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We consider an eigenvalue problem for differential operators, and show how guaranteed
bounds for eigenvalues (together with eigenvectors) are obtained and how non-existence
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1. Introduction

Up to now we have developed a method to enclose and exclude eigenvalues
for differential operators [8, 9, 10, 11, 12, 13]. This method is based on Nakao’s
theory which is known as a numerical verification method for partial differential
equations [14, 15, 16, 17], and it has a merit that it could be applied even in
case the operator is not self-adjoint. A remarkable point of this eigenvalue enclos-
ing/excluding is to assure an existence and non-existence range of eigenvalues with
mathematically rigorous sense. This means not only a reliability of computed eigen-
pairs but also that such evaluation of eigenvalues (and eigenvectors) can be applied
to related other problems, e.g., other numerical verification methods for nonlinear
problems or stability analysis of bifurcation phenomenon in hydrodynamics.

This paper aims to show how eigenvalues (and eigenvectors) are enclosed or
excluded in mathematically rigorous sense. At first in Section 2, we introduce
some eigenvalue enclosure methods, especially for symmetric operators. Our orig-
inal method is described in Section 3 together with some applications to algebra,
other numerical verification methods for nonlinear problems and stability analysis
of bifurcation phenomenon in hydrodynamics.

2. Enclosure methods for symmetric operators

Finding an eigenvalue and eigenvector of infinite dimensional operator (i.e., an
operator defined in an infinite dimensional space) is called as infinite dimensional
eigenvalue problem.

Let H be an infinite dimensional Hilbert space with an inner product 〈 · , · 〉.
For a linear symmetric operator L : D(L) → H, we consider the eigenvalue problem

Lu = λu, u ∈ D(L) \ {0}. (2.1)
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An eigenvalue of an operator takes an important role to understand a nonlinear
phenomenon in science and engineering. Especially, it often becomes a key value
when we consider a behavior of dynamical systems.

Several methods to enclose eigenvalues for symmetric operators have been pro-
posed, and now we introduce some of those methods below. Here we assume that
there exists an orthonormal basis of H consisting of eigenfunctions of L, and that
all eigenvalues are bounded below and ordered as λ1 ≤ λ2 ≤ · · · .
Krylov–Weinstein’s bounds [4]

As one of the simplest way of eigenvalue enclosure, Krylov–Weinstein’s bounds
is well known.

Let (ũ, λ̃) ∈ D(L) × R be an approximate eigenpair and compute

δ ≡ ‖Lũ− λ̃ũ‖
‖ũ‖ .

Then the interval

[λ̃− δ, λ̃+ δ]

contains at least one eigenvalue of L.
This bound is easy to compute, but the width of the enclosed interval is not so

narrow. And it also has another defect that no information is obtained concerning
the index of eigenvalue.

Kato–Temple’s bounds [6]
As an improved version of Krylov–Weinstein’s bounds, there is a Kato–

Temple’s bounds which was proposed in 1949 [6].
Let (ũ, λ̃) be an approximate eigenpair satisfying

λ̃ = 〈Lũ, ũ〉/〈ũ, ũ〉

and compute

δ ≡ ‖Lũ− λ̃ũ‖
‖ũ‖ .

For the n-th eigenvalue λn with finite multiplicity, suppose that an open interval
(α, β) does not contain any spectrum except for λn. Then for ρ ∈ R satisfying
α < ρ < β, we have

λn ∈
[
ρ− δ2

β − ρ
, ρ+

δ2

ρ− α

]
. (2.2)

The quality of this bounds is better than Krylov–Weinstein’s bounds. Indeed it
has an O(δ2) quality compared with an O(δ) quality of Krylov–Weinstein’s bounds.
But it also has a difficulty that it needs a precise information on eigenvalue distri-
bution in advance, i.e., a (rough) upper bound for λn−1 and (rough) lower bound
for λn+1 are needed to obtain the result.
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Rayleigh–Ritz bounds [4]
The Rayleigh–Ritz method is well known as a method to obtain very accurate

upper bounds for the first N eigenvalues of L.
Let ũ1, . . . , ũN ∈ D(L) be linearly independent functions and define two

N ×N -matrices

A1 ≡ (〈Lũi, ũj〉)i,j=1,...,N ,

A2 ≡ (〈ũi, ũj〉)i,j=1,...,N .

And let Λ1 ≤ · · · ≤ ΛN be the eigenvalues of the matrix eigenvalue problem

A1x = ΛA2x, x ∈ RN \ {0}. (2.3)

Then we have

λi ≤ Λi (i = 1, . . . , N). (2.4)

Being different from Kato–Temple’s bounds, this method does not need any
a priori information concerning eigenvalue distribution, but it does not give any
lower bounds.

Lehmann’s bounds [3]
Concerning the lower bounds for eigenvalues, there is a Lehmann’s method

as follows.
Let ũ1, . . . , ũN ∈ D(L) be linearly independent functions and suppose that

ΛN < ν ≤ λN+1 holds for a real number ν, where ΛN denotes the Rayleigh–Ritz
bound. Moreover define three N ×N -matrices

A3 ≡ (〈Lũi, Lũj〉)i,j=1,...,N ,

B1 ≡ A1 − νA2,

B2 ≡ A3 − 2νA1 + ν2A2,

where A1 and A2 are the same matrices in Rayleigh–Ritz method. If the eigenvalues
μ1 ≤ · · · ≤ μN of the matrix eigenvalue problem

B1x = μB2x, x ∈ RN \ {0} (2.5)

are negative, we have

λN+1−i ≥ ν +
1
μi

(i = 1, . . . , N). (2.6)

This lower bound is also sharp, but it also has the same difficulty as Kato–
Temple’s method, i.e., it needs a priori information on the exact eigenvalue λN+1.
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Homotopy method [18]
In order to overcome the difficulty to obtain a priori information on exact

eigenvalues, the homotopy method was proposed by Plum in 1990 [18]. In his
method a base problem is considered which is related to the given problem, i.e.,
for the eigenvalue problem for L. Here the base problem is chosen so that the
eigenvalue distribution of it is already obtained. Let L0 be an operator which
corresponds to this base problem, then consider a homotopy which connects two
operators L and L0:

Ls ≡ (1 − s)L0 + sL, s ∈ [0, 1].

Then starting from s = 0 and making use of the continuity and monotonicity
of eigenvalues on the parameter s, some eigenvalues for Ls are enclosed in each
step. Finally the first several eigenvalues of L are enclosed when the parameter s
reached 1.

Besides these methods, there is an intermediate methods [1, 2], but all these
methods are restricted to symmetric operators and cannot be applied to non-
symmetric operators. Moreover, these methods give direct enclosures only for
eigenvalues, while eigenfunction enclosures require a bit of a posteriori work. In
[20], a general enclosure theory for eigenvalue problems Au = λBu with a closed
operator A and a bounded operator B, i.e., including non-symmetric problems, was
proposed. In the next section, we introduce our method which could be also applied
to non-symmetric operators and also provides the eigenvector enclosures directly.
(See also [23].)

3. Enclosure method based on Nakao’s theory

We have developed a method to enclose eigenvalues and eigenvectors for dif-
ferential operators [8, 9, 10], which was based on Nakao’s verification methods for
nonlinear differential equations [14, 15, 16, 17]. Our method is also applicable to
non-symmetric operators. So far we have applied our enclosure method to enclose
eigenpair of symmetric operators and to enclose real eigenvalues and corresponding
eigenvectors of a non-symmetric operator.

Now we describe the principle of our method, and show some applications.

3.1. Eigenvalue enclosing and excluding method ([8, 9, 10])
Though the following arguments are almost the same as [10], in order to keep

this paper to be self-contained, we will give the detailed description below.
We consider a self-adjoint eigenvalue problem:{

−Δu+ qu = λu in Ω ,

u = 0 on ∂Ω .
(3.1)

Here Ω is a bounded convex domain in R2 and let q ∈ L∞(Ω). We apply
Nakao’s method which is known as a numerical verification method for nonlinear
problems.
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In what follows, for some integer m, let Hm(Ω) denote the L2-Sobolev space
of order m on Ω . Then, define H1

0 (Ω) ≡ {v ∈ H1(Ω) | v = 0 on ∂Ω} with the inner
product 〈u, v〉H1

0
≡ (∇u,∇v)L2 for u, v ∈ H1

0 (Ω), and the norm ‖u‖H1
0
≡ ‖∇u‖L2

for u ∈ H1
0 (Ω), where ( · , · )L2 and ‖ ·‖L2 represent the inner product and the norm

on L2(Ω), respectively.
Now, let Sh be a finite dimensional subspace of H1

0 (Ω) dependent on h

(0< h < 1). Usually, Sh is taken to be a finite element subspace with mesh size h.
Also, let

Ph0 : H1
0 (Ω) → Sh

denote the H1
0 -projection defined by

(∇(u− Ph0u),∇vh)L2 = 0 for all vh ∈ Sh.

We now assume the following approximation property in Sh:

Assumption 1. For any u ∈ H2(Ω) ∩H1
0 (Ω),

inf
χ∈Sh

‖u− χ‖H1
0
≤ C1h|u|H2 , (3.2)

where

|u|2H2 ≡
2∑

i,j=1

∥∥∥∥ ∂2u

∂xi ∂xj

∥∥∥∥
2

L2

.

Here, C1 is a positive, numerically verified constant which is independent of h.

The following lemma is well known [5]:

Lemma 1. For any ψ in L2(Ω), there exists a unique solution φ ∈ H2(Ω) ∩
H1

0 (Ω) of the following Poisson equation:

{
−Δφ = ψ in Ω,

φ = 0 on ∂Ω.
(3.3)

Furthermore, there exists a positive constant C2 satisfying

|φ|H2 ≤ C2‖ψ‖L2 . (3.4)

In particular, if Ω is a convex polygonal domain, we can set C2 = 1 ([5]).
Since we want to verify the eigenpairs of this problem, we consider the space

H1
0 (Ω)×R, and define the innner product 〈 · , · 〉H1

0×R and the norm ‖ · ‖H1
0×R by

〈w1, w2〉H1
0×R ≡ (∇u1,∇u2)L2 + λ1λ2,

‖w‖H1
0×R ≡ (‖u‖2

H1
0

+ |λ|2) 1
2 ,
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respectively, where wi = (ui, λi)∈H1
0 (Ω)×R (i= 1, 2) and w= (u, λ)∈H1

0 (Ω)×R.
Moreover, let I0 and I be the identity map on H1

0 (Ω) and H1
0 (Ω)×R, respectively.

We first normalize the problem (3.1) as

find (û, λ) ∈ H1
0 (Ω) × R s.t.

⎧⎪⎨
⎪⎩
−Δû+ (q − λ)û = 0,∫
Ω

û2 dx = 1.
(3.5)

We define the projection

Ph : H1
0 (Ω) × R → Sh × R

by

Ph(u, λ) ≡ (Ph0u, λ).

Now, let ŵh = (ûh, λ̂h) ∈ Sh × R be a finite element solution of (3.5), that is,

⎧⎪⎨
⎪⎩

(∇ûh,∇φh)L2 = ((λ̂h − q)ûh, φh)L2 ∀φh ∈ Sh,∫
Ω

û2
h dx = 1.

(3.6)

We will verify the existence of an eigenvalue and an eigenfunction for (3.5) in
the neighborhood of (ū, λ̂h) satisfying

{
−Δū+ (q − λ̂h)ûh = 0 in Ω ,

ū = 0 on ∂Ω .
(3.7)

Notice that ū ∈ H2(Ω) ∩H1
0 (Ω), and ŵh = Ph(ū, λ̂h). We have by (3.5)

and (3.7) ⎧⎪⎨
⎪⎩
−Δ(û− ū) = (λ− q)û− (λ̂h − q)ûh,∫
Ω

û2 dx = 1.
(3.8)

Defining v0 = ū− ûh, we then have v0 ∈ S⊥
h , where S⊥

h means the orthogonal
complement of Sh in H1

0 (Ω), and we can write

ū = ûh + v0, where ûh ∈ Sh and v0 ∈ S⊥
h .

Here we use a posteriori estimates for v0 as follows.
Let S∗

h ⊂ H1(Ω) be a finite element subspace whose basis consists of the union
of the basis on Sh and the base functions having nonzero values on the boundary
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∂Ω . Define ∇̄ûh ∈ S∗
h×S∗

h, a vector function in two dimension, by the L2-projection
of ∇ûh ∈ L2 × L2 to S∗

h × S∗
h. Then, define Δ̄ûh ∈ L2(Ω) by

Δ̄ûh ≡ ∇ · ∇̄ûh.

We then obtain the following estimation (cf. [24]):

‖v0‖H1
0
≡ ‖∇ûh − ∇̄ûh‖ + C0h‖Δ̄ûh + (λ̂h − q)ûh‖,

where C0 ≡ C1C2. Using the well-known Aubin–Nitsche trick ([7]), we can estimate
the L2 norm of v0 as

‖v0‖L2 ≤ C0h‖v0‖H1
0
.

Now, in order to verify solutions (û, λ) of (3.5) near (ū, λ̂h), representing

û = ū+ ũ, λ = λ̂h + λ̃,

we can rewrite (3.8) as

−Δũ = (λ̂h + λ̃− q)(ũ+ ûh + v0) − (λ̂h − q)ûh,∫
Ω

(ũ+ ûh + v0)2 dx = 1.

Thus using the following compact map on H1
0 (Ω) × R

F (ũ, λ̃)

≡
(

(−Δ)−1{(λ̂h + λ̃−q)(ũ+ ûh +v0)−(λ̂h−q)ûh}, λ̃+
∫
Ω

(ũ+ ûh +v0)2 dx−1
)
,

(3.9)

where (−Δ)−1 means the solution operator for Poisson equation with homogeneous
boundary condition, we have the fixed point equation for w = (ũ, λ̃)

w = F (w). (3.10)

We now make the following assumption.

Assumption 2. Set ρ ≡ (−v0, 0) and define F ′(ρ) as the Fréchet derivative
of F at ρ. Assume that restriction to Sh×R of the operator Ph[I−F ′(ρ)] : H1

0 (Ω)×
R → Sh × R has an inverse

[I − F ′(ρ)]−1
h : Sh × R → Sh × R.
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This assumption can be numerically checked in the actual computation.
Now we decompose (3.10) into the finite and the infinite dimensional parts:

{
Phw = PhF (w),

(I − Ph)w = (I − Ph)F (w).
(3.11)

And we use the Newton-like method only for the former part of (3.11), that is, we
define the Newton-like operator

Nh(w) ≡ Phw − [I − F ′(ρ)]−1
h (Phw − PhF (w)).

We next define the operator

T : H1
0 (Ω) × R → H1

0 (Ω) × R

as

T (w) ≡ Nh(w) + (I − Ph)F (w). (3.12)

Then T becomes a compact map on H1
0 (Ω) × R, and

w = T (w) ⇐⇒ w = F (w) (3.13)

holds.
An arbitrary element w ∈ H1

0 (Ω) × R can be uniquely written as

w = (vh, μ) + (v⊥, 0), (vh, μ) ∈ Sh × R, (v⊥, 0) ∈ S⊥
h × {0} (3.14)

with

vh =
M∑

j=1

vjφj , {φ1, . . . , φM} : basis of Sh.

And for w in (3.14) we use the following notation:

(w)i ≡ |vi|, i = 1, . . . ,M,

(w)M+1 ≡ ‖v⊥‖H1
0
,

(w)M+2 ≡ |μ|.

Now, we intend to find a solution to (3.5) in a setW , referred to as a “candidate
set.” Taking a vector (W1, . . . ,WM+2)t such that Wi > 0 (i = 1, . . . ,M + 2), a
candidate set W is defined by

W ≡ {w ∈ H1
0 (Ω) × R | (w)i ≤Wi (i = 1, . . . ,M + 2)}. (3.15)
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Now let T ′ be the Fréchet derivative of T . Then we choose two vectors

(Y1, . . . , YM+2)t, Yi > 0 (i = 1, . . . ,M + 2)

and

(Z1, . . . , ZM+2)t, Zi > 0 (i = 1, . . . ,M + 2)

such that

(T (0))i ≤ Yi, i = 1, . . . ,M + 2,

(T ′(w1)w2)i ≤ Zi, i = 1, . . . ,M + 2, ∀w1, w2 ∈W.

The verification condition is described in the following theorem.

Theorem 1. If a candidate set W , defined by (3.15), satisfies

Yi + Zi < Wi ( i = 1, . . . ,M + 2), (3.16)

then there exists a fixed point of T in

K ≡ {v ∈ H1
0 (Ω) × R | (v)i ≤ Yi + Zi ( i = 1, . . . ,M + 2)}. (3.17)

Moreover, this fixed point is unique within the set W .

By this method we can uniquely enclose an eigenpair (û, λ) in the set W . The
author further extended this method by using an infinite dimensional homotopy
method, and obtained the local uniqueness of eigenvalue and eigenvector respectively
as follows:

Theorem 2. If a set W = U × Λ ⊂ H1
0 (Ω) × R satisfies the conditions in

Theorem 1, then we have
i) ∃1 u∗: eigenfunction s.t. u∗ − ū ∈ U ,

∫
Ω

(u∗)2 dx = 1,
ii) ∃1 λ∗: eigenvalue s.t. λ∗ − λ̂h ∈ Λ,
iii) F (u∗ − ū, λ∗ − λ̂h) = (u∗ − ū, λ∗ − λ̂h),
iv) λ∗: geometric simple eigenvalue.

(See [10] for the proof of Theorem 1 and Theorem 2.)
It is remarkable that this extended method can assure that the enclosed

eigenvalue is simple in mathematically rigorous sense.
Moreover we have proposed a method to exclude an eigenvalue in a concrete

interval, i.e., to prove that there is no eigenvalue in such an interval. This could be
done as follows.

Let Λ be a narrow interval in which we want to exclude any eigenvalues. Then
consider the linear equation

{
−Δu+ qu = Λu in Ω ,

u = 0 on ∂Ω .
(3.18)
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Since the equation (3.18) has a trivial solution u ≡ 0, if we could prove the
uniqueness of the solution of (3.18) then the non-existence of eigenvalues in Λ would
be confirmed.

Now, we describe the manner how to validate the uniqueness of the solutions
for (3.18). We consider the following second-order elliptic boundary value problem
for a fixed λ ∈ Λ: {

−Δu = (λ− q)u in Ω ,

u = 0 on ∂Ω .
(3.19)

Using the following compact map on H1
0 (Ω)

F (λ)u ≡ (−Δ)−1(λ− q)u,

we can rewrite (3.19) as follows:

F (λ)u = u. (3.20)

In the same way as before, we set

Nh0(λ)u ≡ Ph0u− [I − F (λ)]−1
h0 (Ph0u− Ph0F (λ)u),

T (λ)u ≡ Nh0(λ)u+ (I − Ph0)F (λ)u,

where we supposed that restriction to Sh of the operator Ph0[I − F (λ)] : H1
0 (Ω) →

Sh has an inverse [I − F (λ)]−1
h0 , and this can be checked in the actual computa-

tion. Then T (λ) is a compact linear map on H1
0 (Ω) and following equivalence

relation holds:

T (λ)u = u ⇐⇒ F (λ)u = u. (3.21)

We have the following theorem:

Theorem 3. If there exists a non-empty, closed, bounded and convex set

U ⊂ H1
0 (Ω) satisfying T (λ)U

◦⊂ U , then there exists a unique solution u ∈ H1
0 (Ω)

of F (λ)u = u.

Here, M1

◦⊂M2 implies M̄1 ⊂ ◦
M2 for any sets M1, M2.

Proof. Consider v satisfying T (λ)v = v. Since T (λ) is a linear operator, for
any c ∈ R we have

T (λ)(cv) = cT (λ)v = cv. (3.22)

If v �= 0, we can choose ĉ ∈ R satisfying

ĉv ∈ ∂U.

But this contradicts with T (λ)U
◦⊂ U and (3.22). Therefore v = 0. That is, u = 0

is a unique solution of F (λ)u = u. �
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By Theorem 3, if there exists a closed, bounded and convex set U ⊂H1
0 (Ω)

satisfying T (λ)U
◦⊂ U for each λ ∈ Λ, then it means that we validated the unique-

ness for the trivial solution u = 0 of (3.19). We use an interval arithmetic to treat
all λ ∈ Λ in a computer. Verification procedure in a computer is same as above.

Although we cannot take so wide interval as Λ (usually 10−1–10−3, depending
on the problem), by changing Λ little by little we can cover a rather wide range
which we want to prove the non-existence of eigenvalues. These enclosing and
excluding methods will be able to apply to the problem in R3.

3.2. Applications
Now we present some examples to which we have applied our method so far.

Application 1: A numerical verification of solutions for nonlinear elliptic
problems [9]

We consider the nonlinear elliptic boudary value problem:

{
−Δu = f(u) in Ω ,

u = 0 on ∂Ω ,
(3.23)

where Ω is a bounded convex domain in R2 and f : H1
0 (Ω) → L2(Ω) satisfies some

suitable conditions (cf. [9]). In [9] we evaluated the norm of the inverse opera-
tor of the linearized operator by making use of our eigenvalue excluding method,
and used the infinite dimensional Newton’s method which is based on Plum’s
method [19]. This can be regarded as a combined method between Nakao’s method
and Plum’s method.

Application 2: Linearized eigenvalue problem at an exact solution of
nonlinear problems [11]

We consider the follwing problem:

find (u, v, λ) ∈ H1
0 (Ω) ×H1

0 (Ω) × R s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−Δu = f(u),

−Δv − f ′(u)v = λv,∫
Ω

v2 dx = 1,

(3.24)

where Ω and f are same as in Application 1.
This type of problem is important to analyze the stability of a solution or

bifurcation point itself in mathematically rigorous sense. By enclosing the triple
(u, v, λ) of (3.24), we can obtain an exact solution of nonlinear equation and eigen-
pair of the operator which was linearized at the exact solution.
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Application 3: Eigenvalue problem for non-commutative harmonic oscil-
lators [12]

The purpose of this research is to develop a verified numerical method for
computing the eigenvalues and eigenfunctions of the following system:

Q(α,β) ≡ I(α,β)

(
−1

2
d2

dx2
+
x2

2

)
+ J

(
x
d

dx
+

1
2

)
.

Here x ∈ R and the matrices I(α,β) and J are given by

I(α,β) ≡
(
α 0
0 β

)
, J ≡

(
0 −1
1 0

)
∈ Mat2(R),

and α and β are positive real constants satisfying αβ > 1. It is known that Q(α,β)

defines a self-adjoint positive definite operator, and has a discrete spectrum. Since
the spectrum is defined via non-commuting two matrices I(α,β) and J for α �= β,
the system is called by the non-commutative harmonic oscillator.

In case of α = β, the eigenvalue is determined as

λn = (n+ 1/2)
√
α2 − 1 (λ ∈ N)

by representation theory, but it is unknown how to describe explicitly the eigen-
state, in case α �= β. In [12] the spectral method using Hermite functions was
used together with our enclosure method, and we obtained very accurate enclosure
results in case that α is different from β. Moreover we have proved that some
enclosed eigenvalues have multiplicity 2. Basically our method cannot be applied
to enclose multiple eigenvalues, but in this case we could make use of the parity of
eigenfunctions and monotonicity of eigenvalues. We can say that this application
became a good example of computer assisted proof in pure mathematics.

Application 4: Kolmogorov problem [13]
We consider the following Navier–Stokes equations

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= νΔu− 1

ρ

∂p

∂x
+ γ sin

(
πy

b

)
,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= νΔv − 1

ρ

∂p

∂y
,

∂u

∂x
+
∂v

∂y
= 0,

(3.25)

where (u, v), ρ, p and ν are velocity vector, mass density, pressure and kinematic
viscosity, respectively and γ is a constant representing the strength of the sinusoidal
outer force. The flow region is a rectangle [−a, a]×[−b, b] and the periodic boundary
condition is imposed in both directions. We define the aspect ratio α as b/a.

We have presented a rigorous theorem which proves the stability of certain
solutions by the verified computation. The linearized eigenvalue problem arising



Numerical Verification for Eigenvalue Problems 489

in this problem is not self-adjoint and, accordingly, it is quite difficult to treat
theoretically.

It is known that nontrivial solutions bifurcate from the basic solution (u, v) =
(sin y, 0) at a certain Reynolds number if and only if 0 < α < 1. If α is small
enough or close to unity, then the stability of the bifurcating solution could be
proved mathematically. However, stability in the intermediate range of α is very
difficult to prove. We therefore took a new approach to this stability problem by
employing the theory of verified computation. Our result shows that the stability
is rigorously verified for the cases of α = 0.4, 0.7, and 0.8. Our method can be
applied, in principle, to any α ∈ (0, 1).

In [13] we reformulated above problem using a stream function and enclosed an
eigenfunction corresponding to the zero eigenvalue as well as the Reynolds number
which attain the eigenvalue “zero.” Using the results we proved the stability of a
bifurcating solution. This is also a good example of computer assisted proof for the
problem which is difficult to treat theoretically.

Remark. Our enclosure method proposed in [8, 10] needs the simplicity of
the aiming eigenvalues. (Of course such information is not needed in advance.) It
means that in principle multiple eigenvalues cannot be enclosed by this method,
while the Rayleigh–Ritz and the Lehmann method have no problem with multiple
eigenvalues. Concerning the enclosing multiple eigenvalues, see also [22]. In [22], for
the eigenvalue problem Lu = λu, let n be an expected multiplicity of an eigenvalue
λ and consider the following system:

LY = YM, Y ≡ (y1, . . . , yn), M ≡

⎛
⎜⎝
m11 · · · m1n

...
. . .

...
mn1 · · · mnn

⎞
⎟⎠

for Yi ∈ H1
0 (Ω) and mij ∈ R. In their mehod the multiple eigenvalue and the basis

of corresponding invariant subspace are verified by enclosing a solution (Y,M) ∈
(H1

0 (Ω))n×Rn2
. This method is an extension of the enclosing method for multiple

eigenvalues of matrix [21].

4. Conclusion

We have presented a numerical verification method to enclose and exclude
eigenvalues of differential operators. This method is based on Nakao’s verifica-
tion method for nonlinear PDEs, and several examples were shown. By using this
method, we could enclose an eigenvalue (together with proving its simplicity) and
prove the non-existence of eigenvalue in some concrete region, and these verified
eigenpairs could be used in other applications with a mathematically rigorous sense.

Our method was also applied to a problem to exclude eigenvalues in spec-
tral gaps of one dimensional Schrödinger operator. This will be presented in the
forthcoming paper soon.
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