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Monotone Graph Limits and
Quasimonotone Graphs
Béla Bollobás, Svante Janson, and Oliver Riordan

Abstract. The recent theory of graph limits gives a powerful framework for under-
standing the properties of suitable (convergent) sequences (Gn ) of graphs in terms of
a limiting object that may be represented by a symmetric function W on [0, 1]2 , i.e., a
kernel or graphon. In this context it is natural to wish to relate specific properties of the
sequence to specific properties of the kernel. Here we show that the kernel is monotone
(i.e., increasing in both variables) if and only if the sequence satisfies a “quasimono-
tonicity” property defined by a certain functional tending to zero. As a tool we prove
an inequality relating the cut and L1 norms of kernels of the form W1 − W2 with W1

and W2 monotone that may be of interest in its own right; no such inequality holds for
general kernels.

1. Introduction

Recently, Lovász and Szegedy [Lovász and Szegedy 06] and Borgs, Chayes,
Lovász, Sós, and Vesztergombi (see, e.g., [Borgs et al. 08]) developed a rich
theory of graph limits, associating limit objects to suitable sequences (Gν ) of
(dense) graphs with |Gν | → ∞, where |Gν | denotes the number of vertices of
Gν . The basics of this theory are outlined in Section 2 below; see also [Diaconis
and Janson 08]. These graph limits (which are not themselves graphs) can be
represented in several different ways; perhaps the most important is that every
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graph limit can be represented by a kernel (or graphon) on [0, 1], i.e., a sym-
metric measurable function W : [0, 1]2 → [0, 1]. However, this representation is
in general not unique; see, e.g., [Lovász and Szegedy 06, Borgs et al. 10, Diaconis
and Janson 08, Bollobás and Riordan 09]. More generally, kernels can be defined
on any probability space; see Section 2.

The theory of graph limits is key to understanding graphs that are “irregular”
or “random” but still far from the classical homogeneous random graphs. One of
the main classes of such graphs consists of models of complex real-world networks.
Although graph limits have already improved understanding of such networks,
many difficulties remain: the theory works best for dense graphs, but most real
networks are sparse; the theory of limits of sparse graphs is at a much earlier
stage and seems to be much harder (see [Bollobás and Riordan 09, Bollobás
and Riordan 11]). For this reason, here we consider only the dense case. The
main question we study is the following: given a dense, disordered graph, how
can we recognize whether it is generated by underlying “activities,” in the sense
that each vertex has an activity (a real number) and the probability of an edge
between two vertices is an increasing two-variable function of their activities.
Scaling the activities to lie between 0 and 1, this translates to asking which
sequences of graphs have a limit that can be represented by a monotone function
on [0, 1]2 .

We use Γ to denote an arbitrary graph limit, and write ΓW for the graph
limit defined by a kernel W . We say that two kernels W and W ′ are equivalent
if they define the same graph limit, i.e., if ΓW = ΓW ′ . We write Gν → Γ when
the sequence (Gν ) converges to Γ (see [Lovász and Szegedy 06, Borgs et al. 08]
and Section 2 below for definitions). If Γ is represented by a kernel W , that is,
if Γ = ΓW , we also write Gν → W .

Following [Diaconis and Janson 08], we denote the set of all graph limits by U∞,
and note that U∞ is a compact metric space. Another version of the important
compactness property for graph limits is that every sequence (Gν ) of graphs with
|Gν | → ∞ has a convergent subsequence, i.e., a subsequence converging to some
Γ ∈ U∞.

Given a suitable class F of graphs, it seems interesting to study the graph
limits of F , i.e., the set of graph limits arising as limits of sequences of graphs
in F . One interesting example is the class of threshold graphs, which has several
different characterizations; see, e.g., [Mahadev and Peled 95]. One of them is the
monotonicity property of the neighborhoods N(v) of the vertices:

There exists a (linear) ordering ≺ of the vertices such that
if v ≺ w, then N(v) \ {v, w} ⊆ N(w) \ {v, w}. (1.1)
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The graph limits of threshold graphs were studied in [Diaconis et al. 09] (see
also [Lovász and Szegedy 11]), who showed that they are exactly the graph
limits that can be represented by kernels W that take values in {0, 1} only and
are increasing, in that

W (x1 , y1) ≤ W (x2 , y2) if 0 ≤ x1 ≤ x2 ≤ 1, 0 ≤ y1 ≤ y2 ≤ 1. (1.2)

In other words, W is the indicator function of a symmetric increasing subset
of [0, 1]2 . (In this paper, “increasing” should always be interpreted in the weak
sense, i.e., as “nondecreasing.”) Moreover, the representation by such a W is
unique if, as usual, we identify functions that are equal a.e.

Note that the monotonicity properties in (1.1) and (1.2) are obviously related;
this is perhaps best seen if (1.1) is rewritten as a monotonicity property of the
adjacency matrix of the graph (with some exceptions at the diagonal), so even
without the detailed technical study in [Diaconis et al. 09], the condition (1.2)
should not be surprising.

Increasing and decreasing kernels define the same set of graph limits, by the
change of variables x �→ 1 − x. Hence we shall talk about monotone kernels rather
than increasing kernels, but for simplicity (and without loss of generality) we
consider only increasing ones, so in this paper “monotone” is regarded as syn-
onymous with “increasing.”

The main purpose of the present paper is to study the larger class of graph
limits represented by arbitrary monotone kernels (taking any values in [0, 1],
rather than just the values 0 and 1) and the corresponding sequences of graphs.
We shall also study analytic properties of monotone kernels themselves.

Definition 1.1. Let W↑ be the set of monotone kernels on [0, 1], i.e., the set of all
symmetric measurable functions W : [0, 1]2 → [0, 1] that satisfy (1.2).

Let U↑ be the corresponding class of graph limits, i.e., the class of graph limits
that can be represented as ΓW for some W ∈ W↑. We call these graph limits
monotone.

By definition, every monotone graph limit can be represented by a monotone
kernel W on [0, 1], but note that a monotone graph limit may also have many
representations by nonmonotone kernels. For example, a monotone kernel can
be rearranged by an arbitrary measure-preserving bijection from [0, 1] to itself,
which will in general destroy monotonicity.

The classes W↑ of monotone kernels and U↑ of monotone graph limits are
studied in Section 4. We show there that W↑ is a compact subset of L1([0, 1]2),
and that U↑ is a compact subset of U∞. In addition, we consider monotone kernels
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defined on other (ordered) probability spaces, showing that each such kernel is
equivalent to a monotone kernel on [0, 1], so the class U↑ is not enlarged by
allowing arbitrary probability spaces.

Definition 1.2. A sequence (Gν ) of graphs with |Gν | → ∞ is quasimonotone if it
converges to the set U↑, in the sense that each convergent subsequence has as its
limit a graph limit in U↑. In this case we will also say that (Gν ) is a sequence of
quasimonotone graphs.

In particular, a sequence (Gν ) converging to a graph limit in U↑ is quasimono-
tone. Note that it makes no formal sense to ask whether an individual graph is
quasimonotone; just as for quasirandomness, quasimonotonicity is a property of
sequences of graphs.

Example 1.3. (Threshold graphs are quasimonotone.) As noted above, each convergent se-
quence of threshold graphs converges to a limit represented by a 0/1-valued
kernel W ∈ W↑. Hence every sequence of threshold graphs (with orders tending
to ∞) is quasimonotone.

Example 1.4. (Quasirandom graphs are quasimonotone.) Quasirandom graphs were intro-
duced in [Thomason 87a, Thomason 87b] as sequences (Gν ) of graphs that have
certain properties typical of random graphs. A number of different such prop-
erties turn out to be equivalent, and there are thus many equivalent charac-
terizations; see [Chung et al. 89]. Another characterization, provided in [Lovász
and Szegedy 06], is that a sequence (Gν ) is quasirandom if and only if it con-
verges to a graph limit represented by a constant kernel W (x, y) = p, for some
p ∈ [0, 1]. (See also [Lovász and Sós 08] and [Janson 11].) Since a constant func-
tion is monotone, W ∈ W↑, and thus every quasirandom sequence of graphs is
quasimonotone.

Example 1.5. (Random graphs are quasimonotone.) The sequence of random graphs G(ν, p)
with some fixed p ∈ [0, 1] and ν = 1, 2, . . . (coupled in any way for different ν,
perhaps most naturally by viewing them as subgraphs of a single infinite random
graph) is a.s. quasirandom, and thus a.s. quasimonotone.

Our main result (Theorem 1.7 below) is that quasimonotone graphs can be
characterized by a weakening of (1.1). As is typical for conditions concerning
convergence to graph limits, this weakening involves taking averages over subsets
of the vertex set V , rather than imposing a condition for all vertices, and it allows
for a small “error,” making the condition asymptotic.
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Given a graph G with vertex set V = V (G), a vertex v of G, and a subset A

of V , let

e(v,A) := |N(v) ∩ A| = |{w ∈ A : w ∼ v}|

denote the number of edges from v to A.
Let x+ denote the positive part of x, i.e., max{x, 0}. Writing n := |G| = |V |,

given a (linear) order ≺ on V and a subset A ⊆ V , define

Ω0(G,≺, A) :=
1
n3

∑
v≺w

(
e(v,A \ {w}) − e(w,A \ {v})

)
+ (1.3)

=
1
n3

∑
v≺w

(
e(v,A \ {v, w}) − e(w,A \ {v, w})

)
+ , (1.4)

Ω0(G,≺) := max
A⊆V

Ω0(G,≺, A), (1.5)

Ω0(G) := min
≺

Ω0(G,≺). (1.6)

In the last line, the minimum is taken over all n! orders on V . The normalization
by n3 ensures that 0 ≤ Ω0 < 1. In fact, Ω0 < 1/2, and this bound can be improved
further, but this is not important for our purposes, since we are interested in small
values of Ω0.

Note that Ω0(G) = 0 if and only if there exists an order ≺ such that
Ω0(G,≺, A) is equal to zero for every A, i.e., e(v,A \ {v, w}) ≤ e(w,A \ {v, w})
for all A and v ≺ w, which easily is seen to be equivalent to (1.1), giving the
following result.

Proposition 1.6. A graph G is a threshold graph if and only if Ω0(G) = 0.

Note that Ω0 is not intended as a measure of how far a graph is from being
a threshold graph (for such a measure, see Section 8). Rather, we may think
(informally!) of a typical quasimonotone graph as being similar to a random
graph in which edges are independent, and the probability pij of an edge ij is
increasing in i and in j. In such a graph, one cannot expect the neighborhoods
of different vertices to be even approximately nested. But one can expect that
for all “large” sets A of vertices, for most i < j, e(i, A) will be smaller than (or
at least not much larger than) e(j, A). The idea is that a small value of Ω0(G)
detects this phenomenon, without relying on any given labeling of the vertices.

Some variations of the functional Ω0 will be defined in Section 3, where we
shall show that they are asymptotically equivalent for our purposes.

Our main result is the following, proved in Section 7. (All unspecified limits
in this paper are taken as ν → ∞.)
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Theorem 1.7. Let (Gν ) be a sequence of graphs with |Gν | → ∞. Then (Gν ) is
quasimonotone if and only if Ω0(Gν ) → 0.

We state a special case separately.

Theorem 1.8. Let (Gν ) be a sequence of graphs with |Gν | → ∞, and suppose that
(Gν ) is convergent, i.e., Gν → Γ for some graph limit Γ ∈ U∞. Then Γ ∈ U↑ if
and only if Ω0(Gν ) → 0.

We give several results on monotone graph limits in Sections 4–6. These include
a characterization in terms of a functional Ω(W ) for kernels, analogous to Ω0 for
graphs. Along the way we prove some results about monotone kernels that may
be of interest in their own right. For example, on functions that may be written
as the difference between two monotone kernels, the L1 norm and the cut norm
may be bounded in terms of each other; see Theorem 5.5.

Remark 1.9. In [Lovász and Szegedy 10], the class of graph limits represented by
0/1-valued kernels (and the corresponding graph properties) was studied; with
a slight variation of their terminology, we call such graph limits random-free. In
contrast to the monotone case, it can be shown that every representing kernel of
a random-free limit is a.e. 0/1-valued; see [Janson 10]. It follows that the graph
limits that are both monotone and random-free are exactly the threshold graph
limits.

In Section 8, we consider the functional obtained by taking the supremum
over A inside the sum in (1.3) instead of outside as in (1.5). We shall show
that this stronger functional characterizes convergence to threshold graph limits
instead of monotone graph limits; we call the corresponding sequences of graphs
quasithreshold.

1.1. A Problem

The convergence Gν → Γ of a sequence (Gν ) of graphs to a graph limit Γ can
be expressed using the homomorphism numbers t(F, ·): Gν → Γ if and only if
t(F,Gν ) → t(F, Γ) for every fixed graph F . For definitions and further results,
see, e.g., [Lovász and Szegedy 06, Borgs et al. 08, Diaconis and Janson 08].
In particular, the graph limit Γ is characterized by the family (t(F, Γ))F . The
families (t(F, Γ))F that appear are characterized algebraically in [Lovász and
Szegedy 06].
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Problem 1.10. Characterize the families (t(F, Γ))F that appear for Γ ∈ U↑.

The rest of this paper is organized as follows. In the next section we review
some basic properties of the cut metric that we shall rely on throughout the
paper. In Section 3 we introduce some variants of the functional Ω0 for graphs.
In Section 4 we define analogous functionals for kernels and state several key
properties; these are proved in the next two sections, and then our main results
are deduced in Section 7. Finally, in Section 8 we discuss related functionals
characterizing quasithreshold graphs.

2. Kernels and Graph Limits

We state here some standard definitions and results that we shall use later in
the paper. For proofs and further details, see e.g., [Borgs et al. 08, Bollobás and
Riordan 09, Janson 09, Janson 10].

Let (S,F , µ) be a probability space; for simplicity, we will usually abbreviate
the notation to S or (S, µ).

A kernel (or graphon) on S is a symmetric measurable function S2 → [0, 1].
We let W(S) denote the set of all kernels on S.

If W is an integrable function on S2 , we define its cut norm by

‖W‖� := sup
‖f ‖∞,‖g‖∞≤1

∣∣∣∫
S2

W (x, y)f(x)g(y) dµ(x) dµ(y)
∣∣∣, (2.1)

where ‖ · ‖∞ denotes the norm in L∞. In other words, the supremum in (2.1)
is taken over all (real-valued) functions f and g with values in [−1, 1]. (Several
other versions exist, which are equivalent within constants.) By considering the
supremum over f with g fixed, and vice versa, it is easy to see that the supremum
is unchanged if we restrict f and g to take values in {±1}, so we have

‖W‖� = sup
f ,g :S→{±1}

∣∣∣∫
S2

W (x, y)f(x)g(y) dµ(x) dµ(y)
∣∣∣. (2.2)

This norm defines a metric ‖W1 − W2‖� for kernels on the same probability
space S; as usual, we identify kernels that are equal a.e.

The cut norm may be used to define another (semi)metric δ�, the cut metric,
as follows. If ϕ : S1 → S2 is a measure-preserving map between two probability
spaces and W is a kernel on S2 , we let Wϕ be the kernel on S1 defined by
Wϕ (x, y) := W

(
ϕ(x), ϕ(y)

)
. Let W1 be a kernel on a probability space S1 , and
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W2 a kernel on a possibly different probability space S2 . Then

δ�(W1 ,W2) := inf
ϕ1 ,ϕ2

‖Wϕ1
1 − Wϕ2

2 ‖�, (2.3)

where the infimum is taken over all couplings (ϕ1 , ϕ2) of S1 and S2 , i.e., over all
pairs of measure-preserving maps ϕ1 : S3 → S1 and ϕ2 : S3 → S2 from a third
probability space S3 . It is not difficult to verify that δ� satisfies the triangle
inequality (see, e.g., [Janson 10]), but note that δ�(W1 ,W2) may be 0 even if
W1 
= W2 , for example if W1 = Wϕ

2 for some measure-preserving ϕ : S1 → S2 .
Hence, δ� is really a semimetric (but is usually called a metric for simplicity).

Note that δ�(W1 ,W2) is defined for kernels on different spaces. Moreover, it is
invariant under measure-preserving maps: δ�(Wϕ1

1 ,Wϕ2
2 ) = δ�(W1 ,W2) for all

measure-preserving maps ϕk : S′
k → Sk , k = 1, 2.

Although we allow couplings (ϕ1 , ϕ2) defined on arbitrary third spaces S3 , in
(2.3) it suffices to consider the case in which S3 = S1 × S2 , with a measure µ

having marginals µ1 and µ2 , taking for ϕ1 and ϕ2 the projections πk : S1 × S2 →
Sk , k = 1, 2. In fact, for an arbitrary coupling (ϕ1 , ϕ2) defined on a space (S3 , µ3),
the mapping (ϕ1 , ϕ2) : S3 → S1 × S2 maps µ3 to a measure µ on S1 × S2 with
the right marginals, and it is easily seen that ‖Wϕ1

1 − Wϕ2
2 ‖� = ‖Wπ1

1 − Wπ2
2 ‖�.

Although this will be of much lesser importance, we also define the correspond-
ing rearrangement-invariant version of the L1 distance:

δ1(W1 ,W2) := inf
ϕ1 ,ϕ2

‖Wϕ1
1 − Wϕ2

2 ‖L1 (S2
3 ) . (2.4)

The coupling definition (2.3) of the cut metric is valid for all S1 and S2 , but
in common special cases it is possible, and often convenient, to use other, equiv-
alent, definitions. For example, if S1 = S2 = [0, 1] (equipped with the Lebesgue
measure, as always), then as shown by [Borgs et al. 08, Lemma 3.5],

δ�(W1 ,W2) := inf
ϕ

‖W1 − Wϕ
2 ‖�, (2.5)

where the infimum is taken over all measure-preserving bijections [0, 1] → [0, 1].
We say that two kernels W1 and W2 are equivalent if δ�(W1 ,W2) = 0. The set

of equivalence classes is thus a metric space with the metric δ�. A central result
[Lovász and Szegedy 06, Borgs et al. 08] is that these equivalence classes are
in one-to-one correspondence with the graph limits. In other words, each kernel
W defines a graph limit ΓW , every graph limit can be represented by a kernel
in this way, and two kernels define the same graph limit if and only if they are
equivalent. Thus, the cut metric defines the same notion of equivalence as the
one mentioned in the introduction. Furthermore, W1 and W2 are equivalent if
and only if δ1(W1 ,W2) = 0; see, e.g., [Janson 10].



Bollobás et al.: Monotone Graph Limits and Quasimonotone Graphs 195

Every kernel is equivalent to a kernel on [0, 1], so it suffices to consider such
kernels. (We shall not use this restriction in the present paper, however.)

One manifestation of the connection between graph limits and kernels is the
following: If G is a graph with vertices labeled 1, 2, . . . , n, let AG (i, j) := 1{i ∼ j}
define its adjacency matrix, and let

WG (x, y) := AG

(
�nx�, �ny�

)
.

This defines a kernel WG on [0, 1] (or rather on (0, 1], which is equivalent). A
sequence of graphs with |Gν | → ∞ converges to the graph limit Γ = ΓW if and
only if δ�(WGν

,W ) → 0.
Note that WG depends on the labeling of the vertices of G, but only in a rather

trivial way, and different labelings yield equivalent kernels. Here, in the study
of monotone kernels, the ordering is relevant. If G is a graph with a given order
≺ on V , we therefore define WG = WG,≺ as above, but using the labeling of the
vertices with 1 ≺ 2 ≺ · · · , ignoring the original labeling, if any.

3. Further Measures of Quasimonotonicity

In Section 1 we defined a functional Ω0 that measures, in an averaged sense, how
far the adjacency matrix of a graph is from being monotone. There are several
natural variations of the definition; we shall concentrate on two.

Firstly, in (1.3) and (1.4), we were careful to exclude v and w from the set
A; this had the advantage of making Ω0(G) exactly zero when G is a threshold
graph. But most of the time it is more convenient not to do this. Instead, we
consider

Ω1(G,≺, A) :=
1
n3

∑
v≺w

(
e(v,A) − e(w,A)

)
+ , (3.1)

which differs from (1.4) in that we count all edges into A, and not just the edges
into A \ {v, w}. This changes each edge count by at most 1, so

|Ω0(G,≺, A) − Ω1(G,≺, A)| <
1
n

. (3.2)

As in (1.5) and (1.6), we set

Ω1(G,≺) := max
A⊆V

Ω1(G,≺, A), (3.3)

Ω1(G) := min
≺

Ω1(G,≺). (3.4)

Before turning to our second variant, let us note a basic property of Ω0. Let
e(v,A) denote the number of edges from v to A in the complement Gc of G. If
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v /∈ A, then e(v,A) = |A| − e(v,A). Hence, for any v, w, and A,

e(w,A \ {v, w}) − e(v,A \ {v, w}) = e(v,A \ {v, w}) − e(w,A \ {v, w}).

From (1.4) it follows that Ω0(Gc ,�, A) = Ω0(G,≺, A), where, naturally, � de-
notes the reverse of the order ≺. Thus Ω0(Gc ,�) = Ω0(G,≺) and Ω0(Gc) =
Ω0(G).

For Ω1 one can show similarly, or deduce using (3.2), that |Ω1(Gc) − Ω1(G)| ≤
2/n, say.

Despite the above symmetry property of Ω0, the following “locally sym-
metrized” version of the definition turns out to have technical advantages. Given
a graph G, an order ≺ on V (G), and A ⊆ V (G), set

Ω2(G,≺, A) := Ω1(G,≺, A) + Ω1(G,≺, V \ A), (3.5)
Ω2(G,≺) := max

A⊆V
Ω2(G,≺, A), (3.6)

Ω2(G) := min
≺

Ω2(G,≺). (3.7)

Of course, we could define a corresponding symmetrization of Ω0, but we shall
not bother.

It is easily seen that all our functionals Ωj take values in [0, 1] (in fact, in
[0, 1/2)). We have the following relations.

Lemma 3.1. If G is a graph with |G| = n, then

|Ω0(G) − Ω1(G)| <
1
n

(3.8)

and

Ω1(G) ≤ Ω2(G) ≤ 2Ω1(G). (3.9)

Consequently, if (Gν ) is a sequence of graphs with |Gν | → ∞, then Ωj (Gν ) → 0
for some j if and only if this holds for all j = 0, 1, 2.

Proof. The inequality (3.8) is immediate from (3.2).
The definition (3.5) implies that

Ω1(G,≺) ≤ Ω2(G,≺) ≤ 2Ω1(G,≺), (3.10)

which in turn implies (3.9).

Remark 3.2. Instead of summing in (1.4) or (3.1), in analogy with the standard
definition of ε-regular partitions (see, e.g., [Bollobás 98, Section IV.5]), we may
count the number of “bad” pairs (v, w) of vertices v ≺ w, where the difference
e(v,A) − e(w,A) is larger than εn, for some small ε. This suggests the following



Bollobás et al.: Monotone Graph Limits and Quasimonotone Graphs 197

definition: with ≺ an order on the vertex set V , n := |V |, and A a subset of V ,
set

Ω′
1(G,≺, A) := inf

{
ε > 0 :

∣∣{v ≺ w : e(v,A) > e(w,A) + εn
}∣∣ ≤ εn2

}
,

and define Ω′
1(G) by taking the maximum over A with ≺ fixed, and then mini-

mizing over ≺. It is a standard observation that if x1 , . . . , xa take values in [0, b],
then

∑
i xi ≥ εab implies that there are at least εa/2 of the xi that are at least

εb/2, and that if at least εa of the xi are at least εb, then the sum is at least ε2ab.
Using this, it is easy to check that Ω1 and Ω′

1 are bounded by suitable functions
of each other. In fact, it turns out that

1
2

Ω1(G) ≤ Ω′
1(G) ≤ Ω1(G)1/2 .

We can also define corresponding modifications of the other Ωj .

Remark 3.3. Proposition 1.6 says that a graph G is a threshold graph if and only
if Ω0(G) = 0. This does not hold for Ω1; in fact, if G contains an edge vw, with
v ≺ w, then Ω1(G,≺, {w}) ≥ n−3e(v, {w}) = n−3 by (3.1); hence Ω1(G) ≥ n−3

unless G is empty. Consequently, Ω1(G) > 0 for every nonempty graph G. On
the other hand, Proposition 1.6 and Lemma 3.1 show that Ω1(G) ≤ 1/n for every
threshold graph.

We defined each Ωj (G) by taking the minimum of Ωj (G,≺) over all possible
orderings ≺ of the vertices. As the next lemma shows, for Ω2, ordering the vertices
by their degrees d(v) := e(v, V ) (resolving ties arbitrarily) is optimal. This is the
main reason for considering Ω2.

Lemma 3.4. Let < be an order on V such that v < w =⇒ d(v) ≤ d(w). Then
Ω2(G) = Ω2(G,<).

Proof. The inequality Ω2(G) ≤ Ω2(G,<) is immediate from the definition (3.7), so
it suffices to prove the reverse inequality.

Let ≺ be any order on V . If v < w, then e(v, V ) = d(v) ≤ d(w) = e(w, V ), and
thus for A ⊆ V ,

e(v,A) − e(w,A) = e(v, V ) − e(w, V ) + e(w, V \ A) − e(v, V \ A)
≤ e(w, V \ A) − e(v, V \ A).

(3.11)

Let f(v, w,A) :=
(
e(v,A) − e(w,A)

)
+ and g(v, w,A) := f(v, w,A) + f(v, w, V \

A). By (3.11), if v < w, then f(v, w,A) ≤ f(w, v, V \ A), and thus

g(v, w,A) ≤ f(w, v, V \ A) + f(w, v,A) = g(w, v,A). (3.12)
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Using (3.12) for v < w with v � w, we obtain

Ω2(G,<,A) :=
1
n3

∑
v<w

g(v, w,A)

=
1
n3

∑
v<w
v≺w

g(v, w,A) +
1
n3

∑
v<w
v�w

g(v, w,A)

≤ 1
n3

∑
v<w
v≺w

g(v, w,A) +
1
n3

∑
w>v
w≺v

g(w, v,A)

=
1
n3

∑
v≺w

g(v, w,A) = Ω2(G,≺, A).

Hence, by (3.6), Ω2(G,<) ≤ Ω2(G,≺). Since ≺ is arbitrary, this yields
Ω2(G,<) = Ω2(G).

As an immediate consequence of Lemmas 3.4 and 3.1, we have the following
result for Ω1.

Corollary 3.5. Let < be an order on V such that v < w =⇒ d(v) ≤ d(w). Then
Ω1(G) ≤ Ω1(G,<) ≤ 2Ω1(G).

Proof. By (3.10), Lemma 3.4, and (3.9),

Ω1(G) ≤ Ω1(G,<) ≤ Ω2(G,<) = Ω2(G) ≤ 2Ω1(G).

(Alternatively, one can use a simplified version of the proof of Lemma 3.4.)

Using a symmetrized version of Ω0, or otherwise, it is easy to prove the corre-
sponding result for Ω0.

Remark 3.6. If G is regular, then any order < satisfies the condition of Lemma 3.4
and Corollary 3.5, so these results show that Ω2(G,<) is the same for all orders,
and Ω1(G,<) is the same for all orders within a factor of 2; the latter holds also
for Ω0.

The factor 2 in Corollary 3.5 is annoying but not really harmful for our pur-
poses. It is best possible, as shown by the following example.

Example 3.7. Consider a balanced complete bipartite graph G = Km,m (so n =
2m), with bipartition (V1 , V2). Given an order ≺ on the vertex set V1 ∪ V2 , let
Nij :=

∣∣{(x, y) ∈ Vi × Vj : x ≺ y
}∣∣. Note that

N12 + N21 =
∣∣V1 × V2

∣∣ = m2 . (3.13)
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Let A ⊆ V = V1 ∪ V2 and let ai = |A ∩ Vi |, i = 1, 2. Then e(v,A) = a2 if v ∈ V1

and e(v,A) = a1 if v ∈ V2 . Hence,

n3Ω1(G,≺, A) =
∑
v≺w

(
e(v,A) − e(w,A)

)
+ = N12(a2 − a1)+ + N21(a1 − a2)+ .

(3.14)
Since a1 and a2 can be freely chosen in {0, . . . , m}, we have a1 − a2 ∈
{−m, . . . ,m}, and maximizing over A yields

n3Ω1(G,≺) = m max{N12 , N21}. (3.15)

If ≺1 is an order with all elements of V1 coming first, then N12 = m2 and N21 = 0,
and thus

Ω1(G,≺1) =
m3

n3 =
1
8
.

On the other hand, if m is even and ≺2 is an order that starts with m/2 elements
of V1 , continues with all of V2 , and finishes with the remaining half of V1 , then
N12 = N21 = m2/2, and thus

Ω1(G,≺2) =
m3

2n3 =
1
16

. (3.16)

Thus Ω1(G,≺1) = 2Ω1(G,≺2), although G is regular and Corollary 3.5 applies
to every order.

For Ω0, the ratio between Ω0(G,≺1) and Ω0(G,≺2) is 2 − O(1/n) by (3.2).
Note that for any order ≺, (3.13) implies max{N12 , N21} ≥ m2/2, and thus

(3.15) yields

Ω1(G) ≥ m3

2n3 =
1
16

. (3.17)

Consequently, if m is even, then (3.16) shows that

Ω1(G) = Ω1(G,≺2) =
1
16

(m even). (3.18)

On the other hand, if m is odd, then since N12 + N21 = m2 is odd, for any
order ≺ we have max{N12 , N21} ≥ (m2 + 1)/2, and this is attained for some ≺.
Thus (3.15) now yields

Ω1(G) =
m(m2 + 1)

2n3 >
1
16

(m odd). (3.19)

We thus have ⎧⎪⎪⎨
⎪⎪⎩

Ω1(Km,m ) =
1
16

, m even,

Ω1(Km,m ) =
(1 + m−2)

16
>

1
16

, m odd.

(3.20)
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For Ω2, the situation is simpler. Writing X− = (−X)+ for the (absolute value of
the) negative part of X, it follows from (3.14) that n3Ω1(G,≺, V \ A) = N12(a2 −
a1)− + N21(a1 − a2)−, and thus, using (3.13),

n3Ω2(G,≺, A) = N12 |a2 − a1 | + N21 |a1 − a2 | = m2 |a1 − a2 |. (3.21)

Maximizing over A, we obtain Ω2(G,≺) = m3/n3 = 1/8 for every order ≺ (cf.
Remark 3.6), and thus Ω2(G) = 1/8.

If we modify G by adding a perfect matching inside V2 (assuming that m is
even), then every order < satisfying the condition of Corollary 3.5 is of the type
≺1 . The added edges change each e(v,A) by at most 1, and thus each Ωj (G,≺, A)
is changed by at most 1/n. Hence this yields an example in which Ωj (G,<) =
(2 − O(1/n))Ωj (G) for j = 0, 1, for every order < considered in Corollary 3.5.

4. Monotone Kernels and Graph Limits

We begin by extending the definition of monotone kernels to other probability
spaces.

Definition 4.1. An ordered probability space (S,≺) = (S,F , µ,≺) is a probability
space (S,F , µ) with a (linear) order ≺ that is measurable, i.e., {(x, y) : x ≺ y}
is a measurable subset of S × S.

Note that it follows that {(x, y) : x � y} and {(x, y) : x = y} are measurable.
All orders considered in this paper are assumed to be measurable, even if we

only sometimes say so explicitly. Similarly, we consider only subsets and functions
that are measurable.

The standard example of an ordered probability space is [0, 1] with Lebesgue
measure and the standard order; [0, 1] is always equipped with these unless we
say otherwise.

Definition 4.2. Let (S,≺) be an ordered probability space. A monotone kernel on
(S,≺) is a kernel W : S2 → [0, 1] such that

W (x1 , y1) ≤ W (x2 , y2) if x1 � x2 , y1 � y2 . (4.1)

Let W↑(S,≺) be the set of monotone kernels on (S,≺), noting that W↑ =
W↑([0, 1]). We shall prove the following properties of W↑(S,≺) in Sections 5
and 6.
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Theorem 4.3. Let (S,≺) be an ordered probability space.

(i) W↑(S,≺) is a compact subset of L1(S2).

(ii) Two kernels in W↑(S,≺) are equivalent if and only if they are a.e. equal.

(iii) The metrics ‖W1 − W2‖L1 , δ1(W1 ,W2), ‖W1 − W2‖�, and δ�(W1 ,W2) are
equivalent on W↑(S,≺), i.e., they induce the same topology.

Recall that U↑ denotes the set of monotone graph limits, i.e., the class of graph
limits that can be represented as ΓW for some W ∈ W↑ = W↑([0, 1]).

Corollary 4.4. Each monotone graph limit has a representation as ΓW for some
W ∈ W↑ = W↑([0, 1]) with W unique up to equality a.e. Furthermore, there is a
homeomorphism between U↑ and W↑([0, 1]), regarded as a subset of L1([0, 1]2).

Proof. The result is immediate from Theorem 4.3 and the fact that the metric on
the set of graph limits is equivalent to δ� on the corresponding kernels.

In Section 1 we defined U↑ as the set of graph limits that can be represented by
some W ∈ W↑([0, 1]). The following theorem shows that we may allow monotone
kernels on arbitrary ordered probability spaces without changing U↑, i.e.,

U↑ = {Γ : ∃ (S,≺) and W ∈ W↑(S,≺) such that Γ = ΓW }.

This version of the definition is perhaps more natural than considering [0, 1] only;
on the other hand, it is often convenient to use [0, 1].

Theorem 4.5. Let (S,≺) be an ordered probability space, and let W ∈ W↑(S,≺).
Then there is a monotone kernel W ′ ∈ W↑([0, 1]) that is equivalent to W . Equiv-
alently, ΓW ∈ U↑.

We shall next define two quantitative measures of how far a kernel is from
being monotone, in analogy with (1.3)–(1.6) (or, more closely, (3.1), (3.3), and
(3.4)) and (3.5)–(3.7).

Given W ∈ L1(S2), a (measurable) order ≺ on S, and a (measurable) subset
A of S, set

Ω1(W,≺, A)

:=
∫∫

x≺y

(∫
A

W (x, z) dµ(z) −
∫

A

W (y, z) dµ(z)
)

+
dµ(x) dµ(y)

(4.2)
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and

Ω2(W,≺, A) := Ω1(W,≺, A) + Ω1(W,≺,S \ A), (4.3)

and for j = 1, 2,

Ωj (W,≺) := sup
A⊆S

Ωj (W,≺, A), (4.4)

Ωj (W ) := inf
≺

Ωj (W,≺), (4.5)

where the infimum is over all measurable orders on S. Note that

Ω1(W ) ≤ Ω2(W ) ≤ 2Ω1(W ). (4.6)

For A ⊆ S, let WA (x) :=
∫

A W (x, z) dµ(z). Then (4.2) can be written as

Ω1(W,≺, A) =
∫∫

x≺y

(
WA (x) − WA (y)

)
+

dµ(x) dµ(y). (4.7)

Remark 4.6. It is easily seen that

Ω1(W,≺) = sup
f ,g

∫∫∫
x≺y

(
W (x, z) − W (y, z)

)
f(x, y)g(z) dµ(x) dµ(y) dµ(z),

(4.8)
where the supremum is taken over all f : S2 → {0, 1} and g : S → {0, 1}, and
that allowing all f : S2 → [0, 1] and g : S → [0, 1] yields the same result. Thus
Ω1(W,≺) can be seen as a one-sided version of the cut norm of the function(
W (x, z) − W (y, z)

)
1{x≺y} on S2 × S.

Similarly, Ω2(W,≺) equals

sup
f1 ,f2 ,g

∫∫∫
x≺y

(
W (x, z) − W (y, z)

)(
f1(x, y)g(z) + f2(x, y)(1 − g(z))

)
× dµ(x) dµ(y) dµ(z), (4.9)

where the supremum is taken either over all f1 , f2 : S2 → {0, 1} and g : S →
{0, 1}, or over all f1 , f2 : S2 → [0, 1] and g : S → [0, 1].

In the light of (4.6), Ω1 and Ω2 are essentially equivalent. In particular,
Ω1(W ) = 0 ⇐⇒ Ω2(W ) = 0. When the difference is not important, we simply
write Ω; formally, this may be read as Ω1. Occasionally, there are advantages to
considering one or the other variant.

Theorem 4.7. Let (S,≺) be an ordered probability space and let W be a kernel on
S. Then Ω(W,≺) = 0 if and only if W is a.e. equal to a monotone kernel.
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As noted above, Ωj , j = 1, 2, is an analogue of Ωj defined earlier for graphs.
Indeed, there is a simple relation.

Lemma 4.8. If G is a graph with an order ≺ on the vertex set V , and < de-
notes the standard order on [0, 1], then Ωj (WG,≺, <) = Ωj (G,≺) for j = 1, 2,
and Ωj (WG ) ≤ Ωj (G).

Note that WG = WG,≺ depends on the ordering of the vertices in G, but the
different versions differ by measure-preserving bijections of [0, 1] (in fact, per-
mutations of subintervals) and so have the same Ωj (WG ). This is the reason for
dropping the order in the notation WG in the final statement above, and in what
follows.

For Ω2, we shall show that the final inequality in Lemma 4.8 is an equality.

Lemma 4.9. If G is a graph, then Ω2(WG ) = Ω2(G).

Remark 4.10. Let G = Km,m as in Example 3.7. Then WG does not depend on m,
and one can check that Ω1(WG ) = 1/16. For m odd, we have Ω1(G) > 1/16 by
(3.19). Thus we can have Ω1(WG ) < Ω1(G). It seems likely that the difference is
bounded by some function tending to 0 as n → ∞, but we have not proved any-
thing stronger than Ω1(WG ) ≤ Ω1(G) ≤ 2Ω1(WG ), which follows from Lemmas
4.8 and 4.9 and the relationship between Ω1 and Ω2.

Remark 4.11. Given a graph G, define WV
G as the adjacency matrix of G, regarded

as a kernel on V = V (G), which we regard as a probability space with the uni-
form probability measure (each point has mass 1/|G|). It is easily verified that
Ω1(WV

G ,≺, A) = Ω1(G,≺, A) for every order ≺ on V and every set A ⊆ V . Hence
Ω1(WV

G ,≺) = Ω1(G,≺) for every order ≺ and Ω1(WV
G ) = Ω1(G), and the same

holds for Ω2.
Note that WV

G and WG are equivalent kernels. It follows from Lemma 4.9
that Ω2(WV

G ) = Ω2(WG ), but Remark 4.10 shows that Ω1(WV
G ) > Ω1(WG ) if

G = Km,m with m odd. (See also Corollary 6.7 and Remark 6.8 below.)

Remark 4.12. In (4.5), we take the infimum over all measurable orders on S. In
general, this may be problematic, since there are probability spaces with no
measurable orders; see Example 4.14 below. In such cases, we interpret (4.5)
as Ωj (W ) = ∞ (or perhaps 1), but this has the unhappy consequence that two
equivalent kernels W1 and W2 may have Ω2(W1) 
= Ω2(W2). For example, let W1

and W2 both be constant 1/2, with W1 defined on [0, 1] and W2 on a space S
with no measurable order; then Ω2(W1) = 0 and Ω2(W2) = ∞. In the sequel we
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therefore consider only S that have at least one measurable order. Even in this
case, equivalent kernels may have different Ω1; see Remark 4.11. We will show
in Corollary 6.7 that there is no such problem for Ω2. The case Ω(W ) = 0 is
covered by the following theorem.

Theorem 4.13. Let W be a kernel on a probability space S with at least one measur-
able order. Then the following are equivalent.

(i) Ω(W ) = 0.

(ii) There exists a measurable order ≺ on S such that W is a.e. equal to a
monotone kernel on (S,≺).

(iii) W is equivalent to a monotone kernel on some ordered probability space.

(iv) W is equivalent to a monotone kernel on [0, 1].

(v) ΓW is a monotone graph limit.

Example 4.14. Let S = [0, 1], but equipped with the σ-field F consisting of the
subsets of S that are either countable or have a countable complement. For the
measure µ we take the restriction of the Lebesgue measure to F . (Thus, µ(A) = 0
if A is countable, and µ(A) = 1 otherwise.)

Let C be the family of countable subsets of S. The σ-field F × F is contained
in the σ-field{

A ⊆ S2 : ∃B1 , B2 ∈ C such that A or S2 \ A ⊆ (B1 × S) ∪ (S × B2)
}
.

Thus, if ≺ is a measurable order, then there exist B1 , B2 ∈ C such that either

{(x, y) : x ≺ y} ⊆ (B1 × S) ∪ (S × B2)

or

{(x, y) : x � y} ⊆ (B1 × S) ∪ (S × B2);

in the latter case we have

{(x, y) : x ≺ y} ⊂ {(x, y) : x � y} ⊆ (B2 × S) ∪ (S × B1).

However, in both cases we find that if we choose two distinct x, y /∈ (B1 ∪ B2),
then neither x ≺ y nor y ≺ x holds, which is a contradiction. Thus (S,F , µ) is a
probability space supporting no measurable orders.
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5. Proofs of Theorems 4.3 and 4.5

A downset in an ordered set (S,≺) is a subset A such that if x ≺ y and y ∈ A,
then x ∈ A. We begin with two lemmas concerning simple (and certainly well-
known) properties of downsets; for completeness we give full proofs.

Lemma 5.1.

(i) If A and B are downsets in a linearly ordered set (S,≺), then A ⊆ B or
B ⊆ A.

(ii) If A and B are downsets in an ordered probability space (S,≺) with µ(A) <

µ(B), then A ⊂ B.

Proof. (i): Otherwise, there would exist x ∈ A \ B and y ∈ B \ A, but then neither
x ≺ y nor y ≺ x nor x = y is possible. (ii): Now B ⊆ A is impossible, and the
result follows by (i).

Lemma 5.2. If (S,≺) is an ordered probability space without atoms, then for ev-
ery t ∈ [0, 1] there exists a downset D(t) with µ(D(t)) = t. Furthermore, D(t) ⊂
D(u) when t < u.

Proof. It suffices to prove the first statement; the second then follows by Lemma
5.1 (ii).

For x ∈ S, let Dx be the downset {y ∈ S : y � x}. Let X = X0 ,X1 ,X2 , . . .

be an i.i.d. sequence of random points in S (with the distribution µ). Since
there are no atoms, P (Xi = Xj ) = 0 for all i 
= j. Thus, for every n, X0 , . . . , Xn

are a.s. distinct, and by symmetry, all (n + 1)! orderings of them have the
same probability 1/(n + 1)!. Hence,

E
(
µ(DX )n

)
= P (X1 , . . . , Xn ≺ X0) =

n!
(n + 1)!

=
1

n + 1
, n ≥ 1.

Consequently, µ(DX ) has the same moments as the uniform distribution U(0, 1),
and thus µ(DX ) ∼ U(0, 1).

It follows that the set {µ(Dx) : x ∈ S} is a dense subset of [0, 1]. Hence,
for every t ∈ (0, 1], there exists a sequence (xi) in S such that µ(Dxi

) ↗ t

as i → ∞. Then Dxi
⊂ Dxi + 1 for i ≥ 1 by Lemma 5.1 (ii), and we can take

D(t) :=
⋃∞

i=1 Dxi
, which is a downset with µ(D(t)) = limi→∞ µ(Dxi

) = t. For
t = 0 we take D(0) := ∅.
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Given an integrable function W on S2 and A,B ⊆ S with µ(A), µ(B) > 0, let

W (A,B) :=
1

µ(A)µ(B)

∫∫
A×B

W (x, y) dµ(x) dµ(y) (5.1)

denote the average of W over A × B. If P = {Ai} is a finite partition of S,
we say that a function on S2 is a P-step function if it is constant on each set
Ai × Aj . (A step function on S2 is a P-step function for some finite partition P.)
If W ∈ L1(S2), we let WP be the P-step function defined by

WP(x, y) = W (Ai,Aj ) for x ∈ Ai, y ∈ Aj . (5.2)

If some Ai has measure 0, then WP is not defined everywhere, but it is always
defined a.e., which suffices for us. Note that WP is the conditional expectation
of W given the σ-field FP × FP , where FP is the finite σ-field on S generated
by P. It follows that ‖WP‖� ≤ ‖W‖� and ‖WP‖L1 ≤ ‖W‖L1 . If W is a kernel,
then WP is also a kernel. A kernel that is also a step function, such as WP , is
called a step kernel.

Suppose now that (S, µ,≺) is an atomless ordered probability space, and let
D(t), 0 ≤ t ≤ 1, be an increasing family of downsets in S with µ(D(t)) = t as in
Lemma 5.2, with D(0) = ∅ and D(1) = S.

For n ≥ 1 and i = 1, . . . , n, define

Ai = Ani := D(i/n) \ D((i − 1)/n). (5.3)

Then Pn := {Ani}i is a partition of S into n sets of the same measure 1/n.
Furthermore, if i < j, then Ani ≺ Anj , meaning that if x ∈ Ani and y ∈ Anj ,
then x ≺ y.

Given a kernel W on S, let w
(n)
ij := W (Ani, Anj ) and let Wn be the step kernel

WPn
; thus Wn = w

(n)
ij on Ani × Anj . Define the step kernels W±

n by W +
n (x, y) :=

w
(n)
i+1,j+1 and W−

n (x, y) := w
(n)
i−1,j−1 on Ani × Anj , where w

(n)
ij = 0 if i or j = 0

and w
(n)
ij = 1 if i or j = n + 1.

If W is monotone, then the matrix
(
w

(n)
ij

)
ij

is increasing along each row and
column, and thus Wn is a monotone step kernel.

Lemma 5.3. Let W be a monotone kernel on an atomless ordered probability space
(S,≺). Then W−

n ≤ W ≤ W +
n , W−

n ≤ Wn ≤ W +
n , and

‖Wn − W‖L1 (S2 ) ≤ ‖W +
n − W−

n ‖L1 (S2 ) ≤
4
n

.

Proof. If (x, y) ∈ Ani × Anj and (x′, y′) ∈ An,i+1 × An,j+1 (with i, j ≤ n − 1),
then W (x, y) ≤ W (x′, y′), and averaging over (x′, y′), it follows that W (x, y) ≤
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w
(n)
i+1,j+1 = W +

n (x, y). This inequality evidently holds also if i or j = n. Hence
W ≤ W +

n . Similarly, W ≥ W−
n .

Averaging over each Ani × Anj , it follows that W−
n ≤ Wn ≤ W +

n . (This also
follows directly from the monotonicity of w

(n)
ij .) Consequently, |Wn − W | ≤

W +
n − W−

n , and thus

‖Wn − W‖L1 (S2 ) ≤
∫∫

S2

(
W +

n − W−
n

)
=

∫∫
S2

W +
n −

∫∫
S2

W−
n

= n−2
n+1∑
i,j=2

w
(n)
ij − n−2

n−1∑
i,j=0

w
(n)
ij ≤ 2n−2

n+1∑
i=n

n+1∑
j=2

w
(n)
ij ≤ 4

n
.

Trivially, for any kernel W we have ‖W‖� ≤ ‖W‖L1 (S2 ) . In general, there is no
reverse inequality. However, if P is a partition of S into n sets and W is a P-step
function, then it is trivial to bound ‖W‖L1 (S2 ) from above by a polynomial times
‖W‖�. Indeed, one can write ‖W‖L1 (S2 ) as a sum of n integrals of the form in
(2.1), in each taking g to be 1 on one part of P and zero elsewhere, and choosing
the sign of f on each part appropriately. In fact, the correct polynomial order is√

n, as shown in [Janson 10].

Lemma 5.4. Let S be a probability space and P a partition of S into n sets. If
W is a P-step function, then ‖W‖L1 (S2 ) ≤

√
2n‖W‖�. Furthermore, for every

W ∈ L1(S2) we have

‖WP‖L1 (S2 ) ≤
√

2n‖W‖�. (5.4)

Proof. It suffices to prove the first statement; the second follows immediately, since
WP is a P-step function, and ‖WP‖� ≤ ‖W‖�.

The statement and proof are (essentially) present in [Janson 10, Remark 9.8].
Nevertheless, let us write out the proof.

It was proved in [Littlewood 30] that there is a constant c ≤
√

3 such that for
every n × n array of real numbers aij we have

n∑
i=1

( n∑
j=1

|aij |2
)1/2

≤ c max
εi ,ε ′

j =±1

n∑
i=1

n∑
j=1

εiε
′
j aij

= c max
εi =±1

n∑
j=1

∣∣∣∣
n∑

i=1

εiaij

∣∣∣∣ = c max
εj =±1

n∑
i=1

∣∣∣∣
n∑

j=1

εjaij

∣∣∣∣.
Later, it was noticed (see [Zygmund 02, Chapter 5] and [Blei 01]) that this
inequality of Littlewood’s could be deduced from a special case of an inequality
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that had been proved some years earlier in [Khintchine 23]. Then it was proved
in [Szarek 76] that the best constant in Littlewood’s inequality (in fact, in the
corresponding inequality of Khintchine) is

√
2. For some related results, see, e.g.,

[Figiel et al. 97, Haagerup 78, Haagerup 81, König and Kwapień 01, Lata�la 97].
As noted in [Janson 10], using the Cauchy–Schwarz inequality and Littlewood’s

inequality, with the constant c =
√

2 proved by Szarek, it follows that
n∑

i=1

n∑
j=1

|aij | ≤
n∑

i=1

n1/2
( n∑

j=1

|aij |2
)1/2

≤
√

2n max
εi ,ε ′

j =±1

n∑
i=1

n∑
j=1

εiε
′
j aij . (5.5)

Returning to the proof of Lemma 5.4, let the parts of P be A1 , . . . , An ,
and set aij = µ(Ai)µ(Aj )Wij , where Wij is the value of W on Ai × Aj . Then
‖W‖L1 (S2 ) =

∑
ij |aij |. In the definition (2.1) of the cut norm, restricting our

attention to functions f, g : S → {±1} that are constant on each Ai , we find
that

‖W‖� ≥ max
εi ,ε ′

j =±1

n∑
i=1

n∑
j=1

εiε
′
j aij

(in fact, equality holds), so the result follows from (5.5).

As noted in [Janson 10], it is easy to check that the factor
√

2n is best possible
apart from the constant, for example by considering 0/1-valued kernels associated
to random graphs. For arbitrary monotone kernels, the lemmas above allow us
to bound the L1-norm in terms of the cut norm.

Theorem 5.5. If W1 and W2 are monotone kernels on an ordered probability space
(S,≺), then

‖W1 − W2‖L1 (S2 ) ≤ 10‖W1 − W2‖2/3
� . (5.6)

Proof. Suppose first that S is atomless. Let n ≥ 1 and consider the partition Pn =
{Ani}i defined in (5.3) and the step kernels Wk,n = (Wk )Pn

, k = 1, 2. Lemma 5.4
yields

‖W1,n − W2,n‖L1 (S2 ) = ‖(W1 − W2)Pn
‖L1 (S2 ) ≤

√
2n‖W1 − W2‖�. (5.7)

By Lemma 5.3, we have ‖Wk − Wk,n‖L1 (S2 ) ≤ 4/n, so by the triangle inequality,

‖W1 − W2‖L1 (S2 ) ≤ ‖W1,n − W2,n‖L1 (S2 ) +
8
n
≤

√
2n‖W1 − W2‖� +

8
n

.

The result for atomless S now follows by choosing n :=
⌈
‖W1 − W2‖−2/3

�
⌉
≤

2‖W1 − W2‖−2/3
� . (In the case ‖W1 − W2‖� = 0, we let n → ∞.)



Bollobás et al.: Monotone Graph Limits and Quasimonotone Graphs 209

If S has atoms, we consider the atomless probability space Ŝ := S × [0, 1] with
the lexicographic order. Let π : Ŝ → S be the projection onto the first coordinate
and let Ŵk := Wπ

k be the extension of Wk to Ŝ. The proof just given applies to
Ŝ, and thus

‖W1 − W2‖L1 (S2 ) = ‖Ŵ1 − Ŵ2‖L1 (Ŝ2 ) ≤ 10‖Ŵ1 − Ŵ2‖2/3
� = 10‖W1 − W2‖2/3

� .

Example 5.6. It is easy to see that (5.6) is tight apart from the constant. Indeed, let
S be the discrete probability space with n equiprobable elements {0, 1, . . . , n −
1}, and choose two 0/1-valued kernels on S with ‖W1 − W2‖L1 (S2 ) = Θ(1) and
‖W1 − W2‖� = Θ(n−1/2). For example, we may take kernels corresponding to
two independent instances of the random graph G(n, 1/2). Let W be the function
defined by W (i, j) = i + j. Then it is easy to see that W ′

i = (Wi + W )/(2n) is a
monotone kernel for each i. Since ‖W ′

1 − W ′
2‖L1 (S2 ) = ‖W1 − W2‖L1 (S2 )/(2n) =

Θ(n−1) and ‖W ′
1 − W ′

2‖� = ‖W1 − W2‖�/(2n) = Θ(n−3/2), this gives monotone
kernels W ′

1 and W ′
2 with ‖W ′

1 − W ′
2‖L1 (S2 ) = Θ(‖W ′

1 − W ′
2‖

2/3
� ).

Our next aim is to prove the rather unsurprising fact that if we start from
two monotone kernels, then “rearranging” one or both does not bring them any
closer in the L1 distance. First we need a preparatory lemma; this can be viewed
as a continuous, coupling version of the trivial observation that if we wish to
minimize

∑n
i=1 |ai − bi | (or equivalently,

∑
(ai − bi)+ ), where the values in each

sequence are given but we are allowed to permute them, then we should sort
both sequences into ascending order.

Lemma 5.7. If h1 , h2 : S → R are increasing integrable functions on an ordered
probability space (S, µ,≺), and ϕ1 , ϕ2 : S′ → S are measure-preserving maps
from a probability space (S′, µ′) to (S, µ), then

∫
S′

(hϕ1
1 − hϕ2

2 )+ dµ′ ≥
∫
S
(h1 − h2)+ dµ (5.8)

and ‖hϕ1
1 − hϕ2

2 ‖L1 (S′) ≥ ‖h1 − h2‖L1 (S).

Proof. For any integrable function on any measure space we have ‖h‖L1 =
∫

(h)+ +∫
(−h)+ , so it suffices to prove the first statement.
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For any function f and real number t, let Bf (t) := {x : f(x) ≤ t}. Fubini’s
theorem yields∫

S
(h1 − h2)+ dµ =

∫
S

∫ ∞

−∞
1{h1(x) > t ≥ h2(x)}dt dµ(x)

=
∫ ∞

−∞

∫
S
1{x ∈ Bh2 (t) \ Bh1 (t)}dµ(x) dt

=
∫ ∞

−∞
µ
(
Bh2 (t) \ Bh1 (t)

)
dt.

Similarly, ∫
S′

(hϕ1
1 − hϕ2

2 )+ dµ′ =
∫ ∞

−∞
µ′(Bh

ϕ 2
2

(t) \ Bh
ϕ 1
1

(t)
)

dt.

Since the ϕi are measure-preserving, we have µ′(Bh
ϕ i
i

(t)
)

= µ′(ϕ−1
i (Bhi

(t))
)

=
µ(Bhi

(t)). Since h1 and h2 are increasing, Bh1 (t) and Bh2 (t) are downsets, so
by Lemma 5.1 they are nested. The result follows by noting that µ(X \ Y ) ≥
(µ(X) − µ(Y ))+ , with equality if X and Y are nested.

Lemma 5.8. If W1 and W2 are monotone kernels on an ordered probability space
(S,≺), then δ1(W1 ,W2) = ‖W1 − W2‖L1 (S2 ).

Proof. Suppose that ϕ1 , ϕ2 are measure-preserving maps S′ → S for some proba-
bility space (S′, µ′). Then, using Lemma 5.7 on each coordinate separately, we
have

‖Wϕ1
1 − Wϕ2

2 ‖L1 ((S′)2 )

=
∫
S′

∫
S′

∣∣W1(ϕ1(x), ϕ1(y)) − W2(ϕ2(x), ϕ2(y))
∣∣ dµ′(x) dµ′(y)

≥
∫
S′

∫
S

∣∣W1(t, ϕ1(y)) − W2(t, ϕ2(y))
∣∣ dµ(t) dµ′(y)

≥
∫
S

∫
S

∣∣W1(t, u) − W2(t, u)
∣∣ dµ(t) dµ(u) = ‖W1 − W2‖L1 (S2 ) ,

where for the last step we first apply Fubini’s theorem to change the order of
integration. The result follows by the definition (2.4).

With a little more work, we obtain a corresponding result for the cut norm
and cut metric. Unfortunately, we need to consider a variant of the definition.

If W is an integrable function on S2 , let

‖W‖�,1 := sup
f ,g :S→{0,1}

∣∣∣∫
S2

W (x, y)f(x)g(y) dµ(x) dµ(y)
∣∣∣, (5.9)



Bollobás et al.: Monotone Graph Limits and Quasimonotone Graphs 211

where the supremum is over all pairs of measurable 0/1-valued functions on S.
(We could equally well consider functions taking values in [0, 1]; the value of the
supremum does not change.) Expressing each of the functions f, g in (2.2) as the
difference of two 0/1-valued functions, we see that

‖W‖�,1 ≤ ‖W‖� ≤ 4‖W‖�,1 , (5.10)

so for all questions concerning convergence, the norms are equivalent.
In analogy with (2.3), given Wi ∈ L1(S2

i ), i = 1, 2, let

δ�,1(W1 ,W2) := inf
ϕ1 ,ϕ2

‖Wϕ1
1 − Wϕ2

2 ‖�,1 , (5.11)

where, as in (2.3), the infimum is taken over all couplings (ϕ1 , ϕ2) of S1 and S2 .

Lemma 5.9. If W1 and W2 are monotone kernels on an ordered probability space
(S,≺), then δ�,1(W1 ,W2) = ‖W1 − W2‖�,1 .

Proof. Suppose that ϕ1 , ϕ2 are measure-preserving maps S′ → S for some proba-
bility space S′. It suffices to show that ‖Wϕ1

1 − Wϕ2
2 ‖�,1 ≥ ‖W1 − W2‖�,1 .

Given a probability space (S, µ), an integrable function W on S2 , and two
functions f, g : S → {0, 1}, set

If,g (W ) :=
∫
S2

W (x, y)f(x)g(y) dµ(x) dµ(y),

so ‖W‖�,1 = supf ,g |If,g (W )|. Swapping W1 and W2 if necessary, we may assume
that ‖W1 − W2‖�,1 = supf ,g If ,g (W1 − W2). Hence, fixing (arbitrary) functions
f, g : S → {0, 1}, it suffices to prove that

sup
f ′,g ′

If ′,g ′(Wϕ1
1 − Wϕ2

2 ) ≥ If,g (W1 − W2), (5.12)

since ‖Wϕ1
1 − Wϕ2

2 ‖� is at least the left-hand side.
The first statement (5.8) of Lemma 5.7 says exactly that if h1 and h2 are

increasing integrable functions on (S, µ,≺) and ϕ1 , ϕ2 : (S′, µ′) → (S, µ) are
measure-preserving, then

max
f ′:S′→{0,1}

∫
S′

(
h1(ϕ1(x)) − h2(ϕ2(x))

)
f ′(x) dµ′(x)

≥ max
f :S→{0,1}

∫
S

(
h1(t) − h2(t)

)
f(t) dµ(t),

(5.13)

where the maximization is over all {0, 1}-valued functions on the relevant space;
the corresponding supremum is clearly attained. We shall use this inequality
twice; in particular, we shall twice use the observation that a specific f on the
right is “beaten” by some f ′ on the left.
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Let hi(t) =
∫
S Wi(t, u)g(u) dµ(u). Then (since g(u) is nonnegative) hi is mono-

tone. Applying (the observation following) (5.13) to these functions and our
function f , we find that there is some f ′ : S′ → {0, 1} such that∫

S′

(∫
S

(W1(ϕ1(x), u) − W2(ϕ2(x), u)) g(u) dµ(u)
)

f ′(x) dµ′(x)

≥
∫
S

(∫
S

(W1(t, u) − W2(t, u)) g(u) dµ(u)
)

f(t) dµ(t) = If,g (W1 − W2).

Using Fubini’s theorem, we may rewrite the left-hand side as

I :=
∫
S

(∫
S′

(
W1(ϕ1(x), u) − W2(ϕ2(x), u)

)
f ′(x) dµ′(x)

)
g(u) dµ(u).

Let h′
i(u) =

∫
S′ Wi(ϕi(x), u)f ′(x) dµ′(x). Then the h′

i are again monotone, so
applying (5.13) to these functions and g gives a g′ : S′ → {0, 1} such that∫

S′

(∫
S′

(
W1(ϕ1(x), ϕ1(y)) − W2(ϕ2(x), ϕ2(y))

)
f ′(x) dµ′(x)

)
g′(y) dµ′(y) ≥ I.

But now the left-hand side is simply If ′,g ′(Wϕ1
1 − Wϕ2

2 ), so we have If ′,g ′(Wϕ1
1 −

Wϕ2
2 ) ≥ I ≥ If,g (W1 − W2), establishing (5.12).

In the light of (5.10), Lemma 5.9 has the following immediate corollary.

Lemma 5.10. If W1 and W2 are monotone kernels on an ordered probability space
(S,≺), then δ�(W1 ,W2) ≥ ‖W1 − W2‖�/4.

It seems plausible that δ�(W1 ,W2) = ‖W1 − W2‖� for monotone kernels, but
we do not have a proof (or indeed a strong feeling that this is actually true).

We are now ready to bound the L1 distance with “rearrangement” in terms
of the cut metric when the kernels in question are monotone.

Lemma 5.11. If W1 and W2 are monotone kernels on an ordered probability space
(S, µ,≺), then

δ1(W1 ,W2) ≤ 26 δ�(W1 ,W2)2/3 . (5.14)

Proof. Combining Lemma 5.8, Theorem 5.5, and Lemma 5.10, we have

δ1(W1 ,W2) = ‖W1 − W2‖L1 (S2 ) ≤ 10‖W1 − W2‖2/3
� ≤ 10(4δ�(W1 ,W2))2/3 ,

(5.15)
giving the result.
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Remark 5.12. Using Theorem 4.5 (which is proved below), Lemma 5.11 immediately
extends to monotone kernels defined on possibly different ordered probability
spaces.

Remark 5.13. The exponent 2/3 in (5.14) is best possible, as shown by the kernels
W ′

1 , W ′
2 in Example 5.6. Indeed, for these kernels, the first inequality in (5.15) is

tight up to the constant. The second inequality is always tight up to the constant
42/3 , since by definition, δ�(W1 ,W2) ≤ ‖W1 − W2‖�.

We are now ready to prove the first few results in Section 4.

Proof of Theorem 4.3. The equivalence of the different metrics in (iii) follows from
Theorem 5.5, Lemmas 5.8 and 5.10 (see (5.15)), and the inequality δ�(W1 ,W2) ≤
δ1(W1 ,W2).

As a special case, for two kernels W1 ,W2 ∈ W↑(S),

δ�(W1 ,W2) = 0 ⇐⇒ ‖W1 − W2‖L1 (S2 ) = 0 ⇐⇒ W1 = W2 a.e.,

which establishes (ii).
For (i), we show that W↑(S) is closed and totally bounded as a subset of

L1(S2). First, if Wν ∈ W↑(S) and Wν → W in L1(S2) as ν → ∞, then there is
a subsequence that converges a.e. to W , and replacing W by the lim sup of that
subsequence, we see that W ∈ W↑(S). Hence, W↑(S) is closed.

Next, first assume that S is atomless. By Lemma 5.3, for every n there is
a partition Pn such that for every kernel W ∈ W↑(S), there is a Pn -step ker-
nel Wn with ‖W − Wn‖L1 (S2 ) ≤ 4/n. If Fn is the finite set of Pn -step ker-
nels taking values in

{
0, 1

n , 2
n , . . . , 1

}
, then there always exists a W ′

n ∈ Fn with
‖Wn − W ′

n‖L1 (S2 ) ≤ 1/n, and thus ‖W − W ′
n‖L1 (S2 ) ≤ 5/n. Since n is arbitrary,

this shows that W↑(S) is totally bounded.
If S has atoms, we consider as above Ŝ = S × [0, 1] and π : Ŝ → S; then W �→

Wπ is an isometric embedding of L1(S2) into L1(Ŝ2). This embeds W↑(S) into
W↑(Ŝ), and since the latter is totally bounded, W↑(S) is too.

Proof of Theorem 4.5. If S has atoms, we replace it, as above, by Ŝ = S × [0, 1];
thus we may assume that S is atomless. By Lemma 5.3, there is a sequence of
step kernels Wn that converges to W in L1(S2). Each Wn is obviously equiva-
lent to the monotone step kernel W ′

n on [0, 1] defined by W ′
n = w

(n)
ij on Ii × Ij ,

where Ii := ((i − 1)/n, i/n]. We have ‖W ′
n − W ′

m‖L1 ([0,1]2 ) = ‖Wn − Wm‖L1 (S2 ) ,
and thus (W ′

n ) is a Cauchy sequence in L1([0, 1]2). Hence there is some W ′ such
that W ′

n → W ′ in L1([0, 1]2), and Theorem 4.3 (i) implies that W ′ ∈ W↑([0, 1]).
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For every n,

δ�(W,W ′) ≤ δ�(W,Wn ) + δ�(Wn,W ′
n ) + δ�(W ′

n ,W ′)

≤ 4
n

+ 0 + ‖W ′
n − W ′‖L1 ([0,1]2 ) .

Since W ′
n → W ′ in L1([0, 1]2), it follows that δ�(W,W ′) = 0, so W ′ and W are

equivalent.

6. Proofs of Theorem 4.7, Lemmas 4.8 and 4.9, and Theorem 4.13

In this section we prove the remaining results of Section 4.
We start with a technical lemma, which is fairly obvious but nevertheless

deserves to be stated precisely.

Lemma 6.1. Suppose that (S1 , µ1 ,≺1) and (S2 , µ2 ,≺2) are ordered probability
spaces, and that S1 × S2 is equipped with a probability measure µ such that the
projection π1 onto S1 is measure-preserving. Let ≺∗

1 be the lexicographic order
on S1 × S2 . If W is a kernel on S1 , then for j = 1, 2,

Ωj (W,≺1) = Ωj (Wπ1 ,≺∗
1).

In most applications, we take µ = µ1 × µ2 .

Proof. Writing x ∈ S := S1 × S2 as x = (x1 , x2), by (4.8), Ω1(Wπ1 ,≺∗
1) is equal to

sup
f ,g

∫∫∫
x≺∗

1 y

(
W (x1 , z1) − W (y1 , z1)

)
f(x, y)g(z) dµ(x) dµ(y) dµ(z), (6.1)

where the supremum is over all f : S2 → [0, 1] and g : S → [0, 1].
Let F1 be the σ-field on S obtained by pulling back that on S1 . Thus the F1-

measurable functions are all functions of the form h(x1 , x2) = h1(x1) for measur-
able h1 on S1 . In (6.1) we may replace f and g by their conditional expectations
given F1 ×F1 and F1 , respectively. Recalling that ≺∗

1 is lexicographic, and not-
ing that the integrand vanishes when x1 = y1 , (6.1) reduces to

sup
f1 ,g1

∫∫∫
x1 ≺1 y1

(
W (x1 , z1) − W (y1 , z1)

)
f1(x1 , y1)g1(z1) dµ1(x1) dµ1(y1) dµ1(z1),

with the supremum over f1 : S2
1 → [0, 1] and g1 : S1 → [0, 1]. By (4.8), this is

simply Ω1(W,≺1).
(In the special case µ = µ1 × µ2 , the argument above is equivalent to simply

integrating over x2 , y2 , z2 in (6.1).)
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For Ω2, the argument is similar, using (4.9) instead of (4.8).

Proof of Theorem 4.7. Here it makes no difference whether we consider Ω1 or Ω2, so
we simply write Ω.

If W = W ′ a.e. where W ′ is monotone, then we have Ω(W,≺, A) =
Ω(W ′,≺, A) = 0 for all A ⊆ S, and hence Ω(W,≺) = 0.

Conversely, suppose that Ω(W,≺) = 0. Let A,B,C,D ⊆ S have positive mea-
sures, and suppose that A ≺ B. Since Ω(W,≺) = 0, we have Ω(W,≺, C) = 0, and
thus by (4.7), WC (x) ≤ WC (y) for a.e. (x, y) with x ≺ y, and in particular for a.e.
(x, y) ∈ A × B. Averaging over all such (x, y) yields W (A,C) ≤ W (B,C). Simi-
larly, by symmetry, if C ≺ D, then W (B,C) ≤ W (B,D). Consequently, letting
A � B mean that A ≺ B or A = B, we have

W (A,C) ≤ W (B,D) if A � B, C � D. (6.2)

Assuming still that A,B,C,D ⊆ S have positive measures, suppose that A ≺
B and C ≺ D. If A1 ⊆ A and C1 ⊆ C, then (6.2), applied to A1 , B,C1 ,D, yields∫∫

A 1 ×C1

W ≤ (µ × µ)(A1 × C1)W (B,D).

Since every measurable subset of A × C can be approximated (in measure) by a
finite disjoint union of rectangle sets Ai × Ci , and W is bounded, it follows that∫∫

E

W ≤ (µ × µ)(E)W (B,D) for every E ⊆ A × C.

Taking E := {(x, y) ∈ A × C : W (x, y) > W (B,D)}, we obtain µ × µ(E) = 0,
and thus

W (x, y) ≤ W (B,D) a.e. on A × C when A ≺ B and C ≺ D. (6.3)

Similarly, by reversing the inequalities, we obtain

W (x, y) ≥ W (B,D) a.e. on A × C when A � B and C � D. (6.4)

Suppose now that S is atomless, and consider, for a given n, the partition P =
{Ai}n

i=1 defined in (5.3). By (6.2), Wn := WP is a monotone kernel. By (6.3) and
(6.4), W−

n (x, y) ≤ W (x, y) ≤ W +
n (x, y) a.e. on each Ai × Aj , and thus a.e. on S2 .

Further, by averaging this or directly from (6.2), we have also W−
n ≤ Wn ≤ W +

n .
It follows as in the proof of Lemma 5.3 that

‖Wn − W‖L1 (S2 ) ≤
4
n

. (6.5)

In particular, Wn → W in L1(S2), so there is a subsequence that converges a.e. to
W . Taking W ′ to be the lim sup of this subsequence, we see that W ′ is monotone
and W = W ′ a.e. This completes the proof when S is atomless.



216 Internet Mathematics

If S has atoms, we may either modify the argument above, or use our stan-
dard trick of replacing S by S × [0, 1], using Lemma 6.1; this gives a mono-
tone kernel W ′ on S × [0, 1] with W ′((x, a), (y, b)) = W (x, y) for a.e. (x, a, y, b) ∈
(S × [0, 1])2 , and thus W is a.e. equal to the monotone kernel W ′′ on S defined
by W ′′(x, y) =

∫ 1
0

∫ 1
0 W ′((x, a), (y, b)) da db.

Proof of Lemma 4.8. Let Ii := ((i − 1)/n, i/n], and for A ⊆ [0, 1], set Ai := A ∩ Ii . For
j = 1, 2, by (4.2) and (4.3), Ωj (WG,≺, <,A) depends only on the numbers ai :=
µ(Ai) ∈ [0, 1/n]; moreover, since the function u �→ u+ is convex, Ωj (WG,≺, <,A)
is a convex function of (a1 , . . . , an ); hence it attains its maximum when each
ai is either 0 or 1/n. In other words, it suffices to consider A =

⋃
i∈B Ii for

some B ⊆ V . In this case, it is easily seen that Ωj (WG,≺, <,A) = Ωj (G,≺, B),
noting that

∫
A WG,≺(x, z) dz =

∫
A WG,≺(y, z) dz if x, y ∈ Ii for some i. Taking

the maximum over B ⊆ V yields Ωj (WG,≺, <) = Ωj (G,≺).
For the second statement, recall that while WG = WG,≺ depends on the order

≺ on V = V (G), Ωj (WG ) does not. Given any order ≺ on V , using ≺ to define
WG , from above we have Ωj (WG ) ≤ Ωj (WG,<) = Ωj (G,≺). Thus Ωj (WG ) ≤
Ωj (G).

Lemma 6.2. Let (S,≺) be an ordered probability space, and let j ∈ {1, 2}.

(i) If W1 ,W2 ∈ L1(S2), then

Ωj (W1 + W2 ,≺, A) ≤ Ωj (W1 ,≺, A) + Ωj (W2 ,≺, A),
Ωj (W1 + W2 ,≺) ≤ Ωj (W1 ,≺) + Ωj (W2 ,≺).

(ii) If W ∈ L1(S2), then Ωj (W,≺) ≤ j‖W‖�.

(iii) If W1 ,W2 ∈ L1(S2), then
∣∣Ωj (W1 ,≺) − Ωj (W2 ,≺)

∣∣ ≤ j‖W1 − W2‖�.

Proof. (i): An immediate consequence of the inequality (a + b)+ ≤ a+ + b+ for real
a and b, and the definitions (4.2)–(4.4).

(ii): By (4.7) and Fubini’s theorem,

Ω1(W,≺, A) ≤
∫∫

x≺y

(∣∣WA (x)
∣∣ +

∣∣WA (y)
∣∣) dµ(x) dµ(y)

=
∫
S

µ{y : y � x}
∣∣WA (x)

∣∣ dµ(x) +
∫
S

µ{x : x ≺ y}
∣∣WA (y)

∣∣ dµ(y)

=
∫
S

µ{z : z 
= x}
∣∣WA (x)

∣∣ dµ(x) ≤
∫
S

∣∣WA (x)
∣∣ dµ(x)

=
∫∫

S2
W (x, y)f(x)g(y) dµ(x) dµ(y) ≤ ‖W‖�,
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where f(x) := sign(WA (x)) and g(y) := 1A (y); the final inequality follows from
the definition (2.1) of the cut norm. Now apply (4.3) if j = 2, and take the
supremum over A.

(iii): A simple consequence of (i), applied to the sums W1 + (W2 − W1) and
W2 + (W1 − W2), and (ii).

The function WS = WS(x) :=
∫
S W (x, y) dµ(y) is known as the marginal of W .

(There is also a second marginal, obtained by integrating over the first variable.
Here we consider only symmetric functions, so the two marginals coincide.) It is
well known that the marginal of a kernel is the natural analogue of the degree
sequence of a graph; see, e.g., [Diaconis et al. 09]. We have the following analogue
of Lemma 3.4.

Lemma 6.3. Let < be a (measurable) order on S and assume that x < y =⇒
WS(x) ≤ WS(y). Then Ω2(W,<) = Ω2(W ).

Proof. Follow the proof of Lemma 3.4, replacing sums by integrals and degrees by
the values of WS .

Remark 6.4. For Ω1, it follows by (4.6) that Ω1(W,<) ≤ 2Ω1(W ). The factor 2 here
is best possible, just as in Corollary 3.5. This can be seen by taking W = WG ,
where G is the complete bipartite graph Km,m considered in Example 3.7.

Corollary 6.5. Let S be a probability space and W a kernel on S. Then Ω2(W ) = 0
if and only if there exists an order ≺ on S such that Ω2(W,≺) = 0.

Proof. The “if” direction is clear. Thus, assume Ω2(W ) = 0. Then there exists a
measurable order ≺0 on S. Define an order ≺ on S by

x ≺ y if WS(x) < WS(y) or (WS(x) = WS(y) and x ≺0 y). (6.6)

This is a measurable order to which Lemma 6.3 applies, so we have Ω2(W,≺) =
Ω2(W ) = 0.

Of course, the same result for Ω1 follows by (4.6).

Proof of Lemma 4.9. From Lemma 4.8 we have Ω2(WG ) ≤ Ω2(G). For the reverse
inequality, let ≺ be an order on V such that v ≺ w =⇒ d(v) ≤ d(w), and
use this order to define WG . Then WG satisfies the assumption of Lemma 6.3
with the standard order < on [0, 1], and thus Ω2(WG,<) = Ω2(WG ). Hence, by
Lemma 4.8,

Ω2(G) ≤ Ω2(G,≺) = Ω2(WG,<) = Ω2(WG ).
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Our next lemma shows that Ω2 is continuous with respect to the cut
metric.

Lemma 6.6. If W1 and W2 are kernels on probability spaces S1 and S2 , and there
exists a measurable order on S1 , then Ω2(W1) ≤ Ω2(W2) + 2δ�(W1 ,W2).

Proof. Recall that the set of step functions is dense in L1(S2
1 ). Hence, for any ε > 0,

there exists a step kernel W ′
1 on S1 with ‖W1 − W ′

1‖� ≤ ‖W1 − W ′
1‖L1 (S2

1 ) < ε.
By Lemma 6.2 (iii), replacing W1 by W ′

1 changes Ω2(W1) by less than 2ε, and
the same holds for δ�(W1 ,W2). Hence, it suffices to prove the result when W1 is
a step kernel.

Consequently, assume that W1 is a P-step kernel for a finite partition P =
{Ai}i of S1 . Then its marginal W1,S1 is constant on each Ai , and we may assume
that A1 , A2 , . . . are labeled such that W1,S1 (x) ≤ W1,S1 (y) if x ∈ Ai , y ∈ Aj with
i < j. Let ≺0 be a measurable order on S1 , and define ≺1 by

x ≺1 y if x ∈ Ai and y ∈ Aj with (i < j or (i = j and x ≺0 y)).

Let ≺2 be any measurable order on S2 . (If none exists, then Ω2(W2) ≥ Ω2(W1)
by definition of Ω2(W2), and there is nothing to prove.) Consider a coupling
(π1 , π2) defined on (S1 × S2 , µ) for some µ. Let ≺∗

1 be the lexicographic order
on S1 × S2 , and let ≺∗

2 be the lexicographic order with the factors in opposite
order. By Lemma 6.1,

Ω2(Wk,≺k ) = Ω2(Wπk

k ,≺∗
k ), k = 1, 2. (6.7)

Moreover, Lemma 6.3 applies to ≺∗
1 and Wπ1

1 and shows that

Ω2(Wπ1
1 ,≺∗

1) = Ω2(Wπ1
1 ) ≤ Ω2(Wπ1

1 ,≺∗
2), (6.8)

and by Lemma 6.2 (iii),

Ω2(Wπ1
1 ,≺∗

2) ≤ Ω2(Wπ2
2 ,≺∗

2) + 2‖Wπ1
1 − Wπ2

2 ‖�. (6.9)

Combining (6.7)–(6.9), we obtain

Ω2(W1 ,≺1) ≤ Ω2(W2 ,≺2) + 2‖Wπ1
1 − Wπ2

2 ‖� ,

and the result follows by taking the infimum over all such couplings (π1 , π2),
i.e., over all probability measures µ with the right marginals, and then over all
orders ≺2 .
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Corollary 6.7. If W1 and W2 are equivalent kernels on probability spaces S1 and S2

that have measurable orders, then

Ω2(W1) = Ω2(W2) and
1
2

Ω1(W2) ≤ Ω1(W1) ≤ 2Ω1(W2).

Proof. We have δ�(W1 ,W2) = 0; the first statement follows by Lemma 6.6. To
deduce the second, use (4.6).

Remark 6.8. The equivalent of Lemma 6.6 for Ω1 does not hold, and the inequalities
1
2 Ω1(W2) ≤ Ω1(W1) ≤ 2Ω1(W2) in Corollary 6.7 are best possible. In fact, if
Wm := WV

Km , m
is the kernel defined in Remark 4.11 for the bipartite graph Km,m ,

then Wm is equivalent to WKm , m
(defined on [0, 1]), but WKm , m

is the same
for all m. Hence, all Wm are equivalent. Nevertheless, Remark 4.11 and (3.20)
show that Ω1(Wm ) = Ω1(Km,m ) = (1 + m−2)/16 if m is odd, while Ω1(Wm ) =
Ω1(Km,m ) = 1/16 if m is even. In particular, Ω1(W1) = 1/8 = 2Ω1(W2).

On the other hand, for kernels W1 ,W2 on the standard space S = [0, 1]
(and thus for kernels on any atomless Borel spaces), it follows from (2.5) and
Lemma 6.2 (iii) that

∣∣Ω1(W1) − Ω1(W2)
∣∣ ≤ δ�(W1 ,W2), since clearly Ω1(Wϕ

2 ) =
Ω1(W2) for a measure-preserving bijection ϕ. In particular, Ω1(W1) = Ω1(W2)
for any two equivalent kernels on [0, 1]. Hence the unruly behavior of Ω1 is caused
by the atoms.

Proof of Theorem 4.13. (i) =⇒ (ii). We use Ω2. If Ω2(W ) = 0, then by Corollary 6.5
there exists an order ≺ on S such that Ω2(W,≺) = 0, and Theorem 4.7 shows
that W is a.e. equal to a monotone kernel on (S,≺).

(ii) =⇒ (iii). Trivial.
(iii) =⇒ (i). If W is equivalent to a monotone kernel W ′ on some proba-

bility space S′, then δ�(W,W ′) = 0 and Ω2(W ′) = 0, and thus Ω2(W ) = 0 by
Lemma 6.6.

(iii) ⇐⇒ (iv) ⇐⇒ (v). By Theorem 4.5.

7. Proof of Theorems 1.7 and 1.8

After the preparation above, the proofs are simple.

Proof of Theorem 1.8. Let W be a kernel on [0, 1] representing Γ, i.e., Γ = ΓW and
Gν → W . Since Gν → W , we have δ�(WGν

,W ) → 0.
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Suppose first that Γ ∈ U↑; we then may choose W ∈ W↑, and thus Ω2(W,<) =
0, so Ω2(W ) = 0. Then by Lemmas 4.9 and 6.6,

Ω2(Gν ) = Ω2(WGν
) ≤ Ω2(W ) + 2δ�(WGν

,W ) = 2δ�(WGν
,W ) → 0.

Hence Ω2(Gν ) → 0, and by Lemma 3.1, Ω0(Gν ) → 0 as well.
Conversely, suppose that Ω0(Gν ) → 0, and thus by Lemma 3.1, Ω2(Gν ) → 0.

Then by Lemmas 6.6 and 4.9 again,

Ω2(W ) ≤ Ω2(WGν
) + 2δ�(WGν

,W ) = Ω2(Gν ) + 2δ�(WGν
,W ) → 0,

and thus Ω2(W ) = 0. Hence Γ = ΓW ∈ U↑ by Theorem 4.13.

Proof of Theorem 1.7. If Ω0(Gν ) → 0, then the same holds for every subsequence.
Hence Theorem 1.8 shows that every convergent subsequence has a limit that is
in U↑, which by definition says that (Gν ) is quasimonotone.

Conversely, suppose that (Gν ) is quasimonotone but Ω0(Gν ) 
→ 0. We can
then find ε > 0 and a subsequence along which Ω0(Gν ) > ε. By restricting to a
suitable subsubsequence, we may further assume that (Gν ) converges to some
limit Γ. By the assumption that (Gν ) is quasimonotone, we have Γ ∈ U↑, and
thus by Theorem 1.8, Ω0(Gν ) → 0 along the subsubsequence, a contradiction.

8. Quasithreshold Graphs

In the definition (1.5) of Ω0(G,≺), we take the maximum over A of the sum
in (1.3). If instead we take the maximum inside the sum, then we obtain the
functional

Ω∗
0(G,≺) :=

1
n3

∑
v≺w

∣∣N(v) \ (N(w) ∪ {w})
∣∣, (8.1)

since maxA

(
e(v,A \ {w}) − e(w,A \ {v})

)
+ is obtained by taking (for example)

A = N(v) \ N(w). From Ω1, we similarly obtain the slightly simpler functional

Ω∗
1(G,≺) :=

1
n3

∑
v≺w

∣∣N(v) \ N(w)
∣∣ = Ω∗

0(G,≺) + O

(
1
n

)
. (8.2)

For a kernel W on an ordered probability space (S, µ,≺), taking the supremum
over A inside the double integral in (4.2), we define

Ω∗(W,≺) :=
∫∫∫

x≺y

(
W (x, z) − W (y, z)

)
+ dµ(x) dµ(y) dµ(z) (8.3)
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(cf. (4.8)). For any graph G with an ordering ≺ of the vertices, corresponding to
Lemma 4.8 we have

Ω∗(WG,<) = Ω∗
1(G,≺). (8.4)

Obviously, Ω∗
0(G,≺) ≥ Ω0(G,≺), and similarly for Ω∗

1 and Ω∗.
Let

Ω∗
j (G) := min

≺
Ω∗

j (G,≺) (j = 0, 1), Ω∗(W ) := inf
≺

Ω∗(W,≺). (8.5)

For kernels, we can use Ω∗ instead of Ω to characterize monotonicity; cf. The-
orems 4.7 and 4.13.

Theorem 8.1. Let (S, µ,≺) be an ordered probability space and W a kernel on (S, µ).
Then Ω∗(W,≺) = 0 if and only if W is a.e. equal to a monotone kernel.

Proof. If W is a.e. equal to a monotone kernel, then W (x, z) ≤ W (y, z) for a.e.
(x, y, z) with x ≺ y, and thus Ω∗(W,≺) = 0. The converse follows by Theo-
rem 4.7, since Ω1(W,≺) ≤ Ω∗(W,≺).

Theorem 8.2. Let W be a kernel on a probability space S with at least one measurable
order. Then Ω∗(W ) = 0 if and only if W is a.e. equal to a monotone kernel on
(S,≺) for some order ≺ on S.

Proof. If Ω∗(W ) = 0, then Ω1(W ) = 0, since Ω1(W ) ≤ Ω∗(W ). Hence the conclu-
sion follows by Theorem 4.13.

Conversely, if W is a.e. equal to a monotone kernel on (S,≺), then Ω∗(W ) ≤
Ω∗(W,≺) = 0 by Theorem 8.1.

Theorem 4.13 gives further equivalent conditions, for example that ΓW is a
monotone graph limit.

For a sequence of graphs, we cannot replace Ω0 by Ω∗
0 in Theorem 1.7. In

fact, we have the following result, which shows that Ω∗
0(Gν ) → 0 characterizes

threshold graph limits rather than monotone graph limits. (Recall that threshold
graph limits are the monotone graph limits that correspond to 0/1-valued kernels;
see Remark 1.9.)

As usual, we define the edit distance de(G,G′) of two graphs on the same vertex
set V (G) = V (G′) by de(G,G′) = |E(G)�E(G′)|. If A is a class of graphs, then

de(G,A) := inf
{
de(G,G′) : G′ ∈ A and V (G′) = V (G)

}
. (8.6)
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Theorem 8.3. Let (Gν ) be a sequence of graphs with |Gν | → ∞. Then the following
are equivalent:

(i) Ω∗
0(Gν ) → 0.

(ii) Every convergent subsequence of (Gν ) has a limit that is a threshold graph
limit.

(iii) de(Gν , T ) = o
(
|Gν |2

)
, where T is the class of threshold graphs.

(iv) There exists a sequence of threshold graphs G′
ν with V (G′

ν ) = V (Gν ) and∣∣E(Gν )�E(G′
ν )

∣∣ = o
(
|Gν |2

)
.

(v) There exists a sequence of threshold graphs G′
ν with V (G′

ν ) = V (Gν ) and
‖WGν

− WG ′
ν
‖L1 (S2 ) = o(1).

(vi) There exists a sequence of threshold graphs G′
ν with V (G′

ν ) = V (Gν ) and
‖WGν

− WG ′
ν
‖� = o(1).

We say that a sequence (Gν ) of graphs with |Gν | → ∞ is quasithreshold if it
satisfies one, and thus all, of the conditions in Theorem 8.3.

As a special case of the equivalence (i) ⇐⇒ (ii), we see that if Gν → Γ, then
Γ is a threshold graph limit if and only if Ω∗

0(Gν ) → 0; cf. Theorem 1.8.
The proof of Theorem 8.3 is simpler than the proof of Theorem 1.7, but we

will nevertheless need some other results first. One complication is that there is
no analogue of Lemma 6.2 (iii): as is shown by the following example, Ω∗(W,≺)
is not continuous for the cut norm.

Example 8.4. Let W = 1/2 be constant on [0, 1]2 , and let (Gn ) be a sequence
of graphs with |Gn | = n and Gn → W , i.e., (Gn ) is a sequence of quasirandom
graphs. (For example, let Gn be random graphs G(n, 1/2).) Then for every ε > 0,∣∣|N(v) \ N(w)| − n/4

∣∣ ≤ εn for all but o(n2) pairs (v, w) ∈ V 2
Gn

, and thus for any
order ≺,

∣∣n3Ω∗
1(Gn,≺) − n3/8

∣∣ ≤ εn3 + o(n3), so
∣∣Ω∗

1(Gn,≺) − 1/8
∣∣ ≤ ε + o(1).

Since ε is arbitrary, it follows that

Ω∗(WGn
) = Ω∗

1(Gn ) → 1
8

= 0 = Ω∗(W ),

although ‖WGn
− W‖� → 0.

It is obvious that Ω∗ is continuous in the stronger L1 norm. It is possible to
prove Theorem 8.3 using this fact and Lemma 8.14 below, but it is simpler to
use another extension of Ω∗

1 to kernels.
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Definition 8.5. If (S, µ) is an atomless probability space and ≺ an order on S, let

Ω̃∗(W,≺) :=
∫∫∫

x≺y

W (x, z)
(
1 − W (y, z)

)
dµ(x) dµ(y) dµ(z). (8.7)

If S has atoms, we add half the integral over x = y (and any z), i.e., we add
1
2

∫∫
W (x, z)

(
1 − W (x, z)

)
µ{x}dµ(x) dµ(z).

The definition in the case that S has atoms is such that Ω̃∗(W,≺) = Ω̃∗(Ŵ , ≺̂),
where Ŵ is the extension of W to the atomless probability space Ŝ := S × [0, 1]
and ≺̂ is the lexicographic order on Ŝ.

Note that if W is 0/1-valued, then Ω̃∗(W,≺) = Ω∗(W,≺). In particular, for
any graph with an order ≺ on V = V (G), by (8.4),

Ω∗
1(G,≺) = Ω∗(WG,<) = Ω̃∗(WG,<). (8.8)

For our purposes Ω̃∗ is better than Ω∗ in two different ways. The first is that
unlike Ω∗, Ω̃∗ is continuous with respect to the cut norm. Before proving this,
we recall a basic property of the cut norm. (See [Janson 10], for example, for a
proof.) Recall that WS denotes the marginal of W , i.e., the function on S defined
by WS(x) :=

∫
S W (x, y) dµ(y).

Lemma 8.6. If W ∈ L1(S2), then ‖WS‖L1 (S) ≤ ‖W‖�.

Recall that by definition, a kernel W takes values in [0, 1].

Lemma 8.7. Let (S,≺) be an ordered probability space. If W1 and W2 are kernels
on S, then

∣∣Ω̃∗(W1 ,≺) − Ω̃∗(W2 ,≺)
∣∣ ≤ 2‖W1 − W2‖�.

Proof. We may assume that S is atomless. (Otherwise, we consider S × [0, 1].) In
this case, writing Ux for {y : y � x}, we have the alternative formula

Ω̃∗(W,≺) =
∫∫

W (x, z)µ(Ux) dµ(x) dµ(z)

−
∫∫∫

x≺y

W (x, z)W (y, z) dµ(x) dµ(y) dµ(z)

=
∫∫

µ(Ux)W (x, z) dµ(x) dµ(z)

−1
2

∫∫∫
W (x, z)W (y, z) dµ(x) dµ(y) dµ(z)

=
∫∫

µ(Ux)W (x, z) dµ(x) dµ(z) − 1
2

∫
WS(z)2 dµ(z). (8.9)
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By the definition (2.1) of the cut norm,∣∣∣∣
∫∫

µ(Ux)
(
W1(x, z) − W2(x, z)

)
dµ(x) dµ(z)

∣∣∣∣ ≤ ‖W1 − W2‖�.

Recalling that |Wj | ≤ 1 and using Lemma 8.6 on W1 − W2 , we have∣∣∣∣
∫
S

(
W1,S(z)2 − W2,S(z)2) dµ(z)

∣∣∣∣
=

∣∣∣∣
∫
S

(
W1,S(z) − W2,S(z)

)(
W1,S(z) + W2,S(z)

)
dµ(z)

∣∣∣∣
≤ 2‖W1,S(z) − W2,S(z)‖L1 (S) ≤ 2‖W1 − W2‖�.

Applying (8.9) to W1 and W2 , the result follows.

Theorem 8.8. Let (S,≺) be an ordered probability space and W a kernel on (S,≺).
Then Ω̃∗(W,≺) = 0 if and only if W is a.e. equal to a 0/1-valued monotone
kernel.

Proof. As usual, we may assume for simplicity that S is atomless. Suppose first
that Ω̃∗(W,≺) = 0. For a > 0, let Ea := {(x, y) ∈ S2 : a ≤ W (x, y) ≤ 1 − a}, and
for z ∈ S, let Ea(z) := {x ∈ S : (x, z) ∈ Ea} be the corresponding section.

If x, y ∈ Ea(z), then W (x, z)(1 − W (y, z)) ≥ a2 , and thus for each z,∫∫
x≺y

W (x, z)
(
1 − W (y, z)

)
dµ(x) dµ(y)

≥ a2µ × µ
{

(x, y) ∈ Ea(z)2 : x ≺ y
}

=
1
2
a2µ(Ea(z))2 .

Hence

0 = Ω̃∗(W,≺) ≥
∫
S

1
2
a2µ(Ea(z))2 dµ(z),

and thus µ(Ea(z)) = 0 for a.e. z, so µ × µ(Ea) =
∫
S µ(Ea(z)) dµ(z) = 0. Conse-

quently, Ea is a null set for every a > 0. Hence W (x, y) ∈ {0, 1} a.e. Thus W

is a.e. 0/1-valued, which implies that Ω∗(W,≺) = Ω̃∗(W,≺) = 0; hence Theo-
rem 8.1 shows that W is a.e. equal to a monotone kernel W ′. Finally, W ′ is a.e.
0/1-valued, and thus a.e. equal to the 0/1-valued monotone kernel 1{W ′ > 0}.

The converse is obvious.

We also have an analogue of Lemma 6.3. To prove this, we shall need the
following “rearrangement” inequality.



Bollobás et al.: Monotone Graph Limits and Quasimonotone Graphs 225

Lemma 8.9. Let ≺ and < be two orders on an atomless probability space S, and let
f be a bounded function on S. If x < y =⇒ f(x) ≤ f(y), then∫∫

x≺y

f(x) dµ(x) dµ(y) ≥
∫∫

x<y

f(x) dµ(x) dµ(y).

Proof. Consider first one arbitrary order ≺. Let Dy := {x : x ≺ y} and set ϕ(y) :=
µ(Dy ), and let D(t) be as in Lemma 5.2. Then Dy and D(ϕ(y)) are two downsets
with the same measure, and thus they differ only by a null set; cf. Lemma 5.1.

Let F (y) :=
∫

x≺y f(x) dµ(x) and define α(t) :=
∫

D (t) f(x) dµ(x). Then

F (y) =
∫

Dy

f =
∫

D (ϕ(y ))
f = α(ϕ(y)).

It was noted in the proof of Lemma 5.2 that if X has distribution µ, then ϕ(X)
has distribution U(0, 1). Equivalently, the function ϕ : S → [0, 1] maps µ to the
uniform measure on [0, 1]. Hence∫∫

x≺y

f(x) dµ(x) dµ(y) =
∫
S

F (y) dµ(y) =
∫
S

α(ϕ(y)) dµ(y) =
∫ 1

0
α(t) dt.

Now write α = α≺ and compare α≺(t) and α< (t). Both are integrals of f over
sets of measure t, and for α< the set is such that if x is in the set and y is not,
then x < y and thus f(x) ≤ f(y). It follows easily that α< (t) is the minimum
of

∫
E f dµ over all sets E of measure t, and thus in particular α< (t) ≤ α≺(t)

for any other order ≺. Consequently,
∫ 1

0 α< (t) dt ≤
∫ 1

0 α≺(t) dt, and the result
follows.

Lemma 8.10. Let < be a (measurable) order on S and assume that x < y =⇒
WS(x) ≤ WS(y). Then Ω̃∗(W,<) = Ω̃∗(W ).

Proof. We may again assume for simplicity that S is atomless. Let ≺ be any order
on S. We again use (8.9), which we write as

Ω̃∗(W,≺) =
∫
S

µ(Ux)WS(x) dµ(x) − 1
2

∫
S

WS(x)2 dµ(x).

The second integral does not depend on ≺. Moreover, the first integral equals∫∫
x≺y WS(x), which by Lemma 8.9 is minimized by taking ≺ equal to <. Hence

Ω̃∗(W,≺) ≥ Ω̃∗(W,<), and the result follows.

Remark 8.11. It follows by (8.8) that the corresponding result holds for graphs and
Ω∗

1 : ordering the vertices by their degrees achieves the minimum min≺ Ω∗
1(G,≺).
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Our next result shows that Ω̃∗ characterizes kernels that yield threshold graph
limits. Note the parallel and contrast to Theorems 4.13 and 8.2.

Theorem 8.12. Let W be a kernel on a probability space S with at least one measur-
able order. Then the following are equivalent:

(i) Ω̃∗(W ) = 0.

(ii) There exists an order ≺ on S such that W is a.e. equal to a 0/1-valued
monotone kernel on (S,≺).

(iii) W is equivalent to a 0/1-valued monotone kernel on some ordered proba-
bility space.

(iv) W is equivalent to a 0/1-valued monotone kernel on [0, 1].

(v) ΓW is a threshold graph limit.

Proof. (i) =⇒ (ii). There exists a measurable order ≺0 on S. As in the proof of
Corollary 6.5, we define an order ≺ on S by (6.6). Lemma 8.10 applies and yields
Ω̃∗(W,≺) = Ω̃∗(W ) = 0, and the result follows by Theorem 8.8.

(ii) =⇒ (i). Theorem 8.8 yields Ω̃∗(W,≺) = 0 and thus Ω̃∗(W ) ≤ Ω̃∗(W,≺) = 0.
(ii) ⇐⇒ (iii) ⇐⇒ (iv). Every kernel equivalent to an a.e. 0/1-valued kernel is

itself a.e. 0/1-valued; see Remark 1.9 and [Janson 10]. Furthermore, arguing as
in the proof of Theorem 8.8, a monotone kernel W that is a.e. 0/1-valued is a.e.
equal to the 0/1-valued monotone kernel 1{W > 0}. Hence (ii) ⇐⇒ (iii) ⇐⇒ (iv)
follows from the corresponding equivalences in Theorem 4.13.

(iv) ⇐⇒ (v). As noted in the introduction, this was proved in [Diaconis et
al. 09].

We need some more preparation before the proof of Theorem 8.3.

Lemma 8.13. Let W1 and W2 be kernels on a probability space S with W1 0/1-valued,
and let W ′

1 be a 0/1-valued step kernel with n steps. Then

‖W1 − W2‖L1 (S2 ) ≤ n2‖W1 − W2‖� + 2‖W1 − W ′
1‖L1 (S2 ) .

Proof. Let {Ai}n
1 be a partition of S such that W ′

1 is constant 0 or 1 on each
Ai × Aj .
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If W ′
1 = 0 on Ai × Aj , then∫∫

Ai ×Aj

|W ′
1 − W2 | =

∫∫
Ai ×Aj

W2 ≤ ‖W1 − W2‖� +
∫∫

Ai ×Aj

W1

= ‖W1 − W2‖� +
∫∫

Ai ×Aj

|W1 − W ′
1 |.

If W ′
1 = 1 on Ai × Aj , then∫∫

Ai ×Aj

|W ′
1 − W2 | =

∫∫
Ai ×Aj

(1 − W2) ≤ ‖W1 − W2‖� +
∫∫

Ai ×Aj

(1 − W1)

= ‖W1 − W2‖� +
∫∫

Ai ×Aj

|W1 − W ′
1 |.

Thus in both cases,
∫∫

Ai ×Aj
|W ′

1 − W2 | ≤
∫∫

Ai ×Aj
|W1 − W ′

1 | + ‖W1 − W2‖�,
and summing over all i and j yields

‖W ′
1 − W2‖L1 ≤ ‖W1 − W ′

1‖L1 + n2‖W1 − W2‖�.

The result follows by ‖W1 − W2‖L1 ≤ ‖W1 − W ′
1‖L1 + ‖W ′

1 − W2‖L1 .

Lemma 8.14. Let W and W1 ,W2 , . . . be kernels on a probability space S, and
assume that W is 0/1-valued. Then ‖Wn − W‖� → 0 as n → ∞ if and only if
‖Wn − W‖L1 (S2 ) → 0.

Proof. Assume ‖Wn − W‖� → 0. Here W is the indicator function 1A of a mea-
surable set A ⊆ S2 . Any such set can be approximated in measure by a finite
disjoint union of rectangle sets

⋃
i Ai × Bi , and we may assume that this set is

symmetric, since A is; in other words, given any ε > 0, there exists a 0/1-valued
step kernel W ′ such that ‖W − W ′‖L1 < ε. Let the corresponding partition have
N = N(ε) parts. Lemma 8.13 then yields

‖W − Wn‖L1 ≤ N 2‖W − Wn‖� + 2ε → 2ε

as n → ∞. Hence, lim supn→∞ ‖W − Wn‖L1 = 0.
The converse is obvious.

Proof of Theorem 8.3. Note first that (i) is equivalent to Ω∗
1(Gν ) → 0 by (8.2), and

that Ω∗
1(Gν ) = Ω̃∗(WGν

) by (8.8).
(i) =⇒ (ii). Assume (i) and consider a subsequence that converges. We thus

assume that there exists a graph limit Γ with Gν → Γ. Let W be a kernel on
[0, 1] representing Γ.
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We have Gν → W , and thus δ�(WGν
,W ) → 0. Moreover, by [Borgs et al. 08,

Lemma 5.3] we may choose the labeling of the vertices in Gν such that

‖WGν
− W‖� → 0. (8.10)

This labeling yields an order < on V (Gν ). Let ≺ be an order on V (Gν ) achieving
the minimum in (8.5) for Ω∗

1(Gν ), i.e., such that

Ω∗
1(Gν ,≺) = Ω∗

1(Gν ) = o(1). (8.11)

In general ≺ differs from <, but it clearly corresponds to some order ≺ν on
[0, 1], and by (8.8) again,

Ω∗
1(Gν ,≺) = Ω∗(WGν

,≺ν ) = Ω̃∗(WGν
,≺ν ). (8.12)

By Lemma 8.7 and (8.10)–(8.12), we then have

Ω̃∗(W,≺ν ) ≤ Ω̃∗(WGν
,≺ν ) + 2‖W − WGν

‖� → 0,

as ν → ∞; hence Ω̃∗(W ) = 0 and Γ = ΓW is a threshold graph limit by Theo-
rem 8.12.

(ii) =⇒ (iii) Suppose that (iii) fails; then there exist ε > 0 and a subsequence
for which de(Gν , T ) > ε|Gν |2 . We may select a subsubsequence such that Gν

converges; we shall show that (ii) implies (iii) in this case, which yields a con-
tradiction.

Suppose then that Gν → Γ for some graph limit Γ, and that (ii) holds. By
assumption, Γ is a threshold graph limit. Let W be a kernel on [0, 1] representing
Γ. By the result of [Diaconis et al. 09] discussed in the introduction, we may
choose W to be monotone and 0/1-valued.

We have Gν → W , and thus δ�(WGν
,W ) → 0. As above, by [Borgs et al. 08,

Lemma 5.3] we may choose the labeling of the vertices in Gν such that ‖WGν
−

W‖� → 0. By Lemma 8.14, this implies ‖WGν
− W‖L1 → 0.

Since by assumption, Γ is a threshold graph limit, there exists a sequence
of threshold graphs G′

ν such that G′
ν → Γ, and we may further assume that

|G′
ν | = |Gν |. (For example, we may a.s. take G′

ν as the random graph G(nν ,W )
with nν = |Gν |.) Then also δ�(WG ′

ν
,W ) → 0, and by [Borgs et al. 08, Lemma 5.3]

again we may choose the labeling of the vertices in G′
ν such that ‖WG ′

ν
− W‖� →

0, and thus by Lemma 8.14, ‖WG ′
ν
− W‖L1 → 0. Consequently,

‖WGν
− WG ′

ν
‖L1 ≤ ‖WGν

− W‖L1 + ‖W − WG ′
ν
‖L1 → 0.

We may identify the vertex sets of Gν and G′
ν . Then

de(Gν , T ) ≤
∣∣E(Gν )�E(G′

ν )
∣∣ =

1
2
|Gν |2‖WGν

− WG ′
ν
‖L1 = o(|Gν |2).

(iii) ⇐⇒ (iv) by the definition (8.6).
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(iv) ⇐⇒ (v) by

‖WGν
− WG ′

ν
‖L1 (S2 ) = 2|Gν |−2

∣∣E(Gν )�E(G′
ν )

∣∣.
(v) =⇒ (vi) because ‖ · ‖� ≤ ‖ · ‖L1 (S2 ) .
(vi) =⇒ (i). Let < be an order on V (Gν ) = V (G′

ν ) defined by the degrees of
the vertices in G′

ν . Then since G′
ν is a threshold graph, NG ′

ν
(v) ⊆ NG ′

ν
(w) ∪ {w}

whenever v < w, and thus Ω∗
0(G′

ν , <) = 0 by (8.1).
By (8.2), (8.8), and Lemma 8.7,

Ω∗
0(Gν ,<) = Ω∗

0(Gν ,<) − Ω∗
0(G′

ν , <) = Ω∗
1(Gν ,<) − Ω∗

1(G′
ν , <) + o(1)

= Ω̃∗(WGν
,<) − Ω̃∗(WG ′

ν
, <) + o(1)

≤ 2‖WGν
− WG ′

ν
‖� + o(1) = o(1).

Hence Ω∗
0(Gν ) → 0.
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