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Modeling the Small-World
Phenomenon with Local
Network Flow
Reid Andersen, Fan Chung, and Linyuan Lu

Abstract. The small-world phenomenon includes both small average distance and the
clustering effect. Randomly generated graphs with a power law degree distribution
are widely used to model large real-world networks, but while these graphs have small
average distance, they generally do not exhibit the clustering effect. We introduce
an improved hybrid model that combines a global graph (a random power law graph)
with a local graph (a graph with high local connectivity defined by network flow). We
present an efficient algorithm that extracts a local graph from a given realistic network.
We show that the underlying local graph is robust in the sense that when our extraction
algorithm is applied to a hybrid graph, it recovers the original local graph with a small
error. The proof involves a probabilistic analysis of the growth of neighborhoods in the
hybrid graph model.

1. Introduction

The small-world phenomenon usually refers to two distinct properties: small av-
erage distance and the clustering effect where two nodes with a common neigh-
bor are more likely to be adjacent. These properties are ubiquitous in realistic
networks. To model networks with the small-world phenomenon, it is natu-
ral to utilize randomly generated graphs with a power law degree distribution,
where the fraction of nodes with degree k is proportional to k−β for some pos-
itive exponent β. This is based on the observations by several research groups
that numerous networks, including Internet graphs, call graphs, and social net-
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works, have a power law degree distribution [Adamic and Huberman 99, Aiello et
al. 00, Azevedo and Leroi 01, Barabási and Albert 99, Barabási et al. 99, Broder
et al. 00, Calvert et al. 97, Cooper and Frieze 03, Faloutsos et al. 99, Jain
and Krishna 01, Kumar et al. 00a, Kumar et al. 99, Kumar et al. 00b, New-
man 01, Mitzenmacher 03].

A random power law graph has small average distances and small diameter. It
was shown in [Chung and Lu 02a] that a random power law graph with a certain
range of parameters almost surely has average distance of order log log n and has
diameter of order log n. In contrast, the clustering effect in realistic networks is
often determined by local connectivity and is not amenable to modeling using
random graphs.

Most existing models that capture the clustering effect make random modifi-
cations to some underlying graph. Watts and Strogatz [Watts and Strogatz 98]
introduced a model with an underlying graph consisting of vertices on the circle
connected to their k nearest neighbors. Kleinberg [Kleinberg 00] introduced a
model for which the underlying graph is a grid. In both of these models, the
graphs generated do not have a power law degree distribution, and each ver-
tex has the same expected degree. The strict requirement that the underlying
graph be a cycle or grid is unsatisfactory for modeling web graphs or biological
networks.

In this paper we introduce a hybrid graph model where the underlying graph
can be any graph that satisfies a certain local connectivity property. This un-
derlying local graph is then modified by adding the edges of a random power
law graph, which we refer to as the global graph. The graphs generated by the
hybrid model have a power law degree distribution, have small average distances
between vertices, and allow very general underlying graphs.

The main difference between our hybrid model and the model introduced pre-
viously in [Chung and Lu 04] is that our notion of local connectivity is based on
length-bounded network flows instead of length-bounded disjoint paths. Maxi-
mum length-bounded network flows can be computed efficiently using techniques
for general fractional packing problems. This allows us to take a given real-world
network and extract from it a highly connected local graph. We introduce such
an extraction algorithm and prove that when applied to graphs from the hybrid
model, the extraction algorithm recovers the original local graph with only a
small error. The extraction algorithm provides a way to partition a network into
a local graph providing robust local connections and a global graph providing
small distances. Such a partition may have applications for clustering, routing,
and graph visualization.

The paper is organized as follows. In Section 2 we define random power law
graphs. In Section 3 we introduce our notion of local flow connectivity and define
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local graphs and hybrid graphs. In Section 4 we present the Extract algorithm
for extracting local subgraphs. In Section 5 we state the main theorem: the
Extract algorithm approximately recovers the original local graph when applied
to a graph from the hybrid model. The proofs of the main theorem and a few
related theorems are presented in Sections 6 and 7. These proofs require bounds
on neighborhood growth in the hybrid model, which are obtained in Section 8
through a probabilistic analysis. In Section 9 we point out that Extract can
also be viewed as a clustering algorithm with some desirable properties, and we
present drawings and examples.

2. Preliminaries

2.1. Notation

All graphs considered in this paper are undirected. Given a graph G, we let
dG(u, v) denote the graph distance between vertices u and v in G. We will use
the following notation for vertex neighborhoods:

NG
k (u) = {v ∈ G | dG(u, v) ≤ k},

ΓG
k (u) = {v ∈ G | dG(u, v) = k}.

When the graph is understood, we will write Nk(u) and Γk(u). Given two sets
of vertices A and B in G, we let eG(A,B) denote the number of edges in G with
one endpoint in A and the other in B.

2.2. Random Graphs with Specified Expected Degrees

A random graph G(w) with specified expected degree sequence w = (w1, w2, . . . ,

wn) is formed by including each edge vivj independently with probability pij =
wiwjρ, where ρ = (

∑
wi)−1. This model has a nonzero probability of self-loops,

but the expected number of loops is much smaller than the total number of
edges. We use the convention that a self-loop contributes only 1 to the degree of
a vertex. It is easy to check that vertex vi has expected degree wi. We assume
that maxi w2

i <
∑

k wk so that pij ≤ 1 for all i and j. This condition also implies
that the sequence wi is graphical if the wi are integers [Erdős and Gallai 61]. The
typical random graph G(n, p) on n vertices with edge probability p is a special
case of the G(w) model where w = (pn, pn, . . . , pn). For a subset S of vertices,
we define

Vol(S) =
∑
vi∈S

wi and Volk(S) =
∑
vi∈S

wk
i .
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We let d denote the average expected degree Vol(G)/n and let d̃ denote the
second-order average expected degree Vol2(G)/Vol(G). We also let m denote
the maximum weight among the wi.

The main results of this paper are stated for random graphs from the G(w)
model in terms of the parameters d, d̃, and m. However, we will mostly be inter-
ested in the special case where G(w) is a random power law graph. The expected
degree sequences of these graphs and the resulting values of the parameters d,
d̃, and m are described in the next section.

2.3. Random Power Law Graphs

A random power law graph M(n, β, d,m) is a random graph G(w) whose ex-
pected degree sequence w is determined by the following four parameters:

• n is the number of vertices.

• β > 2 is the power law exponent.

• d is the average expected degree.

• m is the maximum expected degree and m2 = o(nd).

We let the ith vertex vi have expected degree

wi = ci−
1

β−1

for i0 ≤ i ≤ i0 + n, for some c and i0 (to be chosen later). It is easy to compute
that the number of vertices of expected degree between k and k + 1 is of order
c′k−β where c′ = cβ−1(β − 1), as required by the power law. To determine c, we
consider

Vol(G) =
∑

i

wi =
∑
i≥i0

ci
1

β−1

≈ c

(
β − 1
β − 2

)
n1− 1

β−1 .

Here we assume that β > 2. Since nd ≈ Vol(G), we choose

c =
(

β − 2
β − 1

)
dn

1
β−1 , (2.1)

i0 = n

(
d(β − 2)
m(β − 1)

)β−1

. (2.2)

Values of d̃ for random power law graphs are given below (see [Chung and
Lu 02a]):
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Figure 1. Weight distribution f(x). Figure 2. Log-scale of Figure 1.

d̃ =

⎧⎪⎪⎨
⎪⎪⎩

(1 + o(1))d (β−2)2

(β−1)(β−3) if β > 3,

(1 + o(1))1
2d ln 2m

d if β = 3,

(1 + o(1))dβ−2 (β−2)β−1m3−β

(β−1)β−2(3−β)
if 2 < β < 3.

(2.3)

3. Local Graphs and Hybrid Graphs

3.1. Length-Bounded Network Flow

There are a number of ways to define local connectivity between two given ver-
tices u and v. One natural approach is to consider the maximum size of a
collection of disjoint paths between u and v where each path has length at most
� for some fixed constant �. We call such paths short and let a�(u, v) be the
maximum number of short edge-disjoint paths between u and v. Similarly, we
let c�(u, v) be the minimum size of a short cut—a set of edges whose removal
leaves no short path between the vertices. Both a�(u, v) and c�(u, v) are difficult
to compute. Computing the maximum number of short disjoint paths is NP-
hard if � ≥ 4 and APX -hard if � ≥ 5 [Itai et al. 82]. Similar hardness results
are known for computing the minimum size short cut [Baier 03]. The analogous
version of the Menger’s theorem for length-restricted paths and cuts does not
hold; in fact, a�(u, v) and c�(u, v) can be different by a factor of at least �

3 (see
[Lovász et al. 78], [Boyles and Exoo 82], [Baier 03]). However, we still have the
trivial relations a�(u, v) ≤ c�(u, v) ≤ � · a�(u, v).

Since the measures of local connectivity are hard to compute, we will consider
instead the maximum short flow between u and v. A short flow is a positive
linear combination of short paths where no edge carries more than one unit of
flow. Finding f�(u, v), the maximum size of a short flow between u and v, can be
viewed as the linear programming relaxation of the maximum short disjoint paths
problem. If we let A be the incidence matrix in which each column represents a
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short path from u to v and each row represents an edge in the graph, then

f�(u, v) = max
x

{�1T x | Ax ≤ �1,x ≥ �0 }. (3.1)

The linear programming dual of the maximum short flow problem is a fractional
cut problem. A short fractional cut is a weight function w : E → R+ such that∑

e∈P w(e) ≥ 1 for every short u − v path P . The dual of the short maximum
flow problem is the problem of finding a short fractional cut that minimizes∑

e∈G w(e). We let w�(u, v) denote the size of a minimum short fractional cut
and note that LP duality implies

a�(u, v) ≤ f�(u, v) = w�(u, v) ≤ c�(u, v). (3.2)

Since all the coefficients in the incidence matrix, cost vector, and constraint
vector in the linear program (3.1) are nonnegative, the maximum short flow prob-
lem belongs to a class of linear programs called fractional packing problems that
can be solved efficiently by multiplicative update techniques (see, for example,
[Plotkin et al. 95], [Young 95], and [Garg and Könemann 97]). In particular, it
is easy to adapt the fractional packing algorithm of Garg and Könemann [Garg
and Könemann 97] to approximate maximum short flow within a multiplicative
factor of (1 + ε) in time polynomial in ε and the size of the graph.

3.2. Local Graphs

We will use the maximum short flow f�(u, v) to define a measure of local con-
nectivity and to define local graphs. Our definitions involve two parameters f

and �.

Definition 3.1. (Local Connectivity.) We say that vertices u and v are (f, �)-connected if
f�(u, v) ≥ f .

Definition 3.2. (Local Graphs.) A graph L is an (f, �)-local graph if for each edge
e = (u, v) in L, the vertices u and v are (f, �)-connected in L \ {e}.

We also define the notion of a local subgraph of a larger graph.

Definition 3.3. (Local Subgraphs.) A subgraph L ⊆ G (not necessarily induced) is an
(f, �)-local subgraph of G if for each edge e = (u, v) in L, the vertices u and v are
(f, �)-connected in G \ {e}.
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For a given graph G, we define Lf,�(G) to be the set of edges e = (u, v)
where f�(u, v) ≥ f in G \ {e}. It is clear that Lf,�(G) is the unique largest local
subgraph of G.

We also wish to consider the largest subgraph L of G that is an (f, �)-local
graph. Let L̂f,�(G) be the union of all subgraphs of G that are (f, �)-local. By
definition, the union of two (f, �)-local graphs is an (f, �)-local graph, and so
L̂f,�(G) is the unique largest (f, �)-local subgraph in G.

Changing the parameters f and � yields different classes of local graphs. When
one of the parameters is fixed, we have the monotonicity results Lf,i ⊆ Lf,j if
j ≥ i and Li,� ⊆ Lj,� if i ≥ j. We remark that Lf,�(G) is not necessarily
connected, and so the connected components of the local subgraph Lf,� induce a
partition Πf,� of the vertex set of G. In this case, the monotonicity results imply
that Πf,i is a refinement of Πf,j if j ≥ i and Πi,� is a refinement of Πj,� if i ≥ j.

3.3. Hybrid Power Law Graphs

A hybrid graph H is the union of the edge sets of an (f, �)-local graph L and a
random global graph R = G(w) on the same vertex set. When generating the
random graph R, we allow the weights wi from w to be assigned arbitrarily to
the vertices of the local graph. Since the proofs will apply to any assignment of
the weights to the vertices, we will ignore the particular assignment and simply
write H = L ∪ R.

We are most interested in the case where the global graph R is a power law
graph M(n, β, d,m). In this case, the hybrid graph will have small diameter and
average distances, due to the following results on random power law graphs that
appeared in [Chung and Lu 02a].

Theorem 3.4. For a random power law graph R = M(n, β, d,m) and β > 3, almost
surely, the average distance is (1 + o(1)) log n

log d̃
and the diameter is O(log n).

Theorem 3.5. For a random power law graph R = M(n, β, d,m) and 2 < β < 3,
almost surely, the average distance is O(log log n) and the diameter is O(log n).
For a random power law graph R = M(n, β, d,m,L) and β = 3, almost surely,
the average distance is O(log n/ log log n) and the diameter is O(log n).

The diameter of the hybrid graph can be smaller than that of the random
power law graph R if the local graph satisfies additional conditions. A local
graph L is said to have isoperimetric dimension δ if for every vertex v in L and
every integer k < (log log n)1/δ, there are at least kδ vertices in L of distance
at most k from v. For example, the grid graph in the plane has isoperimetric
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dimension 2, and the d-dimensional grid graph has isoperimetric dimension d.
The following results appeared in [Chung and Lu 04].

Theorem 3.6. In a hybrid graph H = R ∪ L with R = M(n, β, d,m,L) and 2 <

β < 3, suppose that the local graph has isoperimetric dimension δ, where δ ≥
log log n/(log log log n). Then, almost surely, the diameter is O(log log n).

Theorem 3.7. In a hybrid graph H = R∪L with R = M(n, β, d,m,L) and 2 < β < 3,
suppose that the local graph has isoperimetric dimension δ. Then, almost surely,
the diameter is O((log n)1/δ).

Theorem 3.8. In a hybrid graph H = R∪L with R = M(n, β, d,m,L) and 2 < β < 3,
suppose that each vertex is within distance log log n of some vertex of degree log n.
Then, almost surely, the diameter is O(log log n).

4. Extracting the Local Graph

The following simple procedure Extract computes the largest (f, �)-local sub-
graph of a given graph G.
Extract(f, �): Given a graph G and parameters (f, �), for each edge e = (u, v)
compute f�(u, v) in G \ {e}. Let L be the subgraph of G containing the edges
e = (u, v) for which f�(u, v) ≥ f .

It is easy to see that Extract computes Lf,�(G). There is also a simple greedy
algorithm to compute L̂(f, �)(G), the largest subgraph L of G that is an (f, �)-
local graph.
Recursive Extract(f, �): Given a graph G and parameters (f, �), let H1 = G.
At iteration t of the algorithm, scan through the edges e = (u, v) of Ht in any
order and compute f�(u, v) in Ht \ {e}. Let Ht+1 ⊆ Ht be the set of edges in
Ht where f�(u, v) ≥ f . Repeat until no edges are removed during an iteration
of the algorithm, then output the remaining graph Ht.

Theorem 4.1. For any graph G and any (f, �), Recursive Extract(f, �) returns
L̂f,�(G), the unique largest subgraph of G that is an (f, �)-local graph.

Proof. Given a graph G, let L be the graph output by Recursive Extract. A
simple induction argument shows that each edge removed by the algorithm is
not part of any (f, l)-local graph that is a subgraph of G, and thus L̂f,�(G) ⊆ L.
Since no edges were removed from L in the final iteration of the algorithm, L is
(f, l)-local and so L ⊆ L̂f,�(G). Thus, L = L̂f,�(G).
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The algorithm Extract requires m maximum short flow computations, and
Recursive Extract requires O(m2) maximum short flow computations.

4.1. Experiment

We have implemented the Extract algorithm and applied it to various hybrid
graphs. For some hybrid graphs, the local graphs produced by Extract are
almost perfectly recovered. In the next section we will present a theorem that
makes this precise.

Figure 3. A hybrid graph where the lo-
cal graph is a hexagonal grid.

Figure 4. After applying Extract with
parameters f = 2.5 and l = 4, the local
graph is almost perfectly recovered.

5. Recovering the Local Graph

We now consider the problem of recovering a good approximation to the local
graph L given a hybrid graph H = L∪R. If we apply Extract with parameters
(f, �) to a hybrid graph H where L is an (f, �)-local graph, the algorithm will
output Lf,�(H). By definition we have L ⊆ Lf,�(H), but Lf,�(H) may also
contain edges from R \ L. We now state our main theorem—Lf,�(H) is a good
approximation of L if the random part R of the hybrid graph is sufficiently
sparse.

Theorem 5.1. (Recovery Theorem.) Let H = L∪R be a hybrid graph where L is (f, �)-local
with bounded maximum degree M and where R = G(w) is a random graph with
average expected degree d, second order average expected degree d̃, and maximum
weight m. Let L′ = Lf,�(H). Let α > 0 be some constant such that d̂ = nα is an
upper bound for d̃.
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If d̂ ≤
(

nd

m2

)1/�

n−3/f�,

then with probability 1 − O(n−1)

1. the expected number of edges in L′ \ L is O(d̃), and

2. dL′(x, y) ≥ 1
� dL(x, y) for every pair of vertices x, y ∈ L.

The proof of this theorem is contained in Section 6. The statement of the
theorem may become more clear by examining the corresponding result for the
special case where all weights are equal and G(w) ∼ G(n, p). In this special case
the Recovery Theorem has a cleaner statement (Theorem 5.2). Also, we can
show that the Recovery Theorem is tight in this special case in the sense that
if d is slightly larger than n

1
� , we will have L̂f,�(H) = H, implying that neither

Extract nor Recursive Extract recovers a good approximation to the original
local graph.

Theorem 5.2. Let H = L∪R be a hybrid graph as in Theorem 5.1 with R = G(n, p)
and p = dn−1. If

d ≤ nα ≤ n1/�n−3/f� for some constant α > 0,

then with probability 1 − O(n−1), results 1–2 from Theorem 5.1 hold.

Theorem 5.3. Let H = L∪R be a hybrid graph as in Theorem 5.1 with R = G(n, p)
and p = dn−1, and let

d ≥ 6fn
1
� (log n)

1
� .

With probability 1 − O(n−2), L̂f,�(H) = H.

The proofs of these results are contained in Section 7. These results indicate
that the term

(
nd
m2

)1/�
in the Recovery Theorem is nearly the best possible,

although we will not make this precise. When we deal with the G(w) model,
d̃ appears in place of d since we expect the volume of a small neighborhood to
expand by a factor of d̃ as we increase the radius by one step.

6. Recovery Analysis

In this section we will prove the Recovery Theorem. We first introduce some
notation. We say that an edge in H is global if it is in R \ L. A global edge
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e = (u, v) is long if dL(u, v) > � and short otherwise. We say a global edge
survives if it is in Lf,�(H) \L. In the propositions below we will show that there
are not very many short global edges and that long global edges are unlikely
to survive. The proofs of these propositions are provided later in this section.
Proving that there are few short global edges is easy, while the result for long
edges requires a more detailed analysis that makes up the bulk of the rest of
this paper. This result also requires bounds on the growth of neighborhoods in
hybrid graphs, which are presented in Section 8. The Recovery Theorem follows
easily from these propositions.

Proposition 6.1. (Short Edges.) The expected number of short edges in Lf,�(H) \ L is
O(d̃).

Proposition 6.2. (Long Edges.) If the hypotheses from the Recovery Theorem hold, the
probability that a given long edge survives is O(n−3).

Proof of Recovery Theorem. Since there are at most n2 edges in R, combining Proposi-
tion 6.2 with the trivial union bound implies that with probability 1 − O(n−1)
no long edges survive. In that case, L′ \ L contains only short edges, and there
are O(d̃) of these by Proposition 6.1, so part 1 follows. To prove part 2, note
that if no long edges survive, then all edges in L′ are short. If (u, v) is an edge in
L′, dL(u, v) ≤ �. If p′ is a path between two vertices x and y in L′ with length k,
then by replacing each edge with a short path, we obtain a path p in L between
x and y with length at most �k. The result follows.

6.1. A Bound for Sums

The following simple bound will be used several times is proving Propositions
6.1 and 6.2.

Lemma 6.3. Let X be some finite set with nonnegative weights w(x), and let A ⊆ Xk

be a set of ordered k-tuples from X. If each element x ∈ X appears in at most
M elements of A, then

∑
(xi1 ...xik

)∈A

w(xi1) · · ·w(xik
) ≤ M

∑
x∈X

w(x)k

Proof. Order the elements of X as x1 . . . xn such that w(x1) ≥ · · · ≥ w(xn). Let
Aj be the collection of tuples v ∈ A where j is the smallest index of any element
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in v. We have |Aj | ≤ M , and ∪j∈[1,n]Aj = A, so∑
(xi1 ...xik

)∈A

w(xi1) · · ·w(xik
) ≤

∑
j∈[1,n]

∑
(xi1 ...xik

)∈Aj

w(xi1) · · ·w(xik
)

≤
∑

j∈[1,n]

Mw(xj)k

≤ M
∑
x∈X

w(x)k.

6.2. Short Edges

If (u, v) is a short edge in R, it is possible that there is a short flow of size f

from u to v in L. This means that we cannot say a short edge is unlikely to
survive without placing additional assumptions on the local graph. However, an
easy computation shows that there are not likely to be many short edges in R.

Proof of Proposition 6.1. Let X be the number of short edges in R.

E[X] =
∑

{(x,y) | x∈L, y∈NL
� (x)}

Pr [ (x, y) ∈ R ]

=
∑

{(x,y) | x∈L, y∈NL
� (x)}

wxwyρ.

Since each vertex x appears in at most 2M � terms in the sum, we apply Lemma 6.3
to obtain

E[X] ≤ 2M �
∑
x∈G

w2
xρ

= 2M �d̃

= O(d̃).

The proposition follows since Lf,�(H) \ L is contained in R.

6.3. Long Edges

Proving that a long edge (u, v) is unlikely to survive is similar to proving that
few paths of length � exist in H between u to v. If we were only dealing with a
random graph R from the G(n, p) model instead of a hybrid graph, one way to
show this would be to bound the total number of vertices in the neighborhood
N�−1(u) in the graph R \ v and then to show that there are not likely to be f
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edges in R between that neighborhood and v. From this approach one can prove
that paths of length � between two given vertices are not likely to appear until
the expected degree of each vertex reaches roughly n

1
� , and at that point many

short disjoint paths will appear with only a small increase in the average degree.
This is reflected in Theorems 5.2 and 5.3.

To prove Proposition 6.2, we extend this line of reasoning to hybrid graphs.
To deal with complications introduced by the local graph, we define modified
neighborhoods N̄k(u) and Γ̄k(u) in the hybrid graph that avoid the local neigh-
borhoods of v. In analogy to the case for G(n, p) random graphs, we show that
after � − 1 steps the total weight of vertices in these neighborhoods is not very
large. We identify a set S(u, v) of possible edges between the modified neigh-
borhoods of u and local neighborhoods of v, and we show that for an edge to
survive at least f pairs among the set S(u, v) must appear as edges in R. We
also show that we can reveal the modified neighborhoods without examining any
of the vertex pairs in S(u, v). This implies that, after determining the modified
neighborhoods, a pair (x, y) ∈ S(u, v) appears as an edge in R with probability
wxwyρ. Since we bound the total weight of vertices in the modified neighbor-
hoods, we can bound the expected number of edges among the pairs S(u, v) that
are included in R. If d̃ obeys the hypotheses of the Recovery Theorem, this
expectation is small enough to imply that the edge (u, v) is unlikely to survive.

Definition 6.4. N̄k(u) and Γ̄k(u).

For k ∈ [0, �], let N̄k(u) be the set of vertices y such that there exists a path
p = x0 . . . xk in H with x0 = u and xk = y obeying the following condition:

dL(xi, v) > � − i for all i ∈ [0, k].

We define Γ̄k(u) to be the corresponding strict neighborhood,

Γ̄k(u) =
{

y | y ∈ N̄k(u), y 	∈ N̄0(u) ∪ · · · ∪ N̄k−1(u)
}

.

The following recursive definition of Γk(u) will be useful and is easily seen to be
equivalent to the original:

Γ̄0(u) = {u},

Γ̄k(u) =

⎧⎨
⎩ y |

y 	∈ NL
�−k(v),

y 	∈ Γ̄0(u) . . . Γ̄k−1(u),
(x, y) ∈ H for some x ∈ Γ̄k−1(u)

⎫⎬
⎭ .

Definition 6.5. S(u, v) and C(u, v).
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We define S(u, v) to be the set of vertex pairs⋃
k∈[1,�]

(
Γ̄k−1(u) × NL

�−k(v)
)
.

We define C(u, v) to be the set of edges in H contained in S(u, v).

Remark 6.6. All the edges in C(u,v) are global edges.

Proof. If (x, y) ∈ (
Γ̄k−1(u) × NL

�−k(v)
)
, then dL(x, v) > �− (k− 1) and dL(y, v) ≤

�−k. Thus, dL(x, y) > 1, so (x, y) cannot be a local edge and must be global.

Lemma 6.7. If (u, v) is a surviving long edge, then |C(u, v)| ≥ f .

Proof. We first show that every short path between u and v in H contains an edge
from C(u, v). Let p = x0 . . . xk be a path of length k ≤ � between u and v in H.
The last vertex on the path is xk = v, so we have dL(xk, v) = 0 ≤ � − k, and
thus xk 	∈ N̄k(u). The first vertex on the path is x0 = u, and thus x0 ∈ N̄0(u).
Let j ≥ 1 be the smallest integer such that xj 	∈ N̄j(u). By definition, xj−1 ∈
N̄j−1(u), while xj 	∈ N̄j(u). This implies that dL(xj , v) ≤ �− j, so xj ∈ NL

�−j(v).
We now have that xj−1xj is an edge in N̄j−1(u) × NL

�−j(v). We conclude that
xj−1xj is an edge in C(u, v) since

N̄j−1(u) × NL
�−j(v) ⊆

⋃
k∈[1,j]

(
Γ̄k−1(u) × NL

�−k(v)
) ⊆ S(u, v).

We have shown that the set of edges C(u, v) forms a short cut. Thus, we have

a�(u, v) ≤ f�(u, v) ≤ c�(u, v) ≤ |C(u, v)|.

Since (u, v) is a surviving edge, f ≤ f�(u, v) ≤ |C(u, v)|. This completes the proof
of the lemma. Notice that the lemma (and consequently the Recovery Theorem)
still hold if we consider short disjoint paths a�(u, v) or short cuts c�(u, v) as our
measure of local connectivity.

Lemma 6.8. If we condition on the values of the sets Γ̄0(u) . . . Γ̄�−1(u) and let S be
any set of edges contained in S(u, v), then

Pr

⎡
⎣ ∧

(x,y)∈S

(x, y) ∈ R | Γ̄0(u) . . . Γ̄�−1(u)

⎤
⎦ =

∏
(x,y)∈S

wxwyρ .
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Proof. Let R(x,y) denote the event that the vertex pair (x, y) is an edge in R.
We are considering ordered pairs (x, y), but note that R(x,y) and A(y,x) are not
independent since we are dealing with undirected graphs. We will determine
Γ̄0(u) . . . Γ̄�−1(u) sequentially by observing the events R(x,y) for a certain subset
of vertex pairs Q ⊆ V × V . From the recursive definition of Γ̄k(u), it is clear
that we can determine Γ̄k(u) given Γ̄k−1(u) by observing only the set of vertex
pairs Qk, where

Qk = Γ̄k−1 ×
(
V \ (NL

�−k ∪ Γ̄0(u) ∪ · · · ∪ Γ̄k−1(u))
)
.

It follows that Qk does not contain any pairs from⋃
j∈[1,k]

(
Γ̄k−1(u) × NL

�−k(v)
)

or
⋃

j∈[1,k]

(
NL

�−k(v) × Γ̄k−1(u)
)
.

We can determine Γ̄0(u) . . . Γ̄�−1(u) by observing the pairs Q = Q1 ∪ · · · ∪Q�−1.
Since the neighborhoods Γ̄j(u) are disjoint, we see that Q does not contain any
pairs from⋃

k∈[1,�]

(
Γ̄k−1(u) × NL

�−k(v)
)

or
⋃

k∈[1,�]

(
NL

�−k(v) × Γ̄k−1(u)
)
.

Thus, the set of vertex pairs Q for which we have observed R(x,y) in determining
Γ̄0(u) . . . Γ̄�−1(u) is disjoint from S(u, v) and also disjoint from the set of pairs
in S(u, v) with the order of the vertices reversed. Thus, the events R(x,y) with
(x, y) ∈ S(u, v) are independent of the events R(x,y) with (x, y) ∈ Q, and the
claim follows.

A bound on the total weight of pairs in S(u, v) is given in the following lemma.
The proof requires an analysis of the growth of the volumes of the neighborhoods
N̄k(u) and is contained in Section 8. Using the previous lemmas and the following
lemma, we can complete the proof of Proposition 6.2.

Lemma 6.9. With probability 1 − e−Ω(nα),∑
k∈[1,�]

Vol(Γ̄k−1(u))Vol(NL
�−k(v)) ≤ 4m2(4Md̂)�−1.

Proof of Proposition 6.2. If (u, v) is a surviving long edge, then |C(u, v)| ≥ f by
Lemma 6.7. Let Sf denote the set of ordered f -tuples containing f distinct
pairs from S(u, v). Let B be the event that∑

k∈[1,�]

Vol(Γ̄k−1(u))Vol(NL
�−k(v)) ≤ 4m2(4Md̂)�−1, (6.1)



374 Internet Mathematics

which occurs with probability 1 − e−Ω(nα) by Lemma 6.9. By the law of condi-
tional probabilities,

Pr [ |C(u, v)| ≥ f ] ≤ Pr [ |C(u, v)| ≥ f | B ] + Pr
[ |C(u, v)| ≥ f | B̄

]
≤ Pr [ |C(u, v)| ≥ f | B ] + e−Ω(nα).

To bound Pr [ |C(u, v)| ≥ f | B ], we first determine S(u, v) by conditioning on
the sets Γ̄0(u) . . . Γ̄�−1(u). We can then write

Pr
[ |C(u, v)| ≥ f | Γ̄0(u) . . . Γ̄�−1(u)

] ≤
∑

((x1,y1)...(xf ,yf ))∈Sf

Pr

⎡
⎣ ∧

i∈[1,f ]

(xi, yi) ∈ R

⎤
⎦

and apply Lemma 6.8 to obtain

Pr
[ |C(u, v)| ≥ f | Γ̄0(u) . . . Γ̄�−1(u)

]
≤

∑
((x1,y1)...(xf ,yf ))∈Sf

∏
i∈[1,f ]

wxi
wyi

ρ

≤ ρf

⎛
⎝ ∑

k∈[1,�]

Vol(Γ̄k−1(u))Vol(NL
�−k(v))

⎞
⎠

f

.

We then substitute the bound implied by event B in equation (6.1) to obtain

Pr [ |C(u, v)| ≥ f | B ] ≤ ρf
(
4m2(4Md̂)�−1

)f

=
(
4m2(4Md̂)�−1ρ

)f

.

Since d̂ ≤ ( nd
m2 )1/�n−3/f� by the hypotheses of the Recovery Theorem,

Pr [ |C(u, v)| ≥ f | B] ≤
(
(4M)�n−3/f

)f

= O(n−3).

Thus, the probability that a given long edge survives is at most

O(n−3) + e−Ω(nα) = O(n−3).
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7. Proof of Companion Theorems

We will use the following lower bound on neighborhood size in G(n, p) random
graphs (see [Bollobás 85] p. 260).

Lemma 7.1. (Neighborhood lower bound.) Let � be a fixed constant. If d ≥ n1/�(log(n2))1/�

and if n is sufficiently large, then

Pr
[
|NG

�−1(x)| <
5
6
(n log(n2))1−1/�

]
< n−4.

Proof of Theorem 5.2. The G(n, p) model with p = dn−1 is a special case of G(w)
with d = d̃ = m. To prove Theorem 5.2, notice that in this special case our
upper bound from Lemma 6.9 becomes∑

k∈[1,�]

Vol(Γ̂k−1(u))Vol(NL
�−k(v)) ≤ 4(4M)�−1d�+1.

We then obtain

Pr [|C(u, v)| ≥ f | B ] ≤ ρf (4(4M)�−1d�+1)f

= (4(4M)�−1d�n)f ,

and the rest of the analysis matches that of the Recovery Theorem.

Proof of Theorem 5.3. Let d ≥ 6fn
1
� (log n)

1
� , as in the statement of the theorem. Let

u, v be any pair of vertices in H. We will show that, with high probability, R

contains f short disjoint paths from u to v. Partition the vertices V \ {u, v} into
f disjoint sets V1 . . . Vf , each of size n/f , and let Hi be the induced subgraph of
H on Vi ∪ {u, v}. We will ignore the fact that we may not be able to partition
into sets of size exactly n/f , since it will not be significant. We can view Hi as
a G(n, p) random graph with average degree d′ satisfying

d′ = 6n
1
� (log n)

1
� ≥ 6n

1
� (log n)

1
� ≥ 6|Gi| 1� (log |Gi|) 1

� .

By applying Lemma 7.1 to any particular Gi,

|NGi

�−1(x)| ≥ 5
6
(|Gi| log(|Gi|2))1−1/�

with probability at least 1 − |Gi|−4 = 1 − (n/f)4. With probability at least
1 − f(n/f)4 ≥ 1 − n−4, this holds for all G1 . . . Gf , and we let A denote this
event. If A holds, there is likely to be an edge in G from NGi

�−1(x) to v.
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Pr
[
No edge from NGi

�−1(x) to v | A
]

≤ (1 − p)|N
Gi
�−1(x)|

≤ exp(−p|NGi

�−1(x)|)

≤ exp
(
−p

5
6
(|Gi| log(|Gi|2))1−1/�

)

≤ exp
(
−6fn−1n

1
� (log n)

1
�
5
6
(|Gi| log(|Gi|2))1−1/�

)
≤ exp(−5 log(n/f))

≤ O(n−5).

Thus, conditional on A, there is an edge from NGi

�−1(x) to v for each i ∈ [1, f ]
with probability 1−fO(n−5) = 1−O(n−5). The event A occurs with probability
1−O(n−4). Thus, with probability 1−O(n4) there exist f short disjoint paths
from u to v, and hence f�(u, v) ≥ f . Since there are at most n2 edges in R, the
union bound implies that with probability 1−O(n2) every edge in R survives.

8. Probabilistic Analysis of Neighborhoods in Hybrid Graphs

In this section we describe bounds on the growth of neighborhoods in hybrid
graphs. Our goal is to prove Lemma 6.9 by bounding∑

k∈[1,�]

Vol(Γ̄k−1(u))Vol(NL
�−k(v)).

The main tool that we use is the concentration inequality (8.2), stated below,
which is a generalization of the Chernoff inequalities for the binomial distribu-
tion. For a proof, see [Chung and Lu 02b].

Lemma 8.1. Let X1, . . . , Xn be independent random variables with

Pr(Xi = 1) = pi and Pr(Xi = 0) = 1 − pi.

For X =
∑n

i=1 aiXi, we let µ = E(X) =
∑n

i=1 aipi and we define ν =
∑n

i=1 a2
i pi.

Then, we have

Pr(X < E(X) − λ) ≤ e−λ2/2ν , (8.1)

Pr(X > E(X) + λ) ≤ e−
λ2

2(ν+aλ/3) , (8.2)

where a = max{a1, a2, . . . , an}.
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In the remainder of this section, we define random variables related to the
neighborhoods Γ̄k(u), compute the quantities µ and ν for these random variables,
and apply the concentration inequality. We first introduce some notation. Let
Qk again denote the set of vertex pairs

Qk = Γ̄k−1 ×
(
V \ (NL

�−k ∪ Γ̄0(u) ∪ · · · ∪ Γ̄k−1(u))
)
,

and let Gk denote the set of global edges among the pairs Qk. Let Γ̄k,j(u) be the
set of vertices x ∈ Γ̄k(u) such that x ∈ NL

k−j(y) for some y ∈ Γ̄j and such that j

is the smallest number for which such a y exists. We can think of Γ̄k,j(u) as the
collection of vertices in Γ̄k(u) that are guaranteed to be in Γ̄k(u) as soon as the
edges in Gj are revealed, but not before. We will be considering the volumes of
these sets, so we define

Vk = Vol(Γ̄k(u)) and Vk,j = Vol(Γ̄k,j(u)).

The following proposition gives an upper bound on Vk,j based on Vj−1.

Proposition 8.2. Let V̂j = max{Vj ,m} and d̂ = nα ≥ d̃. With probability 1 −
exp(−Ω(nα)),

Vk,j ≤
(
4Mk−j d̂

)
V̂j−1 for all j ≤ k ≤ � − 1 .

Proof of Proposition 8.2. We first make note of the following simple facts:

Γ̄k(u) =
⋃

j∈[0,k]

Γ̄j,k(u) and Vk ≤
∑

j∈[0,k]

Vk,j .

We let R(x,y) be the event that (x, y) ∈ R, and we let χ(R(x,y)) be the corre-
sponding indicator random variable. We then rewrite Vk,j as

Vk,j = Vol

⎛
⎝ ⋃

{ y | (x,y)∈Gj}
ΓL

k−j(y)

⎞
⎠

≤
∑

{y | (x,y)∈Gj}
Vol(ΓL

k−j(y))

≤
∑

(x,y)∈Qj

χ(R(x,y)) · Vol
(
ΓL

k−j(y)
)
.

We wish to bound this quantity, so we define the random variable

Yk,j =
∑

(x,y)∈Qj

χ(R(x,y)) · Vol
(
ΓL

k−j(y)
)
.
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We will use the concentration inequality (8.2) to bound Yk,j , so to that end
we compute a, µ, and ν. It is easy to observe that

a(Yk,j) = max
x

{
Vol

(
ΓL

k−j(x)
)} ≤ Mk−jm. (8.3)

We then condition on the sets Γ̄0(u) . . . Γ̄j(u), which determines Qj , and proceed
to compute the expected value of Yk,j .

µ(Yk,j) =
∑

(x,y)∈Qj

Pr [ (x, y) ∈ R ] Vol
(
ΓL

k−j(y)
)

=
∑

(x,y)∈Qj

(wxwyρ)Vol
(
ΓL

k−j(y)
)
.

Although we are conditioning on the sets Γ̄0(u) . . . Γ̄j(u), the last line follows
from Lemma 6.8 since Qj ⊆ S(u, v). We now sum over x and y separately,
introducing an inequality by summing over all y ∈ V instead of all y ∈ (V \
(NL

�−k∪ Γ̄0(u) ∪ · · · ∪ Γ̄k−1(u))).

µ(Yk,j) ≤
∑

x∈Γ̄j−1(u)

∑
y∈V

(wxwyρ)Vol
(
ΓL

k−j(y)
)

= ρ

⎛
⎝ ∑

x∈Γ̄j−1(u)

wx

⎞
⎠∑

y∈V

wyVol
(
ΓL

k−j(y)
)

= ρVj−1

∑
y∈V

wyVol
(
ΓL

k−j(y)
)

= ρVj−1

∑
{(x,y) | y∈V,x∈ΓL

k−j(y)}
wxwy.

Finally, we apply Lemma 6.3 to the sum in the last line, noting that each vertex
appears in at most 2Mk−j terms.

µ(Yk,j) ≤ ρVj−12Mk−j
∑
y∈V

w2
y

=
(
2Mk−j d̃

)
Vj−1.

That is the upper bound that we will use for µ, and we now compute an upper
bound for ν in a similar way.

ν(Yk,j) =
∑

(x,y)∈Qj

Pr [(x, y) ∈ R] · Vol
(
ΓL

k−j(y)
)2

=
∑

(x,y)∈Qj

(wxwyρ) · Vol
(
ΓL

k−j(y)
)2

,
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where the last line again follows from Lemma 6.8 and the fact that Qj ⊆ S(u, v).
Rearranging the sum, we have

ν(Yk,j) ≤
∑
y∈V

⎛
⎝ ∑

x∈Γj−1(u)

wxwyρ

⎞
⎠ · Vol

(
ΓL

k−j(y)
)2

= ρ

⎛
⎝ ∑

x∈Γj−1(u)

wx

⎞
⎠∑

y∈V

wy · Vol
(
ΓL

k−j(y)
)2

≤ ρVj−1

∑
y∈V

wy

⎛
⎝ ∑

a∈ΓL
k−j(y)

∑
b∈ΓL

k−j(y)

wawb

⎞
⎠

= ρVj−1

⎛
⎝∑

y∈V

∑
a∈ΓL

k−j(y)

∑
b∈ΓL

k−j(y)

wywawb

⎞
⎠ .

Then, we apply Lemma 6.3 to the sum in the last line. This time each vertex
appears in at most 3(Mk−j)2 terms, and so

ν(Yk,j) ≤ ρVj−1

(
3(Mk−j)2

)∑
y∈V

w3
y

≤ Vj−1

(
3(Mk−j)2

)
m

∑
y∈V

w2
yρ

=
(
3(Mk−j)2md̃

)
Vj−1.

We are ready to combine these results and apply the concentration inequality.
Recall from the statement of Proposition 8.2 that V̂j = max{Vj ,m}. We define

µ̂k,j =
(
2Mk−j d̂

)
V̂j−1 and note that

µ̂k,j =
(
2Mk−j d̂

)
V̂j−1 ≥

(
2Mk−j d̃

)
Vj−1 ≥ µ(Yk,j).

Therefore,

Pr [Yk,j > 2µ̂k,j ] ≤ Pr [Yk,j > µ(Yk,j) + λ]

for some λ satisfying µ̂k,j ≤ λ ≤ 2µ̂k,j .
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Applying the concentration inequality,

Pr [Yk,j > 2µ̂k,j ]

≤ exp

(
− µ̂2

k,j

2(ν + a(2µ̂k,j)
3 )

)

≤ exp

⎛
⎜⎜⎝−

(
2Mk−j d̂

)2

(V̂j−1)2

2
((

3(Mk−j)2md̃
)

Vj−1 +
2(2Mk−j d̂)V̂j−1(Mk−jm)

3

)
⎞
⎟⎟⎠

≤ exp

(
− 4V̂j−1

2
(
3m + 4m

3

) d̂

)

≤ exp

(
− 6

13
V̂j−1

m
d̂

)

≤ exp
(
−Ω(d̂)

)
= exp (−Ω(nα)) .

Thus, we have that for any fixed k and j, the following holds with probability
1 − e(−Ω(nα)):

Yk,j ≤ 2µ̂k,j =
(
4Mk−j d̂

)
V̂j−1.

The union bound implies that this holds for all j ≤ k ≤ � − 1 with probability
1 − �2e−Ω(nα) = 1 − e−Ω(nα). This completes the proof of Proposition 8.2.

Proposition 8.3. With probability 1 − exp(−Ω(nα)),

Vk ≤ (4Md̂)km for all k ∈ [0, � − 1] .

Proof of Proposition 8.3. We prove by induction that

Vk ≤ (4Md̂)km, (8.4)

given that
Vk,j ≤

(
4Mk−j d̂

)
V̂j−1 for all j ≤ k ≤ � − 1.

The result of Proposition 8.3 will follow immediately, since that event occurs
with probability 1 − exp(−Ω(nα)) by Proposition 8.2.

Equation (8.4) holds for k = 0 since we have V0 = Vol({u}) ≤ m. Assume
now that (8.4) holds for [0, k] and consider Vk+1.
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Vk+1 ≤
∑

j∈[0,k+1]

Yk+1,j

≤ Yk+1,0 +
∑

j∈[1,k+1]

(
4Mk+1−j d̂

)
V̂j−1

≤ ΓL
k+1(u) +

∑
j∈[0,k+1]

(
4Mk+1−j d̂

)
(4Md̂)j−1m

≤ Mk+1 + Mkm
∑

j∈[0,k+1]

(
4d̂
)j

≤ Mk+1m(4d̂)(k+1)

= (4Md̂)k+1m.

In the second-to-last line we have assumed that M ≥ 2. This completes the
proof of Proposition 8.3.

Proof of Lemma 6.9. With probability 1 − e−Ω(nα),∑
k∈[1,�]

V ol(Γ̄k−1(u))V ol(NL
�−k(v)) ≤

∑
k∈[1,�]

(
(4Md̂)k−1m

)
(2mM �−k)

= 2m2M �−1
∑

k∈[1,�]

(4d̂)k−1

≤ 4m2M �−1(4d̂)�−1

= 4m2(4Md̂)�−1.

9. Communities and Examples

The local graph L found by the Extract(f, l) algorithm is not necessarily con-
nected. Each connected component of L can be viewed as a local community.
By fixing l and increasing f , we obtain a hierarchy of successively smaller com-
munities.

Flake et al. [Flake et al. 04] defined a hierarchy of communities using mini-
mum cut trees. Their communities have provably good expansion and few edges
between communities. The communities found by Extract are highly locally
connected, are robust to the addition of random edges, and are monotone in
the sense that adding edges can only increase the size of a community. These
communities often have rich structures other than cliques or complete bipartite
subgraphs.
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Figure 5. A (3,3)-connected commu-
nity of size 59 in a routing graph.

Figure 6. A (3,3)-connected community
of size 35 in the routing graph.

Figure 7. A (3,3)-connected community
of size 25 in the routing graph.

Figure 8. A (4, 3)-connected sub-
community of the community in Fig-
ure 6.

We applied the Recursive Extract algorithm to a routing graph G collected
by champagne.sdsc.org. The maximum three-connected subgraph of G consists
of seven copies of K4 and a large connected component L with 2364 vertices
and 5947 edges. Applying Recursive Extract with parameters (f = 3, � = 3)
breaks L into 79 non-singleton communities. The largest community has 881
vertices. The second largest community (of size 59) is illustrated in Figure 5,
and two communities of size 25 and 35 are illustrated in Figures 6 and 7.
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