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Abstract.  Recent advances in systems biology have provided us with massive amounts
of pathway data that describe the interplay of genes and their products. The resulting
biological networks can be modeled as graphs. By means of “omics” technologies, such
as microarrays, the activity of genes and proteins can be measured. Here, data from
microarray experiments is integrated with the network data to gain deeper insights into
gene expression. We introduce KeyPathwayMiner, a method that enables the extrac-
tion and visualization of interesting subpathways given the results of a series of gene
expression studies. We aim to detect highly connected subnetworks in which most genes
or proteins show similar patterns of expression. Specifically, given network and gene
expression data, KeyPathwayMiner identifies those maximal subgraphs where all but
k nodes of the subnetwork are expressed similarly in all but [ cases in the gene expres-
sion data. Since identifying these subgraphs is computationally intensive, we developed
a heuristic algorithm based on Ant Colony Optimization. We implemented KeyPath-
wayMiner as a plug-in for Cytoscape. Our computational model is related to a strategy
presented by Ulitsky et al. in 2008. Consequently, we used the same data sets for evalua-
tion. KeyPathwayMiner is available online at http://keypathwayminer.mpi-inf.mpg.de.
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[. Introduction

Currently, there are genome sequences for several thousand organisms available
in the National Center for Biotechnology Information (NCBI) databases [Sayers
et al. 10]. However, these data provide only the first step in understanding how
complex organisms evolve and how cells modulate their behavior when exposed
to changing environmental conditions. Using different experimental conditions
we can unravel systems of molecular interactions that control the expression and
activity of genes and proteins. The results of such experiments allow the construc-
tion of systems biology models. This approach has the potential to revolutionize
the investigation of complex diseases for which a deeper understanding of the
interplay of many genes and proteins is crucial; cancer and neurodegenerative
diseases may serve as examples here.

To date, networks and gene expression are typically studied in isolation. There
are many approaches that aim to identify typical statistical network features,
such as scale-free distributions [Balaji et al. 06], network centralities, or hub
nodes [Assenov et al. 08]. Other approaches address overrepresented network
patterns [Hartsperger et al. 10]. On the other hand, microarray experiments,
for example, can be performed on a set of patients suffering a certain disease.
Clustering approaches may be applied to the resulting data to find sets of genes
with similar expression behavior across all patients. In a similar fashion, we may
also cluster the patients to unravel cases in which most genes correlate in their
expression, e.g., to identify subcategories of cancer [Wittkop et al. 10].

One of the major problems is the huge amount of available data, which is
growing continuously. To date (October 2011), there are over half a million
samples in the Gene Expression Omnibus database GEO [Edgar et al. 02].
Furthermore, there are 50 million interactions in the STRING database [Jensen
et al. 09], 155,578 protein—protein interactions in IntAct [Aranda et al. 10], and
about 33,420 reactions in the Reactome database [Croft et al. 10].

In previous work, Ulitsky et al. presented a method for finding a “dysregu-
lated pathway, which is a minimal connected subnetwork with at least k nodes
differentially expressed in all but [ analyzed samples” [Ulitsky et al. 08]. In other
words, they combine biological network data with gene expression data. The
aim is the identification of subnetworks that show a similar behavior over many
expression samples. However, finding maximal connected subnetworks that max-
imize a given scoring function based on all nodes of the reported subnetworks
is NP-hard [Ideker et al. 02]. Therefore, Ulitsky et al. simplified the problem
by searching for minimal connected subgraphs with at least k£ nodes. Further-
more, they preprocessed each node individually: To be considered, an underlying
gene has to be differentially expressed in all but ! cases. However, this causes a
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practical problem: A suitable value for k has to be determined, but & is generally
unknown a priori. If there is no subgraph of, for example, ten nodes or more, the
algorithm needs to be restarted with a smaller value of the parameter k.

In this paper, we present a similar approach but model the underlying biolog-
ical question slightly differently. We introduce KeyPathwayMiner, a method to
detect all maximal connected subnetworks in which all but k& nodes are differen-
tially expressed in all but [ analyzed samples. Since we formulate a maximization
problem and allow for noise in the network as well as the gene expression data
(the exceptions k and l), the user does not need to know the minimal number of
nodes. We simply report all subgraphs in which all nodes but k are dysregulated
in all but [ samples. Furthermore, we offer different scoring functions for the
reported pathways. Since the maximization problem is computationally hard,
we developed and implemented an adapted Ant Colony Optimization (ACO)
procedure. In the following sections, we provide formal definitions, introduce the
ACO approach, and finally test KeyPathwayMiner on the same data sets used
in [Ulitsky et al. 08].

2. Methods and Data

2.1.  Definitions

Let G = (V, E) be a graph representing a biological network in which all v € V/
represent genes or gene products (e.g., proteins, metabolites) and edges (v,u) €
FE stand for known physical, regulatory, or genetic interactions between two nodes
v and u. We define the matrix C) ., as follows:

1 if gene 17 is differentially overexpressed in case j,
Cij = ¢ —1 if gene i is differentially underexpressed in case j,

0 otherwise.

Let Z:V — {-1,0,1}? be a mapping of vertex v to its corresponding g-
dimensional vector row in C. We compute the number of differentially expressed
cases of vertex v as

R(v) = 1Z; ().
j=1

Furthermore, we define a set of vertices D(k,l) C V that satisfies the following
conditions:

1. D(k,l) induces a connected component in G.
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2. With the exception of at most k vertices, all other vertices v € D(k,[) have
I<R(v) <gq.

Given a graph G(V, E), a matrix C,,, and parameters k,[, our goal is to
find maximal sets D(k,!) such that D(k,l) C D'(k,l) = D(k,l) = D'(k,l). In
other words, we are searching for maximal connected components of differentially
expressed genes.

22, Running Time

We can find maximal D(k,l) sets exactly by first labeling each node in the
graph either as a differentially expressed node if R(v) > ¢ — I or otherwise as an
exception node.

Hence, we may construct a graph G’ by first removing all exception nodes from
G. Afterward, we compute all connected components. For each connected compo-
nent V. C V left in G we create a new node v’ € V(G') with weight w(v') = |Ve|.
Finally, we insert all exception nodes in G’ and create an edge between each ex-
ception node u € G’ and weighted node v’ if Jv € V. such that 3(u,v) € E(G).

All exception nodes are now a vertex cover in G’, and no edges exist between
weighted nodes; if there were, we would have merged them in the construction
of G'. Hence, all edges in G’ are incident to at least one exception node. See
Figure 1 for an example.

12

Figure . A new compressed graph (right) is constructed from the original (left).
In this process, all connected differentially expressed nodes are merged into a
single weighted node. Also, if at least one node in the original uncompressed
connected component is connected to an exception (black) node, then an edge
from its corresponding weighted differentially expressed node to the black node
exists (color figure available online).
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Figure 2. Exception graph for k = 2 (color figure available online).

We finally construct a third graph G” consisting of all the black nodes in
G’ by adding an edge between two black nodes in G” if there is a path con-
taining at most k — 2 other black nodes in G’ (see Figures 2 and 3 for exam-
ples). Finding D(k,1) sets in G is then equivalent to computing all paths of
length £ — 1 in G”.

Constructing G’ takes O(|E| * |V| + |E|) in the worst case, constructing G” can
take up to O(|V[?), and computing all paths of length k& — 1 can be accomplished
in O(|V|*). Hence, the overall running time is bounded by O(|V|¥).

23.  Finding Maximal Sets with Ant Colony Optimization

Finding maximal sets can become infeasible for large networks and large values
of k. In order to find maximal sets D(k,l) in a reasonable amount of time,
we applied the widely known Ant Colony Optimization (ACO) strategy to our
algorithm. ACO is a bio-inspired probabilistic algorithm used mainly for solving
hard computational problems that can be formulated using graph theory. An
extensive explanation of ACO and its variants has been given in [Dorigo and
Stuetzle 04]. Here, we give a brief summary of the algorithm’s basic elements
that were used in our approach.
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Figure 3. Exception graph for £k = 3 (color figure available online).

A set of ants is initially placed on the vertices of the graph. The start vertex for
each ant can be chosen randomly or arbitrarily (e.g., based on some heuristic).
In the next step, each ant chooses an edge incident to the vertex v where it is
currently located by utilizing the following probability function:

a 0
Tuv v
S e o) Tl
veN (u) wo Tuv

Here, 7 is the amount of pheromone placed on edge u,v € E, 1 is the desir-
ability of the edge, and «, 8 are parameters that control the importance of the
pheromone and the desirability of the edge, respectively. In order to give higher
preference to edges connected to highly differentially expressed nodes, we set the
desirability of an edge 1,, = R(v) to the number of differentially expressed cases
in the opposite vertex.

Once an edge is chosen, the ant will move to the corresponding vertex at the

Puv =

other end, remembering the edge it has visited, and again will try to move to
a new edge using the same probability function. If a dead end is reached, the
ant is allowed to jump back to previously visited nodes with still unvisited edges
incident to them. Also, ants will be allowed to visit only up to k nodes that are
not differentially expressed in at least ¢ — [ cases, thus ensuring that all ants
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report a valid differentially expressed pathway. Once all ants have found their
respective solutions, they will drop pheromone on all the edges visited based on
the quality of the solution found. The general pheromone update function for
each ant s is

= (L= p)rs, + AT,
where p € [0, 1] is a parameter that controls the pheromone decay rate and A7$,
is the pheromone drop function. Since we are looking for maximal connected
components, we implemented each ant s to drop pheromone in an amount pro-
portional to the number of nodes reported in the pathway (A7f, = |V(D;)]).
See Algorithm 1 for a formal description.

The algorithm ensures that no ant will visit more nodes or edges than are
contained in a valid differentially expressed pathway. Let Dy,.x be the largest
differentially expressed pathway contained in G. Then in the worst case, Dy ax =
|[V|, and every ant will visit |E| edges of this pathway, resulting in a worst-case
running time of O(|S| * |E|) for each generation S of ants.

3. Results and Discussion

3.1. Analysis of Huntington’s Disease Expression Profiles

Huntington’s disease (HD) is a degenerative neurological disorder caused by a
genetic defect on chromosome number four that encodes a mutated version of
the huntingtin (HTT) protein. The pathology of HD has been extensively de-
scribed. However, the behavior of mutated HTT protein and its effect at the
molecular level, especially in the human brain, are not completely understood.
Recent studies have shown that mutant huntingtin interferes with the function
of widely expressed transcription factors, suggesting that gene expression may
be altered in a variety of tissues in HD.

We tested our method with the same human protein interaction network and
expression data sets as utilized in [Ulitsky et al. 08] for Huntington’s disease. The
expression data sets, which were obtained using oligonucleotide arrays [Hodges
et al. 06], consist of 32 unaffected control samples and 38 affected samples taken
from the caudate nucleus region of the brain. The protein interaction network
consists of 7384 nodes corresponding to Entrez gene identifiers and 23,462 in-
teractions based mostly on small-scale experiments and obtained from several
interaction databases. The network and sources information can be obtained
from the website http://acgt.cs.tau.ac.il/clean.
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Algorithm 1: Finding maximal sets with ACO.

input : A graph G with corresponding expression mapping Z, a set S of ants,
number of allowed gene exceptions k, number of allowed case exceptions .

output: A list L of subgraphs Dy, D,,..., D, representing differentially expressed
pathways

1 forall the ants s in S do
2 Ucurrent < Ustart;
3 exceptions « 0;
4 visited Vertices « @;
5 visitedEdges <« ¢;
6 stack « g;
7 StaCk-puSh(Ucurrem );
8 candidateEdges < @;
9 L — g;
10 while stack # ¢ do
11 candidateEdges < {edges incident to veyrrent } \ visitedEdges;
12 if exceptions == k then
13 | candidateEdges < candidateEdges \ {(veurrent, u) € E|R(u) < g —1}
14 end
15 if candidatedEdges == ¢ then
16 | Veurrent < stack.pop()
17 end
18 else
19 chosenEdge < choose edge from candidateEdges with probability p;
20 if |candidatedEdges| >= 2 then
21 | stack.push(veyrrent)
22 end
23 Ueurrens <— vertex on opposite end of chosenEdge;
24 if R(Vcurrent) < ¢ — I then
25 ‘ exceptions «— exceptions + 1
26 end
27 visitedNodes + visitedNodes U v¢yrrent
28 visitedEdges <« visitedEdges U chosenEdge
29 end
30 end
31 D, « {visitedNodes, visitedEdges};
32 L—LUDy;
33 end
34 return L

We used the same p-values and threshold as Ulitsky et al. for determining

differential expression, and we also allowed for up to [ = 8 nondifferentially ex-

pressed cases for each node for the down-regulated data sets. Table 1 summarizes

our results.

In these expression data sets, the huntingtin (HTT) protein is not differentially

expressed in more than eight cases, which makes it an exception node in the

network. Since Huntington’s disease is caused by a mutation in the huntingtin
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Figure 5. (A) The number of nodes (total and nonexception) of the largest sub-
network found for an increasing number of allowed exceptions k. Allowing for
more exceptions increases the number of differentially expressed genes included
in solutions. (B) The average number of differentially expressed cases per node in
the largest subnetworks for an increasing number of allowed exceptions k. Allow-
ing for more node exceptions slightly decreases the average differential expression
for the largest subnetworks (color figure available online).
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KPM KPM | CUSP | GiGA | jActive- | t-test top

(k=2) | (k=38) Modules
Number of genes 33 49 34 34 282 34
Contains HTT ? Yes Yes Yes No No No
HD modifiers 7 7 * 3 12 2
KEGG HD pathway 8 10 4 0 4 0
Calcium pathway 5 7 6 5 10 3

* This entry was updated from 6 to 7 to account for gene OPTN, which is included
in Ulitsky’s reported solution but not labeled as HD modifier, though it is reported in
[Kaltenbach and Romero 07].

Table 1. Gene sets identified as down-regulated in HD caudate nucleus with
KeyPathwayMiner (KPM) and compared to the results of [Ulitsky et al. 08] pro-
duced with their own CUSP algorithm, GiGA [Breitling et al. 04], jActiveModules
[Ideker et al. 02], and the top 34 down-regulated genes with the most significant
t-scores.

gene, it may not always lead to a change in expression patterns. Nevertheless, for
k =1, the HT'T gene is still included in the largest subnetwork, which highlights
the ability of our method to include important genes in the reported network
even if they do not satisfy the user-defined expression threshold 1.

For k =2, the largest subnetwork found contains 33 nodes (see Figure 6),
one fewer than the number in the largest subnetwork reported by Ulitsky
et al. However, our network contains only two exception nodes, seven genes
that have been reported as HD modifiers in [Kaltenbach and Romero 07],
eight genes that are included in the KEGG HD pathway (twice as many as
in Ulitsky’s solution), and also five genes from the calcium signaling path-
way, which is known to have an important role in the development of HD
[Rockabrand et al. 07].

As k increases, we allow more exception nodes to be reported, and the size of
the highest-scoring subnetworks significantly increases, highlighting the ability
of our method to find “bridge” exception nodes. Such nodes connect two or
more highly differentially expressed regions that can play an important role in
HD. These bridge nodes would have been disregarded if the expression profiles
had been analyzed in isolation. For example, for k = 8, the size of the largest
subnetwork found (see Figure 4) rises to 49 nodes, and also two additional genes
are included from both the KEGG and the calcium signaling pathways. Three
of these new genes (GNAQ, ATP2B4, DLG4) are exception genes, which again
reinforces the importance of allowing nondifferentially expressed nodes to be
reported in the solutions.
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It should be noted that allowing more exception nodes decreases the average
number of differentially expressed cases for the whole subnetwork. However, this
decrease is not large compared to the number of differentially expressed nodes
that are included in potentially better solutions (see Figure 5). This difference is
due to the fact that our method aims to include nodes that have a high number
of differentially expressed cases with higher probability and thus reports results
that have a higher biological relevance.

4. Conclusion

We have presented KeyPathwayMiner, a tool for the identification of highly con-
nected subnetworks that show similar expression behavior in a given set of gene
expression studies. KeyPathwayMiner is available as a Cytoscape plug-in and as
a Java library. In contrast to [Ulitsky et al. 08], we model the biological question
as a maximization problem. We report all maximal subnetworks in which all but
k nodes are differentially expressed in all but [ cases. In the future, we will in-
tegrate KeyPathwayMiner with the Ondex data integration framework [Kohler
et al. 06]. Furthermore, we will investigate the application of the method to
proteomics and metabolomics data (mass spectrometry and ion mobility spec-
trometry).
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