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Balance in Random Signed Graphs
A. EL Maftouhi, Y. Manoussakis, and O. Megalakaki

Abstract. By extending Heider’s and Cartwright–Harary’s theory of balance in deter-
ministic social structures, we study the problem of balance in social structures in which
relations among individuals are random. An appropriate model for representing such
structures is that of random signed graphs Gn ,p ,q , defined as follows. Given a set of n
vertices and fixed numbers p and q, 0 < p + q < 1, then between each pair of vertices,
there exists a positive edge, a negative edge, or no edge with respective probabilities p,
q, 1 − p − q.

We first show that almost always (i.e., with probability tending to 1 as n → ∞), the
random signed graph Gn ,p ,q is unbalanced. Subsequently we estimate the maximum
order of a balanced induced subgraph in Gn ,p ,p and show that its order achieves only
a finite number of values. Next, we study the asymptotic behavior of the degree of
balance and give upper and lower bounds for the line index of balance. Finally, we
study the threshold function of balance, e.g., a function p0 (n) such that if p � p0 (n),
then the random signed graph Gn ,p ,p is almost always unbalanced, and otherwise, it is
almost always balanced.

1. Introduction and Terminology

Following the rapid growth of the Internet and the World Wide Web, and in light
of the ease with which global communication now takes place, connectedness has
taken an important place in modern society. Global phenomena involving social
networks, incentives, and the behavior of people based on the links that connect
us are omnipresent. Motivated by these developments, there has arisen a growing
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multidisciplinary interest in understanding how highly connected systems oper-
ate [Easley and Kleinberg 10]. In our discussion here, we consider social network
settings with both positive and negative effects. Some relations are friendly, but
others are antagonistic or hostile. In such a context, let P define a population
of n individuals. Given a symmetric relationship between individuals in P , the
simplest approach to studying the behavior of such a population is to consider a
graph G in which the vertices represent the individuals and there exists an edge
between two vertices x and y in G if and only if the corresponding individuals
are in relation in P . In the social sciences, we often deal with relations of op-
posing, or antagonistic, content, such as loves–hates, likes–dislikes, and tells the
truth–lies to. In common usage, such opposing relations are sometimes given a
moral or ethical value and termed positive and negative. A labeled graph is one
in which relationships between entities may be of various types, in contrast to an
unlabeled graph, in which all relations are of the same type. One way of creating
a labeled graph is through edge-coloring, which provides an elegant and uniform
representation of the various types of relations, in which every type of relation
is represented by a distinct color.

In the case that precisely one relation and its opposite are under consideration,
then instead of two colors, the signs + and − can be assigned to the edges of the
corresponding graph in order to distinguish a relation from its opposite. Formally,
a signed graph is a graph G = (V, E) together with a function f : E → {+,−}
that associates each edge with the sign + or −. In such a signed graph, a subset
H of E(G) is said to be positive if it contains an even number of negative edges
and otherwise is said to be negative. A signed graph G is balanced if each cycle
of G is positive. Otherwise, it is unbalanced.

The theory of balance goes back to Heider, who in [Heider 46] asserted that
a social system is balanced if there is no tension and that unbalanced social
structures exhibit a tension resulting in a tendency to change in the direction of
balance.

Since this first work of Heider, the notion of balance has been exten-
sively studied by many mathematicians and psychologists. For a survey, see
[Roberts 78].

In [Cartwright and Harary 56], the authors provided a mathematical model
for balance through graphs. Their foundational result states that a signed graph
is balanced if and only if in each cycle, the number of negative edges is even. The
following theorem of Harary gives an equivalent definition of a balanced signed
graph.

Theorem 1.1. [Harary 54] A signed graph is balanced if and only if its vertex set
can be partitioned into two classes (one of the two classes may be empty) such
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that every edge joining vertices within a class is positive and every edge joining
vertices between classes is negative.

In [Morissete 58], the notion of degree of balance was introduced. It is a measure
of relative balance by which one can decide whether one unbalanced structure is
more balanced than another. In [Cartwright and Harary 56] there was proposed
an approximation of the degree of balance obtained by studying the rather naive
ratio ρ = X+/X of the number X+ of positive cycles to the total number X of
cycles. Clearly, ρ lies between 0 and 1. Later, it was observed in [Flament 65,
Cartwright and Harary 56, Taylor 70, Norman and Roberts 78] that cycles of
different lengths contribute differently to balance, with longer cycles being less
important than shorter ones. Thus, it becomes natural to speak of relative m-
balance as the ratio of the number of positive cycles of length at most m to the
total number of cycles of length at most m. It was proposed in [Norman and
Roberts 78] to study relative balance using the ratio∑

m≥3 f(m)X+
m∑

m≥3 f(m)(X+
m + X−

m )
,

where X+
m (X−

m ) denotes the number of positive (negative) cycles of length m, and
f(m) is a monotonically decreasing function that weights the relative importance
of cycles of length m.

In another rather different approach, balance is measured by counting the
smallest number δ of edges whose inversion of signs would result in a balanced
signed graph. The parameter δ is called the line index of balance. An interesting
result concerning the line index of balance can be found in [Harary 59], where
the following result was proved.

Theorem 1.2. [Harary 59] The line index of balance δ of a signed graph G is the
smallest number of edges whose removal from G results in balance.

For other results on this measure, the reader is referred to [Harary et al. 65]
and the survey paper [Taylor 70].

In this work, we deal with a probabilistic model in which we assume that
relations between individuals are random (see also [Frank and Harary 80]). A
good mathematical model for representing such random social structures is the
so-called random signed graph Gn,p,q , which we introduce here as follows. Let p, q

be fixed, 0 < p + q < 1. Given a set of n vertices V = {1, . . . , n}, then between
each pair of distinct vertices x and y there is a positive edge, a negative edge,
or there is no edge at all with respective probabilities p, q, 1 − (p + q). The
edges between different pairs of vertices are chosen independently. Another way
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to define the random signed graph Gn,p,q is as follows. Define first the random
(unsigned) graph G̃n,p,q (G̃n,p,q has the same probability distribution as the
standard random graph Gn,p+q with edge probability p + q). Next, for any fixed
pair {x, y} of vertices of V , assign

Pr
[{x, y} is positive in Gn,p,q | {x, y} ∈ E(G̃n,p,q )

]
=

p

p + q

and

Pr
[{x, y} is negative in Gn,p,q | {x, y} ∈ E(G̃n,p,q )

]
=

q

p + q
.

In other words, Gn,p,q can be considered the random variable on the set of the
signed graphs on n vertices whose probability distribution is given by

Pr
[
Gn,p,q = G0

]
= pm qk (1 − p − q)(

n
2 )−m−k ,

where G0 is a fixed signed graph with m positive edges and k negative edges.
Throughout this paper, if P is a graph property, then the expression “Gn,p,q

satisfies P almost always” means “Gn,p,q satisfies P with probability tending to
1 as n → ∞.”

In this work, we study the aforementioned measures of balance in the case
of random signed graphs. In particular, in the next section we show that the
random signed graph Gn,p,q is almost always unbalanced. Then we estimate the
maximum order β = β(Gn,p,p) of a balanced induced subgraph in Gn,p,p , and
show that β almost always achieves only a finite number of values.

In Section 3, we study relative m-balance in Gn,p,p , and prove that for a fixed
integer m, the ratio X+

m / (X+
m + X−

m ) tends to 1
2 with probability tending to 1 as

n → ∞. In Section 4, we derive estimates of the upper and lower bounds for the
line index of balance. Finally, in Section 5, we study the threshold function of
balance, which is a function p0(n) such that if p � p0(n), then almost no signed
graph is balanced, and if p � p0(n), then almost every signed graph is balanced.

Throughout this paper, we shall use the following notation and definitions.
Let G = G(V,E) be a signed graph with vertex set V and edge set E = E(G).
We shall denote by G̃ the underlying simple graph obtained from G by ignoring
the signs of its edges. Let Cm = Cm (Kn ) denote the set of all possible cycles of
length m in the complete graph Kn on n vertices. Clearly, |Cm | = (m−1)!

2

(
n
m

)
.

If Cm is an element of Cm , then the notation G̃n,p,p ⊇ Cm means that the cycle
Cm is contained in G̃n,p,p . We let Xm denote the number of cycles of length m

contained in the random graph G̃n,p,p :

Xm =
∑

Cm ∈Cm

1{G̃n , p , p ⊇Cm }.
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Here Xm is also the total number of (positive and negative) cycles of length m

in the random signed graph Gn,p,p . Furthermore, X+
m (X−

m ) denotes the number
of positive (negative) cycles of length m in Gn,p,p .

We observe that in our probabilistic model, the random signed graph Gn,p,q

is almost always connected, and it contains at least one cycle of arbitrary length
(see [Palmer 85, p. 14]).

2. The Maximum Order of a Balanced Induced Subgraph

Toward proving Theorem 2.2 below, we prove the following lemma.

Lemma 2.1. Let H be a fixed set of h distinct pairs of vertices of Gn,p,q . Set

Pr[H is positive in Gn,p,q | H ⊆ E(G̃n,p,q )] =
1
2

[
1 +

(
p − q

p + q

)h
]

and

Pr[H is negative in Gn,p,q | H ⊆ E(G̃n,p,q )] =
1
2

[
1 −

(
p − q

p + q

)h
]

.

Proof. Let H be a fixed set of h pairs of vertices. Then

p1 = Pr[H is positive in Gn,p,q | H ⊆ E(G̃n,p,q )]

=
∑

i even

Pr
[|H−| = i

]
,

where |H−| is the number of negative edges in H. Thus

p1 =
1

(p + q)h

∑
i even

(
h

i

)
qiph−i .

Similarly,

p2 = Pr
[
H is negative in Gn,p,q | H ⊆ E(G̃n,p,q )

]
=

1
(p + q)h

∑
iodd

(
h

i

)
qiph−i .

We obtain the following system of equations:

p1 + p2 = 1,

p1 − p2 =
[
p − q

p + q

]h

.

By solving this system, we obtain the desired expressions for p1 and p2 .
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Theorem 2.2. Let p and q be fixed positive real numbers, 0 < p + q < 1. Then Gn,p,q

is almost always unbalanced.

Proof. Let T denote a maximal set of disjoint-edge triangles in the complete graph
Kn . To prove the theorem, it suffices to show that Gn,p,q almost always contains
a negative triangle from T.

Clearly, |T| ≥ ⌊
n
3

⌋
. Let T be a fixed element of T. We have

Pr
[
T ⊆ G̃n,p,q and T is negative

]
= Pr

[
T is negative | T ⊆ G̃n,p,q

] × Pr
[
T ⊆ G̃n,p,q

]
.

Using Lemma 2.1, we get

Pr
[
T ⊆ E(G̃n,p,q ) and T is negative

]
=

1
2

[
1 −

(
p − q

p + q

)3
]

(p + q)3 =
1
2

[
(p + q)3 − (p − q)3] .

Thus, the probability that Gn,p,q contains a negative triangle from T is at least

1 −
(

1 − 1
2

[
(p + q)3 − (p − q)3])
n/3�

.

Since p and q are fixed, this last expression tends to 1 as n → ∞.

A natural problem that arises from this theorem is to derive estimates of
the maximum order, denoted by β = β(Gn,p,p), of a balanced induced subgraph
in Gn,p,p where p is fixed. The following theorem shows that β almost always
achieves only a finite number of values. More precisely, let d(n) be the function
defined by

d(n) = 2 log 1
1−p

(n) − 2 log 1
1−p

log 1
1−p

(n) + 1 + 2 log 1
1−p

(e

2

)
.

Theorem 2.3. Let ε > 0 be fixed. Let p be fixed, 0 < 2p < 1. Then

Pr[
d(n) − ε� ≤ β(Gn,p,p) ≤ 
d(n) + 2 log 1
1−p

2 + ε�] → 1 as n → ∞.

Proof. Since each induced subgraph of Gn,p,p without negative edges is balanced,
we obviously have

β(Gn,p,p) ≥ α(Gn,p),
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where α(Gn,p) denotes the independence number of the random graph Gn,p .
Using the result

Pr
[
d(n) − ε� ≤ α(Gn,p) ≤ 
d(n) + ε�] → 1 as n → ∞,

from [Matula 76] (see also [Bollobás 85, p. 251]), we get a lower bound for
β(Gn,p,p):

Pr
[
d(n) − ε� ≤ β(Gn,p,p)

] → 1 as n → ∞.

To conclude the proof, it remains to show that there exists no balanced induced
subgraph of order greater than

⌊
d(n) + 2 log 1

1−p
2 + ε

⌋
; that is,

Pr[β(Gn,p,p) > 
d(n) + 2 log 1
1−p

2 + ε�] → 0 as n → ∞.

Let Nr be the number of sets of r vertices whose induced subgraph is balanced.
Using Markov’s inequality

Pr
[
Nr ≥ 1

] ≤ E(Nr ),

it suffices to prove that for r > d(n) + 2 log 1
1−p

2 + ε, E(Nr ) → 0 as n → ∞,
which implies that Pr[Nr = 0] → 1 as n → ∞.

Let S be a fixed set of r vertices of Gn,p,p . By Theorem 1.1, the subgraph
induced by S is balanced if and only if S can be partitioned into two classes V1

and V2 such that the following hold:

(i) The subgraph induced by V1 and the subgraph induced by V2 contain no
negative edge.

(ii) There is no positive edge between V1 and V2 .

The probability that a given bipartition {V1 , V2} of S satisfies simultaneously
conditions (i) and (ii) is

(1 − p)r(r−1)/2 .

The probability that there exists a partition of S satisfying the above conditions
is smaller than

2r−1(1 − p)r(r−1)/2 .

Thus

E(Nr ) ≤ 2r−1
(

n

r

)
(1 − p)r(r−1)/2 .

Using Stirling’s formula, we get

E(Nr ) ≤ 1
2
√

2πr

[
2en(1 − p)(r−1)/2

r

]r

.
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Hence E(Nr ) → 0 if for large n, we have

2en(1 − p)(r−1)/2

r
≤ 1. (2.1)

Set

f(r) =
2en(1 − p)(r−1)/2

r
.

Let ε be a fixed positive real number. Since f is a monotonically decreasing
function, inequality (2.1) will certainly be true for r > d(n) + 2 log 1

1−p
2 + ε if

f(d(n) + 2 log 1
1−p

2 + ε) ≤ 1. (2.2)

A straightforward computation shows that (2.2) is equivalent to

2(1 − p)ε/2 log 1
1−p

(n)

d(n) + 2 log 1
1−p

2 + ε
≤ 1. (2.3)

On replacing d(n) + 2 log 1
1−p

2 + ε by its lower bound

2 log 1
1−p

(n) − 2 log 1
1−p

log 1
1−p

(n),

we see that (2.3) is satisfied if

2(1 − p)ε/2 log 1
1−p

(n)

2 log 1
1−p

(n) − 2 log 1
1−p

log 1
1−p

(n)
≤ 1.

It is not hard to see that the above condition is asymptotically true, since
(1 − p)ε/2 < 1. This completes the proof.

3. The Degree of Balance

In Theorem 3.3, formulated later in this section, we study relative m-balance
using the ratio δ = X+

m /Xm of the number X+
m of positive cycles of length m to

the total number Xm of cycles of length m in Gn,p,p . In preparation for the proof
of Theorem 3.3, we first prove two lemmas, which are of independent interest.

Lemma 3.1. Let H1 ,H2 , . . . , Ht be t fixed distinct sets of pairs of vertices, t ≥ 2.
Let H =

⋃t
i=1 Hi. Then the events

{Hi is positive in Gn,p,p | H ⊆ E(G̃n,p,p)}, for i = 1, . . . , t,

are mutually independent.
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Proof. We denote by PH the conditional probability given {H ⊆ E(G̃n,p,q}. Let
Hi and Hj be two distinct elements of {H1 , . . . , Ht}. We have to prove that

PH

[
Hi and Hj are both positive

]
= PH

[
Hi is positive

] × PH

[
Hj is positive

]
.

Since by Lemma 2.1, each probability on the right-hand side of the above ex-
pression is equal to 1

2 , it suffices to show that

PH

[
Hi and Hj are both positive

]
=

1
4
.

Observe first that the statement is trivially true when Hi and Hj are disjoint
sets.

Suppose now that one of the two sets is contained in the other, for example,
Hi ⊂ Hj . Then

PH

[
Hi and Hj are both positive

]
= PH

[
Hi is positive

] × PH

[
Hj \ Hi is positive

]
=

1
4
.

Consider now the case that Hi ∩ Hj �= ∅ and none of the two sets is contained
in the other. Then clearly, Hi and Hj are both positive if and only if either each
of Hi \ Hj , Hi ∩ Hj , Hj \ Hi is positive or each of Hi \ Hj , Hi ∩ Hj , Hj \ Hi

is negative. Thus

PH [Hi and Hj are both positive]
= PH

[
Hi \ Hj is positive

] × PH

[
Hj \ Hi is positive

]
× PH

[
Hi ∩ Hj is positive

]
+ PH

[
Hi \ Hj is negative

] × PH

[
Hj \ Hi is negative

]
× PH

[
Hi ∩ Hj is negative

]
.

By Lemma 2.1, each probability on the right-hand side of the above equality is
equal to 1

2 . Thus

PH

[
H1 and H2 are both positive

]
=

1
4
.

Lemma 3.2. Let m be a fixed integer, 0 ≤ m ≤ n. Let Xm denote the total number
of cycles of length m in Gn,p,p . Then for every arbitrarily small ε > 0,

Pr
[|Xm − E(Xm )| ≥ εE(Xm )

] ≤ 4m2m+3

ε2n(2p)m
.
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Proof. Expectation of Xm : Clearly,

E(Xm ) =
(m − 1)!

2

(
n

m

)
(2p)m .

Since m is fixed, we have

(m − 1)!
2

(
n

m

)
∼ nm

2m
.

Thus

E(Xm ) ∼ nm

2m
(2p)m . (3.1)

Variance of Xm :

E(X2
m ) = E

[ ∑
Cm ∈Cm

1{Gn , p , p ⊇Cm }

]2

=
∑

Cm ,C ′
m ∈Cm

Pr
[
Gn,p,p ⊇ Cm and Gn,p,p ⊇ C ′

m

]

=
m∑

k=0

[ ∑
|Cm ∩C ′

m |=k

Pr
[
Gn,p,p ⊇ Cm and Gn,p,p ⊇ C ′

m

]]
, (3.2)

where for a fixed k, the first sum is considered over all cycles having precisely k

vertices in common.
For k = 0, ∑

|Cm ∩C ′
m |=0

Pr
[
Gn,p,p ⊇ Cm and Gn,p,p ⊇ C ′

m

]
(3.3)

=
[
(m − 1)!

2

]2 (
n

m

)(
n − m

m

)
(2p)2m ∼ n2m (2p)2m

4m2 .

For k ≥ 1, ∑
|Cm ∩C ′

m |=k

Pr
[
Gn,p,p ⊇ Cm and Gn,p,p ⊇ C ′

m

]
(3.4)

≤ (m!)2
(

n

m

)(
m

k

)(
n − m

m − k

)
(2p)2m−k ≤ m2kn2m−k (2p)2m−k .
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By (3.2), (3.3), and (3.4),

E(X2
m ) ≤ n2m (2p)2m

4m2 +
m∑

k=1

m2kn2m−k (2p)2m−k

≤ n2m (2p)2m

4m2 +
m∑

k=1

m2m n2m−1(2p)m (3.5)

≤ n2m (2p)2m

4m2 + m2m+1n2m−1(2p)m .

From (3.1) and (3.5) we obtain

E(X2
m )

E2(Xm )
≤ 1 +

4m2m+3

n(2p)m
.

Thus

var(Xm )
E2(Xm )

≤ 4m2m+3

n(2p)m
.

Using Chebyshev’s inequality, we obtain

Pr
[|Xm − E(Xm )| ≥ εE(Xm )

] ≤ var(Xm )
ε2E2(Xm )

,

which completes the proof.

The following theorem concerns the relative m-balance in Gn,p,p . In order to
formulate it, let us define the random variable ρ(m) as follows:

ρ(m) =

{
X+

m /Xm if Xm �= 0,

1/2 if Xm = 0.

Theorem 3.3. Let m be a fixed integer, 0 ≤ m ≤ n. Then in Gn,p,p , we almost always
have ρ(m) → 1

2 .

Proof. Let Cm be, as defined in Section 1, the set of cycles each of length m in the
complete graph Kn on n vertices. Let k be a fixed integer, 0 ≤ k ≤ (m−1)!

2

(
n
m

)
.

Let Cm,k be a fixed subset of Cm of cardinality k. We denote by X+
m,k the random

variable X+
m conditioned by the event {Cm (G̃n,p,p) = Cm,k},

X+
m,k =

{
X+

m | Cm (G̃n,p,p) = Cm,k

}
,
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where Cm (G̃n,p,p) denotes the set of cycles of length m contained in G̃n,p,p . We
note that X+

m,k can be expressed as follows:

X+
m,k =

∑
Cm ∈Cm , k

1{
Cm is positive|Cm (G̃n , p , p )=Cm , k

}.

By Lemma 2.1, for each Cm ∈ Cm,k , we have

Pr[Cm is positive | Cm (G̃n,p,p) = Cm,k ] =
1
2
.

Thus

E(Xm,k ) =
k

2
. (3.6)

By Lemma 3.1, for Cm , C ′
m ∈ Cm , Cm �= C ′

m , the events

{Cm is positive | Cm (G̃n,p,p) = Cm,k}
and

{C ′
m is positive | Cm (G̃n,p,p) = Cm,k}

are independent. Thus

var(X+
m,k ) =

k

4
. (3.7)

Expectation of ρ(m): Since {Cm (G̃n,p,p) = Cm,k} ⊆ {Xm = k}, it follows that

E(X+
m | Xm = k) =

∑
Cm , k

E(X+
m,k ) × Pr

[
Cm (G̃n,p,p) = Cm,k | Xm = k

]
,

where the sum is over all subsets Cm,k of Cm . Using (3.6), we obtain

E(X+
m | Xm = k) =

k

2

∑
Cm , k

Pr
[
Cm (G̃n,p,p) = Cm,k | Xm = k

]
.

Since the above sum is equal to 1, we get

E(X+
m | Xm = k) =

k

2
.

It follows that for k ≥ 1, we have

E(ρ(m) | Xm = k) =
1
2
.

From the definition of ρ(m), we have, for k = 0,

E(ρ(m) | Xm = 0) =
1
2
.
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Thus

E(ρ(m)) =
1
2
.

Variance of ρ(m): Using again the fact that

{Cm (G̃n,p,p) = Cm,k} ⊆ {Xm = k},
we get

var
(
X+

m | Xm = k
)

=
∑
Cm , k

var
(
X+

m,k

) × Pr
[
Cm (G̃n,p,p) = Cm,k | Xm = k

]
.

Equality (3.7) gives

var
[
X+

m | Xm = k
]

=
k

4
.

Hence for 1 ≤ k ≤ (m−1)!
2

(
n
m

)
, we have

var
[
ρ(m) | Xm = k

]
=

1
4k

,

and from the definition of ρ(m), we have for k = 0,

var
[
ρ(m) | Xm = 0

]
= 0.

Thus

var[ρ(m)] =

(m −1 ) !
2 (n

m )∑
k=0

var
[
ρ(m) | Xm = k

] × Pr
[
Xm = k

]

=

(m −1 ) !
2 (n

m )∑
k=1

1
4k

Pr
[
Xm = k

]
. (3.8)

Let ε be arbitrarily small positive real number. Then

Pr
[
Xm = k

]
= Pr

[
Xm = k | |Xm − E(Xm )| > εE(Xm )

] × Pr
[|Xm − E(Xm )| > εE(Xm )

]
+ Pr

[
Xm = k | |Xm − E(Xm )| ≤ εE(Xm )

]
× Pr

[|Xm − E(Xm )| ≤ εE(Xm )
]
.

Since (m−1)!
2

(
n
m

) ≤ nm , by (3.8), we have

var
[
ρ(m)

] ≤
[

nm∑
k=0

1
4k

]
× Pr

[|Xm − E(Xm )| > εE(Xm )
]
+

∑
k

1
4k

,
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where the second summation is over

(1 − ε)nm (2p)m

2m
≤ k ≤ (1 + ε)nm (2p)m

2m
.

Lemma 3.2 gives

var[ρ(m)] ≤
[

nm∑
k=0

1
k

]
m2m+3

ε2n(2p)m
+

∑
k

2m

(1 − ε)nm (2p)m
,

where the second summation is again over

(1 − ε)nm (2p)m

2m
≤ k ≤ (1 + ε)nm (2p)m

2m
.

Since [
∑nm

k=0
1
k ] = O(m log n), it follows that

var
[
ρ(m)

] ≤ m2m+4

ε2n(2p)m
O(log n) +

2ε

1 − ε
.

Since ε is an arbitrarily small positive number, by setting ε = 1/log n in this last
inequality, we obtain

var
[
ρ(m)

]
= o(1).

An application of Chebyshev’s inequality completes the proof.

4. The Line Index of Balance

Let us recall that by Theorem 1.2, the line index δ of a signed graph is the
smallest number of edges whose removal results in balance. In the next theorem
we give estimates for the upper and lower bounds of δ(Gn,p,p).

Theorem 4.1. Let ε be an arbitrarily small positive number. Then the line index of
balance δ of Gn,p,p satisfies

Pr
[
(1 − ε)

n2p

2
≤ δ ≤ (1 + ε)

n2p

2

]
→ 1

as n → ∞.

Proof. Let {S, T} be a fixed partition of the vertex set of Gn,p,p . Set |S| = s

and |T | = t, where s + t = n. Let YS,T be the random variable equal to the
number |E+(S, T )| of positive edges between S and T plus the number |E−(S)|
of negative edges in the subgraph induced by S and the number |E−(T )| of
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negative edges in the subgraph induced by T ,

YS,T = |E+(S, T )| + |E−(S)| + |E−(T )|.
It can be easily verified that YS,T has a binomial distribution with parameters

n(n − 1)/2 and p. Thus

E(YS,T ) =
n(n − 1)p

2
∼ n2p

2
.

For every ε > 0, Chernoff’s bounds give

Pr
[ ∣∣∣∣YS,T − n2p

2

∣∣∣∣ >
εn2p

2

]
≤ exp

[
−ε2n2p

6

]
. (4.1)

In [EL Maftouhi 94], it was proved that

δ = min{S,T }YS,T ,

where the minimum is over all the partitions {S, T} of the vertex set of Gn,p,p .
Since

Pr
[
for all {S, T}, (1 − ε)

n2p

2
≤ YS,T ≤ (1 + ε)

n2p

2

]

≤ Pr
[
(1 − ε)

n2p

2
≤ δ ≤ (1 + ε)

n2p

2

]
,

it follows that

Pr
[
(1 − ε)

n2p

2
≤ δ ≤ (1 + ε)

n2p

2

]

≥ 1 − Pr
[
for some {S, T},

∣∣∣∣YS,T − n2p

2

∣∣∣∣ >
εn2p

2

]

≥ 1 − 2n Pr
[ ∣∣∣∣YS,T − n2p

2

∣∣∣∣ >
εn2p

2

]
.

Using (4.1), we obtain

Pr
[
(1 − ε)

n2p

2
≤ δ ≤ (1 + ε)

n2p

2

]
≥ 1 − 2n exp

[
−ε2n2p

6

]
.

The right-hand side of the above inequality tends to 1 as n → ∞.

5. The Threshold Function for Balance

We suppose that p = p(n) depends on n. Since by Theorem 2.2, when p is fixed,
the random signed graph Gn,p,p is almost always unbalanced, the purpose of this
section is to determine a function p0(n) such that (i) if p � p0(n), then Gn,p,p is
almost always unbalanced, while on the other hand, (ii) if p � p0(n), then Gn,p,p
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is almost always balanced. Such a function p0(n) is called a threshold function
for balance.

Theorem 5.1. If pn → 0, then Gn,p,p is almost always balanced. If p ≥ c/n, where
c > 2 log 2 is a constant, then Gn,p,p is almost always not balanced.

Proof. Let X denote the total number of cycles in Gn,p,p . Clearly,

E(X) =
n∑

k=3

(
n

k

)
(k − 1)!

2
(2p)k .

Therefore,

E(X) ≤
n∑

k=3

(2pn)k

2k
,

from which it follows that if pn → 0, then E(X) → 0 as well. From Markov’s
inequality we conclude that Gn,p,p is almost always acyclic. Thus almost every
signed graph is balanced.

Suppose now that p > c/n. With the notation introduced in the proof of The-
orem 4.1, let

Z =
∑
{S,T }

1{YS , T =0},

where the sum is over all the bipartitions {S, T} of the vertex set of Gn,p,p . Since

Pr[YS,T = 0] = (1 − p)n(n−1)/2 ∼ (1 − p)n2 /2 ,

we have

E(Z) ∼ 2n (1 − p)n2 /2 ∼ exp
[
n

(
log 2 − pn

2

)]
.

Thus

E(Z) ≤ exp
[
n

(
log 2 − c

2

)]
.

The inequality c > 2 log 2 implies that E(Z) = o(1), and by Markov’s inequal-
ity, we conclude that P [Z = 0] → 1 as n → ∞. Thus the statement of the theorem
follows from Theorem 1.1.

References

[Bollobás 85] B. Bollobás. Random Graphs. Academic Press, 1985.

[Cartwright and Harary 56] D. Cartwright and F. Harary. “Structural Balance: A Gen-
eralization of Heider’s Theory.” Psychological Review 63 (1956), 277–293.



380 Internet Mathematics

[Easley and Kleinberg 10] David Easley and Jon Kleinberg. Networks, Crowds, and
Markets: Reasoning about a Highly Connected World. Cambridge University Press,
2010.

[EL Maftouhi 94] A. EL Maftouhi. “Probabalistic Methods on Combinatorics Graph
Theory.” PhD thesis, University of Paris XI (Orsay), 1994.
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