
Internet Mathematics Vol. 7, No. 1: 28–44

The Power of 1 + α for
Memory-Efficient Bloom Filters

Evgeni Krimer and Mattan Erez

Abstract. This paper presents a cache-aware Bloom-filter algorithm with improved
cache behavior and lower false-positive rates compared to prior work. The algorithm
relies on the power-of-two choice principle to provide a better distribution of set el-
ements in a blocked Bloom filter. Instead of choosing a single block, we insert new
elements into the less-loaded of two blocks to achieve a low false-positive rate while
performing only two memory accesses on each insert or query operation. The paper
also discusses an optimization technique to balance cache effectiveness with the false-
positive rate to fine-tune the Bloom-filter properties.

1. Introduction

A Bloom filter (BF) is a space-efficient data structure representing a set that
provides add and probabilistic membership query operations with a certain rate
of false positives, the false-positive rate, and no false negatives [Bloom 70]. Bloom
filters are implemented in either hardware or software and are commonly used
in various fields including networks [Broder and Mitzenmacher 04] and web ser-
vices [Fan et al. 00]. The two main metrics of a Bloom filter are its perfor-
mance (throughput and latency) and its false positive rate (FPR). Our work
addresses both at the same time by offering the power-of-(1 + α) blocked Bloom

C© Taylor & Francis Group, LLC
28 ISSN: 1542-7951 print



Krimer and Erez: The Power of 1 + α for Memory-Efficient Bloom Filters 29

filter scheme, which introduces a parameterizable tradeoff between performance
and FPR.

The performance of a BF often has a large impact on overall system perfor-
mance. For example, BF query latency and bandwidth dictate the performance
of WebCache servers, which implement a software BF [Fan et al. 00], and network
routers, which use a hardware BF [Dharmapurikar et al. 03]. As shown in 2.1, BF
query operations require k memory accesses to random locations, which stress
the cache in software implementations and add cost and time to hardware BFs.
By changing the algorithm to exploit locality (the likelihood that the system
will reuse recently used data [Hennessy and Patterson 03]), the performance of
BFs can be improved. For software implementations, increasing locality will de-
crease the number of external memory accesses due to a higher number of cache
hits. For hardware BFs, locality enables increased lookup capacity by utilizing
smaller independent blocks to construct the memory array [Dharmapurikar et
al. 03]. Due to this duality of software and hardware implementations, through-
out this paper we use the term block to represent a cache line, memory page, or
memory bank, depending on the specific implementation.

The FPR of the BF also directly impacts overall system performance and
behavior, because queries that are falsely answered as belonging to the set typi-
cally result in unnecessary costly work being performed. Thus, it is not enough
to improve locality and performance, but the FPR must be controlled so that it
remains within a reasonable bound of the classical BF algorithm.

This work explores a smooth tradeoff space between the performance and
the FPR. Previous attempts at improving locality have so far been either too
aggressive or too conservative and have not reached an overall optimal point
of balancing performance and the FPR. In work motivated by a hardware im-
plementation of a BF for a network router [Chen et al. 07], the authors sug-
gest pairing hash functions such that even hash functions can choose any bit
in the array but odd hash functions are restricted to choosing a bit in the
same block as their corresponding even pair. Thus only k/2 blocks are ac-
cessed for each BF operation. Their simulation results show a minor effect on the
FPR. On the other hand, the algorithm they present is still very conservative
with respect to locality and still requires O(k) ( k

2 to be exact) memory block
accesses.

A different publication, from the perspective of a software BF implementation,
presents the blocked Bloom filter [Putze et al. 07]. This extremely aggressive ap-
proach to exploiting locality requires only a single block access for every query
operation. However, it significantly increases the FPR for some BF configura-
tions, as we discuss in this paper.



30 Internet Mathematics

Our approach offers a flexible and parameterizable BF algorithm for exploiting
locality, and we summarize our main contributions below:

� We analyze the FPR of the blocked Bloom filter in detail and show how
its worse FPR relative to the classical BF algorithm is a result of a poor
distribution of elements between memory blocks.

� We present the power-of-two blocked Bloom filter, which improves the load
balance of elements across memory blocks, thus minimizing the FPR in-
crease relative to the classical BF algorithm for some configurations. We
then derive and validate an analytical model for the FPR of the power-of-
two blocked Bloom filter.

� We develop the power-of-(1 + α) blocked Bloom filter, which enables a
smooth tradeoff curve between the locality and the FPR by combining the
blocked Bloom filter and the power-of-two blocked Bloom filter approaches.
We also derive and validate an analytical model for the FPR of the power-
of-(1 + α) blocked Bloom filter.

� We show how to fine-tune the tradeoff options in general, and how to find
the optimal mix of power-of-two and blocked Bloom filters for any given BF
configuration.

The rest of the paper is organized as follows. In Section 2, we describe previ-
ously published algorithms of the (classical) Bloom filter and the blocked Bloom
filter, discussing their performance and FPR metrics. In Section 3.1, we pro-
pose the power-of-two blocked Bloom filter along with its analytical model as
an alternative to the blocked Bloom filter. Then, in Section 3.1, we present the
power-of-(1 + α) blocked Bloom filter, which allows a fine-grained tuning to op-
timize the performance vs. FPR tradeoff; we provide an analytical model for the
power-of-(1 + α) blocked Bloom filter algorithm. In Section 4, we compare the
simulation results of all mentioned approaches in terms of the FPR and distribu-
tion load balance. We discuss the results and provide experimental evaluations
of the optimal α parameter for different configurations of the BF. Finally, in
Section 5, we summarize our findings and present plans for future work.

2. Background and Related Work

The Bloom filter is a relatively simple, yet efficient, probabilistic data structure
that represents a set. In this section we begin with a brief overview of the al-
gorithm and the FPR properties of the (classical) Bloom filter. Many published



Krimer and Erez: The Power of 1 + α for Memory-Efficient Bloom Filters 31

Algorithm 1: Classical Bloom filter, k block accesses on average.

function Add(x)
for i = 0 to k do

mem(hi(x)) ⇐ 1
end for

end

function Query(x)
for i = 0 to k do

if mem(hi(x)) == 0 then
return NOT FOUND

end if
end for
return FOUND

end

modifications to this classical BF exist in the literature, including one that uses
the same power-of-two principle that is the basis of this paper [Lumetta and
Mitzenmacher 07]. Most of this prior work, however, including [Lumetta and
Mitzenmacher 07], does not address the performance (throughput/latency) of
the BF. We limit the discussion in this paper to the aggressive blocked BF
[Putze et al. 07] (Section 2.2), which significantly improves performance at the
cost of a worse FPR. We omit the details of the very conservative approach to
improved performance presented in [Chen et al. 07], since it reduces the number
of accesses by only a factor of two, still requiring O(k) accesses.

2.1. The (Classical) Bloom Filter

This subsection provides a brief overview of the Bloom filter data structure,
algorithm, and FPR derivation. The BF uses a vector of m bits, which represents
the set of elements S (where ‖S‖ = n) and allows membership queries. The BF
utilizes k hash functions (h1 ..hk ), with each function mapping a potential set
element to a single bit location in the range of [0,m).

As shown in Algorithm 1 (and using the symbols summarized in Table 1),
adding an element is done by setting all the bits pointed to by the k hash
functions for this element to 1. Note that some of these bits might already be
set, because they were touched by prior add operations of other elements. To
query membership of an element, all the bits pointed to by the results of the k

hash functions are tested. Only if all of them are set is the query result positive.
However, a false positive response is possible because all the relevant bits might
have been set during the addition of unrelated elements. Thus a query result may
be positive even when the element queried was never added to the BF. Using
basic probability properties and algebra (refer to [Mitzenmacher and Upfal 05]



32 Internet Mathematics

n number of elements
c bits per element
m total memory size (≡ c · n) [bits]
B block size [bits]
b number of blocks (≡ m/B)
k number of hash functions
hi hash function selecting a bit out of the bit array : elem ⇒ [0..m)
hbi hash function selecting a bit out of a block : elem ⇒ [0..B)
gi/g hash function selecting a block : elem ⇒ [0..b)

mem(x) bit x of the bit array
mem[y](x) bit x of the block y

Table 1. Definition of symbols used.

for more detail), the FPR of the (classical) Bloom filter can be written as

FPRbasic(m,n, k) =

(
1 −

(
1 − 1

m

)kn
)k

≈
(
1 − e−

k n
m

)k

. (2.1)

With respect to performance, the worst-behaving query operation would re-
quire accessing k different blocks, assuming that there are at least k blocks in
the BF bit array. In practice, Lemma 6.1 proves that an average query would
require accessing k −O(1/b) different blocks, and thus the average case quickly
approaches the worst-case performance.

2.2. The Blocked Bloom Filter

The blocked Bloom filter attempts to improve query performance by exploiting
locality [Putze et al. 07]. As described below, Algorithm 2 associates a single block
of B bits with each element. In this way, each element is confined to a single
block with different elements associated with different blocks, and potentially
multiple elements associated with each block. As a result, it allows us to perform
add/query operations with a single block access.

The FPR of the blocked Bloom filter is strongly dependent on load balancing
among the blocks. Let Dblocked(j) be the probability of having exactly j elements



Krimer and Erez: The Power of 1 + α for Memory-Efficient Bloom Filters 33

Algorithm 2: Blocked Bloom filter, one block access.

function Add(x)
block ⇐ g(x)
for i = 0 to k do

mem[block](hbi(x)) ⇐ 1
end for

end

function Query(x)
block ⇐ g(x)
for i = 0 to k do

if mem[block](hbi(x)) == 0 then
return NOT FOUND

end if
end for
return FOUND

end

in a block; then the FPR can be represented as [Putze et al. 07]

FPRblocked(B, k) =
n∑

j=0

Dblocked(j) · FPRbasic(B, j, k) (2.2)

=
∞∑

j=0

Dblocked(j) · FPRbasic(B, j, k).

An element has an equal probability, 1/b of being associated with any block.
Therefore, the distribution of elements among the blocks can be modeled us-
ing a binomial distribution with parameter p = 1/b for n elements: Dblocked( ) =
bionomial(n, 1

b ). Since n/b is a small constant, and n/b ≡ B/c, a Poisson approx-
imation can be used [Putze et al. 07]:

Dblocked( ) = bionomial
(

n,
1
b

)
≈ Poison

(n

b

)
≡ Poison

(
B

c

)
. (2.3)

As proved by Lemma 6.2, however, in the special ideal case of a fully balanced
distribution among the blocks, FPRblocked balanced = FPRbasic . This observation,
along with (2.2), leads us to conclude that improving the balance among the
blocks will improve the FPR, whose lower bound will be FPRbasic in case of a
fully balanced distribution.

3. Proposed Algorithms

In this section, we present two novel BF modifications. Using the power-of-two
principle, we improve the load balance among the blocks in order to reduce
the FPR in accordance with our conclusion from Section 2.2 and introduce the



34 Internet Mathematics

power-of-two blocked Bloom filter. Then, we present the power-of-(1 + α) blocked
Bloom filter, which is a combination of the power-of-two blocked Bloom filter
and the existing blocked BF that provides a smooth tradeoff between the FPR
and performance. For both algorithms, we develop an analytical model of the
FPR and validate them later in Section 4.

3.1. The Power-of-Two Blocked Bloom Filter

The distribution of elements among the blocks is similar to a problem of random
distribution of n balls into b bins. The power-of-two idea described in the litera-
ture [Mitzenmacher and Upfal 05] suggests that instead of placing the ball into
a randomly selected bin, we should select d ≥ 2 bins and choose the least-loaded
among them. This approach would decrease the number of the balls in the bin
that contains the most from Θ

(
ln n

ln(ln n)

)
to Θ (ln (lnn)).

We propose a modification to the blocked BF that uses two hash functions, g1

and g2 , to select two blocks for each element. For the add operation, we choose
the less-loaded block of the two, and the element is added to the chosen block
in the same way as in the blocked BF. To perform a membership query, we have
to check both blocks that are associated with the element, because we do not
know to which of the two blocks the element was added. Thus, the result will
be positive if either of the two blocks returns a positive result. In other words,
only if the query result is negative for both blocks will the outcome be negative.
Algorithm 3 presents the algorithm.

Making the algorithm access two blocks and selecting the less-loaded block
improves the load balance between the blocks (see Figure 1). The FPR of the
power-of-two blocked BF is given by

FPRpower−of−2(B, k) = 2 ·
∞∑

j=0

Dpower−of−2(j) · FPRbasic(B, j, k), (3.1)

and it can be derived in a similar fashion to the FPR of the blocked BF, (2.2),
with two important changes. First, the distribution Dpower−of−2(x) is different
from the distribution of the blocked BF Dblocked(x) and is more balanced. Sec-
ond, unlike the blocked BF, querying the power-of-two blocked BF selects two
blocks and queries each of them independently, and hence the FPR requires a
coefficient of 2.

The distribution of elements among the blocks using the power-of-two blocked
BF Dpower−of−2(x) differs from that generated by the blocked BF Dblocked(x)
as depicted in Figure 1. Therefore, FPRpower−of−2(B, k) �= 2FPRblocked(B, k).



Krimer and Erez: The Power of 1 + α for Memory-Efficient Bloom Filters 35

Algorithm 3: Power-of-two blocked Bloom filter, two block accesses.

function Add(x)
block ⇐ choose less loaded

block (g1(x), g2(x))
for i = 0 to k do

mem[block](hbi(x)) ⇐ 1
end for

end

function Query(x)
block1 ⇐ g1(x)
block2 ⇐ g2(x)
for i = 0 to k do

if mem[block1](hbi(x)) == 0 then
for j = 0 to k do

if mem[block2](hbj (x)) == 0 then
return NOT FOUND

end if
end for
return FOUND

end if
end for
return FOUND

end

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 10  15  20  25  30  35  40

D
()

bin

power-of-two
power-of-1+α (α=0.3)

blocked

Figure 1. Distribution D( ) of various approaches after inserting n = 106 ele-
ments with c = 20 bits per element.



36 Internet Mathematics

Moreover, as will be discussed and proved in Section 4, FPRpower−of−2 is
actually lower than FPRblocked for a range of configurations.

The distribution Dpower−of−2(x) is derived iteratively by analyzing the pro-
cess of adding elements to the power-of-two blocked BF structure. After adding
an element, there are three possible outcomes: the number of blocks having x

elements can increase by 1 if the element was added to a block with x − 1 ele-
ments (so that it becomes a new block with x elements); it can decrease by 1 if
an element was added to a block with x elements (which becomes a block with
x + 1 elements), or finally, it can remain unchanged.

The algorithm selects two blocks and chooses the less-loaded one. In order to
choose the block with exactly x elements, either both selected blocks should con-
tain x elements or one block should contain x elements and the second block any
greater number. The order of selecting the blocks is unimportant. Let Pchoose(x)
be the probability of choosing to add the new element to a block with exactly x

elements. Then, we can derive Pinc(x) as the probability of increasing the number
of blocks with exactly x elements and Pdec(x) as the probability of decreasing
the number of blocks with exactly x:

Pchoose(x) = (Dpower−of−2(x))2 + 2 · Dpower−of−2(x) ·
∞∑

j=x+1

Dpower−of−2(j),

Pinc(x) = Pchoose(x − 1), (3.2)
Pdec(x) = Pchoose(x).

Let Nn (x) be the number of blocks with x elements after the nth element
insertion, we can derive Dpower−of−2(x):

Dpower−of−2(x) =
N(x)

b
,

Nn+1(x) = Nn (x) + 1 · Pinc(x) − 1 · Pdec(x),
∂N(x)

∂n
= Pinc(x) − Pdec(x).

The derivation of Dpower−of−2(x) is given by

∂Dpower−of−2(x)
∂n

=
1
b
· ∂N(x)

∂n
=

1
b
· (Pchoose(x − 1) − Pchoose(x)) . (3.3)

We solve it numerically to obtain FPRpower−of−2(B, k) using (3.1). These results
are validated and compared with other algorithms in Section 4.



Krimer and Erez: The Power of 1 + α for Memory-Efficient Bloom Filters 37

Algorithm 4: Power-of-1 + α Bloom filter, 1 + α block accesses on average.

function Add(x)
if Φ(x) then

Addpower−of−2(x)
else

Addblocked(x)
end if

end

function Query(x)
if Φ(x) then

return Querypower−of−2(x)
else

return Queryblocked(x)
end if

end

3.2. The Power-of-(1 + α) Blocked Bloom Filter

In this subsection, we introduce the power-of-(1 + α) blocked Bloom filter. This
approach allows fine-grained control over the distribution balance, the FPR, and
the number of blocks to be accessed by combining the blocked BF with the
power-of-two blocked BF.

The tradeoff is controlled using the Φ(x) function, which uses 0 ≤ α ≤ 1, de-
fined as follows:

Φ(x) =

{
0 with probability 1 − α,

1 with probability α.

Note that although Φ(x) is a probabilistic function, it is deterministic, i.e., a
result for a given element never changes. Algorithm 4 shows the use of Φ(x) in
the add and query operations.

Deriving FPRα (B, k) is similar to the derivation of FPRpower−of−2(B, k) (see
(3.1)), although the coefficient will be 1 + α rather than 2 and the distribution
is different as well, as shown in the following equation:

FPRα (B, k) = α ·
⎡
⎣2 ·

∞∑
j=0

Dα (j) · FPRbasic(B, j, k)

⎤
⎦

+ (1 − α) ·
⎡
⎣ ∞∑

j=0

Dα (j) · FPRbasic(B, j, k)

⎤
⎦

= (1 + α) ·
∞∑

j=0

Dα (j) · FPRbasic(B, j, k).

(3.4)



38 Internet Mathematics

The probability of using the power-of-two blocked BF algorithm with a coefficient
of two is α. On the other hand, the probability of using the blocked BF algorithm
with a coefficient of one is 1 − α. One can observe that for α = 0, this scheme
reduces to the blocked BF, whereas for α = 1, it turns into the power-of-two
blocked BF.

One can calculate Dα (x) iteratively. Adding an element to the data structure
with probability α will follow the power-of-two blocked BF algorithm and update
the distribution in a way similar to (3.3). As before, with probability 1 − α, the
add operation will follow the blocked BF algorithm and update the distribution
according to (6.2). Lemma 6.3 proves that the distribution defined by (2.3) is the
solution of the iterative (6.2). To simplify the equation, we define Pα choose(x)
similarly to Pchoose(x) in (3.2) and use it in the following:

Pα choose(x) = (Dα (x))2 + 2 · Dα (x) ·
∞∑

j=x+1

Dα (j),

∂Dα

∂n
= α ·

[
1
b
· (Pα choose(x − 1) − Pα choose(x))

]
(3.5)

+ (1 − α) ·
[
1
b

(Dα (x − 1) − Dα (x))
]

.

We solve (3.5) numerically to obtain FPRα (B, k) using (3.4). These results are
validated and compared with other algorithms in Section 4.

4. Results and Discussion

This section compares the FPR and distribution metrics of the schemes described
in our work. Results are generated using a simulator written in C++ and run on
an Intel Core CPU. We use the linear congruential algorithm with 48-bit integer
arithmetic (drand48) to generate pseudorandom numbers to be used as the hash
functions for adding elements. Each simulation is repeated 100 times, and the
FPR is derived from the number of set bits after 106 random elements are added.
Table 2 summarizes the parameters used in the simulations.

In Section 2.2, we mentioned that improving balance among blocks improves
the FPR. The power-of-two blocked BF uses the power-of-two principle to achieve
this. In the power-of-(1 + α) blocked BF approach we introduce α to control the
balance. Figure 1 shows experimental results for the distributions D(x) of all
three approaches. The benefit of the power-of-two principle is clearly seen when
the 1 + α approach (with α = 0.3) is, as expected, between the blocked and
power-of-two blocked BFs.



Krimer and Erez: The Power of 1 + α for Memory-Efficient Bloom Filters 39

n number of elements 106

c bits per element (1..40)
m total memory size ≡ c · n [bits]
B block size 500 [bits]
b number of blocks ≡ m/B

k number of hash functions | ln 2 · c|round

Table 2. Parameters used for simulation.

The FPRs of the different approaches are depicted in Figure 2. It clearly
shows the disadvantage of the blocked BF against the power-of-two blocked BF
for configurations with c ≥ 17. The figure also shows how the power-of-(1 + α)
blocked BF (α = 0.3) enables greater flexibility and yields the best overall FPR
for 13 ≤ c ≤ 20. Finally, Figure 2, validates the analytical models and shows a
good match with the simulation results for all three schemes.

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0  5  10  15  20  25  30  35  40

Fa
ls

e 
P

os
iti

ve
 R

at
e

c=m/n

sim basic
sim blocked

sim power-of-two
sim power-of-1+α (α=0.3)

model blocked
model power-of-two

model power-of-1+α (α=0.3)

Figure 2. False positive rates of different Bloom filter approaches for varying
values of c (bits per element).



40 Internet Mathematics

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  0.2  0.4  0.6  0.8  1

F
P

R
( α

)/
F

P
R

(0
)

α

c=16
c=18
c=20

Figure 3. Values of FPR(α)/FPR(0) for different values of c (16, 18, 20).

The parameter α in the power-of-(1 + α) blocked BF controls the algorithm.
As mentioned before, both the blocked BF and the power-of-two blocked BF are
special cases of the power-of-(1 + α) blocked BF for α = 0 and α = 1 respectively.
Therefore, to choose the best scheme for each BF parameter configuration, an
optimal α value should be selected.

Figure 3 shows the ratio of the power-of-(1 + α) blocked BF FPR versus the
blocked BF FPR as a function of α for different configurations of c. This function
has a convex form where an optimal α exists. As an example, Figure 3 shows
the optimal points for c = 16, 18, 20, which are respectively α = 0.3, 0.4, 0.5.

Figure 4 plots the optimal α values across a range of BF configurations (varying
c). The figure clearly shows that for c ≤ 10, the best FPR is achieved with α = 0,
i.e., the blocked BF; the power-of-two blocked BF is optimal for c ≥ 31; and the
optimal α in between can be approximated linearly.

5. Summary and Future Work

The Bloom filter is an efficient and widely used probabilistic data structure
implemented both in software and hardware. In Section 2.1, we summarized the



Krimer and Erez: The Power of 1 + α for Memory-Efficient Bloom Filters 41

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30  35  40

op
tim

um
α

c

model result
linear approximation α=0.0478*t-0.4692

Figure 4. Optimal α for different values of c can be linearly approximated.

(classical) BF algorithm, derived its FPR, and showed how its performance is
disadvantaged due to accesses to multiple (k) memory blocks. We then described
the blocked BF [Putze et al. 07], which is a high-performance alternative, which
requires only a single memory block access. The blocked BF, however, introduces
a higher false positive rate (FPR). We discussed the reason for the FPR increase
and showed that by balancing the load of elements among the blocks, the FPR
could be improved.

We followed this conclusion and developed the power-of-two blocked BF, which
improves the balance of element distribution using the power-of-two choice prin-
ciple (Section 3.1), and derived an analytical model for its FPR. Our analysis
showed, however, that for some configurations, the blocked BF still has a lower
FPR compared to the power-of-two blocked BF; therefore, we introduced the
power-of-(1 + α) blocked BF to blend the advantages of both the blocked and
power-of-two blocked schemes (Section 3.2). Using the parameter α, the power-
of-(1 + α) blocked BF approach allows a fine-grained tuning of the algorithm for
an optimal FPR.

Using the analytical model we presented for the power-of-(1 + α) blocked BF,
we analyzed the FPR’s dependence on α and depicted it in Figure 4. We found



42 Internet Mathematics

that it can be approximated using a linear function; however, we leave deeper
analysis of this dependency to future work.

6. Appendix

Lemma 6.1. Let k be the number of hash functions used in a (classical) BF and let
b be the number of blocks that the memory array comprises. Then the average
query operation will require accesses to k −O(1/b) different blocks.

Proof. Each query operation requires accesses to k different bits in the memory
array. For a single bit lookup, the probability that a specific block is accessed is
1/b. Conversely, the probability that a block is not accessed is 1 − 1/b. Therefore,
the probability that a block is not accessed for any lookups of the k bits is
(1 − 1/b)k , and the probability that the block is accessed by at least a single bit
lookup is 1 − (1 − 1/b)k . Based on this, the average number of blocks accessed by
a query operation is b

[
1 − (1 − 1/b)k

]
. Using the binomial expansion, we derive

the required average number of accessed blocks:

b ·
[
1 −

(
1 − 1

b

)k
]

= b ·
[
1 −

(
1 − k

b
+ O

(
1
b2

))]
= k −O

(
1
b

)
.

Lemma 6.2. In the special case of a fully balanced distribution among the blocks of
a blocked BF containing a total of n elements in m bits of memory split into b

blocks, let Dblocked balanced(j) be the probability of having exactly j elements in a
block. Then FPRblocked balanced is equal to FPRbasic .

Proof. Since the blocks are balanced, the number of elements in each block is equal
to n/b; therefore, Dblocked balanced(j) is defined as

Dblocked balanced(j) =

{
0, j �= n

b ,

1, j = n
b .

(6.1)

Utilizing (6.1) in (2.2) yields

FPRBlocked Balanced(B, k) =
∞∑

j=0

Dblocked balanced(j) · FPRbasic(B, j, k)

= FPRbasic

(
B,

n

b
, k
)

= FPRbasic(m,n, k).



Krimer and Erez: The Power of 1 + α for Memory-Efficient Bloom Filters 43

Lemma 6.3. Let Dblocked(j) be the probability of having exactly j elements in a
block of a blocked BF as defined by (2.3). Then Dblocked(j) solves the following
iterative equation:

∂Dblocked(x)
∂n

=
1
b

(Dblocked(x − 1) − Dblocked(x)) . (6.2)

Proof. We prove the result using (2.3) in (6.2). According to 2.3,

Dblocked(x) ≈ Poison
(n

b

)
=

(
n
b

)x · e− n
b

x!
,

∂Dblocked(x)
∂n

=
∂

∂n

((
n
b

)x · e− n
b

x!

)
=

x·nx −1

bx · e− n
b

x!

+

(
n
b

)x · e− n
b

x!
·
(
−1

b

)

=
1
b
·
((

n
b

)x−1 · e− n
b

(x − 1)!
−
(

n
b

)x · e− n
b

x!

)

=
1
b

(Dblocked(x − 1) − Dblocked(x)) .

Another way to prove the lemma is by constructing a similar derivation to the
iterative method used in (3.3).

Acknowledgments The authors would like to thank the anonymous reviewers, whose com-
ments helped us to improve the paper significantly. We would also like to thank Isaac
Keslassy for fruitful discussions at the early stages of this research and Mehmet Ba-
soglu for his help with preparing this manuscript for publication. Finally, we thank
Intel corporation for providing equipment and funds in support of this research.

References

[Bloom 70] Burton H. Bloom. “Space/Time Trade-offs in Hash Coding with Allowable
Errors.” Communications of the ACM 13 (1970), 422–426.

[Broder and Mitzenmacher 04] A. Broder and M. Mitzenmacher. “Network Applica-
tions of Bloom Filters: A Survey.” Internet Mathematics 1 (2004), 485–509.

[Chen et al. 07] Y. Chen, A. Kumar, and J. J. Xu. “A New Design of Bloom Filter for
Packet Inspection Speedup.” In IEEE Global Telecommunications Conference, 2007.
GLOBECOM’07, pp. 1–5, 2007.

[Dharmapurikar et al. 03] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J.
Lockwood. “Deep Packet Inspection Using Parallel Bloom Filters.” In Proceedings
of the 11th Symposium on High Performance Interconnects, 2003, pp. 44–51, 2003.



44 Internet Mathematics

[Fan et al. 00] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. “Summary Cache: A
Scalable Wide-Area Web Cache Sharing Protocol.” IEEE/ACM Transactions on
Networking (TON) 8 (2000), 281–293.

[Hennessy and Patterson 03] J. L. Hennessy and D. A. Patterson. Computer Architec-
ture: A Quantitative Approach. Burlington, MA: Morgan Kaufmann, 2003.

[Lumetta and Mitzenmacher 07] S. Lumetta and M. Mitzenmacher. “Using the Power
of Two Choices to Improve Bloom Filters.” Internet Mathematics 4 (2007), 17–33.

[Mitzenmacher and Upfal 05] M. Mitzenmacher and E. Upfal. Probability and Comput-
ing: Randomized Algorithms and Probabilistic Analysis. Cambridge UK: Cambridge
University Press, 2005.

[Putze et al. 07] F. Putze, P. Sanders, and J. Singler. Cache-, Hash- and Space-Efficient
Bloom Filters, Lecture Notes in Computer Science 4525. New York: Springer, 2007.

Evgeni Krimer, Electrical and Computer Engineering Department, University of Texas
at Austin, Austin, TX 78712 (krimer@mail.utexas.edu)

Mattan Erez, Electrical and Computer Engineering Department, University of Texas
at Austin, Austin, TX 78712 (mattan.erez@mail.utexas.edu)

Received February 2, 2010; accepted July 4, 2010.


