (7.23) with v = 1 follows from Lemma 7.2. Since C' > 1,

the inequality (7.20) holds for » = 1. The inequality (7.21) is vacuous for
v =1 and (7.22) is obvious.
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Now suppose that the sequences have been constructed and the inequali-
ties (7.20) to (7.23) have been established up to some integer v > 1. Then

I llg pe + 16011 pe < CO+27) [[Clly e < 2C0%/7 < G327,

D€ —
Hence the hypotheses of Lemma 7.3 are satisfied with (y replaced by (,
and 7 replaced by 7,. Choose (y+1 = ({u+1,@+1) as in the assertion of
Lemma 7.3. By Lemma 7.2, we have

4

Moreover, d?’lio,Ao)(CV + d(ug,40)1v) = 0, and hence, by equation (7.8),

”ﬁVHLp,E S C2 HCVHQp,s? HﬁVHZ,p,e S C2

e —2 ~ ~
Qs anGort, < a7 (1M1 + 10lae ) Wil e

< 02(1 + 02)63572/1) Hcll”l,p,s

d('liO,AO)CV L

Since ca(1+ c2)es < C, this proves equation (7.21) with v replaced by v+ 1.
Moreover, by equation (7.20),

dzﬁio,Ao)C”HHLp < (14 ¢)e3Ce™ /P €I e ||y 40) S0 ;

< co(1+ e)e3C6 Hd?Zo,Ao)CV Lp

Since 2ca(1 + c2)c3Cd < 1, this proves equation (7.22) with v replaced
by v + 1. Now let 7,41 be the unique solution of dZ‘uO Ao)d(uo, Ao)v+1 +
d?uo,Ao)C”“ = 0. Then, by Lemma 7.2 and equation (7.22),

Honnot], =02

Since 2cjce < C' this implies equation (7.23) with v replaced by v + 1. It
remains to prove equation (7.20) with v replaced by v+ 1. By equations (7.7)
and (7.22), we have

(7.24)

16541 = Gillype < €51l < o527 |

‘|"A7V+1||2,p7g < e Hd?ZOyAO)CV—FIHLp < 622_ Lpe-

dz‘;o,Ao gHLP < 016203217j HCHl,p,E

for j =1,...,v. Hence
Gl pe < ISl pe + Z 1641 = Gillpe < (14 2¢1c2¢3) [IC]] e -

Since 1 + 2¢1cac3 < C this proves equation (7.20) with v replaced by v + 1.
This completes the induction.
By equation (7.24), ¢, is a Cauchy sequence in the WP-norm. Moreover,

(ul/? AV) = (expuo (51/)7 AO + 041/) = h:;(ua A):
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where h, = ¢g192---g,—1. We prove by induction that there exists a
sequence 7, € Q°(X, gp) such that
(7.25) hy =€, m1 = mllyy. < aC277 |, -

For v =1 we set hy := 1 and 7; := 0. Suppose that the sequence has been
constructed for all integers up to v > 1. Then

v—1

(7.26) 1llape < D M5+1 =il e < aClICH e
j=1

Hence, by Lemma 4.4 and equations (7.1) and (7.23)

_ _ 04
7]l oo < 58727 Imwllpe < cacsCe 2/p ¢l e < €ac5C6 < 1

. _ . _ 04
Ill oo < e5e™P il e < €507 IICly e < €506 < R
By Lemma 7.4, there exists a section 7,11 € Q°(3, gp) such that
et = e = hygy = hyer, il <200+l e < 0a.

Applying Lemma 7.4 to —n, and 7,41, we find

2,p,e S 0402_V HCHl,p,s :

70+1 — 771/H2,p,5 < ca |||

The last inequality follows from equation (7.23). This completes the induc-
tion. Thus we have proved that h, satisfies equations (7.25) and hence is a
Cauchy sequence in G%P(P). Denote
¢ := lim ¢, h:= lim h,, n:= lim n,.
V—00

V—r00 V—r00

Then
e = h, h*(u, A) = (exp,, (&), Ao + ), dzo,Ao)C =0.

The last equation follows from equation (7.22). Moreover, by equations (7.20)
and (7.26), we have |1y, . + (<]l . < C(1+c4) [[C]];,. - Hence equation
(7.2) holds with ¢ := C(1 + ¢4).

To complete the existence proof we must show that 1 and ¢ are smooth.
We shall prove that the sequence ¢, is bounded on W¥? for every k. Here
it suffices to obtain rather crude estimates with constants which depend on
e and are allowed to diverge as € tends to zero. We fix a constant ¢ > 0
and prove by induction that for every integer £ > 1 there exists a constant
¢k = ck(p, €, up, Ao, u, A) such that, for every v,

(7-27) HCV”W’W < ¢k, ||771/”Wk+1vp <27V
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For k = 1 this follows from equations (7.20) and (7.23). Now let k > 2 and
assume that these estimates have been established with k replaced by k£ —1.
Observe that there exists a constant C > 1 such that, for every v,

1G+1 = Cullwrr < Crllwllyrsrr

v a)Sv

il < Ci|

9

Wk—1p
*e

‘ d(u(),Ao)CV—HHkal,p
The first two inequalities are obvious and the last follows by inspecting the
formula (7.18) in the proof of Lemma 7.3. Combining these inequalities with
the induction hypothesis, we obtain

< Ck (HCV”WIW + ||77V”Wk+1m) Hf?VHW/w .

1Co+1llwre < MG llwrw + Ck 1 lwrsan

1Avs1llyese < Cree—1 (Cullyrs + 190l yrsip) 2
Abbreviate

-V

ay = [|Cutuo llwke + Ch vl
and choose 1 so large that C;Z’ck_ﬂ*l’o < 1. Then
ay+1 < HCV+V0||Wk,p + Ck ||77V+Vo||wk+l,p + Ck ||77V+Vo+1||W’“+LP

=ay + Cg ||'f71/+V0+1||Wk+1,p

< ay + Ciier1 (16l + 17wl lypesrn) 277770

<(1+27")a,
for all ¥ and hence the sequence a, is bounded. It follows that the sequences
lCullyyrpr and 27 (|5, ||y e+1., are bounded. Thus we have proved that 7, and
¢, satisfy equation (7.27). This completes the induction. It follows that ¢

is smooth and hence, so is . This proves existence.
We prove uniqueness. Choose § > 0 so small that

cscd < g, 2¢4c0 < 03, c5c0 < Oy, 2¢oc3c400 < 1.

Assume that (o, (1 € Ty, a,)B and no,m € 00(X, gp) satisfy the require-
ments of the proposition. Then

d?ZO,AO)Ci =0, g; (u, A) = (exp,, (&), Ao + ;)
for i = 0,1, where g; := €. By Lemma 4.4, we have
HnZHL‘X’ < C5€72/p |’777:H2,p,5 < 050872/27 HCHl,p,z—: < 6566 < 54

for ¢ = 0,1. Hence, by Lemma 7.4, there exists a unique element n €
0°(%, gp) such that

g=e"=gi'g, it Im = mollape < llype < callm —mo

The gauge transformation g satisfies

g*(eXpuo (50)) Ap + O[()) = (expuo (61)7 Ag + Oél).

2,p,e”
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Moreover,

1Colly

Hence (o and 7 satisfy the hypotheses of Lemma 7.3. We use Lemma 7.2
and the estimate (7.8) of Lemma 7.3 to obtain

pe T Inllape < 2eacliClly e < 2c402/P < §3e%/P,

‘ dTZO,AO)d(Uo ,Ao)

[7llgpe < c2
< case ™7 (16 = ol e + Wl ) 1
< cacaeae /P (HCl —Co

< 26263046672/10 ”CHl,p,s HnHLp,e

< 2cacscach ||nlly . -

Lpe

e 1 =10l ) Il e

Since 2¢oc3eqcd < 1, we have n = 0 and hence 17 = 19. Hence ag = a3 and
exp,, (§o) = exp,,(&1). By equations (7.1) and (7.2), and Lemma 4.4, we
have

Hg’HL‘X) < 056_2/p ”Ci"l,p,s < 0565_2/p ”CHl,p,s < 0566 < 50
for i = 0,1. Hence & = &;. g

8. Proof of Theorem 3.2

In this section, we prove that the map 7¢ : OBZ(C()) — M%Z introduced

in Theorem 6.1 is locally surjective. This is the content of Theorem 3.2 and
is restated more precisely as follows.

Theorem 8.1. Assume (H1) and (H4) and let B € Hy(M;7Z) be a non-
torsion homology class. Then, for every co > 0 and every p > 2, there exist
positive constants €y and § such that the following holds for every € € (0,&0].

If (1o, Ap) € /\/l s(co — 1) and (u, A) = (expg,(£), Ao + @) € _/\/l %5 where
(=(a)e Tqy, AO)B satisfies

HCHLpE (@0,40) < 562/p+1/2

then there exist & € ker D?ﬁo o) and ny € Q°(Z, gp) such that

9" (u, A) = 7-5(u0, Ag), g:i=¢e™, (ug,Ag) := f(“ﬂovgo)(f_o),

Hg(]le,p + ||770H2,p,£;A0 ¢ HC 1,p,&;(i0,A0) *

Here ]-"? o) is the map of Theorem 2.1. The proof of Theorem 8.1 is

based on Corollary 6.3 and on the construction of a tubular neighbourhood
of the moduli space M$ .(co) in the quotient B/G (Figure 1).



GROMOV-WITTEN INVARIANTS AND ADIABATIC LIMITS 107

# (u,A)
@A)
/ g.(uo ’AO)
imFO

Figure 1. A tubular neighbourhood of MP.

Proposition 8.2. Assume (H1) and (H4) and let B € Hy(M;Z) be a
nontorsion homology class. For every p > 2 and every cg > 0, there exist
positive constants d, g, and ¢ such that, for every e € (0,e¢], the following
holds. Let (g, Ag) € M%yﬂco — 1) and (u, A) = (expg, (§), Ao + &), where
the pair ( == (£,@) € Tlay,40)B satisfies

< 6e2/p,

(8.1) ngl,p,e;(ﬂo,go) -

Then there exist &y € ker DY 0. gy 0 € OO, gp), (ug, Ag) € .//\/lvOBS(co), and

(u

Go = (80, @0) € T(uy,A0)B, such that

(8.2) g (u, A) = (expuo (€0), Ao + o), (uo, Ag) = ‘7:(04107140)(50)7

where g := e, and

(8.3) d?ZQ,Ao)CO =0, (p€im <D?“0»A0))*’
(84) H&)HWW + llno 2pedy T ||C0H17p7€;(u07140) =c HE 1,p,e;(io,A0) *

The proof of Proposition 8.2 is based on Proposition 7.1. The latter can
be restated as follows. Let H® C T'B denote the horizontal subbundle with
fibres

Hfu,A) = ker dz(’li,A) C T(U,A)B
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Given a pair (u, A) € B and constants p, cg, , € denoted by U° = U°(5,¢) C
M%E(Co) the open set

U = { (uo, Ao) € M 5(c0) (1, 4) = (x0,,(€), Ao + @), K]0 < 5277},
If § and e are sufficiently small, then Proposition 7.1 defines two maps
ST U —H, NTUY— Q%% gp)
such that S is a section of H® over U° and, for every (ug, Ag) € U°, the
pair (&, ) = S%(ug, Ap) and the gauge transformation g := e, where
n = N*®(ug, Ag), satisfy g*(u, A) = (exp,,, (&), Ao + ap) and equation (7.2).
In particular,
18° (w0, Ao)lpe < cllCllpes
where (u, A) = (exp,,(§), Ao + ) and ||(][;,. < 6e2/P. In this notation,

Proposition 8.2 asserts that for every (u, A) € B, whose distance to ./K/lv%z

in the (1,p,e)-norm is less than de%/P for a sufficiently small constant &,
there exists a pair (ug, Ag) € U such that S(ug, Ag) lies in the image of

(Dfuo,Ao))*'

Lemma 8.3. For everyp > 2 and every cg > 0, there exist positive constants
J, €0, and ¢ such that the following holds for every e € (0,e¢]. Let (u, A) € B
and I C R be an interval. Suppose that I — U°(8,€) : r — (uo(r), Ao(r)) is a

smooth path, and let ((r) = (§(r), (1)) € T(uy(r),a0(r))B be the corresponding
vector field along this path that satisfies
< 827,

(1, A) = (expyy (€ Ao + @), [Cllype <

Denote Ce(r) = 88(“0(r)> AO(T)) and @T’CE = (Vrgs - 1/2J(V8ruo J)fz—:, aras)'
Then
(8.5)

(@0, 0, 40) + Wi

e < ¢ (10 e+ 13,0040 = L0,

Proof. Let g(r) := 67.75(T), where 1. (1) := N (ug(r), Ag(r)) € Q°(Z, gp), and
denote 1 := Orug, Ag := 0, Ag, g := Org. Let 61 and ¢ be the constants of
Proposition 7.1. Then

(8.6) 19 ()| e + 1)1 e < €1 (€)1 < 16227,

g tu= expy, (&), A= Ao+ ae, 52al>f4004E — Ly & =0.
Differentiating these identities, we obtain
87)  —Lyulg'9) = Brio + E2Nike,  dgealgT'g) = Ao+ de,
where Ey := Ei(ug, &) and E := Ea(up, &) (see Appendix C), and
(8.8) 2}, b — e # [Ag A wae] — Ly Ve — plio, &) = 0,
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where p € Q%(M, g) is given by (n, p(&1,&2)) := (Ve, Xy, &2) (see Lemma C.2).
Inserting the expressions for V,.£. and ¢, from equations (8.7) into equation
(8.8) gives

&, dgr (91 9) + Ly By ' Ly1(97'9)
= 62df40A0 + &2 % [Ag A xae] — LZOEglEluo + p(tug, &).
Since ¢~ 1
Ey ' Ly-1,(97'9) = Lug(97'9) + (By 'E1 = 1) Lug (97'§) + Ve. Xg-14(uo),
Tiodga(9718) = diodan(9715) + [day e, g14) + #lrare A dag (g7 19))

Hence

u = exp,, () and g*A = Ag + a. we have, by Lemma C.1,

6deﬁ%dz“o (g_lg) + L’TLOLUO (g_lg)
= —&’[dh, e, 9719 — €% % [k A day (971 9)]
— Ly (By VB = 1) Lug(9719) — Ly Ve Xg15(uo)
+ &% [Ag Axac] + L (1= Ey By + pliio, €2)
+ 62d20A0 - LZO’L.L(].
By Lemma 7.2 and Lemma 4.4, there exists a constant co > 0 such that
1. -9 —1.
97" 9ll0pc < 222Gl e 97 9l
2 1% A * .
+ (HC&HO,p,e + H€ dAoAO - LuOUOHLF)
< c1eadn [|g7 9,
2 i .
+ e (Il e + ||£2d, Ao — Liyio]| )

The last inequality follows from equation (8.6). With cjced1 < 1/2, it follows
that

lg™ 1, < 262 (Icclloge + €2, 4o = Ligial| ) -
Hence equation (8.5) follows from equation (7.5) and (8.7). O

Consider the vector bundle
VA //\/lv%,z,
whose fibre over (ug, Ag) € M(J)B,E is the finite-dimensional vector space
V?uo,Ao) of all pairs (&, ap) € QU(Z, Hy,) x Q1(X, gp) that satisfy the equa-
tion
(8.9) DO a4 (u0)€0 + Xag (o)™ = 0.
This space can be identified with the kernel of the operator D?uo’ Ao)’ Namely,

the kernel of D?UU Ag) Comsists of all sections &y € Q(%, Hy,) that satisfy
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equation (8.9) for some 1-form oy € Q'(X, gp), and the 1-form ag is uniquely
determined by &. Thus V' — M%Z is a vector bundle of rank m :=
dim M(J)B,E'

Lemma 8.4. For everyp > 2 and every cg > 0, there exist positive constants
g0 and ¢ such that the following holds for every e € (0,e0]. Let I C R be an

interval and I — ./K/lv%x(co) :1r = (up(r), Ao(r)) be a smooth path such that,
for everyr eI,

(8.10) 10ruo(r)l 2 sy + 100 Ao (7)1 (x) < co-

Then every smooth vector field r +— ((r) = (§(r), (1)) € Tiug(r),A0(r))B
satisfies the inequality

] VD¢ — DNC

for k = 0,1, where D* := Dfuo(r),Ao(r))
£, 0ra).
Proof. We denote

Ea)i=¢ = (G W) =D = (€)= D,
Moreover, we drop the subscript 0 and write (u, A) := (ug, Ag). Then, in
local holomorphic coordinates on ¥ and a local frame of P, (' is given by

~ = 1 1
€' = Vsl + TVasE + N(Evs = Jun) + 5(J0T = )6 + Luco + T Lut,

¢ = A" (Vasp + Va) + e L%,
Y = A2 (Vasth — Vaup) + e 2du(u)é.

Here we use the notation of Remark 4.1. Differentiating these formulae with
respect to r, we obtain

V& — & =V Va & — Vas V€ + J(ViVa€ — VaVi€)

’k < 65_1 HCHkJrl,p,s

P,

and V¢ = (Vi€ — 1/2J (Ve J)

1=~ 1 -
+ ZVTN(&US —Ju) — ZN(V?{,US — Ju)

| =

+ (0T — BT)E) — %(J@SJ o)

2
+ VX o) + TV Xu(0) = 5 (Vo) (Lup = T L),
Or' — @, = X2 ([0:®, 0] + [0, T, 1)])
+ 72 (0. €) ~ ()€
O’ — o = A2 ([0,®, 9] — [0, 0, ¢])

e (,o(aru, JE) + ;LfL(vamJ)s) |
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Here p = ps+ € Q?(M, g) is defined by Lemma C.2. The required estimates
follow from these three identities via a term-by-term inspection. |

Lemma 8.5. For every p > 2 and every co > 0, there exist positive cons-
tants €g and ¢ such that the following holds for every ¢ € (0,g0]. Let
r — (ug(r), Ao(r)) be as in Lemma 8.4 and suppose that r — (o(r) is a
smooth section of V° along this path. Abbreviate D® := D?uo(r),Ao(r)) and let

C(r) € ker D¢ be given by

C:(r) i= Go(r) = D (D*D*) ™ DGo(r).

Then
(8.11) 16 = Collo.e < ee?[1€oll 2,
(8.12) 1976 = Vicollozze < ¢ (lollz2 + 1% ollz2 )

Proof. Let (&, ac) := (. for e > 0 and ¢ := (§, ) := (. — (o. Then
0
¢ € im D", D¢ = d’y, 0

—xda,qp

Hence, by Lemma 4.8, there exist constants ¢1, ca > 0 (depending only on ¢p)
such that

¢, < 1€ 1D°Cllg0c = c16” (I dagaroll 2 + [|di 00| 2) < 26 [0l o -

The last inequality follows from equation (8.9) and the basic elliptic esti-
mates for the operator DY. Thus we have proved equation (8.11). To prove
equation (8.12), let

¢ = (1) == ~(DD™) ' DAGo(r) € XLy,
so that ( = D*(’. Then, by Lemma 4.7 with p = 2,
HCIHQ,Q,E < c3 HDE*CIHLM =a HCHLQ,g < 020352 HfOHLQ )
and hence, by Lemma 8.4 (with ¢ = ¢4 and D¢ replaced by D=*),

D5 = 5D ¢l < eae™ [l < cacacac 6ol
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Now it follows from Lemmas 4.8 (with ¢ = ¢5) and 8.4 (with ¢ = ¢4) that
ID*V, ' |l1.2,¢ < ¢5]|DD**Vi( 0,2,
< 65| D (DT V¢! = VDT () 0,2,
+ ¢5[|D*VC = VD lo2, + 51V D Clo,2.c
< coe DTV = VDT 1 2,
+ ¢ (C4€_1||C||1,2,s + ||@7~D€C||0,2,5)

< e7 (€ollz + 1¥€ollz2 ) -

Hence
IViCllo2e < IMD¢ =DVl o2 + 1D Vi llo.2.c
< (er + cacacae) ([l 2 + [Vhollzz ) -
This proves equation (8.12). O

The estimate (8.12) is fairly crude. More careful considerations give an
additional factor e. However, we shall not use this fact.

Lemma 8.6. For every p > 2 and every cg > 0, there exist positive cons-
tants 0, o, and ¢ such that the following holds for every ¢ € (0,e9]. Let
(u, A) € B and I C R be an interval. Suppose that the path I — U°(6,¢) :
r = (ug(r), Ao(r)) and the vector field r — ((r) € Tiyyr),A0(r)B are as
in Lemma 8.3. Moreover, assume equation (8.10) and let r — (o(r) and
7+ ((r) be as in Lemma 8.5. Then

d
S a0 + (o)

< e (Iollze + 1%6ollzz) (€2 + Il pe + 13, Druollss)

Proof. Abbreviate S§¢ := S§%(ug, Ap). Consider the identity

d -d ~
(G 8%+ (€0, 0rto). = (VG 8°) + (e (D0, D, Ao) + VhS7).
+ <C0 — Ces (aruo, arA0)>€ - €2<Oé(), 8TA0>.

By Lemma 8.5, the (0,2,¢)-norm of V(. is bounded above by a constant
times ||€ol/z2 + |[V+&ollz2. By Proposition 7.1, the (0,2,¢)-norm of S¢ is
bounded above by a constant times ||(||1 p.. Hence the first term satisfies the
required bound. For the second term, the estimate follows from Lemma 8.3
and the fact that the (0,2,e)-norm of (. is bounded above by a constant
times ||£o||r2. For the third term, we use equations (8.10) and (8.11) and
for the last the estimate follows from equation (8.10). O
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Proof of Proposition 8.2. Let U C R™ be an open set containing zero and
U— MOBE(CO) cx = (up(z), Ao(z))

be the composition of the map '7:810 o) defined in Theorem 2.1 with a Hilbert

space isomorphism R™ — ker D?ﬂo o)’ Then
(u0(0), A0(0)) = (@0, Ao),  (9yu0(0), i A0(0)) € Vi, 4y
for i =1,...,m; in particular,

LT]OaiU()(O) = 0, <8¢U0(0), 8J“0(0)>L2(2) = 51]
Now choose m smooth sections (i, .., Cmo : U — V0 so that

Gjo(x) = (&j0(2), ajo(2)) € Vi) Aoa)):

and
Gjo(0) = —(95u0(0), 0;40(0)), (§i0(2),&50(2)) p2(5) = i

forxr e Uand j=1,...,m. Given x € U we abbreviate D¢ := D*(EUO(x) Ao ()"
If € is sufficiently small then, by Lemma 4.8, this operator is surjective for
every x € U. In this case, we define (j-(z) € ker D° by

Ge (@) := Go(a) = DT (D*D) ™! Do ()
for 7 = 1,...,m. By Lemma 8.5, these vectors form a basis of ker D¢ for

¢ sufficiently small. Now let d; and ¢; be the constants of Proposition 7.1.
Choose dy > 0 so small that

2| < 6P — (uo(z), Ao(z)) € U°(61,¢€)

for z € U and 0 < ¢ < 1. Let 8¢ : U° — H® be the map of Proposition 7.1
as introduced above. Define 0 = (01,...,0,,) : U — R™ by

0(x) = ((je(2), 8 (uo(x), Ao(2))). ,
where (-, ), denotes the (0,2, ¢)-inner product on T, (a), 4 (z))8- Then
O(x)=0 = S%(up(z), Ao(x)) € im D",

We shall establish the existence of a zero of § with the inverse function
theorem. We must prove that |df(z) — 1] < 1/2 on a ball of radius r and
that 6(0) is less than /2.

To see this, we first observe that

10;(0)] < 11¢j0(0) g 2.0 || (@0, Ao) g5 < €2 [[C]l, .0 < 207,

Here we have used the fact that the (0,2,¢)-norm of (;-(0) is less than or
equal to the (0,2,¢)-norm of jo(0) = —(djup(0),0;A40(0)), that the L
norm of 9;A¢(0) is controlled by ||0;uo(0)||z2 = 1, that the (0,2, ¢)-norm of
S¢ (1, Ag) is controlled by its (1, p,e)-norm, and that, by Proposition 7.1
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and equation (8.1), the latter is bounded above by ¢1|[¢[|1,p < c106%/P. Thus
we have proved that

(8.13) 10(0)] < v/mes |[C],,. < Vmeade®.

Now let ((x) = (§(), a(x)) € Tiuy(x),40(x))B be the unique smooth section
defined by

(u, A) = (exXPyy(2) (§(2)), Ao(z) + alz)),  ¢(0) =,
for z sufficiently small. Then there exists a constant c3 > 0 such that

1962

for x sufficiently small and 0 < ¢ < 1. Hence, by Proposition 7.1, we have
that, for |z| < 6pe?/? and 0 < e < 1,

IV (uo (@), Ao(2))llg,p e + (187 (o (), Ao (@)l 0
(8.14) < et @l < e (|IC]y, + cslol)
Moreover, there exists a constant ¢4 > 0 such that

105 + (§o(@), Ouo(@)) 12 | + |1 L7y () Pitio (@) | r < cal],

1pe < HEHLP,E + 03|$’

€j0(@)ll 2 + [Vigjo(@)ll 2 < ea

for x sufficiently small. Now suppose that §; and &y have been chosen so
small that the assertion of Lemma 8.6 holds, with ¢ replaced by cs, for the
paths x; — (uo(x), Ao(z)), i — ((x), z; = (jo(x), and z; — (je(z). Then

1030 () — 6ij| < [6i; + (§o(2), Oiuo(@))| + |0:0; () + (§o(2), Oiuo(@))|
< cala| + es([I€j0 (@)l 22 + [ Vigjo ()| 2)
X (€2 + 1€@) 1pe + [ Lsg 2y Ot () || 10)
< calz| + cacs (€2 + [ICll1pe + (c3 + ca)l)
< ¢ (52 + ||E||1,p,€ + |33|)

for |z| < 6pe?/P and 0 < € < gg. Thus the Jacobian df(z) € R™*™ satisfies
1d0(z) — 1| < cr (52 + o2 4 |x|) .
Choose &y and &y so small that c7(e2 + 2605(2)/73) <1/2. Then
1
|z| < 60e¥P, 0<e<ey, 0<6<6 =  |df(z)—1]< 5

Hence the inverse function theorem asserts that 6(B,(0)) O B, /2(0(0)) when-
ever 1 < 0pe?/P. Now suppose that \/mc2d < dg/2. Then, by equation (8.13),
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we have 2|0(0)| < 6oe*/P and hence we can apply the inverse function the-
orem with r = 26(0)|. Then B, 5(6(0)) contains zero and, by the inverse
function theorem, there exists a point xg € R such that

0(zo) = 0, lzo] <210(0)] < 2v/mey Hle,p,g‘
The last inequality follows from equation (8.13). Now define

(uo, Ao) := (uo(0), Ao(z0)), Co = S*(uo, Ao), no := N*®(ug, Ao).

Then equations (8.2) and (8.3) are satisfied by definition. The estimate (8.4)
follows from Proposition 7.1:

1012 + 160l e < 1 1@ e < ex (1€l + eslol) < es K]l

Moreover, the vector & in the assertion of Proposition 8.2 is the image of g

under our Hilbert space isomorphism R — ker D?ﬁo o)’ Hence, by elliptic
regularity for the Cauchy-Riemann operator, its W1 -norm is bounded by

|| and hence by the (1,p,e)-norm of (. O

Proof of Theorem 8.1. Let p > 2 and ¢y > 0 be given. Choose positive
constants g, d1, d2, and cq such that Proposition 8.2 holds with  replaced
by 61 and c replaced by c¢q, Corollary 6.3 holds with ¢ replaced by d2, and
both results hold for 0 < € < g3. Now choose d > 0 so small that

Seo /2 <81, @16 < b

Let ¢ € (0,e0] and suppose that (u, A) and (@, Ag) satisfy the hypotheses
of Theorem 3.1, namely

(1o, Ao) € MOB,z(Co - 1), (u, A) = (expg, (£),A0+a) € Mps,
where ¢ := (£,a) € Ty, 4,)B satisties

Héul,p75;(ﬂ0’go) S (582/p+1/2 S (5152/1)'

By Proposition 8.2, there exist

EU S ker D?ﬂO,AO)7 To S 90(27913)7

and
(uo, Ag) € M 5:(co), Co = (0, a0) € T{ug,40) B
satisfying equations (8.2) to (8.4), with ¢ replaced by ¢;. Hence

||CO||17P16§(U07A0) <a ngl,p,s;(ﬁo,ﬁo) < 61552/p+1/2 < 6282/p+1/2'

This estimate together with equation (8.3) shows that (ug, Ag) and (p satisfy
the hypotheses of Corollary 6.3. Hence, by equation (8.2),

g*(u, A) = (expuo (50)7140 + Oéo) = %E(UOa AO)v g = e,



116 A. RITA GAIO AND D.A. SALAMON

Moreover, again by equation (8.2), (ug, Ag) = .7:(0%’%)(5_0) and, by equa-
tion (8.4),

Héﬂ“wl,p + H770H2,p,a;,40 < Hng,p,s;(aO,Ao) )
This proves the theorem. O

9. A priori estimates

In this section, we assume that J € Jg(M,w) is independent of z € ¥ (or
in local coordinates is independent of s and t). Let 2 C C be an open set,
K C Q be a compact subset and A : £ — (0,00) be a smooth function.
Given u : @ — M and &,V : Q — g, we define v, vy : @ — «*TM and
k:— gby

vg 1= Osu + Xo(u), vy = Ou + Xg(u), k= 05V — 0;® + [®, V].
Moreover, as in Remark 4.1, we use the notation

Vas€ = V& + VeXo(u), Vi = i+ ViXu(u),
Vasn = 0sn+[®,n], Van = o + [¥, 1],

for £:Q —uw*TM and n: Q) — g. Then

Vasp(u) = dp(u)vs = —Ly, Jv,, Vap(u) = du(u)vy = — Ly Juy.
Moreover,

VA,sUt - VA,tvs = Lyk,

by Lemma C.3,

Va,sLun — Ly Nasn = Vi, Xy (u), Va,Lun — LyNam = Vi, Xy (u),
and, by Lemma B.4,

VA,sVa€ — VaiVa,s§ = R(vs, v4)€ + Ve X (u).
In local coordinates, equations (1.7) have the form
(9.1) vs + Juy =0, A2k + e 2p(u) = 0.
If the above equation holds then
(Vo Doy = (W, I )vs, Va,sUs + Va v = —J Lyk.

Given a constant C' > 0 we denote by M“ C M the compact subset of all
x € M that satisfy |u(z)| < C and |n| < C|Lyn| for every n € g.

Lemma 9.1. Let C > 0, p > 2, © C C be an open set, and K C ) be
a compact subset. Then there are positive constants g and ¢ such that the
following holds. If 0 < e < ¢eg, A : Q — R is a smooth function satisfying
A>1/C, and (u,®, V) is a solution of (9.1) satisfying

losl| ey < G ul(@) € M€,
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then
/ |(w)P < ce??, sup |p(u)| < ce?=2/P.
K K

Proof. Let A = 0%/0s% + 0%/0t? denote the standard Laplacian. For 7 > 0
denote B;(zp) :={z € C||z — 20| < r} and B, := B,(0). By (9.1), we have

du(u)vs = =Ly, Jvs = — Ly vy, dup(u)vy = =Ly, Jvy = L vs,
and hence
Va,sVasp(u) + Va Vap(u) = Va sdp(u)vs + Va rdp(uw) vy
= VA,tL:;US - VA7SL:Ut
= L;,(Vavs — Vasvi) — 2p(vs, vt)
= —L} L,k — 2p(vs,vp)
A 2
= <€> L Lyp(u) — 2p(vs, vt).
Here p € Q?(M, g) is as in Lemma C.2. Thus
Alp()? = 2AVa (W) + 2V pu(u)
+ 2(u(u), Va,sVa sp(u) + Va, Vap(u))
= 2|V st (w)[? + 2| Vapp(u) [

2
#2(2) 1P = alua) oo, )
Now choose positive constants § and ¢ such that
2min ¥ 2007, dp(€1.&)] < g lal el
for all z € M and &;,& € T, M. Then
Al > 5 () — elu(w)]

Since 2A |p(u) [P > p|u(w)[P~? A |p(u)|® for p > 2, this implies
2
P < «
()P < =
Using the inequality ab < a?/p + b?/q with 1/p +1/q =1, a := ce?/§ and
b= |pu(u)P~' we obtain b? = |u(u)|P, and hence

22
p—1 p
(WP~ + > Alp(u)l”.

(9.2) )P <
By Lemma 9.2, this implies that

(R4 1)%cPe? 82
()P < ——F——+ o= | (u)[?
/BR(Z) o r?g Brir(2)
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for all z € C and R,r > 0 such that Bry,(z) C Q. Use the last inequality
repeatedly, with R replaced by R+7, R+2r,..., R+ (p—1)r, to obtain the

estimate
[t < e
Br(2)

for every z € C such that Brypr(2) C Q. Now choose R and r such that
Bripr(2) C Q for every z € K. Cover K by finitely many balls of radius R
to obtain the inequality

/ ()P < e,
K

By equation (9.2), the function

P2

8jp—1
is subharmonic in 2 for every zy € C. Hence, by the mean value inequality,
we have

2 |p(u(2)” + |z — 2o

P2 1 S
MW@DWS/ 21> + —55 [u(u)[” < e
87TR2 Br 7TR2 Bgr(z)

for z € C such that Bripr(2) C 2. This proves the lemma. O

Lemma 9.2. Let u : Bry, — R be a C?-function and f,g : Bryr — R be
continuous such that

f<g+Du, uz0, f>0, g>0.

4
f< g+ u.
Br BRryr 7" JBr4r\Br

Moreover, if g = cu then

m 4
—supu < <c+2)/ Uu.
2 Br r BRr4r

Proof. For 0 < s < r, we have

ou
[ -] o< o< au=[
Br BRr4r Brys Bpys dBRrys 9V

and hence

d ou 1
— u = — + u > f—- g.
ds OBR+s OBR+s ov R+s OBR+s Br BRr4r

Integrate this inequality over the interval 0 < s < ¢ to obtain

1 2
= g=< - u < = u
Br BRryr t OBRy+¢ T JOBRr+

Then
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for r/2 <t < r. The first inequality follows by integrating this inequality
over the interval /2 < ¢t < r. The second inequality was proved in [6,
Lemma 7.3]. O

Lemma 9.3. Let Cy > 0, Q C C be a bounded open set, K C € be a compact
subset, and X\ : Q — (0,00) be a smooth function. Then there are positive
constants g and ¢ such that the following holds. If 0 < ¢ < &g and (u, P, V)
is a solution of (9.1) satisfying

vsl| 2o () + & (W) ) < Co,
then

e Nl Loy + I1Levsl Locrey + 1L sl 2o (6
(9.3) + €l[Va,svsl Lo (xc) + €l Vavs |l 2o (x)

< e ([losl 2y + e M)l )
for 2 <p < oo.

Proof. Consider the functions wug, vp : 2 — R given by

1 s A2 5
wi= g (1o + 25 ).

1 ) ) )\4 ) )\2
Vg = 3 |VA,3U5| +’VA,t'Us| +€7|Luﬂ(u)| + €7|L 3| + |L JUS|

We prove that there exists a constant cg > 0 such that
(9.4) AUO > Vo — CouQ.

To see this, recall from the proof of Lemma 9.1 that

1 . . A2
§A|M(U)\2 = |Lyvs|” + |LJus|* + ;QILuu(U)I2 — 2(u(u), p(vs, vr)),

and hence
1
7A(>\2|M(U)\2)
A/\2 9 A2 9 9
= S5 In)P + Al + (u)
O N2
+ t—&slu( )
A/\2 20,02 . 20,72 .
- %2 2| ( )|2+ ;2 ([L(U),Lu?./5>— 82 <:u(u)aLu‘]U8>

+ —|L*v %+ A—QyL*Jv %+ )\—4|L (u)|?
82 uvys 52 u S 54 ’u:u’
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Moreover, by Lemma B.4 and Lemma C.3,

(Va,sVa s + Va1 Vay) vs
= (Va,tVa,s — VasVar)ve + Va s(Vasvs + Va1vr) — Var(Va,svr — Va1vs)

= — R(vs, ve)vy — Vi, X (1) — Va s(JLyk) — Va1 (Lyk)
A2 A2 2)\2
= — R(vs,v¢)vy + E—QJVUSXM(U) (u) + 57(%5 J)Lyp(u) + ?Vthu(u) (u)

(9.5)
A2 a2 D,A2 D2
+ ?LULU’US — ?JLULUJUS + 752 JLU/.L(U) + 762 Lu,u(u)

Hence

1
§A|'Us|2 = |VA,5U3’2 + ’vA,tvs’2 + <’U87 (VA,SVA,S + VA,th,t) vs>

2 22
= |VA,svs,2 + ’vA,tU8|2 + ?|LZUS‘2 + ?‘LZJUSP
3\? A2
— —5(u(u), p(vs, ve)) + g(vm (Vo J) Lup(u))

DN N2,
= {vs, R(vsyvr)or) = =5 Ly Jvs, p(w)) + =5 (Lis, p(w).

Combining this with the formula for A(A?|u(u)|?)/2¢2, we obtain

2 2 2)‘2 * 2 2>‘2 * 2 )‘4 2
Aup = [Va,wvs* + [Vagosl® + ol Liws* + T3 [L3Tve 4+ Syl Lupa(u)

52 30,\2 . 30,\2 .
- €T</L(U),p(’05,vt)> + ;2 <M(u)aLuUS> - 2 <ﬂ(u)7LuJUS>
AN? A2
(96) 4 Sz lrl® + S (vs, (Vo J) Lup(w)) = (v, R(vs, vi)ve).

The first row on the right is bounded below by 2vg. Moreover, by assump-
tion, the image of w is contained in the compact set {|u(z)| < eCp}. Hence
the last six terms can be estimated from below by vg—coug for some constant
co whenever ¢ is sufficiently small. Thus we have proved the inequality (9.4).
Hence, by Lemma 9.2, there exist constants g > 0 and ¢, > 0 such that

supuo+/ vogcf)/uo
K K Q

for every € € (0,e0]. Since |u(u)| < Cpep and zero is a regular value of p
there is an inequality |L,n| > d|n| whenever ¢¢ is sufficiently small. Thus
we have proved equation (9.3) for p = 2 as well as

O7) Nosll oo ey + & ()l goe ) < o (Il + = i)z ) -
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Now let us define u; : @ — R by

1
uL =g |VA7SUS|2.

We shall prove that there exist positive constants é1, ¢1, and ey such that
(9.8) Aug + €%uy) > —crug
for 0 < € < gg. We consider the equation
Auy = |Va,sVa 50s|* 4 |V Vasvs|? + ((VasVas + VarVat) Vasvs, Va svs),
and use the formula
(Va,sVas + Va1 Vay) Vasvs = T+ 1T+ 111,

where

I:= (VA,tVA,s - VA,SVA,t) VA,1Vs

)\2
= _R(Usavt)vA,tvs + gva’tvqu(u),

IT:= Va: (Va,:Vas — Va,sVay) vs

22 8t/\2
= _VA,tR(Usa Ut)vs + ?VA,t(VUSX,LL(U/)) + -2 VUSX/L(U)a
I := Va5 (VasVas + VarVar) vs

2 2 2

A A
= VA,S <_R(U57 Ut)vt + ?LUL'ZUS - ?JLULZJUS + (V'US J)XM(U)

g2

A2 2)\2 O\ N2
+ ?JVUSXM(U) + STVWXN<U) + STJXN(U) + ;TXH(U’) .

Here we abbreviate X, (u) = X,)(u) = Lyp(u). The last equality for

II follows from equation (9.5). Now consider the tensors V2J and V2X,
defined by

V2I(X,Y,Z) = Vx(WJ)Z) — (Vv D) Z — (WJ)Vx Z,
VX, (Y, Z) =W (Vs X,) — Vs, 2 X,
for n € g and X,Y, Z € Vect(M). Then
VA,S((Vvs J)LUM(U)) = VZJ(Usa Vs, Luﬂ(u)) + (VVA,SUS J)Luﬂ(u)
+ (Y, J)VUSX#(U) (u) = (Vi J) Ly Ly Jvs,
VA,t(VUqu(u) (u)) = V2X,u(u) (Utv US) + VVA,thXu(u) (U)VUSXLZWS (u)a
Va,s(R(vs, vi)vy) = VR(vs, vs, Vg, vg) + R(Va svs, v1) 0y

+ R(vs, VA s(Jvs))ve) + R(vs, v4)Va s (Jvs).
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Hence, by a term-by-term inspection, we obtain an inequality
(Vi 505, T+ T+ TIT) > —cug — vo

for € > 0 sufficiently small. Note, in particular, that the term £%(V svs, I1I)
contains the two positive summands A\?|L: V4 svs|? and N2|LZJ V4 svs|?.
Since Aug > wvp — coup the last inequality implies equation (9.8) with
c1 = ¢+ ¢g. Now it follows from equations (9.7) and (9.8), Lemma 9.2,
and the formula

A\ 2
Vavs = —J V4 v — (Y, J)vs + <8> Lyp(u)

that equation (9.3) holds for p = co. For 2 < p < oo, the result follows by
interpolation. U

10. Proof of Theorem 3.3
Theorem 10.1. Assume (H1) and (H4), let B € Ho(M;Z) be a nontorsion

homology class, and denote B := k(B) € Hy(Mg;Z). Then, for every
C > 0, there exist positive constants 9 and co such that for every e € (0, e¢]

the following holds. If (u, A) € MG 5 satisfies
ldaull <€, u(P) C M,
then (u, A) € %(ﬂ%72(00)).
Proof. Suppose the assertion is false. Then there exist a constant C' > 0
and sequences g; — 0 and (u;, 4;) € M3 5, such that
ldauill e <C, ug(P) C M, (i, Ai) & T (M 5(0)).

Here ¢; is chosen smaller than the number £¢(7) required for the definition
of the map T¢. We prove in four steps that there exist an integer ig € N,
positive constants ¢ and ¢y, and sequences

(wio, Aio) € MV%,E(CO - 1), Gio = (&i0, @i0) € T(uy,4:0) 5
such that
(10.1) (i, Ay) = (expyy () Ao + aio)y ol e, < ce/PH,
for every i > 4. For i sufficiently large, it then follows from Theorem 8.1
that (u;, A;) € T¢(M% s(co)), in contradiction to our assumption.

Step 1. There exist constants ¢ > 0 and iy € N such that, for ¢ > ig and
2 < p < oo, we have,

gi_l ”:U*<UZ)HLP + HL’ZidAiuiHLp + “inJdAiui“Lp +& HVAi*dAiuiHLP < CE?/p'
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By the graph construction in Appendix A, it suffices to establish the estimate
under the hypothesis that J is independent of z € 3. Namely,

Lt da; =L daju;, L Jda,ty = LY Jdau;,

where 4; = (m,u;) : P — M = ¥ x M, Vj is the connection induced
by A on @'TM/G, and id € Q'(X,T¥). Hence we can use the results of
Section 9. Since ||d,u;|| ;. < C and u;(2) C M, the pair (4;, A;) satisfies
the hypotheses of Lemma 9.1 and so the sequence &;~3/2/i(i;) is uniformly
bounded. Hence there exists a constant ¢y > 0 such that

(10.2) lda, il o + ™2 [ln(ui) [ oo < o

for every ¢. This implies that, in local holomorphic coordinates on 3, the
pair (4;, A;) satisfies the hypotheses of Lemma 9.3 for i sufficiently large.
Hence the estimate holds in local holomorphic coordinates on ¥ with u;
replaced by ;. Hence, by a partition of unity argument, it holds globally.

Step 2. There exists an integer ¢ € N and a constant ¢ > 0 such that, for
every i > ig, there exists a unique 7; € Q°(%, gp) such that

p(expy, (JLu;mi)) = 0, Imill oo < € flpa(ua)l| oo -
Define u} : P — M and A} € A(P) by
w; == expy, (JLu;ni), LZ;dA;u; =0,

so that dA;u; € QI(E,Hu;), and let ¢; := (JLy,mi, A, — A;). Then there
exists a constant ¢ > 0 such that, for ¢ > g,

[1Ci

14+2/p

/ 3 / 1+2/p
1pei S €6 ) HaJ,AQ (ui) .

‘ < /e, </.
Lp

>

[

The existence of 7; for large ¢ follows from the implicit function theorem for
the map 7 — p(expy,(p)(J Ly, (pyn)). This sequence satisfies an estimate of

the form

il o < er llp(ui)ll e < eae' ™27

for every i > ip and every p € [2,00|. Here the constants ¢; and co are
independent of ¢ and p, and the second inequality follows from Step 1. For
p = oo there is actually a better estimate (by £3/2 instead of g), but we
shall not use this here. In the following, we suppress the subscript ¢ and
write u,u’, A, A’, ¢ instead of u;, u}, A;, AL, €;, respectively. We establish the
required estimates in local holomorphic coordinates on 3. As in Remark 4.1,
we write A’ = ®' ds+ V' dt for some Lie-algebra-valued functiona ® and ¥/,
and denote

vl = Osu’ + Xor ('), vy = O’ + X ().
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Then L v, = L¥,v; = 0. We assume that the functions u,u’, ®, ¥, &, and
U’ are defined on an open set 2 C C and fix any compact subset K C (.
We must prove the estimates

10 )l e < 2P0 oy + Joj e < ce' TP,
V5]l oo + [loel] o < €
on the subset K, where
&= JLyn, 0= — = — 0.
Abbreviate E; := E;(u, JLyn), i = 1,2. Then
(10.3) V€ = JLuVam + (N, J + 0uJ)Lun + IV, X5 (u).
Hence, by Lemma C.3,
(10.4) vy — Byvp = Lyth + EaVa € = Lytp + EaJ Ly Naygn + R,
where
Rin := Ey(Vy,J + OpJ) Lun + E2 IV, Xy (u).
Hence
dp(u')(vp — Eyvy) = du(u')EBad Ly NVam + dp(u') Ryn.
Since L} = du(u)J, we have
L} LyNam = (du(u) — du(u')E2) J Ly, Vam
+ du(u')(vy — Erve) — du(u’) Ren,
and, since du(u’)v; =0,
Ly LyNagm = (dp(u) — dp(u') E2)J Ly Nagn
+ (du(u) — du(uw')Er)ve + L Jog — dp(u') Ren.
It follows that
IVaenll o < c2 (Il oo VA o + L3 T00N 1o + 10l o)
<5 (72 | Wa il +£27)).
If £ is sufficiently small this gives

IVaenll e < cag®® [IVamll oo < ca-

Here the second inequality follows from a similar argument as the first.
Combining these inequalities with (10.3) we obtain

VAl < cse?P, [[Vagéll e < cs.

In order to estimate 1) we apply the operator L7, to equation (10.4) and use
the formula L,v; = 0 to obtain

LZ’Lu/w = (L; — LZ/EI)Ut — szt — LZ{EQJLUVA¢T] — LZ/RtT].
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Combining this with Step 1 and the estimate for V47, we obtain

19l < ese™?, Wl < cs.
Hence, by equation (10.4),
o= Brouly < ere, i = Bronf < cn
Similarly,
VAol o + 6l o + |05 = B, < ere??,
VA0 oo + lll e + ||vs = Brvs|| oo < e
Now use equation (10.4) again to obtain
vl + J(u')vp = Ly (¢ — Vam) + JLy (¢ + Vasn)
+ (EoJ Ly — JLy)Vasn + J(EaJ Ly — JLy)Vasm
+ Eyvs + JE1v + (Rs + JRy)n
= 7w ((B2JLy — JLy)Va,sn + J(EaJ Ly — J Ly )Vam)
+ mw ((JEL — E1J)ve + (Rs + JR)7).

The second equality uses the fact that vs + Jvy = 0 and that the 1-form
Jj.4(u') takes values in H,. It follows that

[V} + J(@)of|| e < ese P27
It remains to show that

Va2l 1o + 1Vagell o + 1 Vas® o + [ Vagdll o < ce®P7

To estimate the term Vj 1, differentiate equation (10.4) with respect to
t. Then apply the operator du(u’) to the resulting expression to eliminate
Va1 and obtain an estimate of the form

IV, Vamll» < coe/P71,

Then apply the operator L;, to the equation obtained from differentiat-
ing equation (10.4), and estimate V41 using the upper bound found for
Va,tVa,m. The estimate for V4 41 is obtained in a similar manner. To
estimate Vy s and V4 ¢, we begin with the identity

U; — Fhvs = Ly + EaJL,Nasn + Rgn
instead of equation (10.4) and then follow the same procedure.

Step 3. There exist an integer ig € N, a constant ¢ > 0, and a sequence
(u!, Ay € MY 5 such that, for i > ig, we have

u/i/ = eXpu; (5;)7 g; € QO(E’ Hu;)v

1€l + 147 = All| 1 < ™7, <e.

"
’dA;’ui oo
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By Step 2,

supHdA/,u; < 00.

i t oL

Hence the induced maps u; : ¥ — M form a sequence of approximate
J-holomorphic curves which satisfy a uniform L*-bound on their first
derivatives. Hence, by (H4) and Theorem 2.3, there is nearby a true J-
holomorphic curve @ : ¥ — M whose WlP-distance to u} is controlled
by the LP-norm of d 7(1:). Now this J-holomorphic curve has a unique lift
u : P — p~1(0) of the form

uf = expy (&), &€ QS Hy).

Let A7 € A(P) be the connection determined by u/ via Lyyd anuf = 0.

Then
1+2/p‘

[r5] — ‘ 0.41(17) ‘Lp < oy

Here the last inequality follows from Step 2. Since LZ; da u, = LZ;’d A;/u;’ =
0, we obtain
1+2/p
|AY — AL, < esel TP

In particular, these inequalities together give a uniform W'P-bound on the
J-holomorphic curves 4! : ¥ — M. Hence, by the elliptic bootstrapping
techniques for J-holomorphic curves, the sequence @ satisfies a uniform
L bound on the first derivatives. This proves Step 3.

Unfortunately, the estimate on A7 — A} in Step 3 is only in the LP-norm
and not in the WP-norm. A further modification of the pair (u/, AY) is
required to improve this estimate.

Step 4. There exist an integer ig € N, a constant ¢ > 0, and a sequence of
gauge transformations g; € G(P) such that the sequence

(uio, Aio) := i (uf, A}) € My 5

satisfies the following. For i > i( the original sequence (u;, A;) has the form
(ui, Ai) = (expy,, (&), Aio + @),

where ; := (&, i) € T(y,4,0)B satisfies (10.1).

The idea is to choose g; for large i such that

u’L’ = eXpuio (gl)’ L’ltlogl = 07 UZO = g;lu;,
This can be done by using pointwise, for every p € P, the implicit func-
tion theorem to obtain the local slice condition. This suffices to obtain the
missing estimates for the first derivatives of g A} — A,.

By equation (10.2) and Step 2, the distance between u; and u] is unformly
3/

bounded by a constant times ¢ 2, while the distance in the W!P-norm is

bounded by a constant times 6?/ P By Step 3, the distance between u} and
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"

u; is bounded in the WP_norm by a constant times 5} *2/P " Hence there

exists a sequence of smooth sections & € Q°(X, u;*TM/G) and a constant
¢ > 0 such that

(105)  wi=exp,, (&), [&ill < arss,

Moreover, the sequence d 4w is uniformly bounded in the L*°-norm and

2
Vaill e < ciel’”.

(10.6) (|47 = Ail, < e, |dagudd — Br(wr, §)da,u

< 0162/p.
Lp

Here the last inequality follows from the identity
darui = E1(ui, &)daui + Ba(ui, §) Va6
+ Er(ui, &) Xay—a, (wi) + Ea(ui, &) Ve, Xay—a, (i),

which in turn follows from Lemma C.1. Now, by the inverse function theo-
rem for the map

Gxker Ly — M :(g,€) = g™ exp,(§),

there exists a constant co > 0 and (unique) sequences g; € G(P) and &/ €
QY(S, w!*TM/G) such that

U; = gz_l eXpu;/( 7{’)7 LZ;/ Z{, = O, Hg'Z/HLOO S CQEiy ng - ]lHLoo S CoE&;.
Define

uio = g; 'uf, Ao = 9" A7, &io = g; '€, a0 1= A; — Ajo.
We shall prove that the pair (&0, aio) satisfies equation (10.1). To see this
note first that

u; = expy,,, (&io), A; = A + ao.
The endomorphism E1 (u;, &)g; M Er(u?, &) of u/*TM is e;-close to the iden-
tity, da, uio = gi_ldA;/u;’, and
Eq(us, &) (da,ui — Ev(uio, &io)d Ay tio)
= B (ui, &)da,ui — dyrw] + (1= Ey(ug, &)~ Br(uf, &) d aru.

Hence, by equations (10.6), there is an estimate

2
| da,ui — E1(wio, &i0)da,wiol pp < C3€i/p, ldaioll oo < €3

for all <. Hence, by Corollary C.4, there exists a constant ¢4 > 0 such that

2
laioll o < cael®, ol oo < ca

Next observe that, by Lemma C.1,
daui = E1(u0, &o)da,wio + E2(uio, &io) Vaeio
+ E1(ui0,£i0) Xayo (wio) + Ea(wi0, £i0) Vg Xaso (Wio)-
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Hence there exists a constant ¢; > 0 such that

2
”vAiogiOHLP S C5Si/p) HvAiogiﬂ”Loo S Cs,

for all . Thus we have proved that

142
(10.7) 1ol Lo + €i llavioll e + €3 [[VaSioll e < cos; /p7
€0l oo + €i llvioll oo + €3 [[Va&ioll e < coei-

It remains to estimate the LP-norm of the first derivatives of a;5. We drop
the subscript ¢ and write u, ug, A, Ao, &o, ag instead of u;, u;0, A, Aio, &o, Qio-
Moreover, we use local coordinates on X as in Step 2 and write

Ay := Py ds + Yo dt, A:=dds+ Vdt,
vos 1= Ostg + Ly, Po, Vg := Ogtt + Ly ®,
Vot := Opug + LuO\I/(], v = Opu + LW,

and g := & — ®g and Yy := ¥ — ¥y . Consider the formula
2

Vs + TVAs = ~(Vou )0+ Sy T Lugi().

By Step 1, we have
[Va,505 + TV 05| 1 < c7e?/P7L,
and hence, by elliptic regularity for the Cauchy—Riemann operator,
(10.8) Va5l 1o + | Vagvsl o < cse¥P7L
Moreover, since Ly, §o = 0, it follows from Lemma C.2 that
L3 Vet Vag,s§0 = Vagt(Ly, Vag,s§o0) — p(vot, Vag,séo)
= —Vag,tp(vos; ) — p(vot, Vag,s&0),
and hence
(10.9) || L2, Vg £ Vag,so]| < c10e?/P.
Here we use the fact that, by elliptic bootstrapping for J-holomorphic curves,
there is a uniform LP-bound on V4, ;vos. Now consider the inequality
|Va,ip0] < c11|Ly, Ly Va0
< enl(Ly — Lig By ) LuNVapol + en| L By LuVa ol

Since the operator (L — L;, Ey YL, is small, we obtain

Va0l o < cr2||Lig By ' LuVaseol| , -
Now use Lemma C.5 and the estimates (10.7), (10.8), and (10.9) to obtain

IVa ool < c13e®PL.

The terms ||V s@ol|zr, || Va0l e, and || Va spol e are estimated similarly.
This proves Step 4.
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It follows from Step 4 and Theorem 8.1 that (u;, 4;) € iE(Jf\/lv%z(co)) for
some constant c¢g and ¢ sufficiently large. This contradicts our assumption
and hence proves the theorem. O

11. Vortices
In this section, we examine the finite energy solutions of equation (1.1) over
the complex plane ¥ = C. The equations have the form
Osu+ Xo(u) + J(Opu + Xy (u)) =0,
0¥ — 0P + [@, V] + pu(u) =0,

where u : C — M and ®,¥ : C — g. The energy of the triple (u, ®, V) is
given by

(11.1)

By, ,0) = /C (195 + Xa(w)? + |u(w)?) dsz
The vortex equations (11.1) and the energy are invariant under the action
of the gauge group G := C*°(C, G) by
9" (u, @, ) := (g7 u, g 0sg + g7 @y, g g + g™ Vg).
A solution of equation (11.1) is said to be in radial gauge if
cos O B(re?) + sinf U(rel?) =0

for every 0 € R and every sufficiently large » > 0. It is said to be bounded
if supe |p(u)| < oo.

Proposition 11.1. Assume (H1) and (H2). Suppose that (u,®,¥) is a
smooth bounded finite energy solution of equation (11.1) in radial gauge.
Then there exists a WY2-function x : R/21rZ — M and an L*-function
n:R/2x7Z — g such that

(11.2) T+ Xy(x) =0, p(z) =0,
21
(11.3)  lim supd(u(re'?), z(0)) =0, lim 17(0) — n,(0)]* d6 = 0,
r—00 GER r—00 0

where 1,(0) := rcos(0)¥(rel?) — rsin §®(r e'?). Moreover,

E(u,®, V) —/u*w,

C
there is a constant § > 0 such that
lim sup r2+6<]88u + X (u)]* + ]u(u)ﬁ) =0,
T—>00 PR
where s+ it =: e, and supe(f o u) < ¢, where c is as in hypothesis (H2)
and p=1(0) € f7([0,¢]). If (H3) holds then E(u, ®, V) is an integer multiple
of h=T7N.
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Note that the removable singularity theorem for J-holomorphic curves
is a corollary of Proposition 11.1 (consider the special case G = {1} and
M = M). Before entering into the proof, we introduce the notion of the local
equivariant symplectic action. The definition of this local action functional
relies on the following lemma. We identify S = R/277Z.

Lemma 11.2. Assume (H1). Then there are positive constants § and ¢ such
that the following holds. If x : S — M and n : S' — g are smooth loops
such that supg: |u(z)| < 6, then there is a point zg € u~1(0) and a smooth
loop go : S* — G such that

2m
¢t sgllp In + gogo_l} <{l(x,n):= /0 |z 4+ X, ()| d,

d(x(6), go(0)wo) < ¢ (|pu(2(0))] + £(z,m)) .
Proof. Fix an almost complex structure J € Jg(M,w) and choose r > 0 so
small that the map f: u='(0) x {no € g|[no| < r} — M, defined by
f(-rOa 770) = eXpmo(']onnO)v

is an embedding. Choose § > 0 so small that the set {|u| < 0} is contained
in the image of f. Since JL,, = du(zo)*, there is a constant ¢y > 0 such
that

10| < colpu(f(w0,m0))]

for 2o € u~1(0) and 7 € g with |n9| < r. Let ¢; > 0 be an upper bound for
the differential of f~! and denote

co = sup |Lg|.
#=1(0)

Given a loop z such that |u(z)| < § define (z¢(0),70(0)) := f~(z(0)). Then
d(x(0), 0(0)) < d(2(0), 20(0)) + £(zo) < coca|p(2(0))] + c1l(x),

where ¢(z) := £(z,0). This proves the lemma in the case n = 0.
Now consider the general case. Suppose ¢ has been chosen so small that
G acts freely on the set {|u| < 0}. Then there is a constant c3 > 0 such that

d(ga ]1) < ng(gl‘, CL')
for g € G and x € M with |u(z)| < §. Suppose (z,7) : S — M x g satisfies
the assumptions of the lemma. Define g : R — G by
g+ng=0, g(0)=1

Then the length of the path [0, 27] — M : 6 — g(0)~1x(0) is equal to £(x, 7).
Hence

d(g(27), 1) < e3d(g(2m) " ta(2n), 2(0)) < csl(z,n).
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Choose n; € g such that g(27) = exp(27m1) and |m| < e3l(z,n)/27. Since
g(0 + 27) = g(0)g(2m), the formula

90(0) == g(0) exp(—0m)

defines a loop in G. Tt satisfies |1 + gogg *| = |m| < c3é(z,n)/2r. Hence the
length of the loop

y(0) := go(6) ' x(6)
is bounded by a constant times ¢(z,n). By the first part of the proof,
there is an zg € p~1(0) such that d(y(0),z0) < c(|u(y(0))| + £(y)). Since
Ay(0),0) = d(x(0),90(0)z0) and |u(y(9))| = |u(z(6)], this proves the

lemma. O

Fix an almost complex structure J € Jg(M,w), let 6 and ¢ be as in
Lemma 11.2, and suppose that 2¢d is smaller than the injectivity radius of
M (with respect to the metric determined by J). Let (z,7): ST — M x g
be a loop such that supgi |u(z)] < ¢ and ¢(xz,n) < 6. Then the local
equivariant symplectic action of the pair (z,7) is defined by

21
Az, ) = — / W + /O (u(x(6)).7(8)) a6,

where 2o € 1~ 1(0) and go : S' — G are as in Lemma 11.2, &(6) € Tyo(0)me M
is the unique small tangent vector such that
33(9) = €XDPgq(0)z0 (50(‘9))7
and u : [0,1] x ST — M is defined by
u(T,0) == expy,(g)a, (760(6)).
The local action is independent of the choice of xg and gg.

Lemma 11.3. Assume (H1). There exist positive constants § and ¢ such
that the following holds. If (x,n) : S* — M is a smooth loop such that
supg1 |u(x)| < 0 and €(xz,n) < 6, then

|A(z,m)| < c/o% (|:'c + X, (2))* + |,u(;v)|2> dé.

Proof. Let & € C*(SY, 23T M) and u : [0,1] x St — M be as above. Then
the local equivariant symplectic action can be expressed in the form

1 2
Az, n) = / / w(0ru, Opu + X, (u)) d dr.
o Jo
By Lemma 11.2, we have the pointwise inequality

|0ru| = || = d(z, gowo) < c1 (|u(@)] + £(x,n)).
Moreover, by Lemma C.1,

Apu + X, (w) = E1 Lggwe (0 + Gogo 1) + 7E2 (Vo + Ve, X, (g00))
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where E; := FE;(goxo,7&) for i = 1,2. With 7 = 1 we obtain, by
Lemma 11.2,

V€0 + Vo Xy (g020)| < 2 (|& + Xy ()] + £(x,n)) -
This implies |Ogu + X, (u)| < 3 (|2 + X;)(x)| + £(x,n)) and hence

2
| Az, )| < 0103/0 (@) + €, m) (|2 + Xy (2)] + £(2,m)) db

2m
<o [ (164 Xy(@)? + (o)) a6,
0
This proves the lemma. O

Proof of Proposition 11.1. Let (f,J) be as in (H2) and let (u,®,¥) be a
finite energy solution of equation (11.1) in radial gauge. We prove in seven
steps that (u, ®, ¥) has the properties asserted in the proposition.

Step 1. lim, o 72 (|8su + Xo(u)|* + |,u(u)|2> = 0 uniformly in 6.

Abbreviate vy := dsu + L, ® and v; := 0yu + L, ¥ as in Section 9. Let

1= 5 (luaf? + lu(w)).
Then the formula (9.6) with A = ¢ = 1 has the form
Ae = [Va,s0s|* + [Varvsl® + 2| Livsl* + 2| L3 Jvs|* + | Lupa(u)
— 5(u(u), p(vs, vr)) + (vs, (Vo J) Lup(w)) — (vs, B(vs, vi)uy).
Since u(C) is contained in a compact subset of M this gives an inequality
Ae > —cié.

Namely, choose § > 0 such that L, is injective whenever |u(z)|?> < 6.
Then the first term in the second row can be estimated from below by
—|Lup(u)|?/2 — c|vg|* whenever e < 6. In case e > & we can use the inequal-
ities Ae > —c(e + €?) and e < €2/6. Now it follows from [11, Lemma 4.3.2]
that there is a constant ¢ > 0 such that

8
|z| —r > c2 == e(z)§2/ e.
r B(2)
With 7 := [2|/2 this implies lim,|_,« |2|*e(z) = 0.
Step 2. For R > 0 sufficiently large, we have
E(u,®,¥;C\ Bg) = A(zr,1R)

where 2(0) := u(Re'®) and nr(0) := Rcosd ¥(Re?) — Rsin 6 &(Re').
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The energy identity on Br = {|z| < R} has the form

27
B 0.5 8r) = [ o= [ ulon0).nn(6) 00

Br

For R sufficiently large denote by ug : [0,1] x S — M the function used
in the definition of the local symplectic action of (xg,nr). Then ug(1,60) =
rr(0) and ur(0,0) = gr(0)xry for some point xry € 1~ 1(0) and some loop
gr : ST — G. The homotopy class of the connected sum vg := u|p,#(—ur)
(the orientation of up is reversed) is independent of R. Hence the number

[ oo = B, 0,5 Br) + Al )

is independent of R. Since A(xpg,ngr) tends to zero as R — oo it follows
that

E(U, (I)a \Ij, BR) + A(£R7 UR) = E(’LL, q)a \Ij)
for every sufficiently large number R. This proves Step 2.
Step 3. supc(fou) <ec.

Suppose, by contradiction, that supc(fou) > ¢. Then there exists a regular
value a of f owu such that

¢ <a <sup(fou).
C

Hence the set
U:={z€C|[f(u(z)) > a}

is a smooth submanifold of C with boundary. Since p=1(0) C f7([0,]) it
follows from Step 1 that there exists a number R > 0 such that

sup (fou) < a <sup(fou).
C\Bgr C

Hence U is compact and has a nonempty boundary. By (H2), A(fou) >0
in U (see [2]). Hence

Og/UA(fou):/aUa(J;Zu)<0.

This contradiction proves Step 3.

Step 4. Consider equations (11.1) in polar coordinates s+it = e™ 1. Define
@:RxS'— Mand ®,¥:R x S — gby

a(r,0) == u(e™?),
B(1,0) := " cos 0 D" ) + €7 sin O (™),
U(7,0) =€ cos O U(e" %) — e sin § B(e7H7).
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Then ds A dt = e*"dr Adf, ®ds + U dt = ® dr + ¥ df, and equations (11.1)
are equivalent to
Uy + Jig = 0, R+ e? (i) =0,
where
0, = 0.0+ Ly®, Tp = Optu + Ly, = 0,0 — 0y® + [P, U],

The radial gauge condition has the form ®(1,0) = 0 for large 7. The energy
of the triple (@, ®, V) is given by

27r
i, , ) / / 5. + € |u(@)?) dodr.

Step 5. There exist positive constants ¢ and d such that, for every 75 > 0,
fe’e) 27
e(ro) = / / (16 + € |u(@)?) dbdr < ce~?.
T0 0

By Step 2 and Lemma 11.3, we have
e(1) = A(xer, ner)

2
-1 U, (T, e T
<o [ (15 + € utatr o)) ao
=671 (7)

for some constant § > 0 and every sufficiently large real number 7. In other
words, the function 7 +— ¢°7¢(7) is nonincreasing for 7 sufficiently large.
Hence there exists a real number 79 such that

T>71=¢(1) < 676(7’77’0)8(7'0).

Step 6. There exist positive constants ¢ and § such that, for every 5 > 0,

sup ([ (r0,6)|° + ™ (ik(m, ) < e~
S

oo 2w
/ / M p(a(r, 0)* dodr < ce™0™.
T0 0

By Step 1, the function |3,|> 4 €27 |u(@)|* is bounded. Hence we can apply
Lemma 9. 3 to the open set Q := (—1,2) x (=27, 47), the compact subset
K :=1]0,1] x [0,27x], the function A(7,0) := €7, the constant ¢ := e~ ",
and the shifted functions (7, 0) — (@(r + 70, 6), ®(1 4+ 70,6), U(1 + 70, 6)). It

follows from Lemma 9.3 with p = 2 that there is a constant ¢ > 0 such that

T0+1 p2m T0+2
/ / 2 dodr < c/ / (15 + > [u(@)]?) o



GROMOV-WITTEN INVARIANTS AND ADIABATIC LIMITS 135

for every 79 € R. This implies

To+1 p2m T0+2 27
/ / A |u(@)[? dg dr < 3066/ / (ym? 4 |u(a)|2) 9 dr.
70 0 T 0

0—1
Replace 19 by 79 4+ k and take the sum over all integers k > 0 to obtain

oo 2T 2T
[ [ et asar <oee [7 [T (1o 4 futal) avar,
T0 0 0

Hence the L?-estimate follows from Step 5. To prove the L>®-estimate, use
Lemma 9.3 again with p = co.

o0

T0—1

Step 7. There exists a Wh2-function = : ' — p~1(0) and an L?-function
n:S' — g such that

lim supd(a(r,0),z(0)) =0, lim

T*)OO@GR T—00 0

and & + X, (z) = 0. Moreover, E(u,®,¥) = [u*w, and if (H3) holds then
E(u, ®,9) € Zh.

By Holder’s inequality and the radial gauge assumption, we have, for 7 > g,

U(ry,0) — \11(7'0,9)‘2 < (/TT1 & u(ii(r, ) d7'>2

0

\11(7—7 9) - 77(0)

27 2
‘ 46 = 0,

T1
<(n-m) [ (o) dr.
70
Hence the existence of the L2-limit of W follows from Step 6. That a(r, )
converges uniformly as 7 tends to infinity follows from the exponential decay
of ¥ = O-@ in Step 6. That the limit is a W'2-function and satisfies
&+ X, (x) = 0 follows from the fact that 99 = Jpu + X () converges (expo-
nentially) to zero as 7 tends to infinity. That E(u,®,¥) = [u*w follows
from the energy identity in the proof of Step 2 and the L?-convergence of 0.
That E(u,®, V) is an integer multiple of & (when (H3) holds) follows from
the proof of Step 2. U

Remark 11.4. Every map u : C — M that satisfies equations (11.2) and
(11.3) determines an equivariant homology class B = [u] € Hy(Mg;Z) as
follows. Homotop u to a map v : D — M such that

v(e) = g(e®)ay.
Now define a principal bundle P — S? = (Zy x D)/ ~ by
Pim(Zox DxG)/~,  (0,6%,h) ~ (1%, g(c)h).

Then v determines a G-equivariant map w : P — M by w(0, z,h) := h~ 1z
and w(1,z, h) :== h~1v(z). The equivariant homology class of u is defined to
be the equivariant homology class of w.
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12. Proof of Theorem 1.1

We begin by constructing a G-equivariant smooth function from a suitable
open subset of B x P = Cg(P,M) x A(P) x P into a suitable finite-
dimensional approximation of EG. For positive constants § and r denote

M’ = {x € M||u(x)| < 8},

B = {(u,A) e CF (P, M) x A(P) ‘ Jze€X sup |poul < (5} )
By (2)
Throughout we assume that G is a Lie subgroup of U(k). Then, for every
integer n > k, a finite-dimensional approximation of the classifying space of
G is the quotient

BG" := EG"/G,  EG":= F(k,n) := {@ e Ck | "0 = ]1} .

There is an obvious embedding of the space EG" = F(k,n) (of unitary k-
frames in C") into F(k,n + 1) for every n > k and the direct limit is a
model for EG. The homotopy groups of the approximations EG™ stabilize.
Let § > 0 be so small that G acts freely on M°® and choose a smooth
G-equivariant classifying map 6 : M? — EG™ for some integer m > k.
Such a map exists for abstract homotopy-theoretic reasons but can also be
constructed explicitly from local trivializations of the principal G-bundle
M% — M?)G.

Proposition 12.1. Let 6 : M® — EG™ be as above. Then, for everyr > 0,
there exist an integer n > m and a map © : B x P — EG" with the
following properties.

(i) Forg€ G, h € G, and (u, A,p) € B> x P,
(121) Oy 'u,g"A,pg(p)™") = O(u, A,p) = hO(u, A, ph).
(i) © is smooth with respect to the C° Banach manifold structure on (the

completion of ) B> x P.
(iii) Let ¢ : EG™ — EG"™ be the obvious inclusion. Then

w(u@)| <d = O(u,A,p) = rob(u(p)).

Proof. Cover ¥ by finitely many distinct balls B,.(z;), ¢ = 1,...,¢, and
choose points p1,...,p; € P such that 7(p;) = z;. Then, for every (u, A) €
B%", there exists an i € {1,...,¢} such that u(p;) € M°. Thus the open
set B x P is contained in the finite union of the following open sets U;j,
i,j = 1,...,£. Choose ¢ > 0 so small that 6 extends to an equivariant
function (still denoted by @) from M®*¢ to EG™ and define

Uo := {(u, A, p) [ [n(u(p))| <0 + e},
Uij = {(u, A, p) | 7(p) € By(zi), |n(ulp;))| <d+e}.
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For every smooth path v : [0,1] — X and any two points pg € 7~ (7(0)) and
p1 € 7 1(7(1)) the holonomy pa(p1,7v,p0) € G of the connection A € A(P)
is defined by pipa(p1,7,p0) = (1), where 4 : [0,1] — P is the unique
horizontal lift of v with 4(0) = pg. It satisfies
pa(Prg1,7,p0g0) = 917 ' pa(p1,7,P0) 9o,
pg-a(p1,7:00) = 9(p1)~ ' pa(p1,7,p0)9(Po),

for go,g1 € G and g € G. Hence the map B x n~1(y(0)) — M :

(u, A, po) — pa(p1,7,p0) ‘u(py) is G-invariant and G-equivariant. Choose

a finite sequence of smooth functions v;; : [0, 1] x B,(z;) — ¥ such that
7i5(0, 2) = 2, Yij (1, 2) = zj.

Then the functions ©q : Uy — EG™ and ©;; : U;; — EG™ defined by

@0<u7 A,p) = e(u(p)), Gij (’U,, A,p) = 9<PA (pj7 %lj(" W(p)%p)ilu(pj))

fori,j =1,...,¢, satisfy equation (12.1). Now choose a G-invariant smooth
function § : M — [0,1] such that G(z) = 1 for z € M® and B(z) = 0 for
x € M\ M%</, Define p; : |JS_, Us; — [0,1] and po : Uy — [0,1] by

Blu(p))

u, A, p) = )

Pl AP) = o + (L= B

i) Blu(p;))(1 — Blu(p)))
VB@®)? + (1 - Bup)?) Yo, Blulpr)?

for 5 =1,...,£. Then p; is smooth with respect to the C° Banach manifold
structure on (the completion of) B x P. Moreover,

V4
> pilu, A,p)* =
=0

and po(u, A,p) = 1 whenever |u(u(p))| < d. Now choose a finite sequence
of smooth functions o; : ¥ — [0,1], ¢ = 1,..., ¢, such that suppo; C B,(z)
and Zﬁzl 0;2 = 1. Then the function © : B> — EG(ﬂ“)m, defined by

po(u, A,p)Oo(u, A, p)
O(u, A) := : ,
(A= o1m()) s (. A, )O3 (1, A, )
is the required classifying map. O

The integer n = (¢ 4+ 1)m in the proof of Proposition 12.1 diverges to
infinity as r tends to zero. In general, there is no G-equivariant map from
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B := {(u, A) € B| min |gou| < &} to any finite-dimensional approximation
of EG.

Lemma 12.2. Assume (H1) to (H3). Let B € Ha(Mg;Z), (X, jx, dvoly) be
a compact Riemann surface, w : P — X be the principal G-bundle determined
by B, and ¥ — Jg(M,w) be a smooth family of G-invariant w-compatible
almost complex structures on M such that each J, agrees with the almost
complex structure of (H2) outside of a sufficiently large compact subset of M.
Then for every § > 0, there exist positive constants r and €9 such that

SB,E c Bé,r
for 0 < e <egg.

Proof. Suppose the result is false. Then there exist a constant 6 > 0 and
sequences

ri = 0, e — 0, (ui, Ai) € M s

such that (u;, A;) ¢ B>"i for every i. This means that, for every p € P,
there exists a sequence p; € P such that

lim p; = p, |(ui(pi))] > 0.
71— 00

This contradicts the bubbling argument in Step 5 of the proof of Theorem 1.1
below. 0

Let ¢g > 0 be as in Lemma 12.2. For 0 < ¢ < gy, we consider the
evaluation map

evg : My x ¥ — M xg EG",
given by
evg([u, A, p]) == [u(p), O(u, 4, p)],
where § > 0 is chosen such that G, = {1} for every € M?, r > 0 is as

in Lemma 12.2, and © : B x P — EG" is the map of Proposition 12.1.
Recall that MDBE and /\/15B7Z have the same dimension.

Proposition 12.3. For every cog > 0 there exist positive constants ¢ and gqg
such that the following holds.

(i) For 0 < € < gq, the map T° : M%,Z(CO) — MGy, is an orientation
preserving embedding.
(ii) For 0 < e < ¢y,
den (evdy, eve o (T¢ x id)) < ce?2/P,

where the C-distance is understood on the space of continuously dif-
ferentiable maps from MOBZ(C()) x X to M xg EG™.
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Lemma 12.4. Assume (H1) and (H4) and let B € Ho(M;Z) be a nontor-
ston homology class. For every p > 2 and every co > 0, there exist positive
constants 9 and ¢ such that the following holds for every e € (0,g9]. Let
I C R be an interval and

I —s M%;(CO) 7 (uo(r), Ao(r))

be a smooth path that satisfies equation (8.10). Then every smooth vec-
tor field

re () € im (Diuyy a0
satisfies the inequality

o], << (:]
1,pe

for r € I, where D¢ := D¢

(uo

ﬁT‘C @TDEC @T’T‘-UQDEC

|

1
47 el

(r), Ao () and Ty, is defined by equation (2.1).

‘Om,a ‘L

Proof. Let r — ('(r) € X;O(T) be the smooth path defined by ( = D*(’.
Then, by Lemmas 4.7, 4.8, and 8.4, we have

‘ @‘C @TDE*C/ _ Da*@rcl

<o

|

’ Lpe 1,pe 1,pe

Tu D" D7V (!

)
)

-1
e [

)

+ ¢ H[TruOD‘EDE*, \VAls . + cxet €¢I e

P

+ 6 (IDCllgpe + = I DGl + 7 €l ) -

< <e HD%E*W’

|

)

0,p,e

+ | - Dl

1,pe

< e <g HDE@C Ty DDV,

|

‘0,19,6

+ c3 ‘ VD — DN

1,p.e

< e <5 ‘ VD¢ Ty DDV,

|

‘Om,z—:

+ o8 ‘DE@TC —\.D%¢

‘Om,

@r Tug 2 ¢

<c <€ V, D¢ ‘ +
0,p,e

N, D¢ + ||V D¢

‘Om,z—:



140 A. RITA GAIO AND D.A. SALAMON

The last inequality follows as in Step 7 in the proof of Lemma 4.8. Since

ID*Cllg pe + € T D€l o < e Kl e

the lemma is proved. O

Proof of Proposition 12.3. Let r — (ug(r), Ao(r)) be as in Lemma 12.4 and
r = ((r) = (&(r), a:(r)) € im (D2 )Ao(r)))* be as in Theorem 6.1 so that

(uo(r
T=(uo(r), Ao(r)) = (ue(r), Ac(r)) = (€xPyy(r) (€c(r)), Ao(r) + ac(r)).

Let Fy @ Xyo(r) — XIILQ(T') be defined by equation (5.1). Then FZ({.(r)) =0
and hence

0
DG={ 0|+ (FC) - FE(0) - dFE(0)(r))-

*FAO (T)
Differentiating this identity with respect to r, we find
V() ))
Lp,e

|

(see Proposition 5.2). Hence, by Lemma 12.4,

VD¢,

0,p,e

< (4 UGO pe (160 +]

< ce.
1,pe

(12.2) (22

Since
(arusa arAs) = (El (u07 55)&““0 + EZ(UO’ fs)vrfsa Or Ao + 8r055) >

this shows that 7°¢ : MOBE(C()) — M3 s, is an orientation preserving embed-
ding. Indeed, it follows that the restriction of 7¢ to every ball of radius ¢ is
an embedding for ¢ and e sufficiently small and hence, by Theorem 6.1, 7°¢
is an embedding for ¢ sufficiently small. For € > 0 denote

Ph.s(co) i= Mz (co) g P,
and consider the map ev® : Py s (co) — M defined by

ev®([ue, Ae, p]) := ue(p).

Then it follows from equation (12.2) and the inequality ||(. < ce? of

Theorem 6.1 that

H2,p,s

den(ev?,eve o (TF x id)) < e'~2/P.

For ¢ sufficiently small, we have evg, = 09 oev, where 8% : M9 — M xcEG™
is given by 6 (x) := [z, 0(x)]. This proves the proposition. O
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Proof of Theorem 1.1. The result is obvious when B = 0. Moreover,
both moduli spaces are empty when B is a nonzero torsion class. Hence
assume that B € Hy(M;Z) is a nontorsion homology class, denote by
B € Hy(Mg;Z) the corresponding equivariant homology class, fix a compact
Riemann surface (X, jy,dvoly), and let # : P — X be a principal G-
bundle whose characteristic class b € H2(BG;Z) is the pushforward of
B. In the course of the proof, it will be necessary to also consider other
bundles «/ : P’ — X with corresponding equivariant homology clsses
B’ € Hy(Mg;Z). By (H2), there exists a constant ¢ > 0 such that
u(P) ¢ M¢ = {z € M||u(z)] < c} for every solution (u,A) of equa-
tion (1.7) over any Riemann surface. Note that ¢ can be chosen to be a
regular value of the function M — R : z — |u(z)].

Let § > 0 such that G, = {1} for every z € M? and let r and £y be as in
Lemma 12.2. Fix k points p1, ..., pr € P such that the points z; := 7(p;) € ¥
are pairwise distinct. Choose an integer n, a G-equivariant smooth map
6 : M — EG", and k smooth classifying maps ©; : B®" — EG", defined by
©i(u, A) == ©(u, A, p;), where O is as in Proposition 12.1. Then

0;(9™ u, 9" A) = g(pi) 104 (u, A),

and

w(u(p))| <0 = Oi(u, A) = 0(u(p:))
fori=1,... k. For 0 <e < ¢gq, consider the evaluation maps

evp,; 1 Mp s — MG = M® xg EG"

given by evy ,([u, A]) := [u(p:), Oi(u, A)]. Let evy : M5 — (ME&)* denote
the product map defined by

evip([u, A]) := (evi 1 ([u, A]), ..., evy i ([u, A])) -
For any subset I = {71,...,4;} C {1,...,k} such that iy <--- <i; and any
class B’ € Hy(Mg;Z) that descends to Ho(M; Z), we consider the evaluation
map ev%,J : M%’,E — (Mé)'l| given by

eV%’,I([uv A]) = ([u(pi1)7 9<’U,(p“))], SRR [u(pi]’)7 e(u(pl])”) .
Now fix equivariant cohomology classes a1, ...,ar € H*(Mg;Z) such that

k
m; = deg(a;) < 2N, Z deg(a;) = dim M%,E.

i=1
There is a natural embedding Mg — Mg and we denote by af €
H™i(ME;Z) the pullback of «; under this embedding. Note that M is
a compact manifold with boundary. Replacing «; by some integer multiple
of , if necessary, we may assume without loss of generality that, for every
i, there exists a compact oriented manifold with boundary Y; of dimension

dim Y; = dim M§& — m;,
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and a smooth map
fi+ (Y, 0Y3) — (Mg, OME,)

such that the homology class in H,(M§, OM¢E) represented by f; is Poincaré
dual to of. For I = {iy,...,4;} C {1,...,k} such that iy < --- < i; we
denote the corresponding product map by

Y=Y, x- xY, fI::fil><-~~><fij:Y1—>(Mé)|”.
For I = {1,...,k} we abbreviate Y := Yy and f := fq  py. The
functions f1,..., fr can be chosen such that the following holds.

(H5): f; is transverse to u~1(0) xg EG™ for every i and f; is transverse to
ev%, ; for every subset I C {1,...,¢} and every equivariant homology
class B € Ho(Mg;Z).

Now the notation has been set up and we shall prove Theorem 1.1 in five
steps. For 0 < e < ¢y and B € Hy(Mg;7Z) consider the set

EB,E;f = {([u7 A]vylv s 7yk‘) € MEB,E X Y’eveB,i([uvA]) = fl(yl)} :

Step 1. The map ev% : M%’E — (u71(0) xg EG™)¥ is a pseudo-cycle.

The map ev% is the composition ev% = (¥ o évg, where the evaluation map
evp : M%’E — M¥ is given by evp([u, A]) = ([u(p1)], .., [u(px)]) and the

embedding ¢ : M — p~1(0) xg EG™ is given by «([z]) := [x,6(x)]. That evp
is a pseudo-cycle was proven in [11]. Hence ev% is a pseudo-cycle. (see [11]
for the definitions).

Step 2. MY s IS a finite set and the number of elements of M% S f
counted with appropriate signs, is the Gromov—Witten invariant:

GWB,E(@17"'7&k) :ev%~f: Z VO([u07A0]7y>'
([uo,AoLy)EM%’E;f

Here the function 20 : M% 7 — {£1} denotes the intersection index of the
maps ev% and f.

Consider the functions ¢; : X; — p~1(0) xg EG™ given by
Xi=fi (W (0) xg BG") C Vi, i 1= filx:

Since f; is transverse to p~1(0) xg EG", X; is a smooth submanifold of
Y;, and ¢; is dual to the cohomology class of € H*(u=1(0) xg EG™;Z)
obtained from of by pullback under the obvious inclusion x~1(0) x EG™ —
M. The class oY agrees with the image of the class &; € H*(M;Z) under
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the homomorphism H*(M;Z) = H*(u='(0) xg EG;Z) — H*(p~1(0) xg
EG™;Z):

af €  H*(M¢xgEG"Z) H*(Mq;Z) 3 o

| |

ad € H*(u'(0) xg EG"Z) <~——H*(M;Z) > &

7

Hence another representative of the class a? can be obtained as follows. Let

Wi : Z; — M be a smooth function, defined on a compact manifold Z; that
is dual to a; (replace a; by an integer multiple of a;, if necessary). Lift v
to a G-equivariant map 1&1 : Q; — u~Y(0), defined on the total space of a
principal G-bundle Q); — Z;, and consider the induced map

¥ - Qi xg EG™ = 171(0) xg EG™.
It is homologous to ;. Let ¢ := @1 X -+ X g and ¥ := 1 X --- X Y. Then
vl f=evl-p=evl 9 =evp - =GWgpy(a,...,a).
The first equality follows from the definition of ¢, the second from the fact
that ev} is a pseudo-cycle (Step 1) and ¢ is homologous to v, and the

last equality follows from the definition of the Gromov—Witten invariants
(see [11] for example).

Step 3. The invariant ®p . can be expressed as the intersection number
Pyl — - —ap) =evp - f
for € > 0 sufficiently small.

The map f: Y — (M§)* is dual to the class mjaq — -+ — miag, where
o (Mé)k — M¢ denotes the projection onto the ith factor. Moreover,
evEBﬂ- = m; oevy. Hence

evi-f = [ (evh) (riog — - = wiof)
B,S
= [ (evarat = = (evhpof
B,

= /M8 (toevpy)iar — - — (f0 ev%}k)*ak
B,x

:/ME evg (g — -+ — ay) .
B,x

Here . : M¢ — Mg denotes the obvious inclusion. The last equality follows
from the fact that o evy,; : My 5 — Mg is homotopic to the evaluation
map evg in the definition of ®p 5.
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Step 4. For € > 0 sufficiently small there is an injective map
0
Tosipt Mp iy = Mp sy
such that
Té,z;f([uo, Aol, Y015 - - yo,k) = ([ue, Acls ye 1, - - - aya,k)

satisfies
(usa AE) = (expuO (55)7 Ao + CYE), ”(567 055) ”27p75 < 052—2/10’

V¥ ([ue, Acl Ye 15 -5 Yer) = ¥°([uo, Aol yo1, - -, Yo.k)-
Here v° : M3y — {£1} denotes the intersection index of the maps evy
and f (in the transverse case).

Choose c¢g > 0 such that M%&f C MOBZ(C()) and consider the map
(evz o T) x f: MBs(co) x Y = M§ x M.

By Proposition 12.3 (ii), this map converges to ev% x f in the C'-topology
as ¢ tends to zero. By (H5), the map evl; x f is transverse to the diagonal
A C M§ x ME. Hence (evz o T¢) x f is transverse to A for € sufficiently
small. Moreover, by Theorem 6.1, the image of M% .  under (evzoT°) x f

is £272/P_close to A. Hence, by the implicit function theorem, there is, for e
sufficiently small, a unique injective map

Mg = ((evg o T7) x f)~H(A) € M n(co) x Y

such that the distance between each point and its image is bounded above
by a constant times 272/7. Composing this map with

Tgxid:M%7zxy—>MEB72XY,

we obtain the required map 75 s.f- By Proposition 12.3 (i), the map T3 5.f
identifies the two intersection indices.

Step 5. Assume ¥ = S2. Then there exists a constant g > 0 such that
the map 75 Sif MY o s M5 . f of Step 4 is surjective for 0 < ¢ < &.

Suppose, by contradiction, that there exist sequences €, — 0 and
([Um Au]’ Y, - 73/1@1/) € MEBD’SQ;f
such that

([ulM Al/]v Yiv, - - 7ykl/) ¢ im Té?s%f‘
Consider the sequence

C, = Slllgp (‘dAyuz/| + 517”/‘(“’”)‘) :

We prove that C, diverges to oco. Assume otherwise that C, is bounded.
Then, by Theorem 3.3, there exists a constant ¢; > 0 such that [u,, A,]
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belongs to the image of the map 7'];:’52 : M(J]i g2(c1) = M g for v suffi-
ciently large. Write

(uV7 Au) = 7-EV <u01/a AOV)? (UOW AOV) S M%’SQ (Cl)~

Since ./\/l%7 g2(c1) is compact (it is a moduli space of holomorphic spheres
satisfying a uniform bound on their first derivatives), we may assume that
the limit .

(U[), A()) = Vliﬁ\nolo(’u,ol,, Aoy) € M%752 (Cl)
exists. Moreover, since Y is compact, we may assume, by passing to a
further subsequence if necessary, that the limit

(yla ceey yk) = lim (y11/7 LR ykl/)
vV—00

exists. Since evyy o T converges to ev} in the C'-topology, and

eVSBV ° TEV([U’OV?AOV]) = f(yllM e 7ykl/)7
we deduce that ([ug, Ao],y1,...,Yk) € ./\/loB 527 and, for v sufficiently large,

(T ([wov, Aov))s yrvs -+ ykw) = Tglge. ¢ ([uo, Ao)s 1, - -5 )

The last assertion follows from the uniqueness part of the implicit function

theorem used in the definition of the maps Bf’VSQ; It This contradicts our

assumption. Thus we have proved that C) diverges to oo as claimed.
Now choose a sequence p, € P such that

o = |day ()] + & M ()] — oo.

Passing to a subsequence, if necessary, we may assume that p, converges.
Denote

w:= lim 7(p,).
V—00
Moreover, by applying Hofer’s trick (see [11, Lemma 4.5.3] for example) we
may assume that

sup (\dA,,ul,| + 5;1]u(uy)]) < 2¢,, 7,C, — O0.
By, (7(pv))

We distinguish three cases.

Case 1: c e, — 00.
Case 2: There exists a § > 0 such that § < ¢ e, < 6! for all v.
Case 3: c e, — 0.

We shall prove that in Case 1 a nonconstant J-holomorphic sphere in M
bubbles off at the point w, in Case 2 a nontrivial solution of the vortex
equations (11.1) bubbles off, and in Case 3 a nonconstant .J-holomorphic
sphere in M bubbles off. To see this, we choose a local holomorphic coor-
dinate chart s + it on X that maps w to zero, identifies a neighbourhood
of w with the ball By, and identifies the volume form dvoly. with the form
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A2ds A dt, where A\(0) = 1. Moreover, we choose a local frame of the bundle
P along this coordinate chart. We use the notation of Remark 4.1. Then
the sequences u, : Bo, — M and ®,, ¥, : By, — g satisfy

Vys + J’Ul,t = 07 )‘_2HV + 8;2lu’<ul’) - 07
Uys 1= Osuy, + X<I>l, (Uu)u Uyt 1= Ogly + X\If,, (ul/)7
iy = 030, — 8By, + By, 0.

Moreover, there is a sequence w, := (s,,t,) — 0 such that
Cy = A(WV)_I [vys (wy)| + 5;1 lp(u(wy))|

1
>

5 sup ()‘_1 [vys| + 5;1 |,u(u,,)|) .
B

Let us define @, : By, = M and ®,,V, : B, . — g by
iy (2) == u(w, + ¢, '2),
D,(2) :=c; 1@, (w, + ¢, 12), U, (2) = ¢, 0, (w, + ¢, 12),
and A\, : By, — (0,00) and J, : By ., = Ja(M,w) by
A (2) = Mwy, + ¢, 12), J(z)=J

w,,+c;1z‘

Then A, converges to 1 in the C™-topology and J, converges to Jy in the
C*-topology. Moreover,

Bys + Syl =0, %Ry + (cven) 2uli) =0,

sup (551l 2 )] ) <2 (g O+ L I 0)]) =2
Case 1. Suppose that c¢,e, diverges to infinity. Then, by hypothesis (H2),
the curvature &, converges uniformly to zero. Hence, by Uhlenbeck’s weak
compactness theorem [17, 18], we may assume that ®, and U, converge
in the sup-norm and weakly in W1P. This implies that the sequence @, is
bounded in WP, Hence, by the usual elliptic bootstrapping argument for
pseudoholomorphic curves, it is bounded in W?2® (the lower-order terms in
the equation have the form Xg (1,) and hence are bounded, in WLP). Hence
there exists a subsequence, still denoted by 4,, that converges strongly in
WP to a Jy-holomorphic curve @ : C — M with finite energy. Since the
sequence 1(@;(0)) is bounded, it follows that |0s%(0)| = limy, e |05(0)] = 1,
and hence u extends to a nonconstant holomorphic sphere in M. This
contradicts (H2).

TvCy

Case 2. Suppose that the sequence c,e, is bounded and does not converge
to zero. Let us assume, without loss of generality, that lim, . c, e, = 1.
Then we can use the compactness result of [2] to deduce that, after a suitable
gauge transformation and after passing to a further subsequence, the triple
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(i, ®,, ¥, converges to a solution (i, ®, ¥) of the vortex equations (11.1)
with finite energy. Moreover,

040(0) + X0 (@(0))] + [(@(0))] = 1,
and hence the energy is nonzero. Hence, by Proposition 11.1, we have
E(i,®,0) > h.
Case 3. Suppose that lim,_, cye, = 0. Then, by Lemma 9.1,

sup(c,e,) 72| i) | oo (1) + sup(coen) [l p(@) |l o) < 00

for every compact set K C C and every p > 2. Fix a constant p > 2. Then
the sequence £; is uniformly bounded in LP. Hence, by Uhlenbeck’s weak
compactness theorem, we may assume that ®, and ¥, converge, weakly
in WP and strongly in L, on every compact subset of C. Hence it fol-
lows from the elliptic bootstrapping analysis for pseudoholomorphic curves
(see [11, Appendix B]) that 4, is bounded in W?P. Hence, by the Arzéla—
Ascoli theorem, @, has a subsequence that converges in the C'-norm on
every compact subset of C. The limit (&, ®, ¥) is a finite energy solution of
equation (1.8) on C. This solution represents a .J-holomorphic sphere in the
quotient M. Moreover, since (cye,) (i, (0))] — 0 it follows that

95i1(0) + X 0) (@(0))] = im [958, (0) + X, ) (i (0))] = 1,
and hence the resulting holomorphic sphere in M is nonconstant. Hence
E(a,®, %) > h.
Thus we have proved in all three cases that

lim EBT(W)(uuaAV) Z h

V—r00

for every r > 0.

This shows that, after passing to a suitable subsequence, bubbling can
only take place at finitely many points wy,...,wy € X. On every compact
subset of ¥\ {w1,...,w;}, the sequence |da,u,| + &, |p(u,)| is uniformly
bounded. (As an aside: this is used in the proof of Lemma 12.2.) Hence it
follows as in Case 3 that a suitable subsequence in a suitable gauge converges
on this complement to a finite energy solution of equation (1.8). The limit
(u, A) descends to a holomorphic curve

N\ {wy,...,wi} = M

with finite energy. Hence, by the removable singularity theorem for J-holo-
morphic curves, it extends to a holomorphic curve on all of 3, still denoted
by @. The energy of this J-holomorphic curve satisfies

E(a) < (@], B) — th.
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By hypothesis (H3), the dimension of the moduli space reduces by at least
2N at each bubble. Thus the limit [u, A] belongs to a moduli space M%,7 g2
of dimension

dim MY, g < dim MY, g — 2NV,
If {wi,...,wg} N{z1,...,2x} = 0, then the limit curve (u, A) still satisfies
ev%,’i([u, A]) € fi(Y;) for every i and hence cannot exist, by the transversal-
ity condition (H5). In general, denote

I={ie{l,....k} |z ¢ {wi,...,we}}.
Then the limit [u, A] satisfies

icl — eviy i ([u, A)) € fi(Yi).
Since the points z; € ¥ are pairwise distinct, we have

>k — |1,
and so
dim MY, g < dim MY g0 — 2N (k — |T]) <> deg(on).
el

Here we have used the fact that deg(a;) < 2N for each ¢ € {1,...,k} \ I.
It follows again from (H5) that such a limit curve cannot exist. Hence our

assumption that the map TéiSQ,  was not surjective for every ¢ must have
been wrong. This proves the theorem. O

Remark 12.5. A more subtle argument, as in Gromov compactness for
pseudoholomorphic spheres, shows that in the higher genus case the limit
curve u also satisfies

(c1(TM), [w)) < {c1(TM), B) — N,

where £ denotes the number of points near which bubbling occurs. Here
one needs to prove that no energy gets lost and one obtains convergence
to a bubble tree that represents the homology class B. With this refined
compactness argument, one can extend Theorem 1.1 to the higher genus
case.

Remark 12.6. The more subtle compactness argument of Remark 12.5 is
not needed if we impose the condition [w — u] = 7¢F (T M) instead of (H3).
Hence, in this case, Theorem 1.1 continues to hold for Riemann surfaces ¥
of arbitrary genus.

Remark 12.7. Assume (H1), (H2), and (H4), but not the monotonicity
hypothesis (H3). Suppose that the number A > 0 is a lower bound for
the energy of the nonconstant .J-holomorphic spheres in M as well as for
the energy of the nontrivial (i.e. is positive energy) solutions of the vortex
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equations (11.1). Let (X, dvoly, jx) be a compact Riemann surface of genus
g > 0 and suppose that B € Hy(M;7Z) satisfies

0 < (@] B < h.

Then the moduli space M% s, is compact and the bubbling argument in
the proof of Theorem 1.1 tdgether with Proposition 12.3 shows that the
map T°¢ : M%,E - Mgy of Theorem 6.1 is a diffeomorphism for € > 0
sufficiently small. Hence in this case the invariants ®py agree with the
Gromov-Witten invariants GW g ;.

Appendix A. The graph construction

Let G be a compact Lie group whose Lie algebra g = Lie(G) is equipped
with an invariant inner product and (M,w) be a symplectic manifold with
a Hamiltonian G-action generated by a moment map g : M — g. We
denote by g — Vect(M) : n — X, the infinitesimal action, by C& (M) the
space of G-invariant smooth functions on M, and by Jg(M,w) the space of
G-invariant and w-compatible almost complex structures on M. We fix a
Riemann surface (3, dvoly, j») and a principal G-bundle P — ¥. Given a
family of almost complex structures ¥ — Jg(M,w) : z — J, and a 1-form
TY = CF(M) : 2 — H;, we consider the perturbed equations
(A.1) Oym.a(u) =0, xFy 4 e ?u(u) =0,
where

8J,H,A(u) = 6J7A(U/) + XH(U)O’l.
Here the (0, 1)-form 0 4(u) € Q%Y (X, w*TM/G) is understood with respect
to the family of almost complex structures J,, parametrized by z € .
Moreover, the Hamiltonian perturbation is defined as follows. Associated
to H € QYX,C&(M)) is the 1-form Xy € QY Vectq(M,w)) which
assigns to every Z € T.% the Hamiltonian vector field X ; associated to
the Hamiltonian function H; : M — R. Thus ¢(Xg :)w = dH;. The 1-form
Xp(u) € QYZ,u*TM/G) lifts to an equivariant and horizontal 1-form on
P with values in w*T'M, also denoted by X (u) and defined by

(X (w)p(v) := X ar(p)o(u(p))-
The complex anti-linear part of this 1-form is the Hamiltonian term in the
definition of 0 7.1,4(uw). In this section, we show how to reduce the perturbed
equations (A.1) to (1.7) via Gromov’s graph construction [9].
Let us denote by ay € QY(X x M) the 1-form associated to H. Thus ay
assigns to every pair of tangent vectors (2, %) € T,X x T, M the real number
H;(z). Denote

M:=% x M.
The 2-form

w:=w — dayg + cdvoly,
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is a symplectic form on M whenever the constant ¢ is sufficiently large. Here
we have abused notation and denoted by w the pullback of the 2-form w on
M under the obvious projection ¥ x M — M and likewise for dvols;. To see
that @ is symplectic for large ¢, note first that @ is a connection form: it is
closed and its restriction to each fibre {z} x M is symplectic. The curvature
of this connection form is the 2-form

1
Qpr dvoly, := dH + S{H N H} € QX(%,CX(M)).

This identity defines the function Qp : ¥ x M — R. Now the top exterior
power of @ is given by

a}n+1 n

w
m = (C— QH)W A dVOlE,

where dim M = 2n. Hence @ is nondegenerate whenever ¢ > maxy. Now
consider the almost complex structure J on M given by

i ._ js(2) 0
J(z2) = <J(z,x) o Xpg(z,x) — Xu(z,z)ojgn(z) J(z, ac)> '
Here J(z,) := J;(x) and we denote by Xp(z,2) : T3 — T; M the linear

map 2 — Xp :(x). Lemma A.2 shows that J is compatible with @.

Lemma A.1. Let (u,A) € CF(P,M) x A(P) and define & : P — M by
u(p) := (w(p),u(p)). Then u and A satisfy equations (A.1) if and only if 4
and A satisfy

95 4(@) =0, «Fa + e 2f(a) = 0.

Here [i : M — g is defined by ji(z,z) == p(z).

Proof. By definition of J we have 95 4(@) = (0,05,1,4(w)). Alternatively,
we can compute in local holomorphic coordinates, s+ it on Y. In such coor-

dinates, the Hamiltonian perturbation, the connection A, and the volume
form on ¥ have the form

H = Fds+ Gdt, A=dds+ Udt, dvoly; = A2 ds A dt,
and the equations (A.1) have the form
Osu + Ly® + Xp(u) + J(Ou + L,V + X (u)) =0,
A 2
0¥ — 0@ + [@, V] + <6> p(u) = 0.

Moreover, the almost complex structure J is given by
B 0 -1 0

J = 1 0 0

JXr—Xg JXg+Xrp J

This proves the lemma. O
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Lemma A.2. Let 2; € T,% and T; € T, M fori=1,2. Then
0((21,21), (22, 22)) = (21 + Xp 2, (2), B2 + Xp 2, (7)), + (¢ — Qu ) (21, 22),
where (-,-), == w(-,J;-).
Proof. Continue the notation of the proof of Lemma A.1. Then the curvature
Qpr is given by
Ny = 0,G — O F + {F, G},
where {F, G} := w(Xp, X¢) denotes the Poisson bracket on M, and
O =w—dF ANds —dG A dt + (O.F — 0,G + cA\?)ds A dt,
where dF' and dG denqte the differential on M. Abbreviate ¢; := (4;,%;, #;)
and & := 2; + §; X + ;X for i = 1,2. Then
(1, JG2) = D(Cr, (—t2, 82, J& + 2 X — 82X¢))
= w(1, J& + 1o Xp — 32 X¢)
+ todF (21) + 31dF (J& + 12 Xp — 52 X3)
— 50dG(21) + t1dG (J&o + 12X P — 52XG)
+ (O F — 0sG + C)\Z)(§1§2 + Ltlfz)
= w(&,J&) + (A* = ;G + O F — {F,G}) (5182 + hit2).

The last identity follows from the fact that {F,G} = dF (Xg) = —dG(XF)
and dF(J&) = w(XF, J&2). O

Appendix B. Cauchy—Riemann operators

Fix a compact Lie group G, an invariant inner product on the Lie alge-
bra g = Lie(G), a symplectic manifold (M, w), a Hamiltonian G-action on
M generated by a moment map p : M — g, a compact Riemann surface
(32, ju,dvoly), a principal G-bundle P — ¥, and a family of G-invariant
and w-compatible almost complex structures ¥ — Jg(M,w) : z — J,. Each
almost complex structure determines a Riemannian metric (-, ), = w(:, J.-)
on M and hence a Levi-Civita connection V = V,. The value of z will
usually be clear from the context and we shall omit the subscript z. Let
u : P — M be an equivariant smooth map and A be a connection on P.
Then A and V determine a connection V4 on w*T'M /G given by

VA€ = VE + Ve Xa(u)

for ¢ € QY(X,u*TM/G). More precisely, we think of A as an equivariant
1-form on P with values in the Lie algebra g which identifies the vertical
tangent bundle with g. A section & of w*TM/G lifts to an equivariant
section of the bundle v*T'M — P (also denoted by &) and a 1-form 6 €
QX u*TM/G) lifts to an equivariant and horizontal 1-form on P with
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values in w*T'M (also denoted by #). In this notation, the 1-form V4¢ is
given by

(Va&)p(v) := Vol (p) + Vep) Xa, ) (u(p))
for v € T,P. In general, V4 preserves neither the inner product nor the
complex structure on u*T'M/G. More precisely, let J,, € Q°(P, End(u*TM))
be given by Ju(p) := Jyr ) (u(p)) € End(T,,;,)M). This section is equivariant
and hence descend to a complex structure, also denoted by .J,,, of the bundle
End(uv*TM/G) — X.
Lemma B.1. The covariant derivative of J,, is given by

Vady = Viaud (w) + J(u),

where J(u) € QY(Z, End(u*TM/G)) is defined by

d

J(w)p(v) = @, Ty (u(p))

for v € T,P and a smooth path v : R — P such that v(0) = p and ¥(0) = v.
Proof. Since J is G-invariant, we have Lx, J = 0 for n € g or, equivalently,
(B.1) (Vx, ) = Ve Xy — IV X,

Using this formula we obtain

(Vadu)€ = Va(Juf) — Ju(Va€)
= V(Ju€) — JuVE + Ve Xa(u) — Ju Ve Xa(u)

= (Vaud (u) + J ()€ + (Vxy ) (w)) €
= (Vaud (w) + J (u))€

as claimed. H

It follows from Lemma B.1 that the complex linear part of the connection
V4 is the connection V4 on v*TM/G given by

(B.2) VA€ = Vi€ — %Ju(VAJu)f
= VE+ VeXa(u) — %Ju (VdAuJ(u) + j(u)) ¢

Lemma B.2. V), is a Hermitian connection on u*TM/G.
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Proof. We shall use the identity ((Vg J)&2,&3) + cyclic = 0. By equa-
tion (B.1), we have

<§17 vﬁan> + <V§1Xn,§2>

= (J&1, IV, X)) + (IVe, Xy, JE2)

= (J&1, Ve, (JXyy) = (Vo ) X)) + (Vye, Xy — (Vx, )61, J&2)

= (J&, Ve, (T X7)) + (Vye, Xy, J&2) — (J&1, (Ve J) Xyp) — (&2, (Vix, J) T &)

= (J&1, Vo (J X)) + (Vig, Xy J&2) + (Xip, (Vg, J)€2)

<VJ51(JX ),&2) — (J(Vie, Xyy), &2) — (Vie, J) Xy, §2)

for £1,& € T, M and n € g. Here the penultimate equality follows from
the fact that JX,, is a gradient vector field and that Vj¢ J is skew-adjoint.
This shows that VX 4(u) is a 1-form on ¥ with values in the bundle of skew-
Hermitian endomorphisms of w*T'M /G, and so is J(V;,,J). Moreover, since

d{€1, &) = (V&L &) + (61, VE) — (&, J &),

the operator & — V& — %J J¢ is a Riemannian connection. Hence, by equa-

tion (B.2), V4 is a Riemannian connection. By definition, it preserves the
complex structure. O

Lemma B.3. For every gauge transformation g € G(P) and every section
€€ QY2 u*TM/G) we have

Voa(g ') =97 'Vu&,  Vpalg '€ = g 'Vl
Proof. Since the metric (-, -), is G-invariant for every z € ¥, we have
V(g t) =g tve - Vg_ngg_1dg(g*1u).

Hence the first identity follows from the fact that g*A = ¢ 'dg+ ¢~ ' Ag and
that V,-1.X,-1,,(97 ') = g7'VeX;(2). The second identity follows from
the first and the fact that J, is G-invariant for every z. O

Lemma B.4. Suppose that J is independent of z € X. Then the curva-
ture of the connection Vy is the equivariant and horizontal 2-form FYA €

O2(P,End(u*TM)) given by
FY (v, 02)€ = R(dau(p)vr, dau(p)v2)€ + Ve X g, (u1,00) (u(P))

Jor vi,vy € T,P and & € T,,)M, where R € Q*(M,End(TM)) is the Rie-
mann curvature tensor of the metric (-,-) = w(-,J-). This 2-form descends
to a 2-form on ¥ with values in End(u*TM/G), also denoted by FVA.

Proof. Given a map R? — M : (s,t) — u(s,t), a vector field £(s,t) €
Ty(s,nM along u, and a G-connection A = & ds+ ¥ dt, where ¢, ¥ : R? — g,
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we denote
vs = O0su + Xo(u), vy = Opu + Xy(u),
Va,s€ 1= Vs + VeXo(u), Vi€ = Vil + Ve Xy (u).
Then the assertion can be restated in the form

Va,sVa € — VaiVa s§ = R(vs,v1)§ + Ve Xo,w—0,0+0,w) ().
To prove this, we use the identities
Va,sVa i€ — Va1 Va s = ViV — ViVi€ + Vi Ve X (u) — Ve Xw (u)
— ViViXo(u) + Ve Xo(u)
+ Ve xy Xo(v) — Vi x4 X (u),
R(Osu, Opu)§ = VsVi§ — Vi Vg,
R(Osu, Xy (u))§ = VsVe Xy (u) — Ve Xu(u) — VeXo,w(u),
R(Xo(u), Xo(u)§ = = VeX(e v)(v) + Vex, Xo(u) — Vg x, Xu(u).

The first and second identities are the definition of the connection V4 and
the curvature tensor R. The other identities use the equations

Vx, Z — Nz Xy = 12, X,] =0, V2 [ X, Xopp) = V2 X0, X
for every G-invariant vector field Z € Vectg(M) and all n, 71,72 € g. O
Now consider the Cauchy—Riemann operator
D =D, 4y : Q(S,u*"TM/G) = Q" (S, u*TM/G)

given by
(B.3) D¢ = (V6™ — %J(vgj)aJ,A(u).

In the case 0 7A(w) = 0, this operator is the vertical differential of the
section u — O 7.4(u) of the infinite-dimensional vector bundle over the space
C& (P, M) with fibre Q% (X, u*TM/G) over u.

In the following, we denote the Nijenhuis tensor of J by N € Q*(T M, TM).
It is given by

N(&1,8) = [€1, 8] + J[J&1, &) + T, J&] — [T, J&
= 2J(v§2 )& — 2J(VE1 J)&o.

Lemma B.5. The complex linear part of D is the operator & — (V€)%
Moreover,

DE = (V4! + TN(E0a(w) + £ (7€)
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Proof. By definition of V4, we have

DE = (946 + 37 (Y, a0 T (0) + J @))€ = LI (VeT)Da(w).

Hence the formula for D¢ follows from the relation between the Nijenhuis
tensor and VJ. Now this equation shows that the operator § — D§ —
(V€)1 is complex anti-linear. O

Appendix C. Invariant metrics

Let M be a (complete) Riemannian m-manifold. For v € T, M and i,j €
{1,2} there exist linear maps

Ei(JE, ’U) Ty M — Texpz(v)Ma Eij (x, 1}) TMeT,M — Texpz(v)M

characterized by the following conditions. If x : R — M is a smooth curve
and v,w : R — &*T'M are vector fields along x, then

%expm(v) = Fi(z,v)t + Eay(z,v)Vv,

V(B (z,v)w) = Epq(z,v)(w, ) + E2(z,v)(w, Vv) + Ei(x,v)Vyw,
Vi(Ez(z,v)w) = Eo(z,v)(w, ) + Ea(x,v)(w, Viv) + Es(x,v)Viw.
Here all the expressions are understood pointwise for every ¢ € R. Note that

the map Eq1(z,v)(w,w') is not symmetric in w and w’. It satisfies

Ell(‘rv 7))(’[1), w/) - Ell(xa v)(wlv w) = E?(xa U)R(U), w/)v,
where R € Q%(M,End(TM)) denotes the curvature tensor. However,
Eia(z,v)(w,w') = By (z,v)(w', w),

and Eao(z,v)(w,w’) is symmetric in w and w’ (see [7] for more details).
Now let G x M — M : (g,z) — gx be a smooth action of a compact Lie
group G with infinitesimal action g — Vect(M) : n — X,. Assume that M
is equipped with a G-invariant Riemannian metric.

Lemma C.1.
Xﬁ(expm(v)) = El('% U)Xn(f) + EQ('% v)vaﬁ(x)’
Vi, (@) Xn(€xp; (v) = Eir (2, v)(w, Xy (2)) + Eig(z, v)(w, V, Xy(2))
+ Ei(x,v) VX, (x).
Proof. Since the group action preserves geodesics, gexp,(v) = exp,,(gv).
Differentiate this identity with respect to g to obtain the first identity. To

prove the second differentiate, the first identity covariantly and use the def-
inition of E; and E;;. For more details, see [7]. O
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For each x € M denote by L, : g — T, M the infinitesimal action, i.e.
Lyn = X,(z). Given a map u : R* — M, a vector field ¢ : R? — w*TM
along u, a function 7 : R? — g, and a G-connection A = ® ds + U dt, where
®, ¥ : R? = g, we denote

vs = Osu+ Xo(u), vt = O + Xy(u),
Vas€ =Vl + VeXo(u), Va§ = Vi + VeXu(u),
Vasn = 0sn+ [@,1], Vaum = 0m+[¥, 7).

Define p € Q*(M, G) by
(n,p(€,€)) = (Ve Xy(2),€) = = (Ve Xy (), £)
for £, € T,M and n € g.
Lemma C.2. With the above notation, we have
vA,5Lu77 - LuvA,sn = vvan(u)v vA,tLun - LuvA,tn = vthn(u)a
Vasly€ — LiVas€ = p(vs,€),  Varli§ — LyVai£ = p(ve,§)
Proof. See [7]. O

Now let M* denote the subset of all points x € M with finite isotropy
subgroup G, := {g € G|gx = z}. Thus x € M* if and only if the linear
map L, : g — T, M is injective. Hence, for every map ug : R> — M* there
exists a unique G-connection Ag = ®gds + VYo dt such that

Ly, vos = Ly, vor = 0,
where
Vos 1= Osug + Ly, Do, Vot = Ogug + Ly Po.
Let & : R? — u$TM be a vector field along ug, consider the map
u(s,t) 1= expy, (s, (€0(s, 1)),
and abbreviate
o =P — Dy, Yo =W — W,
Lemma C.3.
Lupo = vs — Er(uo, &o)vos — E2(uo, §0) Vag,s&o,
Lutpo = v — E1(uo, §o)vor — Ea(uo, &) Vag o-
Proof. We compute
Ly(® — @) = Xo(u) — E1(uo, {0) Xy (uo) — Ea2(uo, §o) Ve, Xa, (uo)
= Osu — E1(uo, §0)0suo — Ea(uo, §0) Vséo
+ Xo(u) — E1(uo, §0) X, (uo) — Fa2(uo, §o) Ve, Xag (uo)
= vs — E1(uo, §0)vos — Ea(uo, &) Vag,s&o-

Here the first equation follows from Lemma C.1, the second from the defi-
nition of F;, and the last from the definitions of vy and vgs. O
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In the proof, we did not use the fact that Ly vos = Ly vot = 0. Now
suppose Ly &o = 0. Then, by Lemma C.2,

Ly, Vag,s€o = —p(vos, &o), Ly, Vag.t§0 = —p(vot, §o)-
Abbreviating E1 = E1(up, &) and Ey = FEa(ug,&p), we obtain the following.

Corollary C.4. If Ly & = 0, then

Ly Ey 'Ly (® — @) = L} Ey ™' (vs — Eyvos) + p(vos, &),
Ly Ey 'Ly (U — Vo) = LY By~ (v, — Ervor) + plvor, &o)-

Proof. Lemma C.3. 0

Lemma C.5. Assume Ly & = 0 and abbreviate E; := E;(uo,&o) and E;j :=
Eij(uO,go). Then

LuNappo = Varvs + Vi, Xy (1) — Vi, Xop (1) — Vo, Xy (1)
— E11(vos, vor) — E12(vos, Vag+£0)

— E51(Vay,s80, vor) — E22(Vag,5€0, Vag.t€0)
— F1 V41008 — E2Va,.tVa, 580,

LyNVaspo = Vasvs + VX% X0 (u) — 2V, X (w)
— E11(vos, vos) — Er2(vos, Vag,s€0)

— E21(Vay,s80, v0s) — E22(Vay,s&0, Vao,s0)
— E1Va,,sv0s — £2V4,.sVa,,s&0-

Proof. We only prove the first identity. The proof of the second is similar.
By Lemmas C.2 and C.3,

LuvA,tQPO = vA,tLu<;00 - vthgoo (u)
= V105 — Vi (E1vos) — Va(E2Vag,s€0) — Vi, X (0).

Hence, by the definition of F;; and Lemma C.1,

Va,t(Ervos) = Vi(E1v0s) + VE v, Xw(u)
= E11(vos, Oruo) + Er2(vos, Vio)
+ E11(vos, Xw, (o)) + E12(vos, Vg Xw, (o))
+ E1Vivos + VE v, Xy (1) + E1 Vi, X (o)
= VE 00 Xy (1) + E11(vos, vor) + E12(vos, Vag,t€0) + £1Vag,t00s,
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and

Vat(E2Va,,5€0) = Vi(E2Va,s€0) + Vi, vy, .0 Xw (1)
= E91(Va,,580, Oruo) + E22(Vag s&0, Vilo) + E2ViVa, &0
+ Vs, o0 Xuo (W) + E21(Vag,s€0, Xw, (o))
+ E22(Vag,s80, Veg X, (u0)) + E2V, 6o Xw,(uo)
= VEszo,sﬁono (u) + E21(Vag,s80, vor)
+ F22(Vag,s&0, Vao,t60) + E2Va,,:Vag,séo-

Inserting these two identities into the previous formula, we obtain

LuvA,t(PO = VA,tvs - vthapo (U)
- VElvoszo (u) - VEQVAO,S&)X?/JO (u)
— E11(vos, vot) — E12(vos, Va,,io)

— E21(Vay,s&0, vor) — E22(Vag,s€0, Vag,i&o)
— E1 V4,005 — E2Va,y Vi, s&o-

Now the result follows from Lemma C.3. O
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