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Learning to Rank in Vector Spaces
and Social Networks
Soumen Chakrabarti

Abstract. We survey machine learning techniques to learn ranking functions for
entities represented as feature vectors as well as nodes in a social network. In the
feature-vector scenario, an entity, e.g., a document x, is mapped to a feature vector
ψ(x) ∈ R

d in a d-dimensional space, and we have to search for a weight vector β ∈
R

d. The ranking is then based on the values of β · ψ(x). This case corresponds to
information retrieval in the “vector space” model. Training data consists of a partial
order of preference among entities. We study probabilistic Bayesian and maximum-
margin approaches to solving this problem, including recent efficient near-linear-time
approximate algorithms. In the graph node-ranking scenario, we briefly review Page-
Rank, generalize it to arbitrary Markov conductance matrices, and consider the problem
of learning conductance parameters from partial orders between nodes. In another class
of formulation, the graph does not establish PageRank or prestige-flow relationships
between nodes, but encourages a certain smoothness between the scores (ranks) of
neighboring nodes. Some of these techniques have been used by Web search companies
with very large query logs. We review some of the issues that arise when applying the
theory to practical systems. Finally, we review connections between the stability of a
score/rank-learning algorithm and its power to generalize to unforeseen test data.

1. Motivation for Learning to Rank

In traditional information retrieval (IR), ranking techniques matured over more
than a decade. During that time, the basic vector space model [Salton and
McGill 83] remained a known constant and scoring functions were designed by
hand. In the very early days of hyperlink-based ranking for the Web [Page
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et al. 98], ranking functions continued to be designed and tuned by hand, because
relatively few sources of ranking information were taken into account.

1.1. Maintaining Search Engine Ranking Functions

Search systems have become very complex compared to classic IR systems and
since the early days of link-assisted ranking on the Web. Web search engines now
use dozens to hundreds of features [Richardson et al. 06] from pages and sites,
and possibly many other features, extracted from the query or query session,
source location, browser cookies, and possibly user profile information. Pages
are often scanned by entity tagging systems to identify and canonicalize entities
mentioned therein. The extracted entities are then connected through a knowl-
edge base, which is often graph-structured (e.g., location or product hierarchies).
The increasing complexity of ranking logic makes manual tuning difficult; while
“fixing” the ranking function to eliminate a few wrinkles, it is possible to worsen
responses for millions of queries. Semi-automated, learning-based maintenance
of ranking functions is now essential.

Traditional IR evolved several approaches to adapting the ranking function via
relevance feedback—users expressing opinions about the ranking systems used to
tune the ranking engine automatically [Salton and Buckley 99]. It is only re-
cently that the relevance feedback task was performed in rigorous ways from
the perspective of machine learning [Herbrich et al. 99, Joachims 02, Burges
et al. 05]. Using some form of supervised rank-learning in the presence of graph-
ical structure is even more recent [Agarwal 06, Vassilvitskii and Brill 06, Agarwal
et al. 06, Agarwal and Chakrabarti 07].

1.2. Searching and Mining Social Networks

Learning ranking functions is becoming more important because more diverse
forms of data are being indexed by search systems that must rank responses
to queries. A graph in which nodes (and possibly edges) have associated text,
and in which nodes and edges have types (e.g., nodes representing the types
person and organization, and an edge of type “works-for”), form a convenient
and powerful common denominator representation for the object exchange model
[Papakonstantinou et al. 95], XML, and even relational data [Bhalotia et al. 02,
Agarwal et al. 02, Balmin et al. 04]. We collectively call these entity-relationship
graphs or E-R graphs. An example is shown in Figure 1.

E-R graphs are a rich representation of semistructured data. The flexibility
also makes ranking difficult: Nodes and edges have diverse semantics and are
not all equally important. Their importance may even vary in the course of
a single query session. This is in stark contrast to traditional IR, where the
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Figure 1. Entity-relationship graph. A personal search application may include
the submitted paper P , the journal editor J , and the desirability of a reviewer
from industry (“company”), and then be required to rank reviewers like R.

“schema,” in the parlance of E-R graphs, has been fixed: The corpus is a set of
documents, each a sequence of tokens. Consequently, there is no single successful
ranking function for general E-R graph search applications. Recent years have
seen several efforts to automate the design of ranking functions [Diligenti 05, Nie
et al. 05, Chakrabarti and Agarwal 06] for E-R graphs.

Summarizing, scoring and ranking applications are becoming too complex for
completely manual tuning and maintenance, and, increasingly, there is emphasis
on supplementing editorial judgment with automatic learning of scoring and
ranking functions.

2. Preliminaries

We set up some notation. An instance is denoted x ∈ X if it is interpreted as a
feature vector ψ(x) ∈ R

d. Sometimes we will omit ψ(·) and just write x as the
feature vector as well. If an instance is a node in a graph, as will be the case
later in this survey, it will be denoted as a node u, v, etc.

This section has two subsections. In Section 2.1, we describe two training and
evaluation scenarios for which there are reasonably direct learning algorithms.
In Section 2.2, we describe other, practically motivated training and evaluation
scenarios, for which satisfactory direct learning algorithms are not known.

2.1. Simple Training and Evaluation Scenarios

We consider two common methods of training and evaluation here. In the first,
there is no explicit notion of absolute quality of the items being ranked: The
trainer can only compare pairs of items and assert that one is better or worse
than the other. Ideally, we should not assume global consistency (acyclicity) in
the resulting preference graph. In the second setup, the trainer assigns scores to
items, but on a coarse-grained scale, as in movie reviews or Amazon.com product
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reviews. Items in the same bucket cannot be compared, but items across any
pair of buckets can be compared meaningfully.

In the remainder of this section, we review a number of different evaluation
methods for ranking functions. We will see in the rest of the paper how these
evaluation criteria drive the development of methods to obtain good scoring and
ranking functions.

2.1.1. Pair preferences and their violations. For some applications, it is difficult or mean-
ingless to talk about an absolute quality of training instances. For instance, a
trainer may only be able to compare pairs of instances but not be able to assign
each instance an absolute score. If the user prefers instance u less than instance
v, we will denote that fact by “u ≺ v.” We will overload ≺ also to denote the
set of preferences, i.e., use ≺ as both a relation and a set. In an application
with multiple trainers, the directed graph induced by ≺ can even have cycles.
Ideally, learning algorithms should be robust enough to tolerate inconsistent
preferences.

Even though the training process presents the learning system with instance
pairs, at testing time almost all algorithms use an internal scoring system to
map each instance to a real score, and use the score to impose a total order on
instances.

If the training input is denoted ≺train, a separate ≺test is used to evalu-
ate the trained system, and the test error is simply the fraction or preference
pairs in ≺test that are violated by the model produced by the trained sys-
tem [Joachims 02].

Counting the number of violated preference pairs is very similar to counting
the number of misclassified instances in traditional classification. The total loss
over a training set can be written as a simple sum of 0/1 indicators of violation,
one for each preference pair. This makes both learning optimization and analysis
relatively simple.

2.1.2. Average precision. In other applications, an ideal total order may be available,
and we may wish our ranking algorithm to produce a total order to be evaluated
against the ideal one.

Consider a text search system and a query for which there are R relevant
documents. A search engine creates a ranking rengine that lists them at ranks
p1 < p2 < · · · < pR. The average precision1 of rengine wrt rideal is defined to be

AvgPrec(rengine, rideal) =
1
R

R∑
i=1

i

pi
.

1http://en.wikipedia.org/wiki/Information retrieval#Average precision
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Observe that average precision rewards the search engine if all pi are as small as
possible.

An ideal system creates a ranking rideal that lists all relevant documents before
any irrelevant document but keeps the relative ordering within the relevant and
irrelevant subsets the same. For example,

rengine = d+
1 , d

−
2 , d

+
3 , d

+
4 , d

−
5 , d

−
6 , d

+
7 , d

−
8 ,

rideal = d+
1 , d

+
3 , d

+
4 , d

+
7 ; d−2 , d

−
5 , d

−
6 , d

−
8 .

Across the two strict (meaning that ties have somehow been resolved) rankings,
documents di and dj are concordant if they are in the same order in the two
rankings, and discordant otherwise (see Section 2.2.1).

Account for the number of discordant pairs Q as follows: First consider the
relevant document at position p1 in rengine. Because it has been moved from
position 1 to position p1, the number of inversions introduced is p1 − 1. For
the document at position p2 in rengine, the number of inversions introduced is
p2 − 1 − 1, the last “−1” thanks to having the first relevant document ahead of
it. Summing up, we get

R∑
i=1

pi − 1 − (i− 1) = Q, or

R∑
i=1

pi = Q+
R∑

i=1

i = Q+
R(R+ 1)

2
= Q+

(
R+ 1

2

)
.

Intuitively, if Q is small, AvgPrec(rengine, rideal) should be large. This can be
formalized [Joachims 02] by framing an optimization problem that gives a lower
bound to AvgPrec(rengine, rideal) given a fixed Q (and R): minp1,...,pR

1
R

∑R
i=1

i
pi

such that p1 + · · · + pR = Q+
(
R+1

2

)
, 1 ≤ p1 < p2 < · · · < pR, where p1, . . . , pR

are positive integers.
Relaxing the last two constraints can only decrease the optimal objective, so

we still get a lower bound. The relaxed optimization is also convex because 1/pi

is convex in pi, as far as pi is concerned the numerator i is a “constant,” and the
sum of convex functions is convex.

Solving the relaxed optimization using the Lagrangian method, we get

L(p1, . . . , pR;λ) =
1
R

R∑
i=1

i

pi
+ λ

(
R∑

i=1

pi −Q−
(
R+ 1

2

))
.

Differentiating,

∂L
∂pi

= − i

Rp2
i

+ λ
set= 0 to get p∗i =

√
i

Rλ
.
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Substitute this in the Lagrangian, set the derivative wrt λ to zero, and again
substitute in the Lagrangian to get the optimal objective (in the relaxed opti-
mization) as

AvgPrec(rengine, rideal) ≥
(∑R

i=1

√
i
)2

R
(
Q+

(
R+1

2

)) .
Q and the lower bound on average precision are inversely related, which makes
sense. The above analysis shows that reducing Q (which is easier to tackle using
learning algorithms) will increase average precision.

Recently, however, Yue et al. [Yue et al. 07] have given a direct max-margin
optimization of the average precision objective.

2.1.3. Ordinal regression, bipartite ranking, and AUC. In many applications, items are as-
signed ratings on a discrete k-point scale; items for sale at Amazon.com, for ex-
ample, are rated on a five-point scale. This imposes a partial order on instances.
We will represent ordinal regression problems as the problem of regressing an
instance x ∈ X to a label y ∈ Y, where Y typically has a small size k. A special
case of ordinal regression is bipartite ranking, where k = |Y| = 2, so we can write
Y = {−1,+1}.

At this point, ordinal regression may look like plain k-class classification, but
the performance measures are different. Unlike in classification, where labels in
Y are incomparable, here they have a total order imposed on them. (In standard
regression, Y = R.) Second, even for two-level ordinal regression (also called
bipartite ranking), the number of relevant documents is typically very small
compared to the number of irrelevant documents, so it is not enough to reduce
a misclassification objective as in classification. We elaborate on the latter issue
below. The former is handled in Section 3.3.

In the special case of bipartite ranking, there is a close connection between
pair preference violation and the area under the receiver operating characteristics
(ROC) curve (area under the curve, or AUC). First we define the ROC curve.

As mentioned before, we assume the algorithm assigns to instance x a score
f(x), which we threshold suitably to assign instances to either the +1 or the
−1 class, i.e., let the predicted class be sign(f(x) − b), where b is the threshold.
Ideally, f should be chosen/trained such that all the positive instances have
greater f(·) than any negative instance.

To perform a recall-precision type evaluation of f , the usual procedure is to
start from b → −∞, for which all instances are labeled +1, and increase b until
all instances are labeled −1. The number of interesting values of b is 1 + n,
where there are n instances. Let these values of b be called b0, . . . , bn. For each
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i = 0, . . . , n, we get a different “classifier” hi. Each of these classifiers has a false
positive rate fpri and a true positive rate tpri, defined as

fpri =
number of negative instances misclassified as positive by hi

number of negative instances
,

tpri =
number of positive instances classified as positive by hi

number of positive instances
.

The ROC curve is a scatter plot of (fpri, tpri) as i varies, connecting points
corresponding to consecutive is. As i increases, bi increases, and therefore tpri

and fpri decrease.
If the learning system randomly guesses the label of instances, the slope of the

curve should be roughly constant. In expectation, it would be the diagonal from
(0, 0) to (1, 1), and the area under the ROC curve would be 1/2. In contrast,
if the learning system is perfect, it places all positive examples ahead of any
negative example. Therefore, there is a threshold bi such that fpri is very small,
but tpri is large (close to 1). The AUC would be closer to 1 as well. Thus,
the AUC is a reasonable measure of bipartite ranking performance [Agarwal
et al. 05].

Suppose the learning algorithm has trained a function f : X → R. Suppose a
sample contains n+ positive and n− negative instances. Then it can be shown
that the AUC is also equal to

Â(f, S) =
1

n−n+

∑
i:yi=+1

∑
j:yj=−1

(
[[f(xi) > f(xj)]] +

1
2
[[f(xi) = f(xj)

)
(2.1)

Here Â is the empirical accuracy over the labeled set S using the scoring function
f . Therefore, there is a direct connection between AUC and the fraction of
pairwise preferences that is satisfied (j ≺ i is satisfied if f(xi) > f(xj)).

2.2. Other Real-Life Training and Evaluation Scenarios

In Section 2.1, we reviewed objectives that are decomposable over instances or
instance pairs, and are therefore relatively easy to target by learning algorithms.
There are other ranking objectives that are important in applications; we discuss
some of them here.

First we set up some notation. Fix a query and suppose we somehow know the
“perfect” instances that belong to the top k rank positions. Let this sequence
be Sk, and suppose the “perfect” scores of these instances are known. Let us
denote the perfect score of instance v as Sk(v), overloading S for convenience.
The learning algorithm, meanwhile, returns a sequence Ŝk, with score Ŝk(v) for
instance v.
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2.2.1. Rank correlation. In many ranking applications, perceived ranking quality
depends strongly on the instances listed at the top of the ranked list. In Web
search, the density of clicks on query response lists provided by search engines
decays steeply with rank [Cho and Roy 04]. Ranking mistakes made far into the
response list are easily overlooked or forgiven, while mistakes made in the “top
10” are damaging.

One way to capture this using Sk and Ŝk is to use rank correlation. Consider
all instances in Sk ∪ Ŝk. If some v in the union is not in Sk, set Sk(v) = 0,
and similarly for Ŝk(v). A node pair v, w ∈ Sk ∪ Ŝk is concordant if (Sk(v) −
Sk(w))(Ŝk(v)−Ŝk(w)) is strictly positive, and discordant if it is strictly negative.
It is an exact tie if Sk(v) = Sk(w), and is an approximate tie if Ŝk(v) = Ŝk(w).
If there are c, d, e and a such pairs, respectively, and m pairs overall in Sk ∪ Ŝk,
then Kendall’s τ is defined as2

τ(k) =
c− d√

(m− e)(m− a)
∈ [−1, 1].

One problem with using rank correlation to evaluate search engines is that
training data, in the form of the total order Sk, is nearly impossible to gather on
a large scale. For a Web query, a trainer may express a reliable opinion on the
absolute quality of a response in an ordinal regression setting, or compare pairs
of responses reliably as well, but to claim that a given instance u should be listed
at rank 4 means that the trainer is sure that out of, say, 20 billion accessible
Web pages, exactly three are better than u, which is unrealistic.

2.2.2. Precision at top-k. It is more realistic to interpret Sk and Ŝk as sets in-
stead of sequences, each of size k. The precision at top-k is defined to be
|Sk ∩ Ŝk|/k, a score in [0, 1]. Clipping the evaluation at some small k (usually
between 10 and 100) is reasonable, because, in applications, users are gener-
ally not adversely affected by erroneous ranking lower in the ranked list. Note
that the merit of the ranking algorithm is now judged according to how many
items in Ŝk are known to be relevant, not the specific order in which they are
presented.

2.2.3. Relative aggregated goodness. Precision can be somewhat severe, especially if
there are many ties in score. In the case of ties, to achieve high precision, the
learning algorithm must, by some kind of magic, also learn the way the “refer-
ence” system breaks ties, which may be quite arbitrary. Listing a different set
of instances with (reference) scores almost as good as the “true” top-k instances
would still yield terrible precision.

2http://en.wikipedia.org/wiki/Kendall tau rank correlation coefficient
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The relative aggregated/average goodness (RAG) measure [Fogaras et al. 05]
attempts to address this unsatisfactory state of affairs:

RAG(k, u) =
∑

v∈Ŝk Sk(v)∑
v∈Sk Sk(v)

∈ [0, 1].

Note that Sk(v), and not Ŝk(v), is used in both numerator and denominator.
Whereas precision is regarded as too severe, RAG is usually regarded as a little

too lenient, because it completely ignores the identity of the top-k instances.

2.2.4. Mean reciprocal rank. For some applications, including some uses of Web search
engines, it may be adequate to inspect, say, only one positive instance, be-
cause the information in positive documents is redundant. Mean reciprocal rank
(MRR) [Voorhees 99] was designed to evaluate ranking algorithms for such set-
tings. Usually, the system is evaluated over a query set Q. For a specific query
q ∈ Q, suppose the rank of the first positive instance is FirstPositiveRank(q).
Then MRR is defined as

MRR =
1
|Q|

∑
q∈Q

1
FirstPositiveRank(q)

.

2.2.5. Normalized discounted cumulative gain (NDCG). In yet other settings, a user would
be happy with positive documents high in rank, but, unlike MRR, additional
subsequent positive documents are not entirely valueless. Normalized discounted
cumulative grain (NDCG) [Järvelin and Kekäläinen 00] captures this, as did
average precision. NDCG is defined wrt a rating function that maps a rank
position to a reward score. For a specific query q, let

Nq

k∑
i=1

2rating(i) − 1
log(1 + i)

.

Here Nq is a normalization factor so that a perfect ordering gets an NDCG
score of 1 for each query, k is the number of top responses considered, and
rating(i) is the evaluator rating for the item returned at position i. Observe that
the numerator is rewarded if rating(·) is large, and the denominator steadily
discounts matches at higher (poorer) ranks. For multiple queries, the Nq scores
are averaged.

3. Ranking Feature Vectors

Here we assume that each instance xi is represented by a feature vector in R
d

and denote the feature vector by xi itself. We wish to learn a model parameter
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vector β ∈ R
d from the training instances and preference data. We will some-

times abbreviate “model parameter vector” to “model vector.” The score of an
instance xi under model β is β�xi, also written as β · xi.

In the case of ordinal regression and its special subcase, bipartite ranking, each
training instance xi will be accompanied by a label yi, similar to classification
and regression tasks. In the case of general pair preferences, we get the xi vectors
and a set of preference pairs of the form i ≺ j, meaning that the score of xi should
be less than the score of xj , i.e.,

β�xi ≤ β�xj .

3.1. Max-Margin Formulation for Preference Pairs

For a given training set, there may be no feasible β satisfying all preferences ≺.
Consider a ≺ put together on the basis of millions of search engine users. The
directed graph induced by ≺ on the items may even be cyclic. To handle such
cases, for the constraint i ≺ j, introduce the slack variable sij ≥ 0, and ask that

β�xi ≤ β�xj + sij .

We charge a penalty for using sij > 0 by defining the following optimization:

min
sij≥0;β

1
|≺|

∑
i≺j

sij subject to

β�xi ≤ β�xj + sij for all i ≺ j.

In classification, it is common to try to ensure a large separation of positive
and negative instance vectors on the direction β. It can be shown that this assists
generalization to unseen data [Vapnik et al. 96]. Following the same principle,
we would like to strengthen the requirement β�xi ≤ β�xj + sij to the following
“confident separation” requirement:

β�xi + 1 ≤ β�xj + sij .

Again, as with support vector machines (SVMs), if we can find a β that satisfies
β�xi + ε ≤ β�xj for some ε > 0, however small, we can scale up β to achieve the
fixed margin of 1. To avoid this, the objective must penalize not only sij > 0 but
also some norm of β. Many optimizers can conveniently handle the L2 norm, so
a reasonable modified optimization is

min
sij≥0;β

1
2
β�β +

B

|≺|
∑
i≺j

sij subject to (3.1)

β�xi + 1 ≤ β�xj + sij for all i ≺ j.
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Here B is a magic parameter that balances pair preference violations against
model strength.

The structure of the optimization above is very similar to that of a standard
SVM, and quadratic program (QP) solvers used to run SVM optimizations can
be used readily.

In the discussion above, we modeled the score of the item x as β�xi. If for
every pair of instances i ≺ j we create an instance zij in a new optimization,
we are looking for a β such that β�zij > 0 for all zij . If a solution β exists,
then there is a hyperplane separating the origin from all zijs. In applications,
the separator may not always be so simple. We can first map x to a vector
ψ(x) using a suitable, possibly nonlinear transformation ψ, however. In this
case, the score of x will be β�ψ(x). The hope is that, even if no hyperplane
can separate zijs from the origin in the original space, in the space where ψ
maps the points x, the zs will have a linear separator from the origin. The
application of transformation ψ here is completely analogous to classification
problems. We refer the reader to Schölkopf and Smola [Schölkopf and Smola 02]
and Shawe-Taylor and Christianini [Shawe-Taylor and Cristianini 04] for details.

The formulation in (3.1) has some performance issues:

• Common SVM implementations will take time almost quadratic in the
number of training pairs. Here a training instance is actually a pair of
data instances. Therefore rank-learning problems may have even larger
training sets.

• Consider relevance-judgment input of the form used in standard IR, over
a corpus of 106 documents. For each query, we are given, say, 10 relevant
and (implicitly) 106−10 irrelevant documents. This will lead to about 107

preference pairs xi ≺ xj .

• Many of these preference pairs are unnecessary for learning the best β. If
β�x0 ≤ β�x1 and β�x0 ≤ β�x2, for example, then β�x0 ≤ λβ�x1 + (1−
λ)β�x2 for λ ∈ [0, 1].

• Unfortunately, we cannot, in general, say ahead of time which preferences
will be redundant.

We can ease the running time a bit by replacing the max-margin optimiza-
tion with a simpler, unconstrained approximation where gradient descent can
be used. There is no strict mathematical correspondence between (3.1) and the
approximation, however. In Section 3.2, we describe a recent breakthrough that
achieves, in linear time, a approximation with a formal guarantee.
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Together, β�xi + 1 ≤ β�xj + sij and sij ≥ 0 mean sij = max{0, β�xi −
β�xj + 1} (“hinge loss”). Optimization (3.1) can be rewritten without using sij

as follows:

min
β

1
2
β�β +

B

|≺|
∑
i≺j

max{0, β�xi − β�xj + 1}.

Now, max{0, t} can be approximated by a number of smooth functions. A par-
ticularly convenient one is log(1 + et). It asymptotes to y = 0 as t → −∞ and
to y = t as t → ∞. This gives us a simple unconstrained optimization, which
can be solved by Newton’s method:

min
β∈Rd

1
2
β�β +

B

|≺|
∑
i≺j

log(1 + exp(β�xi − β�xj + 1)).

Observe that if β�xi − β�xj + 1 
 0, i.e., if β�xi 
 β�xj , then we pay a small
penalty, whereas if β�xi − β�xj + 1 � 0, i.e., if β�xi � β�xj , then we pay a
large penalty.

3.2. Near-Linear Time Max-Margin Approximation

The primal optimization (3.1) can be reformulated as

min
β,s≥0

1
2
β�β +B s, such that (3.2)

∀�c ∈ {0, 1}|≺| :
1

|≺|β
�∑

i≺j

cij(xj − xi) ≥ 1
|≺|

∑
i≺j

cij − s.

Note that, instead of |≺| slack variables, there is now only one slack variable s,
but now we have 2|≺| primal constraints (one constraint for each value of �c) and
2|≺| corresponding dual variables. This may appear to be a step backward, but,
if most primal constraints are redundant, most dual variables will be inactive,
i.e., 0. We will exploit this property.

First, we will establish that any solution to (3.2) corresponds to a solution
to (3.1), and vice versa. Fix a β0 in (3.1). For optimality, we must then pick
s∗ij = max{0, 1 + β�

0 xi − β�
0 xj}. Now fix the same β0 in (3.2). For optimality,

we must pick

s∗ = min
�c∈{0,1}|≺|

⎧⎨
⎩ 1
|≺|

∑
i≺j

cij
(
1 + β�

0 xi − β�
0 xj

)⎫⎬⎭ .

Observe that �c can be picked element-wise:

c∗ij = [[1 + β�
0 xi − β�

0 xj ≤ 0]].
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With this choice, we can verify that objectives of (3.1) and (3.2) will be equal
using β0, {s∗ij}, s∗, {c∗ij}.

We set up the approximate optimization as follows:

• Instead of all {0, 1}|≺|, start with W ⊂ {0, 1}|≺|, typically W = ∅;

• Solve (3.2) with W instead of {0, 1}|≺| to get the current β0, s
∗;

• Look for a violator c∗ such that

1
|≺|β

�
0

∑
i≺j

c∗ij(xj − xi) <
1

|≺|
∑
i≺j

c∗ij − s∗ −ε︸︷︷︸
tolerance

;

• If no such c∗ can be found, exit with an objective that is at most the
optimal objective plus ε;

• Otherwise, add c∗ to W and repeat.

The capability of inducting nonzero dual variables “on demand” and thereby
getting a faster algorithm comes from a general scheme for extending SVMs to
very large Y spaces, by Tsochantaridis et al. [Tsochantaridis et al. 05]. Specifi-
cally, we can make the following claims:

• For fixed (constant) ε, B, and maxi ‖xi‖2, the number of inclusions into
W before no further c∗ is found is constant.
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Figure 2. Scaling behavior of approximate linear-time RankSVM invented by
Joachims [Joachims 06].
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• Each loop above can be implemented in O(n log n) vector operations in
R

d, where all xi ∈ R
d. In text applications the vectors are generally very

sparse, typically with a small number of nonzero elements that is almost
independent of corpus size or d. In such cases, we can assume even that
each vector operation takes constant time.

Figure 2 shows that the approximate algorithm indeed scales almost linearly in
practice as well, which is a dramatic improvement over known implementations
of (3.1), which scale roughly as n3.4 (not shown). As of now, extensions to
nonlinear kernels are not known.

3.3. Max-Margin Formulation for Ordinal Regression

In the case of ordinal regression, we generally do not wish to reduce the problem
to preference pair learning, because there can be too many pairs. Suppose we
are scoring instances on a r-point scale. Apart from β, we will optimize over
r − 1 thresholds:

−∞ = b0 ≤ b1 ≤ b2 ≤ · · · ≤ br−2 ≤ br−1 ≤ br = +∞.

Let j ∈ {1, . . . , r} index score levels, and the ith instance in the jth level be
denoted xj

i . We wish to pick β such that, for any xj
i ,

bj−1 < β�xj
i < bj .

Extending the max-margin principle to these two inequalities, we will insist that

bj−1 + 1 < β�xj
i < bj − 1,

and introduce lower slacks sj
i ≥ 0 and upper slacks sj

i ≥ 0, and we relax the
above inequalities to

bj−1 + 1 − sj
i ≤ β�xj

i ≤ bj − 1 + sj
i .

For an illustration of the boundaries and slacks, see Figure 3.
The objective to minimize is modified to

min
β,b,s≥�0,s≥�0

1
2β

�β +B
∑
j,i

(sj
i + sj

i ),

where B is, as before, a parameter to balance slacks against model complexity
‖β‖2. The resulting quadratic program with linear inequality constraints can be
solved [Chu and Keerthi 05] by some of the same optimization packages as are
used to optimize standard SVMs.
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Figure 3. Illustration of class boundaries and slacks in ordinal regression [Chu
and Keerthi 05].

3.4. Ranking Loss and Gradient-Based Approaches

In some applications, the preference i ≺ j may be accompanied by a confidence
score. For example, in multi-user Web searches, there may be no consensus on
the relative merits of instances i and j, and a compromise may be desired. We
will model this by adding a target probability p̄ij with which the trained system
should rank i worse than j.

To appreciate this training model better, consider a standard logistic regression
in machine learning, where x ∈ R

d is regressed to two classes Y = {−1,+1}. The
assumption is that the regressor first computes a probability

Pr(Y = +1|x) = 1 − Pr(Y = −1|x) =
exp(β�x)

1 + exp(β�x)
,

and then tosses a coin with these probabilities to decide a class label. Training
data {(xi, yi)} usually has binary class labels, and the training optimization seeks
to find

max
β

∑
i

log Pr(Y = yi|xi).

There is no particular reason, however, why training data has to be certain
about the yi values. In particular, the trainer may well provide empirical class
probabilities in the form (xi, p̄i) where p̄i is some empirical confidence of the
trainer that Yi = 1. We can now seek to minimize some form of disagreement
between pi = Pr(Y = +1|xi) and p̄i. In the ranking problem, p̄ij represents the
trainer’s confidence that i ≺ j.

Returning to the ranking problem, suppose the system implements ranking by
first evaluating a scoring function f on instances. The score of xi is f(xi) ∈ R.
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The modeled posterior probability pij of ranking i worse than j is assumed to
have a familiar log-linear form as in logistic regression:

pij =
exp(f(xj) − f(xi))

1 + exp(f(xj) − f(xi))
.

If f(xj) � f(xi), pij → 1; if f(xj) 
 f(xi), pij → 0.
Because preference pairs can share instances in arbitrary ways, the trainer

cannot assign p̄ij arbitrarily; there are some consistency requirements on p̄ijs.
Let us assume that p̄ij must be consistent with some ideal node-scoring function
f̄ , such that

p̄ij =
exp(f̄(xj) − f̄(xi))

1 + exp(f̄(xj) − f̄(xi))
.

Using the above, Burges et al. [Burges et al. 05] showed that

p̄ik =
p̄ij p̄jk

1 + 2p̄ij p̄jk − p̄ij − p̄jk
.

The above expression has some nice properties. Consider p̄ik when p̄ij = p̄kj .
In particular, when p̄ij = p̄jk = 0, p̄ik = 0 as well. That is, if we know with
certainty that i � j and j � k, we know with certainty that i � k. Likewise,
p̄ij = p̄jk = 1, which is equivalent to certain knowledge that i ≺ j and j ≺ k,
implies that p̄ik = 1, or i ≺ k. More interestingly, when p̄ij = p̄kj = 1/2,
p̄ik = 1/2. Thus, perfect uncertainty and perfect certainty propagate.

As before, we can model f(xi) = β�xi. Finding f amounts to fitting β. We
want to fit β so as to minimize disagreement between trainer-specified p̄ij and
modeled pij . Burges et al. propose to minimize the KL divergence:

KL(p̄ij‖pij) = p̄ij log
p̄ij

pij
+ (1 − p̄ij) log

1 − p̄ij

1 − pij

= −p̄ij log pij − (1 − p̄ij) log(1 − pij) + constant independent of pij .

In the above,

pij =
exp(β�xi − β�xj)

1 + exp(β�xi − β�xj)
.

We thus get a final optimization problem over β. Burges et al. used a neural
network to optimize β.



Chakrabarti: Learning to Rank in Vector Spaces and Social Networks 283

4. Ranking Nodes in Graphs

Thus far, training and test instances were assumed to be feature vectors in R
d,

drawn from some unknown but fixed distribution. In this part of the survey, we
consider situations where instances are not (only) feature vectors but nodes in a
graph G = (V,E). As discussed in Section 1, many forms of social network data
are being represented as graphs, with strongly motivated ranking applications
that use such graph representations.

What kind of signal might be available from G? If the edges of G represent
similarity, we may want neighboring nodes to have similar scores, and there-
fore, ranks. The BLAST data set3 lists dissimilarity scores between pairs of
proteins. In a corpus of documents, similarity between a pair of documents,
represented as a feature vector of word counts, may dictate that they be ranked
similarly wrt a query. If each node u is assigned a score f(u), the undirected
edge (u, v) ∈ E expresses the prior belief that scores of its endpoints should
not vary much, i.e., f should be smooth wrt G. We explore undirected graph
Laplacians in Section 4.1, which let us enforce such smoothness constraints
easily.

The second interpretation, leading to by far the most popular algorithms for
ranking nodes in social networks [Page et al. 98, Kleinberg 99], is that each
directed edge (u, v) ∈ E represents an endorsement of v by u. Social network
analysis has led to “random surfer models” where the steady state of a Markovian
walk on a directed graph leads to scores for the nodes. These random walks are
related to a directed version of the graph Laplacian. We explore these in Sections
4.2.1, 4.2.2, and 4.2.3.

4.1. Undirected Graph Laplacian Smoother

Let us represent the undirected graphG by a symmetric weighted node adjacency
matrix: A(u, v) = A(v, u) is the weight of edge (u, v), which is 0 if the edge does
not exist. Suppose f is the vector of scores assigned to nodes, with node u having
score f(u). An intuitive way to encourage smoothness is to minimize∑

(u,v)∈E

A(u, v)
(
f(u) − f(v)

)2
.

This objective can be expressed in a simple matrix notation. Consider the sim-
ple (having no self-loops or parallel edges) undirected graph G = (V,E) with
|V | = n, |E| = m. The node-edge incidence matrix N ∈ {−1, 0, 1}n×m is

3http://www.kyb.tuebingen.mpg.de/bs/people/weston/rankprot/supplement.html
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defined as

N(v, e) =

⎧⎪⎨
⎪⎩
−√A(e) if e = (v, ·),√
A(e) if e = (·, v),

0 if v is not either endpoint of e.

Here the endpoints of an undirected edge are ordered arbitrarily. Let D be a
diagonal matrix with D(u, u) equal to the total weight of edges incident with u:

D(u, u) =
∑

v

A(u, v).

The Laplacian matrix for G is defined as

LG(u, v) =

⎧⎪⎨
⎪⎩
∑

w A(u,w), u = v

−A(u, v), u �= v, (u, v) ∈ E

0 otherwise.

Then it is well-known [Dhillon 01, Agarwal 06] that

LG = NN� = D −A,

and, therefore, D−A is a symmetric positive semidefinite matrix. Furthermore,
for any vector f ∈ R

n,

f�Lf =
∑

(u,v)∈E

A(u, v)
(
f(u) − f(v)

)2
.

Therefore, subjecting the score vector f to the operation f�Lf penalizes node
scores that are very different across “heavy” edges.

Returning to learning from preference pairs, if u ≺ v in the training data, we
want f(u)+1 ≤ f(v) (including the margin and excluding the slack). Define the
ranking loss of score vector f wrt the preference u ≺ v as max{0, 1+f(u)−f(v)}.
Observe that the sum of ranking losses over all preference pairs,

∑
u≺v max{0, 1+

f(u)− f(v)}, is an upper bound on the number of violated training preferences.
By combining smoothness with ranking loss, we can now write down the com-

plete optimization problem as

min
f∈Rn

f�Lf +B
∑
u≺v

max{0, 1 + f(u) − f(v)},

or, if we incorporate slack variables,

min
f∈Rn,{suv≥0:∀u≺v}

f�Lf +B
∑
u≺v

suv (4.1)

subject to suv ≥ 1+f(u)−f(v), i.e., f(v)−f(u) ≥ 1−suv ∀u ≺ v. B balances
between roughness and data fit as before. Because L is positive semidefinite,
this is a convex quadratic program with linear inequality constraints.
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4.2. From Score Smoothness to Endorsement

For some applications, smoothness of scores across undirected edges is not rea-
sonable to expect. Millions of obscure Web pages link to http://kernel.org, but
one would not expect their scores to be anywhere near that of http://kernel.org,
say, for the query “linux kernel.” Obscure pages confer endorsement to popular
pages, but are not necessarily as popular.

We will discuss two interrelated approaches to learning in this setting, both
based on random walks on directed graphs. One approach is to extend the graph
Laplacian to directed graphs; this is discussed in Section 4.2.1. Another approach
is to model the random walk as a network flow. The asymmetric endorsement
scenario above is naturally modeled as many small flows converging on to a
popular node with very large flow-through. This is discussed in Section 4.2.2.
A third, slightly different, learning problem involving a limited number of edge
types (see Figure 1) is explored in Section 4.2.3.

4.2.1. Directed Laplacian. The Laplacian of a directed graph, proposed by Chung
[Chung 05], is defined as follows. Assume each row of A has at least one nonzero
element, i.e., there is no dead-end node. Define a diagonal matrix D as before,
with D(u, u) being the sum of the uth row of A. Define Markovian transi-
tion probability matrix Q ∈ [0, 1]n×n with Q(u, v) = Pr(u → v) = Pr(v|u) =
A(u, v)/D(u, u). Assume that the Markov random walk defined by Q is irre-
ducible and aperiodic. Let π ∈ R

n be the steady-state probability vector for
the random walk represented by Q, and let Π = diag(π). The directed graph
Laplacian is defined as

L = I − Π1/2QΠ−1/2 + Π−1/2QΠ1/2

2
.

Zhou et al. [Zhou et al. 05] explain why this specific definition is useful for
encouraging a smooth score vector. Once the directed Laplacian is defined, it
can be used in optimization (4.1) in place of the undirected graph Laplacian.
For the directed Laplacian, it can be shown that

f�Lf =
∑

(u,v)∈E

π(u)Q(u, v)

(
f(u)√
π(u)

− f(v)√
π(v)

)2

.

Therefore, if there are no training preferences, f�Lf will be minimized for x(u) ∝√
π(u). In other words, in the absence of training preference pairs, the algorithm

will choose a rank order on the nodes that is identical to the rank order obtained
using the Markov walk defined by Q. This shows that Laplacian smoothing has
a reasonable default or “parsimonious” belief. Agarwal [Agarwal 06] gives more
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compelling reasons for using a Laplacian smoother: Reducing f�Lf is equivalent
to regularizing f in a reproducing kernel Hilbert space (RKHS).

Despite these elegant foundations, the Laplacian smoothing perspective has
two limitations. First, the optimization (4.1) involves diagonalizing and comput-
ing the pseudoinverse L+ of a large n×n matrix L, which is time-consuming and
perhaps even impractical for Web-scale work. Second, the generalization power
(see Section 5) of the learning algorithm is expressed in terms of the inaccessible
and somewhat inscrutable quantity maxu L

+(u, u).

4.2.2. Constrained network flows. In this section, we propose an alternate view of the
random walk as a network flow, and use this view to design a score vector for
nodes in V . We first study basic properties satisfied by many Markovian walks
(such as the one yielding PageRank) and then look for other solutions that satisfy
these properties while also satisfying preference pairs between nodes.

Earlier we assumed that the Markov random walk defined by Q is irreducible
and aperiodic. In PageRank, this is achieved using the device of the teleport :

• When at any node u, the random surfer tosses a coin with head probabil-
ity α.

• If the coin comes up heads, the surfer uses the Markov transition matrix
to walk to an out-neighbor v of u.

• With the remaining probability 1 − α, the surfer teleports to a random
node w, chosen using a multinomial distribution r = (r1, . . . , rw , . . . , rn).
In this paper, we usually consider the uniform teleport r = �1/|V |.

We can express teleport without dense all-to-all transitions by defining tran-
sitions between each node and a new dummy node d, in both directions. The
augmented graph is Ĝ = (V̂ , Ê). Markov transition probabilities in the aug-
mented graph are expressed by the (n+ 1) × (n+ 1) matrix Q̂ given by

Q̂ =
[
αQ (1 − α)�1|V |×1

�1/|V | 0

]
.

The earlier steady-state equation π = Q�π is replaced with π̂ = Q̂�π̂, but π and
π̂ are closely related [Langville and Meyer 04] and one can be obtained from the
other. Henceforth, for simplicity of notation, we will continue using Q and π in
place of Q̂ and π̂ even in the augmented graph.
Q and π can be used to define a reference circulation quv along each edge in

Ê, given by quv = π(u)Q(u, v). Note that, by design,
∑

u,v quv = 1, so {quv} is
a multinomial distribution.
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To rank nodes in the presence of pair preferences, we estimate another circu-
lation in Ĝ, given by puv along edge (u, v), with

∀u, v ∈ V̂ : puv ≥ 0, (4.2)∑
u,v∈V̂

puv = 1. (4.3)

The solution p will naturally induce a score φ on the nodes:

φ(v) =
∑

(u,v)∈Ê

puv,

and φ will be used to rank the nodes.
Apart from being a multinomial distribution, to be a legitimate circulation, p

must satisfy the following property:

∀v ∈ V̂ :
∑

(u,v)∈Ê

puv =
∑

(v,w)∈Ê

pvw. (4.4)

We also need to make puv a legitimate probability Pr(u) Pr(u→ v), while taking
into account the teleport that happens with probability 1 − α. This is easily
done using more equality constraints:

∀v ∈ V :
pvd

1 − α
=
∑

w∈V pvw

α
. (4.5)

If we asserted only these constraints on p, there could be an infinite number
of solutions; q itself is a solution. Tomlin [Tomlin 03] proposed finding a p to
maximize its entropy H(p):

max
{puv :u,v∈V̂ }

−puv log puv

subject to (4.2), (4.3), (4.4), and (4.5).
Offhand, it is not clear why H(p) is the right objective. Maximizing H(p)

is equivalent to minimizing the KL divergence [Cover and Thomas 91] from p

to the uniform distribution over edges (1/|Ê|, . . . , 1/|Ê|), and, in general, the
uniform flow distribution over edges does not even satisfy (4.4) and (4.5).

By replacing H(p) with the KL divergence [Cover and Thomas 91] from p to
q, we achieve three goals:

• Establish a correspondence with the directed Laplacian regularization;

• Give stability and generalization bounds similar to the Laplacian approach
(Section 5);



288 Internet Mathematics

• Solve a numerically more benign optimization that outputs valid PageRank
scores.

Changing our objective as motivated above, and taking into account preference
pairs, we write the final optimization as follows:

min
{0≤puv}
{0≤suv}

∑
(u,v)∈Ê

puv log
puv

quv
+ B

∑
u≺v

suv

subject to (4.2), (4.3), (4.4), (4.5),

and ∀u ≺ v :
∑

(w,u)∈Ê

pwu −
∑

(w,v)∈Ê

pwv − suv ≤ 0.

(4.6)

Note that, while asserting preference constraints, we do not use a margin; we
will revisit this issue soon. Clearly, if ≺= ∅, p will solve to q, and therefore the
“parsimonious belief” underlying optimization (4.6) is the same as (4.1).

By design, even when ≺�= ∅, optimizations (4.1) and (4.6) have a broad
correspondence. Let p and q be valid flow distributions on Ĝ. Define a score fp

for each node using p as follows:

fp(v) =
√ ∑

{u:(u,v)∈Ê}
puv.

Then we can show [Agarwal and Chakrabarti 07] that

KL(p‖q) ≤ ε ⇒ f�
p Lfp ≤ 4ε21,

i.e., encouraging p to stay close to q also ensures that fp as defined above is
smooth wrt the graph Laplacian.

This implication is rather useful, because the optimization (4.6) is fairly benign
and efficient. No diagonalization of L or a quadratic program (QP) optimizer
is needed; a good Newton method such as L-BFGS [Liu and Nocedal 89] or
BLMVM [Benson and Moré 01] suffices [Agarwal et al. 06].

Introducing a margin is not trivial. We cannot just modify the preference
inequalities to

∀u ≺ v : 1 +︸ ︷︷ ︸
margin

∑
(w,u)∈Ê

pwu ≤ suv +
∑

(w,v)∈Ê

pwv (4.7)

because, unlike ranking feature vectors according to β�xi, where scaling up β

also increased the magnitude of β�xj −β�xi, here the total inflow into any node
is at most 1, and, in typical social networks, very small. This also precludes
using any arbitrary lesser constant in place of 1.
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The solution is to relax the equality constraint (4.3) and let p be some positive
multiple of a flow. This does not hurt the KL objective, because, if q is a
probability distribution and p an unnormalized distribution, so that

∑
x p(x) =

F , then

1. KL(p‖q) ≥ 0 if F ≥ 1.

2. For a fixed F ≥ 1, arg minp KL(p‖q) = F q.

Given this fact, we can change objective (4.6) to

min
{puv},{suv}

F≥1

∑
(u,v)∈E′

puv log puv

quv
+ C

∑
u≺v

suv + C1 F
2,

and change (4.3) to
∑

(u,v)∈E′ puv = F , and then enforce (4.7).
A “clean-room” method to evaluate the algorithm is as follows:

1. Obtain a real-life graph G, or use a realistic synthetic graph generator like
RMAT [Chakrabarti et al. 04].

2. Compute the baseline random walk Q and flow q, with uniform teleport.

3. Select a small subgraph (perhaps a single node) that will be kept a secret
from the learning algorithm.

4. Increase the total teleport into the secret subgraph to HiddenTeleport ∈
(0, 1). Other nodes divide 1− HiddenTeleport equally among themselves.

5. Compute PageRank flows p with this hidden teleport. These perturbed
PageRank scores will be concealed from the learning algorithm as well.

6. The perturbed PageRank vector is compared with the standard PageRank
vector, and concordant and discordant pairs sampled and presented to the
algorithm as training data.

7. Another disjoint sample of pairs is then used to evaluate the algorithm, in
terms of TestError, the fraction of violated test pairs.

Figure 4 shows the error rates of (4.1), (4.6), and (4.6) with (4.7). The x-axis is
the amount of teleport probability routed into the secret community.

Before leaving the topic we should emphasize that the algorithms represented
by (4.1) or (4.6) are local learning algorithms, in two related senses. When
the learning algorithm adjusts the flow puv away from quv, the effect is limited
to a neighborhood around the edge. Nodes that are “far” from u and v are
not affected. This means that if all nodes involved in test pairs are very far
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Figure 4. Comparison of accuracies of algorithms as teleport into the hidden
favored community is changed [Agarwal and Chakrabarti 07]. (4.6) performs
worse than (4.1), but (4.6) with (4.7) performs better than the others.

from any node involved in training pairs, the algorithm will generalize poorly.
Generalization will be visible only if nodes involved in test cases are sufficiently
close to nodes involved in training. Another way to look at the situation is
that the model has high complexity: The number of parameters estimated by
the learning algorithm scales with the size of the graph, making it easy to fit
training data without guaranteeing good generalization in test data.

4.2.3. Typed edge conductance. In this section, we discuss another learning model pa-
rameterized by an unknown edge conductance matrix C that must be estimated.
While earlier we were directly estimating puv = p(u)C(u → v), now we charac-
terize elements of C using edge types. Specifically, each directed edge (u, v) has a
type t(u, v) ∈ {1, . . . , T}, where T is some small number unrelated to graph size.
Types of all edges are fixed and known beforehand. The model parameters are
β = (β(1), . . . , β(T )). The weight of edge (u, v) is β(t(u, v)). Again, we assume
there are no dead-end nodes, and we write the conductance of (u, v) as

C(i → j) = C(j, i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
α β(t(i,j))∑

(i,k)∈E β(t(i,k)) , i �= d, j �= d,

1 − α, i �= d, j = d,

rj , i = d, j �= d,

0, i = j = d.

Here, r is a fixed teleport vector and d the dummy node as before. Note that
we have written C in a transposed form to ease notation. C is a function of β,
and the PageRank vector satisfies p = C(β)p. The true ranking loss incurred by
p is

∑
u≺v[[p(u) > p(v)]], which we will approximate with some smooth version∑

u≺v loss(p(u) − p(v)).
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Standard PageRank emerges as the solution if ≺= ∅ and all β(t) are equal.
This leads us to design a natural model regularization term:

ModelCost(β) =
∑
t,t′

(
β(t) − β(t′)

)2
.

Also note that C(β) is unchanged upon scaling β, so we can insist that all
β(t) ≥ 1. Putting the above pieces together, the optimization problem becomes

min
β≥�1

ModelCost(β) +B
∑
u≺v

loss(p(u) − p(v)),

where p = C(β)p. If we made both C and p variables in the optimization, we
would get a quadratically constrained quadratic program (QCQP) [Boyd and
Vandenberghe 04], which is more complicated than the simple QPs with linear
constraints or the gradient-based methods we have been using. To avoid QCQPs,
we approximate p ≈ CHp0, where p0 is an initial vector (typically �1/|V |) and H
is a horizon suitably large to ensure convergence of p.

It turns out that our earlier approximation loss(y) def= max{0, y} ≈ log(1 + ey)
does not work well here [Chakrabarti and Agarwal 06], and a loss function is
needed that is exactly 0 for all nonpositive y. Huber loss works well:

huber(y) =

⎧⎪⎨
⎪⎩

0, y ≤ 0,
y2/(2W ), y ∈ (0,W ],
y −W/2, W < y,

for a suitably small window W . Summarizing, our approximate optimization is

min
β≥�1

∑
t,t′

(
β(t) − β(t′)

)2 +B
∑
u≺v

huber
(
(CHp0)u − (CHp0)v

)
.

Unfortunately, this is not a convex optimization. A mixture of grid search and
gradient descent is reliable in practice, however.

Figure 5 shows the true (0/1) and approximate loss surfaces against two sam-
pled β(t)s (a, b), and the decrease in test error with increasing training set
size (c). The number of model parameters estimated is essentially constant
compared to growing with the graph size as in (4.1) or (4.6), and numerical op-
timizers seem to behave much better despite having to deal with a nonconvex
optimization.

Typed E-R graphs are sufficiently expressive to integrate node features into
link-based ranking [Balmin et al. 04]. Consider textual annotations associated
with nodes, which are very common in E-R graph applications. We first tokenize
node text into words and collect the vocabulary of words over the whole graph.
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Figure 5. (a, b) The approximate objective tracks the true loss reasonably, reach-
ing similar minima. The x-axis is the value of β(t); the y-axis shows various losses.
(The curves for “hinge” and “huber” overlap almost everywhere.) (c) Learning
rate is high; few preference pairs suffice to learn β well. The x-axis is the number
of training pairs; the y-axis is test error. The mean and one standard deviation
bars are shown.

We then augment the E-R graph with a new set of word nodes, one for each
word in the vocabulary. We connect each word node w to all entity nodes v
where the word w occurs, using a new “word → entity” edge type. A query is
interpreted as a set of keywords, and the teleport vector r is designed so that
there is positive teleport only to the query words.

5. Stability and Generalization

Traditional learning theory is concerned with studying the power of a learning
algorithm to generalize from finite training data to an expected accuracy over
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unknown test data. Training and test data are assumed to be sampled from a
population of instances using a common and fixed, but usually unknown, distri-
bution D.

In the case of learning to rank, because a unit of training or testing is a pair
of instances, there are multiple ways to set the stage for generalization results
in terms of how ≺ is sampled. In bipartite ranking, it is common [Agarwal
et al. 05, Agarwal and Niyogi 05] to assume two sampling distributions D+

and D− from which n+ positive and n− negative instances are sampled. This
then leads to a preference pair set ≺ with |≺| = mn. In a transductive [Zhou
et al. 05] setting, there is a fixed set of instances X , and ≺ is sampled iid using
a distribution D over X ×X . Yet other formulations are possible. The form of
the bounds naturally depends on the assumptions on how ≺ is sampled.

Equation (2.1) gives the empirical accuracy of f on a finite labeled set S using
scoring function f : X → R. The “true” ranking accuracy of f is

A(f) = EX∼D+1,X′∼D−1

(
[[f(X) > f(X ′)]] +

1
2
[[f(X) = f(X ′)]]

)
.

In bipartite ranking the training set S = {(xi, yi ∈ {−1, 1})}. Its projections on
X and Y will be called SX and SY . We are interested in upper-bounding

PrD+,D−(|Â(f, S) −A(f)| > ε).

It is slightly easier [Agarwal et al. 05] to first fix a specific label sequence y, with
n+ +1s and n− −1s. Then we can show that

Pr
SX |SY=y

(
Â(f, T ) −A(f) ≥ ε

) ≤ 2 exp
(
−2n+ n− ε2

n+ + n−

)
.

Apart from the traditional PAC-style bounds above [Valiant 84], there are
recently proved stability-based bounds with respect to specific loss functions
[Bosquet and Elisseeff 02]. Roughly speaking, Bousquet et al.’s results allow us
to infer that a learning algorithm generalizes if its regularized loss function is
stable to leave-one-out perturbations. Given the data graph, the objective in
(4.6) can be rewritten in the regularized risk form:

Rreg(p) =
1
m

m∑
j=1

max
{
0,
∑

(w,u)∈Ê pwu −∑(w,v)∈Ê pwv

}
︸ ︷︷ ︸

ranking loss

+ λKL(p‖q).

Recall that here ≺ is sampled randomly from V ×V according to some unknown
fixed distribution. It can be shown [Agarwal and Chakrabarti 07] that, over
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random draws of ≺ with |≺| = m, with probability at least 1 − δ,

R ≤ Remp +
4 ln 2
λm

+
(

8 ln 2
λ

+ 1
)√

ln(1/δ)
2m

.

Here R is the true ranking loss and Remp is the empirical ranking loss over
training data. Note that this is a bound between R and Remp for the given
choice of ranking loss, which is not an upper bound on 0/1 loss. To achieve
the latter, an additive margin must be added to the ranking loss [Agarwal and
Chakrabarti 07]; we omit the details.

6. Concluding Remarks

In this survey on machine learning methods for ranking, we first discussed ways
in which such systems are trained, tested, and evaluated. Then we studied rank
learning for instances represented by feature vectors, followed by rank learning
for instances represented by nodes in a graph. We finally summarized some re-
sults demonstrating the generalizing power of rank-learning algorithms. Some
of the formulations, while working well in practice, have no benign (say, convex)
optimization. It would be desirable to explore alternate formulations and algo-
rithms that do have guarantees. Learning to rank while being especially sensitive
to the quality of responses in the top-ranked positions remains underexplored.
Finally, not all formulations discussed here can work with million-node graphs
yet, let alone Web-scale graphs.
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