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REGULAR DEFORMATIONS OF COMPLETELY
INTEGRABLE SYSTEMS

Nicolas Roy

We study several aspects of the regular deformations of completely
integrable systems. Namely, we prove the existence of a Hamiltonian
normal form for these deformations and we show the necessary and
sufficient conditions a perturbation has to satisfy in order for the per-
turbed Hamiltonian to be a first order deformation.

1. Introduction

This article presents some results concerning the deformations of regu-
lar completely integrable (CI) systems. These are the dynamical systems
defined by a Hamiltonian H0 ∈ C∞(M) on a symplectic manifold M admit-
ting a momentum map, i.e., a collection A = (A1, . . . , Ad) : M → R

d of d
smooth functions, d being half of the dimension of M, satisfying {Aj , H} = 0
and {Aj , Ak} = 0 for all j, k : 1, . . . d, and whose differentials dAj are linearly
independent almost everywhere. Then, the Arnol’d–Mineur–Liouville The-
orem [2, 5, 7] insures that in a neighborhood of any connected component
of any compact regular fiber A−1(a), a ∈ R

d, of the momentum map, there
exists a fibration in Lagrangian tori along which H0 is constant. These tori
are thus invariant by the dynamics generated by the associated Hamiltonian
vector field XH .

Despite the “local” character of the Arnol’d–Mineur–Liouville Theorem,
it is tempting to try to glue together these “local” fibrations in the case of
regular CI Hamiltonians, i.e., those for which there exists, near each point
of M, a local fibration in invariant Lagrangian tori. Unfortunately, this
is not always possible. Some CI Hamiltonians do not admit any (global)
fibration in Lagrangian tori and some others admit several different ones1 .
Nevertheless, these examples belong to the non-generic (within the class

1For example, the free particle moving on the sphere S2 is such a system.
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of regular CI Hamiltonians) class of degenerate Hamiltonians and one can
show that imposing a non-degeneracy condition insures that there exists a
fibration of M in Lagrangian tori along which H0 is constant, and moreover
that it is unique. The genericity of non-degeneracy conditions thus motivates
the study of fibrations in Lagrangian tori M π→ B. Such a fibration actually
gives rise to several natural geometric structures which we review in the first
section.

Starting from a regular CI Hamiltonian H0 ∈ C∞(M), it is well-
known since Poincaré’s work [9] that adding a small perturbation εH1 will
destroy its integrable character and yield chaotic behaviors. Nevertheless,
it is relevant to investigate the space of all CI Hamiltonians, since they are
the starting point of any perturbation theory, like the celebrated K.A.M.
Theory [1, 4, 8] which tells us that one can actually say a lot about the
perturbed Hamiltonian Hε = H0 + εH1 when ε is small.

A first step toward the understanding of the space of all CI systems is
to restrict ourselves to regular deformations of regular CI hamiltonians, i.e.,
smooth families of Hamiltonians Hε which are CI and regular for each ε.
After introducing a few necessary tools in Section 3.2, we prove in Sec-
tion 3.3 a normal form for regular deformations of CI Hamiltonians. Finally,
Section 3.4 is devoted to the study of the first order deformations. We
give there the condition on the perturbation H1 for the perturbed system
H0 + εH1 to be CI up to ε2.

2. Geometric structures of regular CI systems

In this section, we review several geometric structures which are naturally
associated with any fibration in Lagrangian tori M π→ B. In particular, we
show that there exists a natural process of averaging any tensor field in the
direction of the fibers. This process then allows us to prove (Proposition 2.6)
that each symplectic vector field splits into two parts : the first is Hamil-
tonian and the second is symplectic and preserves the fibration. This will
be used in Section 3.3 to prove the Hamiltonian normal form (Theorem 3.9)
for regular deformations.

First, let us fix some basic notations. We denote by V(M) the space of
smooth vector fields on the manifold M. A symplectic form ω on M provides
a isomorphism ω : V(M) → Ω1(M), also denoted by ω, i.e., ω(X) = ω(X, .)
for each X ∈ C∞(M). The inverse is denoted by ω−1 : Ω1(M) → V(M).
For each vector field, we denote by φt

X its flow at time t. Let O ⊂ M be any
subset. We say that a vector field X is symplectic (resp. Hamiltonian) in O if
its associated 1-form ω(X) is closed (resp. exact) in O. To each Hamiltonian
H ∈ C∞(M), we can associate a vector field XH = −ω−1(dH). Now, given
a fibration M π→ B, we say that a vector field X̃ ∈ V(M) is a lift of a vector
field X ∈ V(B) if for each b ∈ B and each m ∈ π−1(b) we have π∗( ˜Xm) = Xb.
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2.1. The period bundle. Let (M, ω) be a symplectic manifold of dimen-
sion 2d and M π→ B a locally trivial fibration in Lagrangian tori, whose fibers
are denoted by Mb = π−1(b), b ∈ B. The tangent spaces Lm = TmMπ(m)
of the fibers form an integrable vector subbundle L =

⋃

m∈M Lm of TM.
A theorem due to Weinstein [13] insures that each leaf of a Lagrangian
foliation (not necessarily a fibration) is naturally endowed with an affine
structure. This affine structure on a leaf Mb can actually be expressed in a
very convenient way (see [14]) in terms of the torsion-free and flat connection
∇ : V(Mb) × V(Mb) → V(Mb) defined by

∇XY = ω−1( ˜X�d(˜Y �ω)),

where ˜X ∈ Γ(L) and ˜Y ∈ Γ(L) extend X and Y in V(M) and are everywhere
tangent to L. We denote by V∇(Mb) the space of parallel vector fields
on Mb. One can see easily from the definition of ∇ that a vector field
X ∈ V(M) is vertical and parallel on each fiber if and only if its associated
1-form ω(X) is a pull-back of a 1-form on B.

Now, since the foliation under consideration actually defines a fibration,
the holonomy of ∇ must vanish. Indeed, for each b ∈ B, any collection
of smooth functions f1, . . . , fd ∈ C∞(B) whose differentials dfj are linearly
independent near b provides d Hamiltonian vector fields Xf1◦π, . . . , Xfd◦π ∈
V(M) everywhere tangent to the fibers, parallel on each fiber and linearly
independent in a neighborhood of Mb. Therefore, they form a global parallel
frame on Mb, implying that the holonomy of ∇ vanishes and that each fiber
Mb is endowed with the structure of a standard2 affine torus. This implies
that the space V∇(Mb) is a d-dimensional vector space and that the union
⋃

b∈B V∇(Mb) is naturally endowed with a structure of a smooth vector
bundle over B.

Since each fiber Mb is isomorphic to the standard torus T
d, we can

consider among the parallel vector fields on Mb, those whose dynamics
is 1-periodic. We denote this set by Λb. It is then easy to prove that it
is a lattice in V∇(Mb). We call it the period lattice. The genuine geo-
metric content of the Arnol’d–Mineur–Liouville Theorem [2, 5, 7], which is
often hidden by the formulation in coordinates, amounts to saying that the
union Λ =

⋃

b∈B Λb, called the period bundle, is a smooth lattice subbun-
dle of

⋃

b∈B V∇(Mb). This can be proved by constructing explicit smooth
sections of this bundle which are 1-periodic, namely Hamiltonian vector
fields Xξ◦π where the function ξ ∈ C∞(B) is called action and given by
b → ξ(b) =

∫

γ(b) θ, with θ any symplectic potential and b → γ(b) a smooth
family of vertical cycles. Furthermore, this shows that smooth (local) sec-
tions of Λ are Hamiltonian.

2Here, “standard” means holonomy-free.
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The smoothness of the period bundle Λ provides a way to relate the spaces
V∇(Mb) for neighboring points b and implies the existence of a natural inte-
ger flat connection on the vector bundle

⋃

b∈B V∇(Mb). This connection may
have a non-vanishing holonomy, called the monodromy. Now, the symplectic
form ω provides an isomorphism between the sections of

⋃

b∈B V∇(Mb) and
those of T ∗B. This gives the base space B a natural structure of an affine
space, as discovered by Duistermaat in [3].

2.2. The torus action bundle. Our discussion so far shows that given a
fibration in Lagrangian tori M π→ B, there exists a natural associated torus
bundle acting on it. Indeed, for each b ∈ B, the quotient

Gb = V∇(Mb)/Λb

is a Lie group isomorphic to the torus T
d. This isomorphism is not canonical,

but it can be realized by choosing a basis of Λb. We will denote the elements
of Gb by [Xb], with Xb ∈ V∇(Mb), since they are equivalence classes. Taking
the union over all b, we get a torus bundle G =

⋃

b∈B Gb. It is a smooth
bundle since the period bundle Λ is so. We stress the fact that G is in
general not a principal bundle since there might not exist any global action
of T

d on G, because of the presence of monodromy which precisely prevents
us from choosing a global basis of Λ. On the other hand, there exists a
distinguished global section, since each fiber is a group with a well-defined
identity element.

Although we cannot apply the general theory of connections on principal
bundles, there is a natural way to speak about local parallel sections of G
over a subset O ⊂ B. These sections are simply local sections b → [Xb] of
G, with b → Xb being a local parallel section of

⋃

b∈B V∇(Mb). We denote
the set of local parallel sections by Γ∇(O,G).

Lemma 2.1. For each simply contractible subset O ⊂ B, the space Γ∇(O,G)
is a Lie group isomorphic to the torus T

d.

Proof. If O is simply connected, then the monodromy vanishes in O and
there exist local sections X1, . . . , Xd ∈ Γ(O, Λ) with {Xj(b)} generating the
lattice Λb at each b ∈ O. To each element (t1, . . . , td) ∈ T

d = R
d/Z

d, we
associate [X] = [t1X1 + · · ·+ tdXd] ∈ Γ∇(O,G). One easily verifies that this
provides an isomorphism. �
Let us now describe how the bundle G acts on M. First, for each b, the
group Gb acts naturally on Mb in the following way.

Gb × Mb → Mb

([Xb], m) → [Xb](m) = φ1
Xb

(m),

where Xb ∈ V∇(Mb) is a representative of the class [Xb]. One can see
easily that this action is commutative, free, transitive and affine with respect
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to Weinstein’s connection on Mb. Now, given any section g ∈ Γ(G), its
restriction g|O to any simply connected subset O ⊂ B is of the form g|O =
[X], where X ∈ Γ(O,

⋃

b∈B V∇(Mb)). We can then extend the previous
fiberwise action of the groups Gb to a vertical action of the sections of the
toric bundle G on M by

Γ(G) × M → M
(g, m) → [X](m) = φ1

X(m),

where X ∈ Γ(O,
⋃

b∈B V∇(Mb)) for any simply connected neighborhood O
of b = π(m). This is well-defined since another representative X

′
of the class

[X] would differ from X only by an element of Γ(O, Λ) which would provide
φ1

X
′−X

= I. This action naturally inherits the properties of the fiberwise
action and we can show that the following additional property holds when
we restrict ourselves to the parallel sections of G.

Lemma 2.2. For any simply connected subset O ⊂ B, the group Γ∇(O,G)
acts vertically on M in a symplectic way.

We call this action the toric action of G on M. Even if this action is
local, it provides a way to average any tensor field on M. Indeed, according
to Lemma 2.1, Γ∇(O,G) is a compact Lie group provided O ⊂ B is simply
connected. It is thus endowed with its Haar measure µG and for any tensor
field T of any type on M, we can define its vertical average 〈T 〉 in the
following way. For each m ∈ M, we set

〈T 〉m =
∫

Γ∇(O,G)

(

(φ1
X)∗T

)

m
dµG ,

where O ⊂ B is any simply connected neighborhood of b = π(m). We can
check that this definition does not depend on the choice of O. Choosing a
basis X1, . . . , Xd of Γ(O, Λ) provides an explicit expression for the averaged
tensor, namely

〈T 〉m =
∫ 1

0
dt1 · · ·

∫ 1

0
dtd

((

φt1
X1

)

∗
◦ · · · ◦

(

φtd
Xd

)

∗
T

)

m
.

A tensor field T is called invariant under the toric action of G, or simply
G-invariant, if for each local parallel section X ∈ Γ∇(O,G) we have (φ1

X)∗
(T ) = T , or equivalently LXT = 0. The following properties can be proved
in a straightforward way.

Lemma 2.3. We have the following basic properties:
1) T is G-invariant if and only if 〈T 〉 = T .
2) 〈〈T 〉〉 = 〈T 〉.
3) Each p-form α ∈ Ωp(M) verifies 〈dα〉 = d〈α〉.
4) Let T and S be two tensor fields. If T is G-invariant, then the con-

traction T�S with respect to any two indices verifies 〈T�S〉 = T�〈S〉.



6 N. ROY

5) In particular, if X ∈ V(M) is a vector field and α = ω(X) its associ-
ated 1-form, then we have ω(〈α〉) = 〈X〉.

2.3. Decomposition of symplectic vector fields. The averaging process
presented in the previous section provides a way to decompose any symplec-
tic vector field into the sum of a Hamiltonian vector field and a symplectic
vector field preserving the fibration. The key step is the following lemma.

Lemma 2.4. If α is a closed 1-form on M whose vertical average vanishes,
then it is exact. Moreover, one can choose the primitive f ∈ C∞(M),
α = df , with the property 〈f〉 = 0.

Proof. Let us work locally in a simply connected subset O ⊂ B. There
exists a basis (X1, . . . , Xd) of Γ(O, Λ). Choosing an “initial point” m(b)
depending smoothly on b ∈ O, i.e., a smooth section of the restricted bundle
π−1(O) π→ O, let us consider the smooth family of cycles γj(b) consisting of
the orbits t → φt

Xj
(m(b)). The homology classes [γj(b)] form for each b ∈ O

a basis of H1(Mb). On the other hand, since the fibration M π→ B is locally
trivial and O is contractible, the classes [γj(b)] form a basis of the homology
of ˜O = π−1(O).

Then, we show that for each j = 1, . . . , d and each b ∈ O, one has
∫

γj(b)
〈α〉 =

∫

γj(b)
α. Indeed, one has

∫

γj(b)
〈α〉 =

∫ 1

0
dt 〈α〉(Xj) ◦ φt

Xj
(m(b)) =

∫ 1

0
dt Xj�

(

φ−t
Xj

)

∗
〈α〉.

Moreover, expressing the average 〈α〉 in terms of the generators Xj , one
obtains

∫

γj(b)
〈α〉 =

∫ 1

0
dt1 · · ·

∫ 1

0
dtd

∫ 1

0
dt

(

φt1
X1

)

∗
◦ · · · ◦ ̂

(

φ
tj
Xj

)

∗

× ◦ · · · ◦
(

φtd
Xd

)

∗

(

Xj�
(

φ
tj−t
Xj

)

∗
α
)

,

where the entry below ̂ has been omitted. Then, we check with a trivial
change of variable that

∫ 1

0
dtj

∫ 1

0
dt

(

Xj�
(

φ
tj−t
Xj

)

∗
α
)

=
∫

γj(b)
α.

This implies that
∫

γj(b)
〈α〉 =

∫

γj(b)
α.

Finally, the hypothesis 〈α〉 = 0 yields
∫

γj(b)
α = 0, where the classes

[γj(b)] form a basis of the homology of ˜O = π−1(O), as shown before. Since
α is closed, this implies that it is actually exact. Thus, there exists a func-
tion f ∈ C∞( ˜O) such that α = df in Õ. This function is unique up to a
constant. On the other hand, we deduce from the property 〈df〉 = d〈f〉 and
the hypothesis 〈α〉 = 0 that 〈f〉 is a constant function. This allows us to
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choose the primitive f in a unique way by requiring that 〈f〉 = 0. This
criterion is independent of the choice of the basis (X1, . . . , Xd) and thus
allows us to find a primitive f of α globally defined on M. �
We need also the following property, which will be proved later in the slightly
more general case of time-dependent vector fields (Lemma 3.7).

Lemma 2.5. If ˜Y ∈ V(M) is a symplectic lift of a vector field Y ∈ V(B),
then it is G-invariant.

We now state the announced decomposition of symplectic vector fields.
We stress the fact that this result still holds in the presence of monodromy.

Proposition 2.6. Any symplectic vector field X ∈ V(M) decomposes in a
unique way as

X = X1 + X2,

where
• X1 is a Hamiltonian vector field , X1 = XA, with 〈A〉 = 0, where 〈A〉

is the vertical average of the Hamiltonian A.
• X2 is a symplectic lift of a vector field on B. Namely, it is the vertical

average of X, i.e., X2 = 〈X〉.

Proof. Let α = ω(X, .) be the 1-form associated with X, which is closed
since X is symplectic. Let α2 = 〈α〉 be the vertical average of α and let
α1 = α − α2. The 1-forms α1 and α2 are closed since d〈α〉 = 〈dα〉. Thus,
the vector fields X1 and X2, associated with α1 and α2, are symplectic. On
the other hand, one has 〈α1〉 = 0 and Lemma 2.4 then implies that X1 is
Hamiltonian, X1 = XA, with 〈A〉 = 0. Finally, 〈α2〉 = α2 implies that
〈X2〉 = X2. Now, any G-invariant vector field must be a lift of a vector field
on B, since the toric action of G is vertical and transitive on each fiber. This
proves the second point of the proposition.

Moreover, the decomposition X = X1 +X2 is the unique one of this type.
Indeed, suppose that there is a second decomposition X = X

′
1 +X

′
2 with the

same properties. Taking the vertical average of both expressions, we obtain
〈X1 + X2〉 = 〈X ′

1 + X
′
2〉 and thus 〈X2〉 = 〈X ′

2〉. Now, by Lemma 2.5, both
X2 and X

′
2 are G-invariant. It follows that X2 = X

′
2 and thus X1 = X

′
1. �

3. Deformations of completely integrable systems

3.1. Regular deformations of completely integrable systems. Let
(H0,M

π→ B) be a regular CI system composed of a fibration in Lagrangian
tori M π→ B and a Hamiltonian H0 ∈ C∞(M) constant along the fibers.
As we mentioned in the introduction, we will restrict ourselves to regular
deformations of H0, i.e., smooth families of Hamiltonians Hε which are CI
and regular for each ε. At this point, we would like to stress the fact that this
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does not imply that Hε is constant along the fibers of a family of fibrations
M πε→ B depending smoothly on ε. Nevertheless, we conjecture that it is true
for the generic class of non-degenerate Hamiltonians. We will discuss the
non-degeneracy conditions in Section 3.2 and we now restrict our study to
the following class of deformations.

Definition 3.1. Let (H0,M
π→ B) be a regular CI system and Hε ∈ C∞(M)

a smooth family of Hamiltonians. We say that Hε is a regular deformation
of H0 if it has the form

Hε = Iε ◦ φε,

where Iε ∈ π∗(C∞(B)) is a smooth family of functions with I0 = H0 and
φε : M → M is a smooth family of symplectomorphisms with φ0 = I.

For our purposes, we will need to work from now on with time-dependent
vector fields since each smooth family of diffeomorphisms φε with φ0 = I is
the flow at time ε of the time-dependent vector field Xε defined by

d(f ◦ φε(m))
dε

= Xε(f) ◦ φε(m)

for each smooth function f ∈ C∞(M) and each point m ∈ M. We denote
this flow by φε

Xε
. In all the following, all the considered families φε of

diffeomorphisms will implicitly depend smoothly on ε and satisfy φ0 = I.
We refer e.g., to [6] for a review of the properties of time-dependent vector
fields.

3.2. Non-degenerate CI systems. Non-degeneracy conditions are those
used in K.A.M. theories, like for example those introduced by Arnol’d,
Kolmogorov, Bryuno or Rüssmann. We refer to [10] for a review of dif-
ferent non-degeneracy conditions together with their properties and we will
focus on two of them. But first of all, we need to define a few notions.

Since the CI Hamiltonian H0 is constant along the fibers which are con-
nected, it must be of the form H0 = F0 ◦ π, with F0 ∈ C∞(B). Denote by
∇ the Duistermaat’s affine connection which exists naturally on the base
space B. For any subset O ⊂ B, we denote by V∇(O) the space of parallel
vector fields. Since the holonomy of ∇ may not vanish, the space V∇(O)
might be empty. Nevertheless, when O is simply connected, this space is
a d-dimensional vector space. All the non-degeneracy conditions, including
those presented here, are local : F0 (or H0) is said to be non-degenerate if is
non-degenerate at each b ∈ B. Moreover, these conditions involve the space
of parallel vector fields, but the mentioned local character means that one
needs actually only the spaces V∇(O) for a neighborhood O ⊂ B of each
point b ∈ B. We will use a slight misuse of language and say “for each
X ∈ V∇(B)” instead of “for each b ∈ B, each neighborhood O ⊂ B of b and
each X ∈ V∇(O)”.
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For each X ∈ V∇(B), let us define the function ΩX ∈ C∞(B) by ΩX =
dF0(X) and the associated resonance set

ΣX = {b ∈ B | ΩX(b) = 0}.

Definition 3.2. The function F0 is Rüssmann non-degenerate if for each
non-vanishing X ∈ V∇(B), the resonant set ΣX has an empty interior.

Among the non-degeneracy conditions used in the literature, Rüssmann’s
condition [12] is the weakest one and has nevertheless the following impor-
tant consequence (see e.g., [10] for a proof).

Lemma 3.3. If (H0,M
π→ B) is a “Rüssmann” non-degenerate C.I system,

then M π→ B is the unique fibration in Lagrangian tori such that H0 is con-
stant along the fibers.

This non-degeneracy condition is enough to insure the unicity of the nor-
mal form of Theorem 3.9 which will be proved in Section 3.3 but for the
study of first order deformations developed in Section 3.4, we will need a
stronger one, which is nevertheless weaker than Kolmogorov’s or Arnold’s
ones.

Definition 3.4. The function F0 is weakly non-degenerate if for each non-
vanishing X ∈ V∇(B) and each point b ∈ ΣX , one has

d(ΩX)b �= 0.

This condition implies among other that the resonant sets ΣX are
1-codimensional submanifolds of B.

3.3. Normal form for regular deformations. The aim of this section
is to prove Theorem 3.9 which insures that, by changing the function Iε,
one may assume that φε is a Hamiltonian flow. This result is based on
Proposition 3.8 which states that any family of symplectomorphisms φε

can be written as the composition of a Hamiltonian flow with a family of
fiber-preserving symplectomorphisms. Let us first define precisely these two
notions.

Definition 3.5. A family of symplectomorphisms φε is called Hamiltonian if
its vector field Xε is Hamiltonian, Xε = XAε , with Aε ∈ C∞(M) depending
smoothly on ε.

Definition 3.6. A family of diffeomorphisms φε : M → M is called fiber-
preserving if there exists a family of diffeomorphisms on the base space
ϕε : B → B such that

π ◦ φε = ϕε ◦ π.

We say that φε is vertical whenever ϕε = I for all ε.

Whenever a vector field on M is both symplectic and a lift of a vector
field on B, then we have the following property.
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Lemma 3.7. If ˜Yε ∈ V(M) is symplectic for each ε and is a lift of a time-
dependent vector field Yε ∈ V(B), then it is G-invariant and for each tensor
field T one has

〈(

φε
˜Yε

)

∗
T

〉

=
(

φε
˜Yε

)

∗
〈T 〉.

Proof. Let denote by φε = φε
˜Yε

the flow of ˜Yε. This flow is fiber-preserving
and thus verifies π◦φε = ϕε◦π with ϕε : B → B a family of diffeomorphisms.
One can easily show that ϕε is actually the flow of Yε.

First of all, for each vertical and parallel vector field X ∈ Γ(
⋃

b∈B V∇(Mb)),
one has φε

∗X ∈ Γ(
⋃

b∈B V∇(Mb)). Indeed, as mentioned in Section 2.1, φε
∗X

is vertical and parallel if and only if the 1-form ω(φε
∗X) is a pull-back. Now,

one has ω(φε
∗X) = ((φε)−1)∗(ω(X)) since φε is symplectic for each ε. On the

other hand, ω(X) = π∗β with β ∈ Ω1(B), since by hypothesis X is vertical
and parallel. Consequently, one has

ω(φε
∗X) =

(

(φε)−1)∗
π∗β = π∗ (

(ϕε)−1)∗
β.

This proves that ω(φε
∗X) is a pull-back and, therefore, φε

∗X is vertical and
parallel.

If in addition X ∈ Γ(O, Λ), with O ⊂ B a subset, i.e., X is 1-periodic
in π−1(O), then so is φε

∗X in φε(π−1(O)). Now, the smooth bundle Λ has
discrete fibers and φε

∗X depends smoothly on ε. This implies that for all
ε, one has φε

∗X = φε=0
∗ X and thus φε

∗X = X. Then, the derivative with
respect to ε shows that [˜Y , X] = 0, i.e., ˜Y is G-invariant. By linearity, this
is true as well for all X ∈ Γ(

⋃

b∈B V∇(Mb)).
Therefore, for each X ∈ Γ(

⋃

b∈B V∇(Mb)) and each ε, φε commutes with
the flow φt

X . This implies that φε commutes with the toric action of G and
thus with the averaging process, i.e.,

〈(

φε
˜Yε

)

∗
T

〉

=
(

φε
˜Yε

)

∗
〈T 〉

for any tensor field T . �

We can now give the following decomposition result for families of symplec-
tomorphisms.

Proposition 3.8. Each family of symplectomorphisms φε decomposes in a
unique way as follows:

φε = Φε ◦ φε
Zε

,

where
• Φε is a fiber-preserving family of symplectomorphisms.
• Zε = XGε is a time-dependent Hamiltonian vector field with 〈Gε〉 = 0.

Moreover, the vector field of Φε is equal to the average 〈Xε〉, where Xε is
the vector field of φε.
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Proof. Let Xε be the vector field of φε. Proposition 2.6 insures that for each
ε, Xε decomposes into Xε = ˜Yε + Wε, where ˜Yε is a lift of a vector field
Yε ∈ V(B) and Wε is Hamiltonian. Moreover, by looking more carefully at
the proof of Proposition 2.6, one can easily check that ˜Yε and Wε depend
smoothly on ε, since ˜Yε is nothing but the vertical average of Xε.

Let Ψε be the family of symplectomorphisms defined by φε
˜Yε+Wε

= φε
˜Yε

◦Ψε

and let Zε be its vector field. On the one hand, Φε = φε
˜Yε

is fiber-preserving

since ˜Yε is a lift of a vector field on B. On the other hand, one can check
in a straightforward way that the vector field X3

ε of a composition of flows
φε

X1
ε

◦ φε
X2

ε
is given by the formula X3

ε = X1
ε + (φε

X1
ε
)∗X2

ε . Therefore, in our

case we have ˜Yε + Wε = ˜Yε + φε
˜Yε

(Zε) and thus

Zε =
(

φε
˜Yε

)−1

∗
(Wε).

According to Proposition 2.6, Wε is Hamiltonian and verifies 〈Wε〉 = 0.
First, this insures that Zε is Hamiltonian. Second, Lemma 3.7 implies that

〈Zε〉 =
(

φε
˜Yε

)−1

∗
〈Wε〉 = 0

since ˜Yε is symplectic and a lift of a vector field on B.
Finally, we show that this decomposition is unique. Indeed, suppose that

we have a second decomposition φε
Xε

= φε
˜Y

′
ε

◦ φε
Z

′
ε

with the same properties.

The vector field ˜Y
′
ε must be a lift of a vector field on B since φε

˜Y
′
ε

is fiber-
preserving. On the other hand, as we mentioned before, we have the relation
X̃ε = ˜Y

′
ε + φε

˜Y
′
ε

(Z
′
ε). Arguing as before, we can show that φε

˜Y
′
ε

(Z
′
ε) is a

Hamiltonian vector field with vanishing vertical average. Now, Theorem 2.6
tells us that the decomposition Xε = ˜Yε + Wε is unique and thus ˜Y

′
ε = ˜Yε

and Z
′
ε = Zε. �

We have now all the necessary material to state the following theorem which
gives a normal form for regular deformations of a given regular CI system.

Theorem 3.9. Let (H0,M
π→ B) a regular CI system. If Hε is a regular

deformation of H0, then there exist a family of functions Iε ∈ π∗(C∞(B))
and a family of Hamiltonian symplectomorphisms φε

XGε
, with 〈Gε〉 = 0 such

that
Hε = Iε ◦ φε

XGε

for each ε.
Moreover, if H0 is Rüssmann non-degenerate, then the families Iε and

φε
XGε

are unique.
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Proof. By definition, Hε is a regular deformation of H0 if there exist a family
of functions Jε ∈ π∗(C∞(B)) and a family of symplectomorphisms φε such
that Hε = Jε ◦ φε. On the other hand, Proposition 3.8 insures that φε

decomposes into φε = Φε ◦ φε
XGε

, where Φε is fiber-preserving and 〈Gε〉 = 0.
Therefore, we have Hε = Iε ◦φε

XGε
, where the function Iε = Jε ◦Φε is indeed

an element of π∗(C∞(B)) since Φε is fiber-preserving.
Let us now show the unicity in case H0 is Rüssmann non-degenerate.

Suppose there is another family of functions I
′
ε ∈ π∗(C∞(B)) and another

family of symplectomorphims φε
X

G
′
ε

, with 〈G′
ε〉 = 0 and such that Hε =

I
′
ε ◦ φε

X
G

′
ε

. We thus have Iε ◦ φε
XGε

= I
′
ε ◦ φε

X
G

′
ε

and if we define the flow

Φε = φε
XGε

◦
(

φε
X

G
′
ε

)−1

, then we obtain Iε ◦ Φε = I
′
ε.

First of all, since Φε is a family of symplectomorphisms, the fibration
M πε→ B given by πε = π ◦ (Φε)−1 is also Lagrangian. Then, we can see that
the function Iε is also constant along the fibers of the deformed fibration.
Indeed, by hypothesis it has the form Iε = I

′
ε ◦ (Φε)−1. Using then the fact

that I
′
ε has the form I

′
ε = fε ◦π with fε ∈ C∞(B), it follows that Iε = fε ◦πε.

This proves that Iε is constant along the fibers of both fibrations π and πε.
Moreover, for ε = 0 the function Iε is equal to H0 which is non-degenerate.

This implies that Iε is also non-degenerate for small enough ε since non-
degeneracy is an open condition. Therefore, Lemma 3.3 insures that there
is a unique fibration such that Iε is constant along the fibers. The two
fibrations π and πε thus coincide, this proves that Φε preserves the initial
fibration π. Consequently, we have the decomposition φε

XGε
= Φε ◦ φε

X
G

′
ε

with Φε preserving the fibration π. Now, Proposition 3.8 insures that this
decomposition is unique. Accordingly we have Gε = G

′
ε and thus Iε =

I
′
ε. �

3.4. First order deformations. In this last section, we address the prob-
lem of finding what are the necessary and sufficient conditions on a per-
turbation H1 ∈ C∞(M) which insure that the perturbed Hamiltonian
Hε = H0 + εH1 is CI up to ε2, i.e., has the form Hε = Iε ◦ φε

XGε
+ O(ε2)

with Iε ∈ π∗(C∞(B)) and 〈Gε〉 = 0.
Most of the work here will be achieved with the help of Fourier series. Let

us begin by expliciting the geometric status of the object we will consider3 .
First, we will work locally in some O ⊂ B, with an action-angle coordinates
system (ξ, x) and consider the Fourier series with respect to the periodic
variable x. For any smooth function f(ξ, x) we will denote by f̃(ξ, k) its

3We refer to [11] for a detailled description of this issue.
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Fourier series defined by the usual expression

f(ξ, x) =
∑

k∈E

eik(x−x0)f̃(ξ, k).

The discrete set E in which the Fourier variable k lives is naturally a lattice
of the vector space V∇(O) of parallel vector fields on O. This can be seen
as follows. First, if ξ denotes the coordinates of a point b ∈ O, then x − x0
can be understood as an element of V∇(Mb) well-defined up to elements of
Λb, the lattice of 1-periodic parallel vector fields on the fiber Mb. On the
other hand, its dual Λ∗

b is a lattice of the space Ω1
∇(Mb) of parallel 1-forms

on Mb. The Fourier variable k lives naturally in Λ∗
b . Moreover, this family

Λ∗
b depends smoothly on b as Λb does. Now, the symplectic form provides

an isomorphism ιb : Ω1
∇(Mb) → TbB, depending smoothly on b. Under

this identification, k can be seen as an element of the lattice ιb(Λ∗
b) of the

vector space TbB. Finally, if we identify ιb(Λ∗
b) with the space E ⊂ V∇(O)

of sections of the associated lattice bundle
⋃

b∈O ιb(Λ∗
b), we obtain a suitable

space for the Fourier variable k to live in. Accordingly, for each k ∈ E the
Fourier series f̃(ξ, k) is a smooth (with respect to ξ) function, well-defined
up to a phase, due to an arbitrary choice of the family of origin points
b → x0(b).

Definition 3.10. A function f ∈ C∞(M) is called non-resonant if for each
non-vanishing k ∈ E and each ξ ∈ Σk one has f̃(ξ, k) = 0.

The resonant manifolds Σk were defined in Section 3.2. We have the
following equivalent criterion which has to be checked on each torus Mb on
which the dynamics of XH0 is periodic.

Lemma 3.11. A function f ∈ C∞(M) is non-resonant if and only if for
each T -periodic torus Mb the average of f along the trajectories of XH0

f̄ :=
1
T

∫ T

0
f |Mb

◦ φt
XH0

dt

is a constant function on Mb.

Proof. First, one can show (see e.g., [11, Prop. A.62]) that for each k �= 0 the
set of periodic tori in Σk is dense in Σk. This implies that the non-resonance
condition is equivalent to

∀ξ periodic,∀k ∈ E\0, dF0(k)ξ = 0 =⇒ ˜f(ξ, k) = 0,

where F0 ∈ C∞(B) is the function defined by H0 = F0 ◦ π. On the other
hand, a short calculation shows that for each ξ the Fourier series ˜̄f(ξ, k) of
the average f̄ is given by

˜̄f(ξ, k) =

{

˜f(x, k) if dF0(k) = 0
0 if dF0(k) �= 0

.
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Therefore, the non-resonance condition indeed amounts to requiring that
the averaged function f̄ is constant on the torus Mb.

This non-resonance condition is the right one to control the complete
integrability up to ε2, as it is shown in the following theorem. �

Theorem 3.12. Let (H0,M
π→ B) be a weakly non-degenerate regular CI

system and H1 ∈ C∞(M) a perturbation. The perturbed Hamiltonian Hε =
H0 + εH1 is CI up to ε2 if and only if H1 is non-resonant.

Proof. First, the complete integrability up to ε2 means that Hε has the
form Hε = Iε ◦ φε

XGε
+ O(ε2) with Iε ∈ π∗(C∞(B)) and 〈Gε〉 = 0. In this

expression, the terms of order ε0 give simply H0 = I0 and the ε1 terms yield
the equation H1 = I1 + XG0(H0). By definition of the Poisson bracket, this
is equivalent to

(3.1) {H0, G0} = I1 − H1.

In Fourier coordinates, this equation reads

idF0(k) ˜G0(ξ, k) = ˜I1(ξ, k) − ˜H1(ξ, k)

for each ξ and each k ∈ E. For k = 0, we have ˜I1(ξ, 0) = I1(ξ) since I1 is
a function constant along the fibers. We thus have to set ˜H1(ξ, 0) = I1(ξ).
Remark that ˜H1(ξ, 0) is nothing but the vertical average of the function H1.
The Fourier coefficient ˜G0(ξ, 0) is free and can be set to 0, which means that
〈G0〉 = 0. Now, for all non-vanishing k, we have Ĩ1(ξ, k) = 0 and we need
to solve the equation

dF0(k) ˜G0(ξ, k) = i ˜H1(ξ, k).

The non-resonance condition is certainly necessary, since in order to divide
by the function Ωk = dF0(k), H̃1(ξ, k) needs to vanish at least where Ωk

does, i.e., on the resonance manifold Σk. The solution G̃0 is thus defined
by the quotient H̃1(ξ,k)

Ωk(ξ) and it still remains to prove that the non-resonance

condition is sufficient to insure that G̃0(ξ, k) is smooth with respect to ξ
uniformly with respect to k, and with a fast decay in k. This will mean that
G0(ξ, x) is smooth with respect to (ξ, x). For this purpose, we will show
that for any compact set K ⊂ B, there are two positive constants T and C
such that

(3.2) |Ωk| < T =⇒ |dΩk| > C

uniformly with respect to k ∈ E\0. If this holds, then for each k we
decompose K into two parts defined by |Ωk| < T and |Ωk| ≥ T . Away
from the resonance manifold Σk, i.e., for ξ such that |Ωk(ξ)| ≥ T , we can

simply divide by Ωk and ˜G0 will satisfy the estimate | ˜G0(ξ, k)| ≤ ˜H1(ξ,k)
T .

On the other hand, close to the resonance manifold Σk, i.e., for ξ such that
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|Ωk(ξ)| < T , we consider Xk the gradient of Ωk (for some fixed Riemannain
metric). Its norm verifies |Xk| > C and is transversal to the submanifold
Σk. It is thus suitable to parametrize the “distance” to Σk, thru its flow
φt

Xk
. Indeed, since Xk is the dual vector of Ωk, i.e., dΩk(Xk) = 1, we have

Ωk ◦ φt
Xk

(ξ) = t + Ωk(ξ). Therefore, we can compute the first order Taylor
expansion with integral rest of ˜H1(ξ, k). This yields

˜H1(ξ, k) = ˜H1

(

φ
−Ωk(ξ)
Xk

, k
)

+
∫ Ωk(ξ)

0
dt Xk( ˜H1) ◦ φ

t−Ωk(ξ)
Xk

(ξ).

By construction, the point φ
−Ωk(ξ)
Xk

is on Σk and ˜H1 vanishes at this point
according to the non-resonance condition. Then, the change of variable
u = t/Ωk(ξ) gives

˜H1(ξ, k) = Ωk(ξ)
∫ 1

0
du Xk( ˜H1) ◦ φ

(u−1)Ωk(ξ)
Xk

(ξ)

and we can solve the equation Ωk(ξ) ˜G0(ξ, k) = i ˜H1(ξ, k) by dividing by Ωk.
The fast decay of ˜H1(ξ, k) implies the fast decay of the solution G̃0(ξ, k)
for both cases |Ωk| < T and |Ωk| ≥ T , and thus proves the smoothness of
G0(ξ, x).

The last point is to prove the existence of the constants T and C in
equation (3.2). In fact we will prove that this equation holds for k living
in the space P = {X ∈ V∇(B), |X| ≥ 1} and this will imply the result for
k ∈ E\0. Because of non-degeneracy, one has dΩk �= 0 and thus dΩk

|k| �= 0
for all point in Σk ∩ K. Therefore, there is a constant C(k) such that
∣

∣

∣

∣

dΩ k
|k|

∣

∣

∣

∣

= |dΩk|
|k| > 2C(k) in Σk ∩K. Now, the smoothness of Ω k

|k|
implies that

there is a constant T (k) such that |dΩk|
|k| > C(k) whenever

∣

∣

∣

∣

Ω k
|k|

∣

∣

∣

∣

< T (k). Let

us now decompose the elements k into their angular and radial parts, i.e.,
k :=

(

k
|k| , k

)

∈ Sd−1 × [1,∞]. Taking the minimum of T (k) and C(k) over

the compact set Sd−1, we obtain positive constants T
′
(|k|) and C

′
(|k|) such

that |dΩk|
|k| > C

′
(|k|) whenever

∣

∣

∣

∣

Ω k
|k|

∣

∣

∣

∣

< T
′
(|k|). Using again Ω k

|k|
= Ωk

|k| and

setting T = T
′
(1) and C = C

′
(1), we see that the following implication

holds.
∣

∣

∣

∣

Ωk

|k|

∣

∣

∣

∣

< T =⇒ |dΩk|
|k| > C.

Finally, using the fact that |k| ≤ 1, we obtain equation (3.2). �
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