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Algorithmic Challenges in
Web Search Engines

Monika R. Henzinger

Abstract. In this paper, we describe six algorithmic problems that arise in web search

engines and that are not or only partially solved: (1) Uniformly sampling of web pages;

(2) modeling the web graph; (3) finding duplicate hosts; (4) finding top gainers and

losers in data streams; (5) finding large dense bipartite graphs; and (6) understanding

how eigenvectors partition the web.

1. Introduction

A web search engine consists of three parts: (1) A crawler that retrieves web

pages to be put into the engine’s collection of web pages; (2) an indexer that

builds the inverted index (also called the index), which is the main data structure

used by the search engine and represents the crawled web pages; (3) and a query

handler that answers user queries using the index.

For our purposes, the crawler views the web as a graph: Each web page is

a node and each hyperlink a directed edge. A major question a crawler has to

face is which pages to retrieve so as to have the “most suitable” pages in the

collection. Some of the open problems posed below can lead to improvements

for crawlers:

• A better understanding of the graph structure (Section 3) might lead to a
more efficient way of crawling the web.
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• A better understanding of various web page properties (Section 2) can

indicate which populations of pages are underrepresented in the crawl so

far.

• An efficient way of finding duplicate hosts (Section 4) can help the crawler
avoid crawling the duplicate of an already crawled host.

Given a collection of queries that are posed to a search engine, an obvious ques-

tion is which queries are asked most often. However, to detect temporal effects,

it is also interesting to ask for the “top gainers” and the “top losers.” This

problem is posed in Section 5.

Finally, we present two problems that are related to finding a topic-dependent

clustering of the web or a subgraph thereof: Section 6 discusses the problem of

finding dense directed bipartite subgraphs. Section 7 raises the question of how

eigenvectors of various matrices derived from the web graph relate to cuts in the

web graph. We sketch each of these open problems and give references to prior

work in the area.

2. Sampling Web Pages

Understanding the web and its properties has been a hot research topic since the

inception of the web. How many pages are on the web? How many of them are

indexed by a given search engine? How many pages are in a certain language

or in a certain domain? What is the average length of a web page? What

percentage of web pages are homepages? And how do these properties change

over time? Search engines are trying to capture as much of the web as possible.

Additionally, the proportions of different types of pages, like pages in different

languages, should roughly be proportional to the proportions of the types on the

web. It is straightforward to keep track of the proportions in the crawl. Thus,

if the above statistics are known for the web, the crawler can determine which

types of pages are grossly underrepresented so far and try to crawl more of them.

A technique for uniform sampling of web pages could be used to answer all

such questions except for the first. Unfortunately, no such technique is known

even though there has been a considerable amount of research on this topic.

Lawrence and Giles [Lawrence and Giles 99] used an approach based on random

testing of IP addresses: They selected a random IP address and checked whether

it hosts a web site. If so, they try to sample the web pages accessible at this site.

However, it remains an open problem how to uniformly sample web pages on a

web site if one does not have an exhaustive list of these pages.

Henzinger et al. [Henzinger et al. 00] proposed performing a specific random

walk on the (directed) web graph and then sampling the traversed pages inversely
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proportional to their value in the stationary distribution of the random walk.

There are various problems with this approach. One problem is, of course, that

it is not clear how many steps one must perform in order to approximate the

equilibrium distribution. Another problem is that the specific random walk that

they propose cannot be implemented directly, but this could be solved by using

a different random walk than the one presented in their paper [Henzinger et al.

00].

Bar-Yosseff et al. [Bar-Yossef et al. 00] converted the web graph into an

undirected, connected, and regular graph. The equilibrium of a random walk on

this graph is the uniform distribution. Again, it is not clear how many steps such

a walk needs to perform. A more significant problem, however, is that there is no

reliable way of converting the web graph into an undirected graph. Bar-Yosseff

et al. proposed asking various search engines for the in-edges of a given page in

order to sample all adjacent edges of a given page. However, frequently only a

subset of all in-edges can be found in this way.

Finally, Rusmevichientong et al. [Rusmevichientong et al. 01] modified the

approach of [Henzinger et al. 00] to yield a method for which, in the limit, a

uniform sample is generated. In practice, we believe that their approach would

not work well, since there is a plethora of hosts on the web that are highly linked

within the host, but with very few links leaving the host. If the random walk

in [Rusmevichientong et al. 01] encounters such a host early in the walk, there

is a good chance that a large fraction of the nodes are from this host, i.e., that

the sample will be nonuniform.

To summarize, the open problem is to find a way that provably generates a

uniform random sample and that also works in practice.

3. Web Graph Modeling

As soon as web researchers started to observe properties of the web graph, they

tried to come up with a model of the web graph (see [Kleinberg et al. 99, Aiello

et al. 00]). Random walks on the web graph seem to converge quickly. Addi-

tionally, when looking at links between web sites, the links look quite random.

Thus, trying to model the web as a random graph was an obvious step. This

led to the copy graph model of Kleinberg et al. [Kleinberg et al. 99] and all

its modifications [Kumar et al. 00, Pandurangan et al. 02]. The web graph

properties that these models try to capture are the power-law1 indegree distrib-

ution, the fact that there is a large number of small cliques, and the power-law

PageRank distribution.

1By a power-law indegree distribution, we mean that the percentage of web pages with
indegree d is proportional to 1/dα for some constant α and large enough d.
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However, there is a very dominant property of the web graph that is not

modeled by any of these earlier graphs, namely the fact that the web is mostly

a 2-level structure: Each web page belongs to a host and about 75% of the

hyperlinks connect pages on the same host [Bharat et al. 01]. Edges between

nodes on the same host have a lot of structure: For example, each page on a host

might point to the same copyright form and to the home page of the host. To the

best of our knowledge, there is no model yet that models this 2-level structure

together with the other properties listed above.

Furthermore, consider the host graph which is created by merging all nodes on

the same host into one node. The resulting graph also has a power-law indegree

and outdegree distribution [Bharat et al. 01]. There is also no random graph

model that models the power-law distributions on the pages as well as on the

host level.

In summary, the open problem is to come up with a random graph model that

models the behavior of the web graph on the pages as well as on the host level.

4. Duplicate Hosts

Web search engines try to avoid having duplicate and near-duplicate pages in

their collection, since such pages increase the time it takes to add useful con-

tent to the collection. Additionally, duplicate and near-duplicate pages do not

contribute new information to search results and thus annoy users.

The problem of finding duplicate or near-duplicate pages in a set of crawled

pages is well studied [Brin et al 95, Broder 97]. There has also been some research

on identifying duplicate or near-duplicate directory trees, called mirrors [Bharat

and Broder 99, Cho et al. 00].

While mirror detection and individual-page detection try to provide a complete

solution to the problem of duplicate pages, a simpler variant can reap most of the

benefits while requiring less computational resources. This simpler problem is

called duplicate host detection: Detect two hosts that are page-by-page identical.

Duplicate hosts (“duphosts”) are the single largest source of duplicate pages

on the web, so solving the duplicate hosts problem can result in a significant

improvement.

The duplicate host detection problem is easier than mirror detection since the

URLs between duphosts differ only in the hostname component. Additionally,

the pages on the two hosts are exactly identical, i.e., the algorithm does not need

to detect reformatting. Finally, the set of pages on the first host is identical to

the set of pages on the second host. A first set of approaches to the duphosts

problem was studied by Bharat et al. [Bhart et al. 00], but the error rate of



Henzinger: Algorithmic Challenges in Web Search Engines 119

their algorithms (both for false positives and false negatives) can probably be

improved. Their general approach, however, seems valuable: Represent each

host by a sketch. For example, a sketch can be a subset of the URLs on the

host or the hyperlinks pointing to the pages on the host. Then use the sketch

to compare hosts. Of course, the hard questions are, what sketch to choose and

how to avoid comparing all pairs of hosts. Since there are millions of different

hosts, comparing all pairs is simply infeasible. Bharat et al. [Bhart et al. 00]

explore sketches based only on URL strings and the hyperlink structure.

5. Data Streams

The query logs of a web search engine contain all the queries issued at this

search engine. The most frequent queries change only slowly over time. However,

the queries with the largest increase or decrease from one time period over the

next show interesting trends in user interests. We call them the top gainers

and losers. Since the number of queries is huge, the top gainers and losers

need to be computed by making only one pass over the query logs. This leads

to the following data stream problem: Given two sequences of items, find the

items whose absolute number increases or decreases the most when comparing

one sequence with the other by reading the sequence only once. Charikar et

al. [Charikar et al. 02] presented a 2-pass algorithm for this problem. Another

interesting variant is to find all items above a certain frequency whose relative

increase (i.e., their increase divided by their frequency in the first sequence) is

the largest.

6. Dense Bipartite Subgraphs

As was shown by Kumar et al. [Kumar et al. 99], the web contains many densely

connected directed bipartite subgraphs because cyber-communities often have

such a densely connected structure. The source nodes in such a subgraph are

the “hubs” or directory nodes on the topic; the sink nodes are the “authorities”

or content nodes on the topic. Kumar et al. also presented and implemented an

algorithm to find small complete bipartite subgraphs, which they call cores. They

use a bottom-up approach using the fact that every (i, i)-core is a combination

of (i− 1, i− 1) cores. However, their cores were relatively small, in the order of
tens of nodes.

In order to more completely capture these cyber-communities, it would be

interesting to detect much larger bipartite subgraphs, in the order of hundreds
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or thousands of nodes. They do not need to be complete, but they should be

dense, i.e., they should contain at least a constant fraction of the corresponding

complete bipartite subgraphs. Are there efficient algorithms to detect them?

And can these algorithms be implemented efficiently if only a small part of the

graph fits into main memory?

7. Eigenvector–Induced Partitionings of Directed Graphs

Donath and Hoffman [Donath and Hoffman 73] introduced the use of eigenvectors

for the purpose of partitioning an undirected graph in a balanced way. Since

then, there has been a lot of work on spectral approaches for graph partitioning.

See [Chung 97] for an excellent overview of the field. Shi and Malik [Shi and Malik

00] showed that the eigenvectors of different matrices based on the adjacency

matrix of a graph are related to different kinds of balanced cuts in a graph. Let

W be the adjacency matrix of an undirected graph (V,E) with nodes 1, 2, . . . , n,

and let D be a diagonal matrix with di = deg(i). Let A and B be sets of nodes

and let E(A,B) be the set of edges (a, b) with a ∈ A and b ∈ B.
The average association of a set A is

|E(A,A)|/|A|.

The average cut of a set A is

|E(A, V −A)|/|A|+ |E(A, V −A)|/|V −A|.

The normalized cut of a set A is

|E(A, V −A)|/|E(A, V )|+ |E(A, V −A)|/|E(V −A, V )|.

Then Shi and Malik show that

• The second largest eigenvector of W is related to a set that maximizes the

average association;

• The second smallest eigenvector of D−W is related to a set that minimizes

the average cut; and

• The second smallest eigenvector of the generalized eigenvector problem
(D −W )x = λDx gives an approximation of the smallest normalized cut.
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These results hold for undirected graphs, but the web graph is a directed graph.

Thus, it would be interesting to understand what the above relationships are for

directed graphs, i.e., whether the eigenvectors of the corresponding matrices of

a directed graph are also related to balanced decompositions of the directed

graph. It is possible that this would lead to an interesting clustering of the web

graph or for a topic-specific subgraph. A first step in this direction was taken

by Gibson et al. [Gibson et al. 98]. They used the eigenvectors of the matrix

AAT and the matrix ATA, where A is the adjacency matrix of a topic-specific

subgraph, to decompose topic-specific subgraphs. They show anecdotally that

the principal eigenvector and the top few nonprincipal eigenvectors decompose

the topic graphs into multiple “hyperlinked communities,” i.e., clusters of pages

on the same subtopic.
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