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Distributing Antidote Using
PageRank Vectors
Fan Chung, Paul Horn, and Alexander Tsiatas

Abstract. We give an analysis of a variant of the contact process on finite graphs,
allowing for nonuniform cure rates, modeling antidote distribution. We examine an
inoculation scheme using PageRank vectors that quantify the correlations among ver-
tices in the contact graph. We show that for a contact graph on n nodes we can select
a set H of nodes to inoculate such that with probability at least 1 − 2ε, any infection
from any starting infected set of s nodes will die out in c log s + c′ time, where c and c′

depend only on the probabilistic error bound ε and the infection rate, and the size of H
depends only on s, ε, and the topology around the initially infected nodes, independent
of the size of the whole graph.

1. Introduction

The spreading and containment of epidemics on networks is a widely studied
problem with many applications in modeling disease outbreaks in both human
and animal populations as well as the spread of viruses and worms on techno-
logical networks such as the Internet, online social networks, and email. Many
analytical models have been used to address numerous crucial problems, such
as the conditions for spread of disease, the critical threshold for the infection
rate, the duration of persistent epidemics, and the effective distribution of lim-
ited amounts of antidote. We will examine a well-studied contact process model
[Borgs et al. 10, Newman 02], coupled with an inoculation scheme using Page-
Rank vectors. In this paper, we give a complete analysis of our scheme, showing
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the improved efficiency of the inoculation scheme without affecting the perfor-
mance guarantee as in previous results in [Borgs et al. 10].

A contact graph consists of a set of nodes together with prescribed pairs of
nodes where direct contact can take place and infections can spread (see [Chen
and Carley 03, Ganesh et al. 05, Newman 02]). Analysis of spreading on the
contact graph is performed with the contact process, a continuous-time Markov
process originally studied in the first half of the twentieth century [Kermack and
McKendric 27]. Since then, it has been applied specifically to network epidemics
in many contexts, including social networks [Tsimring and Huerta 03], Internet
viruses [Beger et al. 05], and crop disease [Forster and Gilligan 07].

Previously, most analysis of network infection models concerned determining
the critical infection threshold [Beger et al. 05, Ganesh et al. 05, Newman 02].
There is a parameter, known as the infection rate, that models the virulence or
resistance of a given epidemic, and with it comes a threshold: if the infection rate
exceeds that point, then an epidemic will persist indefinitely. In these analyses,
the infected nodes became healthy all at the same rate. In the contact process,
this occurs when an equal amount of antidote is sent indiscriminately to all nodes,
requiring a large amount of antidote. In practice, this is often undesirable; in this
paper, we will give a model that avoids such widespread antidote distribution.

Another approach is to combat epidemics using contact tracing, or inoculating
neighbors of infected nodes, using a total amount of antidote that depends only
on the sum of the degrees of the infected nodes. However, both simulation
and mathematical analysis have shown that contact tracing can be ineffective,
especially on large real-world graphs that exhibit small-world phenomena and
power-law degree distributions [Dezso and Barabasi 02, Kiss et al. 05, May and
Lloyd 01, Pastor-Sattoras and Vespignani 01, Pastor-Sattoras and Vespignani 02,
Tsimring and Huerta 03].

In [Borgs et al. 10], the authors show that for the contact process on a contact
graph G, inoculating every node with antidote equal to its degree will result in
any infection dying out in O(log n) time with high probability, where n is the
number of nodes in G. This scheme uses a total amount of antidote equal to
the sum of the degrees in G. For special graphs such as the expanders, it has
been shown [Borgs et al. 10] that such a large amount of antidote is necessary
(up to a constant factor) when a constant proportion of the nodes are initially
infected. Our proposed model will not improve this result on expander graphs,
but for many classes of graphs, we will require antidote only on smaller portions
of the network.

In this paper, we analyze an inoculation scheme using PageRank vectors.
PageRank was first introduced in [Brin and Page 98] for web search algorithms.
Although the original definition is for the Web graph, PageRank is well defined
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for any graph, including the contact graphs that we study. Here, we will use
a modified version of PageRank, known as personalized PageRank, for the con-
tact graph with the initially infected nodes as seeds. PageRank captures the
quantitative correlation between pairs or subsets of nodes. For example, if the
contact graph has some small cuts or bottlenecks, it is likely that an infection
will not propagate through them, and nodes on the other side will have low
PageRank. Our inoculation scheme using PageRank specifies the selected nodes
for sending antidote and provides a probabilistic guarantee for the termination
of any epidemic. Furthermore, the number of selected nodes for inoculation is
usually much smaller than the total size of the contact graph, thus improving
the previous schemes that inoculated all the nodes. The number of selected
nodes depends only on the number of initially infected nodes, the probabilistic
guarantee bound, and the isoperimetric invariant of the graph: the Cheeger ratio
(to be defined later). Hence, it is independent of the total size of the contact
network.

Previously, an empirical study [Miller and Hyman 07] found that inoculating
nodes according to their PageRank works well in combating epidemics for certain
examples of contact networks. Our analysis complements this experimental work
and is applicable to any given general contact network. The analysis in Section
3 provides a tradeoff between the probabilistic guarantee of termination and the
time required.

2. Preliminaries

We model an epidemic spreading on a general undirected contact graph G =
(V, E) with vertex set V and edge set E. For a vertex v, let dv denote the degree
of v, which is the number of neighbors of v. Suppose that the graph G has n nodes
with a degree sequence d = (d1, d2, . . . , , dn), where di is the degree of vertex vi.
For a set of nodes T ⊆ V , the volume of T is defined to be vol(T ) =

∑
v∈T dv.

Let D denote the diagonal degree matrix diag(d1, . . . , dn) and A the adjacency
matrix of G, where

Aij =

{
1 if {vi, vj} ∈ E,

0 otherwise.

We consider a typical random walk on G with the transition probability matrix
defined by W = D−1A. Personalized PageRank vectors are based on random
walks and W , with two governing parameters: a seed vector s, representing an
initial distribution over V , and a jumping constant α, which controls the rate
of diffusion. Since s is a distribution, its entries sum to 1. The personalized
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PageRank pr(α, s) is defined to be the solution to the following recurrence rela-
tion:

pr(α, s) = αs + (1 − α)pr(α, s)W. (2.1)

Here, s (and all other vectors) will be treated as row vectors. The original
definition of PageRank defined in [Brin and Page 98] is the special case in which
the seed vector is the uniform distribution (as used in [Miller and Hyman 07]).

From (2.1), an alternative expression for the personalized PageRank pr(α, s)
is a geometric sum of random walks (see [Andersen et al. 06]):

pr(α, s) = α

∞∑
t=0

(1 − α)tsW t. (2.2)

For a subset of nodes H in a graph G, the Cheeger ratio h(H) is a measure of
the cut between H and its complement H̄:

h(H) =
e(H, H̄)

min(vol(H), vol(H̄))
,

where e(H, H̄) denotes the number of edges {u, v} with u ∈ H and v ∈ H̄. For
a given value h, we say that H is an h-cluster if its Cheeger ratio h(H) satisfies
h(H) ≤ h.

For an h-cluster H and a given α, the α-core C of H is the set of all vertices
u such that the personalized PageRank on H , with seed u and jumping constant
α, is at least 1 − h

α :

C =
{

u ∈ V | pr(α,1∗
u)1H ≥ 1 − h

α

}
. (2.3)

It has been shown [Andersen et al. 06] that if C is the α-core of H , then
vol(C) ≥ 1

2 vol(H). This indicates that there are many nodes u ∈ H for which
the personalized PageRank vector pr(α,1∗

u) has very little mass outside of H if
α is larger than h.

3. Infection Model and Inoculation Scheme

We use the following contact process (see [Kermack and McKendric 27]) as our
infection model, which is also used in [Beger et al. 05]. The contact process is
a continuous-time Markov process parameterized by β, the infection rate, with
0 ≤ β < 1 and c = (c1, c2, . . . , cn), the cure vector. We assume that at time
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t = 0, a seed set S ⊆ V is infected. We will use 1S to denote the indicative
vector associated with S, and x(0) = 1S .

Each node vi has an infection state xi(t); a node is considered “healthy” if
xi(t) = 0, and “infected” if xi(t) = 1. Thus, the entire process is characterized
by a state vector x(t) = (x1(t), x2(t), . . . , xn(t)). The state transitions are as
follows:

• If a node xj is infected, an adjacent node xi becomes infected at rate β.
We refer to this transition as a spread event.

• An infected node vi becomes healthy at rate ci. We refer to this transition
as a cure event.

In any continuous-time Markov process, for a transition (e.g., spread or cure
event) that occurs with rate λ, the elapsed time until that transition takes place
assumes an exponential random variable with parameter λ, which is independent
of any state information. Such a random variable has a probability density
function f(x) = λe−λx for x ≥ 0, and 0 otherwise. We denote such a random
variable by Expo(λ).

Using this contact process as a model, our goal is to choose c such that with
high probability, the infection dies out quickly, and the total amount of antidote
used is small. Furthermore, we want c to depend only on the seed set S and the
degree distribution d, but not on t or x(t). Our main theorem describes how to
find such a cure vector c. First, we establish a relationship between PageRank
and the infection starting from S but leaving a specified area.

Theorem 3.1. Suppose that an infection starts in S ⊆ H ⊆ V with infection rate β,
and each node v ∈ H is inoculated with cv = dv. Let EH denote the event that
an infection started in S ever leaves the set H. Then EH can be bounded above
by the PageRank vector as follows:

P(EH) ≤ s

β
pr
(

1 − β,
1S

s

)
1∗̄

H .

The proof of Theorem 3.1 will be given in Section 5. Using this theorem, we
can further derive the following:

Theorem 3.2. Let G be a contact graph with n nodes, S an initial set of infected
nodes with |S| = s, and β the infection rate with 0 ≤ β < 1. Suppose that H is
an h-cluster that contains S in its (1− β)-core. If all nodes in H are inoculated
with antidote equal to their degrees, then with probability at least 1 − 2 sh

β(1−β) ,
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Algorithm 1. (InoculationScheme (G, S, β, ε))
Input: A contact graph G, an initial set S of s infected nodes, the

infection rate β, and the error bound ε

1. Set h = ε
sβ(1 − β).

2. Use [Andersen et al. 06, PageRank-Nibble] or [Andersen and Chung 07,
Local Partition] to find an h-cluster H containing S, if one exists.

3. Check to see whether S is in the (1 − β)-core of H . If so, then inoculate
each node v ∈ H with cv = dv.

4. If S is not in the core of H , or an h-cluster could not be found, then let
H = G and inoculate every node with cv = dv.

any infection starting from S will die out in at most c log(1/h) + c′ time, where
c and c′ depend only on β and not on n.

Theorem 3.2 will be proved in Section 5.
We remark that Theorem 3.2 implies a tradeoff between the Cheeger ratio h

and the probabilistic bound. If the initial set of infected nodes S lies within
the (1 − β)-core of an h-cluster H , the probability of the infection dying out in
O(log s) time is high, as long as the product sh is small. In particular, if the seed
set S lies on one side of a small cut, it will likely lie within the core of an h-cluster
with small Cheeger ratio h. If there is no such small cut, then the infection is
likely to spread about the graph. This leads to the following corollary.

Corollary 3.3. For any ε > 0 and an infection starting from a seed set S, if S

lies within the (1 − β)-core of an h-cluster H, and h ≤ ε
sβ(1 − β), then with

probability at least 1 − 2ε, the infection will die out in c log s + c′ time, where c

and c′ depend only on β and ε and not on n.

The proof of the corollary follows from applying the bound on ε to Theo-
rem 3.2. We note that the above corollary explicitly relates the desired prob-
abilistic guarantee ε to the Cheeger ratio h of the h-cluster containing S in its
core.

The above theorems suggest the inoculation scheme of Algorithm 1. This
inoculation scheme relies on the ability to find a cluster H that has small Cheeger
ratio h and contains S in its core. If such an H does not exist, then the algorithm
will terminate with the entire graph inoculated. For example, in the case of
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expander graphs, the algorithm will soon terminate and is reduced to the same
scenario as in [Borgs et al. 10]. Nevertheless, it is likely for a general contact
graph to contain small h-clusters. In such cases, only a small portion of the
graph needs to be inoculated, while the desired performance guarantee is main-
tained.

Next, we consider the case that the initially infected nodes are randomly dis-
tributed in an h-cluster H . We might expect that the infection is not likely to
escape H . This is not strictly true, because if S contains some nodes near the
boundary of H , it is still quite likely that the infection will escape. Nevertheless,
we will be able to establish an upper bound for such probability by proving the
following theorem:

Theorem 3.4. Suppose H ⊆ G is an h-cluster, and the set S of initially infected nodes
consists of s nodes randomly and independently selected from H with probability
proportional to their degrees. Suppose the infection rate is β. Then, for a given
ε satisfying sh ≤ ε and s ≥ log(1/ε)/ε, if all nodes in H are inoculated with
antidote equal to their degrees, then with probability at least 1 − ε, any infection
starting from S will die out in c log s + c′ time, where c and c′ depend only on ε

and β.

The proof of Theorem 3.4 will be given in Section 5. This randomized model
is relevant when a disease outbreak originates in a subpopulation, which can be
represented as an h-cluster in a larger population graph. Theorem 3.4 implies
that if the subpopulation is relatively isolated from the rest of the population
(i.e., the Cheeger ratio h is small), then we can effectively combat the infection
by attacking the epidemic only within that h-cluster.

4. An Outline of the Analysis of the Inoculation Scheme and Several Useful Facts

In order to prove Theorems 3.1 and 3.2, we will prove several basic facts in the
following brief outline of our analysis of the inoculation scheme:

• The probability of the infection spreading to a distant node is small (Lemma
4.1).

• The probability that a nearby node will remain infected for a long time is
small (Lemmas 4.2, 4.3).

• The probability that an infection persists within the inoculated nodes is
small (Lemma 4.4).
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• The probability that an infection escapes the inoculated nodes depends on
the PageRank on the uninoculated nodes H̄ , proving Theorem 3.1.

• After Theorem 3.1 has been proved, Theorem 3.2 follows from the fact that
the personalized PageRank on H̄ is small.

In this section, we will first give some definitions and then proceed to prove
Lemmas 4.1–4.4.

Consider that if a vertex vk is infected at some time t, then the infection
must have traversed some walk in the graph from a vertex v0 ∈ S. Suppose
π = (v0, . . . , vk) is a path in G of length k. Let Sπ denote the event that v0 is
infected at time 0, and the infection spreads to vk before time t along the path
π. It is important to note that if Sπ occurs, vk is not necessarily infected at time
t, because it could have been cured before time t; however, vk cannot be infected
at time t if no Sπ occurred.

For a vertex v, let C(v, t) denote the time of the first cure event at vertex
v after time t. From this, we define a realization of a walk as the sequence of
random variables Xv as follows:

• A spread event from vertex vi to vi+1 occurs at time Xi+1.

• 0 < X1 < C(v0, 0).

• For all i ≥ 1, Xi < Xi+1 < C(vi, Xi).

For Sπ to occur, the infection must spread to vk before time t; therefore, Sπ

occurs if and only if there is a realization of π with Xk < t. There are many
possible realizations of π, but in our analysis, we will be concerned with a specific
realization: the canonical realization. In this realization, given the times of all
the cure and spread events, Xi is the maximum over all possible realizations
with those cure and spread times. Thus, the canonical realization is the latest
possible infection path along π.

With Xi as in the canonical realization, we also define an event S′
π that occurs

when at least one spread event from vi to vi+1 occurs between Xi and C(vi, Xi).
Thus, if S′

π occurs, then the infection spreads along π to vk, but not necessarily
before time t. While we are primarily concerned with the event Sπ. When the
spread occurs before time t, it is clear that Sπ ⊆ S′

π, and using the canonical
realization allows us to prove the following lemma, which indicates that the
probability that an infection follows a long path is small:
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Lemma 4.1. For any path π of length k,

P(Sπ) ≤ P(S′
π) ≤ βk

k−1∏
j=0

1
cj

.

Proof. Let Sj denote the event that there is a spread event from vj to vj+1 between
times Xj and C(vj , Xi). Due to the Markov property of the contact process, the
probability of Sj occurring is

P(Sj) ≤
β

cj
.

Since the curing process at every node is independent, we can write

P(Sπ) ≤ P(S′
π) =

k−1∏
j=0

P(Sj) = βk
k−1∏
j=0

1
cj

.

For a walk π of length k with canonical realization (Xi)k
i=1, we define the

canonical end time of π to be

Zπ =

{
Xk if Sπ occurs,
0 otherwise.

In other words, Zπ is the last time that vk could become infected via the path π,
or 0 if it is never infected via π. The following lemma states that the probability
that Zπ is large is small:

Lemma 4.2. Suppose for a path π of length k, that Zπ is its canonical end time.
Then

P(Zπ > t) ≤ 1
(2k)!

t2k−1e−βtβk
k−1∏
j=0

1
cj

.

Proof. Let (Xi)k
i=1 denote the canonical realization of π. Then

P(Zπ > t) = P(Zπ > t,Sπ)

= P(Xk > t,Sπ)

≤ P(Xk > t,S′
π)

= P(Xk > t | S′
π)P(S′

π).
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Applying Lemma 4.1, we have

P(Zπ > t) ≤ P(Xk > t | S′
π)βk

k−1∏
j=0

1
cj

.

We further observe that

P(Xk−1 > t | S′
π) = P

(
k∑

i=1

(Xi − Xi−1) > t | S′
π

)

≤ P

(
k∑

i=1

(C(vi, Xi−1) − Xi−1) > t | S′
π

)
.

We consider the time between Xi−1 and the first cure event at vi after Xi−1

subject to the condition S′
π: at least one spread event occurred before the cure

at C(vi, Xi−1). Therefore, the time between Xi−1 and C(vi, Xi−1) is at least the
time for one spread event, namely, the exponential random variable Expo(β),
plus the time for one cure event, Expo(ci). Thus, we have

k∑
i=1

(C(vi, Xi−1) − Xi−1) ≥
k∑

i=1

(Expo(β) + Expo(ci)).

Because β ≤ ci, it follows that Expo(ci) is stochastically dominated by Expo(β).
We can write

k∑
i=1

(C(vi, Xi−1) − Xi−1) ≥
k∑

i=1

(Expo(β) + Expo(β)).

The sum of 2k independent exponential random variables has a gamma distri-
bution Γ(2k, β). Therefore,

P(Xk−1 > t | S′
π) ≤ 1

(2k)!

∫ ∞

t

x2k−1e−xdx ≤ t2k−1e−βt

(2k)!
.

Putting all of this together, the lemma immediately follows.

The next lemma addresses the question whether a vertex v is infected at time t.
Note that Sπ addresses only whether a vertex was infected via π at some time
before t; it could be cured thereafter.

If (Xi)k
i=1 is the canonical realization of π, then we say that v is infected at

time t via path π if Sπ occurs and the first cure event at vk after Xk does not
occur until after time t. We denote this event by Tπ,t = Sπ ∩ {C(vk, Xk) > t}.
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Lemma 4.3. Suppose π is a walk of length k, and the amount of antidote at vk is
ck ≥ β. Then

P(Tπ,t) < e−βt/2

(
1 +

1
(2k)!

(t/2)2k−1

)
βk

k−1∏
j=0

1
cj

.

Proof. We first note that the elapsed time from Xk to the cure event C(vk, Xk)
is an exponential random variable with parameter ck, independent of Sπ. Thus,
we can write

P(Tπ,t) = P(C(vk, Xk) > t,Sπ)

= P(Expo(ck) > t − Xk,Sπ)

≤ P(Expo(ck) > t/2,Sπ, Xk ≤ t/2) + P(Xk > t/2,Sπ)

≤ P(Expo(ck) > t/2)P(Sπ) + P(Xk > t/2,Sπ).

From the definition of the canonical end time Zπ, if Sπ occurs, then Xk = Zπ.
Therefore, we have

P(Tπ.t) ≤ P(Expo(ck) > t/2)P(Sπ) + P(Zπ > t/2,Sπ).

Using Lemma 4.2, we can write

P(Zπ > t/2,Sπ) ≤ 1
(2k)!

(t/2)2k−1e−βt/2βk
k−1∏
j=0

1
cj

.

Meanwhile, from the exponential distribution and Lemma 4.1,

P(Expo(ck) > t/2)P(Sπ) ≤ e−ckt/2βk
k−1∏
j=0

1
cj

≤ e−βt/2βk
k−1∏
j=0

1
cj

.

This implies

P(Tπ,t) ≤ P(Expo(ck) > t/2)P(Sπ) + P(Zπ > t/2,Sπ)

≤ e−βt/2

(
1 +

1
(2k)!

(t/2)2k−1

)
βk

k−1∏
j=0

1
cj

.

For a path π = (v0, . . . , vk), we say that π is safe if cvi ≥ dvi for 0 ≤ i ≤ k.
We denote by Pk the set of paths originating in S of length exactly k, and

we define P ′
k correspondingly for safe paths. We will prove the following lemma,
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which states that the probability that an infection persists within the inoculated
nodes can be made arbitrarily small by choosing an appropriate length of time.

Lemma 4.4. Suppose G is a contact graph on n nodes with seed set S of size s.
Then for any h > 0 and any infection rate β,

P

( ⋃
π∈P′

Tπ

)
≤
∑

π∈P′
P(Tπ) ≤ sh

β(1 − β)

if

t ≥ 8

⎛
⎝ log

(
1
h

)
+ log(2β)

min
(
β, β log

(
1
β

))
⎞
⎠ = c log(1/h) + c′,

where c and c′ depend only on β and not on n or s.

Proof. Our strategy is to analyze short paths and long paths separately. For long
paths, we will use Lemma 4.1, and for short paths, we will use Lemma 4.3.

Building on our definitions of Pk and P ′
k, we define P≥k =

⋃∞
j=k Pj , P ′

≥k,P<k,
and P ′

<k accordingly. Let k0 be the cutoff between long and short paths to be
determined later. For paths of length at least k0, we observe that

∑
π∈P′

≥k0

P(Tπ) ≤
∞∑

k=k0

∑
π∈P′

k

P(Sπ)

≤
∞∑

k=k0

∑
v0∈S

∑
v1∼v0

· · ·
∑

vk∼vk−1

P(S(v0,...,vk))

≤
∞∑

k=k0

∑
v0∈S

∑
v1∼v0

· · ·
∑

vk∼vk−1

βk
k−1∏
j=0

1
cj

≤
∞∑

k=k0

∑
v0∈S

∑
v1∼v0

· · ·
∑

vk∼vk−1

βk
k−1∏
j=0

1
dj

=
sβk0

1 − β
.
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On the other hand, for paths of length less than k0, we have

∑
π∈P′

<k0

P(Tπ) ≤
k0−1∑
k=0

∑
π∈P′

k

P(Tπ)

≤
k0−1∑
k=0

∑
v0∈S

∑
v1∼v0

· · ·
∑

vk∼vk−1

P(Tπ)

≤
k0−1∑
k=0

∑
v0∈S

∑
v1∼v0

· · ·
∑

vk∼vk−1

e−βt/2

(
1 +

1
(2k)!

(
t

2

)2k−1
)

βk
k−1∏
j=0

1
cj

≤ s

k0−1∑
k=0

e−βt/2βk

(
1 +

(
t
2

)2k−1

(2k)!

)

≤ sk0e
−βt/2

(
1 +

(
t
2

)2k0−1

(2k0)!

)
.

Combining the bounds for short and long paths yields

∑
π∈P′

P(Tπ) ≤ s

(
βk0

1 − β
+ k0e

−βt/2

(
1 +

(
t
2

)2k0−1

(2k0)!

))
.

We choose k0 = βt/8. Because t ≥ 8/β, we can use Stirling’s approximation to
derive the bound

eβt/4 ≥ k0 +

(
t
2

)2k0

(2k0)!
.

Thus we have

∑
π∈P′

P(Tπ) ≤ s

(
βk0

1 − β
+ e−βt/4

)
≤ s

(
ββt/8

1 − β
+ e−βt/4

)
≤ sh

β(1 − β)

from the assumption

t ≥ 8

⎛
⎝ log

(
1
h

)
+ log(2β)

β log
(

1
β

)
⎞
⎠ , ββt/8 ≤ sh

2β(1 − β)
.

This completes the proof of Lemma 4.4.
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5. Proof of the Main Theorems

We are now ready to prove Theorem 3.1. Suppose that an infection starts in
S ⊆ H ⊆ V , and each node v ∈ H is inoculated with cv = dv. Recall that EH

denotes the event that an infection started in S ever leaves the set H . Theorem
3.1 states that EH satisfies

P(EH) ≤ s

β
pr
(

1 − β,
1S

s

)
1∗̄

H .

Proof of Theorem 3.1. Let Bk denote the set of all paths of length k from S to H̄ such
that the first k − 1 steps are in H . We define B to be the union of all Bk. Note
that if u ∈ H̄ is ever infected, then Sπ occurs for some π ∈ B. We will bound
that probability using the union bound:∑

π∈B
P(Sπ) ≤

∑
k

∑
π∈Bk

P(Sπ)

≤
∑

k

∑
v0∈S

∑
vk∈H̄

∑
π=(v0,...,vk)∈Bk

P(Sπ)

≤
∑

k

∑
v0∈S

∑
vk∈H̄

∑
π=(v0,...,vk)∈Bk

βk
k−1∏
j=0

1
dj

=
∑

k

1Sβk(D−1A)k1∗̄
H

=
∑

k

1SβkW k1∗̄
H

=
s

β
pr
(

1 − β,
1S

s

)
1∗̄

H ,

where we use (2.1) and the assumption on H , and apply Lemma 4.1.
Note that if π is a path that contains vertices in H̄ , then it has an initial

segment π̄ ∈ B, and Sπ ⊆ Sπ̄. The set of such walks is P \ P ′; we have shown
that

P

⎛
⎝ ⋃

π∈P\P′
Tπ

⎞
⎠ = P

(⋃
π∈B

Tπ

)
≤
∑
π∈B

P(Sπ) ≤ s

β
pr
(

1 − β,
1S

s

)
1∗̄

H .

Thus, we have shown that the probability that the infection leaves H depends
on the personalized PageRank on H̄ .

We are now ready to prove our next theorem.
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Proof of Theorem 3.2. By the assumptions, H is a cluster with S contained in its
(1 − β)-core. Thus, for u ∈ S, we have from (2.3),

pr(1 − β,1∗
u)1∗̄

H ≤ h

1 − β
.

Summing over all u ∈ S gives

pr
(

1 − β,
1S

s

)
1∗̄

H =
1
s

∑
u∈S

pr(1 − β,1u)1∗̄
H ≤ h

1 − β
.

Applying this bound to Theorem 3.1 gives

P(EH) ≤ sh

β(1 − β)
.

Thus, the probability that the infection escapes H is at most sh
β(1−β) . Because

ci = di for vi ∈ H , all paths within H are safe paths, and we can apply Lemma 4.4
to bound the probability that the infection persists in H . Lemma 4.4 implies that
the probability that the infection persists in H for longer than c log( 1

h )+c′ time is
also at most sh

β(1−β) . Combining these two results yields that the probability that
the infection persists anywhere on the contact graph for longer than c log s + c′

time is at most 2 sh
β(1−β) .

Theorem 3.4 implies that if S is chosen randomly from an h-cluster H , then
there is a high probability that it is also in the core of H . This is important,
because if S is in the core of H , then we can effectively combat any infection
starting from S by inoculating only H . The proof is similar to the analysis
involved in local partitioning algorithms using PageRank [Andersen et al. 06].

Proof of Theorem 3.4. Suppose we are given an h-cluster H , and S is formed by
selecting s random vertices from H , independently with probability proportional
to their degrees. Suppose v is one of those s nodes, and let X be a random
variable that marks the amount of personalized PageRank contained in H̄ :

X = pr(α,1v)1∗̄
H .

From [Andersen et al. 06], we have

E(X) ≤ h

2α
,

where the expectation is over the possible nodes v ∈ H . Furthermore, since
X ≤ 1, we can bound the variance by Var(X) ≤ E(X).
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Here we take α = 1−β. Since we are selecting s random vertices, we consider
Y =

∑s
i=1 Xi, where Xi is a copy of X . We are interested in bounding

P
(

Y ≥ sh

α

)
≤ P(Y ≥ 2E(Y )).

Using Chernoff’s inequality and the known bound for E(X), we have

P(Y ≥ 2sE(X)) ≤ e−sE(X)2/(2 Var(X)) ≤ e−sh/(4α) ≤ ε,

since sh/(4α) ≥ log(1/ε).
By Theorem 3.1, with probability at most 1 − ε, the event that the infection

starting from S leaves H satisfies

P(EH) ≤ s

β
pr
(

1 − β,
1S

s

)
1∗̄

H ≤ sh

4αβ
≤ sh

4(1 − β)β
≤ ε,

by the assumption sh ≤ ε. This completes the proof of Theorem 3.4.

6. Concluding Remarks

There are many questions remaining, several of which we mention here:

1. In this paper, we show that if s infected nodes are in the core of an
h-cluster H and the product of s and h is small, then we need only in-
oculate nodes in H so that the infection will die out in O(log s) time with
high probability. Is it possible to improve or replace the condition imposed
on the product sh?

2. In our main theorems, our analysis involves the Cheeger ratio, which is one
of the parameters concerning the structure of a graph. It will be desirable
if other structural parameters can help improve the probabilistic bounds
in the statement of Theorem 3.2, for example.

3. In this paper, we consider a fixed infection rate β and ask how little antidote
can be used while still ensuring that the contact process dies out quickly.
The other natural approach to this problem is to fix an amount of antidote
and ask for what range of β will the disease necessarily die out quickly.

4. One can also consider alternative models of contact process in which cured
nodes may or may not be susceptible to reinfection. In addition, the type
of propagation on networks can be different.

Many related interesting questions remain to be answered.
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