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Numerical Verification Methods for Spherical t-Designs
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The construction of spherical t-designs with (t + 1)2 points on the unit sphere S2 in R
3

can be reformulated as an underdetermined system of nonlinear equations. This system is

highly nonlinear and involves the evaluation of a degree t polynomial in (t+1)4 arguments.
This paper reviews numerical verification methods using the Brouwer fixed point theorem
and Krawczyk interval operator for solutions of the underdetermined system of nonlinear
equations. Moreover, numerical verification methods for proving that a solution of the
system is a spherical t-design are discussed.
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1. Introduction

We denote the unit sphere by

S2 = {y ∈ R3 : ‖y‖2 = 1}.

Let Pt ≡ Pt(S2) be the linear space of restrictions of polynomials of degree ≤ t in
3 variables to the sphere S2. A spherical t-design, introduced in [6], is a set of N

points {y1, y2, . . . , yN} ⊂ S2 such that

∫
S2

p(y) dy =
4π

N

N∑
l=1

p(yl)

for every polynomial p ∈ Pt. For t ≥ 1, the existence of a spherical t-design was
proved in [20]. However, finding a concrete spherical t-design for any given t is very
challenging. Numerical methods for finding spherical t-designs attract considerable
attention. The main interest is in the number of points required to form a spherical
t-design, efficient numerical algorithms for finding approximate spherical t-designs,
and numerical methods for verifying spherical t-designs.

The 7-design with 24 points was first found by McLaren in 1963 [15]. Hardin
and Sloane [9] suggested a sequence of putative spherical t-design with 1

2 t2 + o(t2)
points by using interval methods and the fact that a set of N points {y1, y2, . . . , yN}
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forms a spherical t-design if and only if the polynomial identities

1
N

N∑
i=1

(yT
i y)2s =

(
s−1∏
j=0

2j + 1
2j + 3

)
(yTy)s

and

1
N

N∑
i=1

(yT
i y)2s̄+1 = 0

hold, where s and s̄ are defined by {2s, 2s̄ + 1} = {t − 1, t}. Maier [14] studied
an approach for the numerical calculation of spherical designs using methods of
multiobjective optimization. Sloan and Womersley [22] established a new vari-
ational characterization of spherical designs and showed that a set of N points
{y1, y2, . . . , yN} ⊂ S2 is a spherical design if and only if a certain non-negative
quantity takes the minimum value 0. The best known construction for spherical
t-design on S2 is given by Korevaar and Meyers [12] who obtained spherical t-design
with O(t3) points. Recently, Chen and Womersley [3] reformulated the construction
of spherical t-design with (t+1)2 points as an underdetermined system of nonlinear
equations with 2(t + 1)2 − 3 variables and (t + 1)2 − 1 equations. Moreover, they
proposed a numerical verification method for enclosure of solutions of the system.
Note that the dimension of the space Pt is (t+1)2. The lower bound on the smallest
number of points required to form a spherical t-design is

N∗
t ≥ (t + 1)(t + 3)

4
if t is odd,

N∗
t ≥ (t + 2)2

4
if t is even.

See [6]. A spherical t-design whose number achieves the lower bounds is called
a tight spherical t-design. However for all t ≥ 2, it is known that tight spherical
t-designs do not exist. The spherical t-design given by the reformulation of the
underdetermined system of nonlinear equations in [3] has the same order O(t2) as
the lower bounds N∗

t . However, the system is highly nonlinear which involves a
degree t polynomial at N2 = (t + 1)4 arguments. Verifying the existence of solution
of the system for large t requires high performance computing. Lang, Beelitz,
Frommer and Willems [13] developed an efficient algorithm to verify the existence
solution of the underdetermined system of nonlinear equations. They were able to
obtain verified solution of the system up to t = 80. If the Gram matrix at the (t+1)2

points corresponding to the solution of the system is nonsingular, then the set of the
(t + 1)2 points is a spherical t-design. In Section 2, we illustrate the construction
of spherical t-designs by using the underdetermined system of nonlinear equations.
In Section 3, we review verification methods for the underdetermined system of
nonlinear equations, and discuss how to verify the nonsingularity of the Gram
matrix at a solution of the system. Finally, we give some remarks on numerical
verification for spherical t-designs.
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2. Reformulation

In this section we illustrate how to reformulate the construction of spherical
t-designs as an underdetermined system of nonlinear equations.

Let Ll : [−1, 1] → R be the usual Legendre polynomial [1]. The Rodrigues
reprensetation yields

Ll(z) =
1
2l

[l/2]∑
k=0

(−1)k(2l − 2k)!
k! (l − k)! (l − 2k)!

zl−2k, (2.1)

where [l/2] is the floor function. We define

Jt(z) =
1
4π

t∑
l=0

(2l + 1)Ll(z), z ∈ [−1, 1].

For a set of points Y = {y1, . . . , ydt
} ⊂ S2, we have

yT
i yj ∈ [−1, 1], i, j = 1, . . . , dt.

The polynomials

gi(y) = Jt(yT
i y), i = 1, . . . , dt, y ∈ S2

belong to Pt. Since dim(Pt) = (t + 1)2, in order to make {g1, . . . , gdt
} a basis for

Pt, the number of points in Y should be

dt = (t + 1)2.

Moreover, if the dt × dt Gram matrix G with elements

Gij(Y ) = gi(yj)

is nonsingular, then {g1, . . . , gdt
} is a basis for Pt.

For a given arbitrary function f ∈ C(S2), we define the unique polynomial
interpolant Λf for the set Y by

(Λf)(y) =
dt∑

i=1

vigi(y).

Here the vector of weights v = (v1, . . . , vdt
) is the solution of the following linear

system of equations

G(Y )v = b, (2.2)

where bi = f(yi), i = 1, . . . , dt. By the nonsingularity, the zero polynomial is the
only member of Pt that vanishes at each point y1, . . . , ydt

. Hence, the set of points
Y = {y1, . . . , ydt

} ⊂ S2 is a fundamental system.1

1A set of points Y = {y1, . . . , ydt} ⊂ S2 is called a fundamental system if the zero polynomial
is the only member of Pt that vanishes at each point y1, . . . , ydt .
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If w is the solution of (2.2) with b = e = (1, . . . , 1)T, then the cubature rule

Qdt
(f) =

dt∑
i=1

wif(yi)

for numerical integral ∫
S2

f(y) dy

is exact for all polynomials f of degree ≤ t. This can be shown as follows. For any
p ∈ Pt, there are scalars αi, i = 1, . . . , dt such that

p(y) =
dt∑

i=1

αigi(y).

Using the following property of the basis {g1, . . . , gdt
} [18]∫

S2
gi(y) dy = 1, i = 1, . . . , dt,

we obtain ∫
S2

p(y) dy =
dt∑

i=1

αi

=
dt∑

i=1

αi

dt∑
j=1

Gij(Y )wj

=
dt∑

j=1

wj

dt∑
i=1

Gij(Y )αi

=
dt∑

j=1

wj

dt∑
i=1

gi(yj)αi

=
dt∑

j=1

wjp(yj).

In particular, the cubature rule is exact for the constant polynomial 1 ∈
Pt. Thus ∫

S2
dy = |S2| = 4π =

dt∑
i=1

wi.

Hence the average weight is

wavg =
4π

dt
.
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A spherical t-design is a set of points Y ∗ = {y∗
1 , y∗

2 , . . . , y∗
dt
} such that

∫
S2

p(y) dy =
dt∑

i=1

w∗
i p(yi)

for every polynomial p ∈ Pt with equal weights

w∗
i =

4π

dt
, i = 1, . . . , dt, (2.3)

where w∗ is the solution of

G(Y ∗)w = e. (2.4)

Hence, a spherical t-design can be found by solving the system of nonlinear
equations on S2

G(Y )e =
dt

4π
e, for Y ⊂ S2. (2.5)

Now we reformulate this problem as an underdetermined system of nonlinear equa-
tions without constraints. As the matrix G is rotationally invariant with respect
to the angles, we set φ1 = 0, θ1 = 0 and φ2 = 0, that is, the first point y1 is
conveniently fixed at the north pole and the second point y2 on the prime merid-
ian. Hence a spherical parametrization θj ∈ [0, π] and φj ∈ [0, 2π) of the points yj ,
j = 1, 2, . . . , dt has 2dt − 3 variables.

Let

n = 2dt − 3, m = dt − 1,

and let

xi−1 = θi, i = 2, 3, . . . , dt,

xdt+i−3 = φi, i = 3, 4, . . . , dt.

Then the relation between the set of points {y1, . . . , ydt
} and the vector of variables

x ∈ Rn is uniquely defined as

y1 =

⎡
⎣ 0

0
1

⎤
⎦, y2 =

⎡
⎣ sin x1

0
cos x1

⎤
⎦, yi =

⎡
⎣ sin θi cos φi

sin θi sinφi

cos θi

⎤
⎦ =

⎡
⎣ sinxi−1 cos xdt+i−3

sin xi−1 sinxdt+i−3

cos xi−1

⎤
⎦.

The simple bounds on θi and φi can be ignored as the periodicity of the sin and
cos functions. Hence the matrix G(Y ) can be regarded as a function of x whose
elements are defined by

Gij(Y ) = Gij(x) = Jt(yT
i yj).
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Let E be the following m × dt matrix

E =

⎛
⎜⎜⎜⎜⎜⎝

1 −1 0 · · · 0

1 0 −1
. . .

...
...

...
. . . . . . 0

1 0 · · · 0 −1

⎞
⎟⎟⎟⎟⎟⎠.

We define a function c : Rn → Rm and consider the following underdetermined
system of nonlinear equations

c(x) := EG(x)e = 0. (2.6)

In [3], Chen and Womersley gave the following theorem, which states the rela-
tion between a spherical t-design and a solution of the underdetermined system of
nonlinear equations (2.6).

Theorem 2.1. Suppose that G(x∗) is nonsingular. Then x∗ corresponds to
a spherical t-design with (t + 1)2 points if and only if c(x∗) = 0.

3. Numerical verification of spherical t-designs

In this section, we review numerical verification methods for the under-
determined system of nonlinear equations (2.6) and discuss how to verify the
nonsingularity of G(x) at a solution of (2.6).

For a given x ∈ Rn, let B = {k1, k2, . . . , km} be an index set such that the
submatrix c′B(x) whose entries lie in the columns of c′(x) ∈ Rm×n indexed by B is
nonsingular. Let xB be the subvector of x whose entries of x are indexed by B. Let
N = {1, 2, . . . , n} \ B.

Suppose that x̂ is an approximate solution of (2.6) close to a vector x̄ corre-
sponding to an extremal fundamental system Ȳ .2

We consider two verification methods for solution of the underdetermined
system of nonlinear equations (2.6) on the set

X = {x | ‖xB − x̂B‖ ≤ r, xN = x̂N }.

Kantorovich-type method
1. Calculate c′B(x̂) and K such that

‖c′B(x) − c′B(x̂)‖ ≤ K‖x − x̂‖, x ∈ X.

2A set of points Ȳ = {ȳ1, . . . , ȳdt} defined by

log det G(Ȳ ) = max
Y ⊂S2

log det(G(Y ))

is called an extremal fundamental system.
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2. Check the following inequality

ρ := K‖c′B(x̂)−1c(x̂)‖ ‖c′B(x̂)−1‖ ≤ 1
2
. (3.1)

If it is TRUE and

r1 :=
1 −√

1 − 2ρ

K‖c′B(x̂)−1‖ ≤ r,

then there is a solution of (2.6) in the set

X = {x | ‖xB − x̂B‖ ≤ r1, xN = x̂N }.
If (3.1) fails and

r2 :=
√

1 + 2ρ − 1
K‖c′B(x̂)−1‖ ≤ r,

then (2.6) has no solution in

X = {x | ‖xB − x̂B‖ ≤ r2, xN = x̂N }.
Now we consider the Krawczyk interval operator defined in the interval

X = {x | ‖xB − x̂B‖∞ ≤ r, xN = x̂N }.
Krawczyk-type method
1. Compute an interval matrix [CB] which contains {c′B(x) | x ∈ X}.
2. Compute an approximation R of (mid([CB]))−1.
3. Check the following enclosure

K(x̂B,XB) := x̂B − Rc(x̂) + (IB − R[CB])(XB − x̂B) ⊆ XB. (3.2)

If it is TRUE, then there is a solution of (2.6) in the set X. If K(x̂B,XB) ∩
XB = ∅, then there is no solution in X.

Suppose that the exstence of solution of (2.6) in X has been verified. To ensure
the solution of (2.6) in X corresponds to a spherical t-design, we have to verify the
nonsingularity of the Gram matrix G at the solution. We suggest a verification
process as follows.

Compute an interval [G] which contains {G(x) | x ∈ X}. For any G ∈ [G],
we have

‖G − mid([G])‖ ≤ ‖radius([G])‖.
By Theorem 2.3.4 in [8], if mid([G]) is nonsingular and

‖(mid([G]))−1‖ ‖radius([G])‖ < 1,

then all matrices in [G] is nonsingular. In this case, we can claim that the solution
of the underdetermined system of nonlinear equations (2.6) in X is a spherical
t-design. Using this process with the truncated multi-point Horner scheme proposed
in [7], we were able to prove the existence of (t + 1)2 point spherical designs for t

values up to t = 80 [2].
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4. Final remarks

Interpolation on the sphere and numerical integration on the sphere have many
applications in engineering and science, for examples, global climate models for
the earth, modeling viruses, computer graphics, computational geometry, etc. The
interpolatory cubature rule associated with a spherical t-design provides high-order
numerical integration on the sphere. The construction of spherical t-designs is in-
teresting in mathematical theory and real practice. Moreover, finding spherical
t-designs can be used as a test problem for algorithms for global minimization
problems and nonlinear equations, as the function c is highly nonlinear, the nat-
ural residual ‖c(x)‖2 has many local minimizers, and selection of an appropriate
nonsingular submatrix cB(x) effects the efficiency of the algorithms.
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