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MAYER–VIETORIS SEQUENCES IN STABLE DERIVATORS
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(communicated by Daniel Grayson)

Abstract
We show that stable derivators, like stable model cate-

gories, admit Mayer–Vietoris sequences arising from cocartesian
squares. Along the way we characterize homotopy exact squares
and give a detection result for colimiting diagrams in derivators.
As an application, we show that a derivator is stable if and only
if its suspension functor is an equivalence.

1. Introduction

There are many axiomatizations of “stable homotopy theory,” including stable
model categories [Hov99], stable (∞, 1)-categories [Lur, Lur09, Joy], and triangu-
lated categories [Nee01, Ver96]. In this paper we study a less well-known member
of this family, the stable derivators. This notion was defined (under different names)
by Grothendieck [Gro90], Franke [Fra96], and Heller [Hel88], and has been studied
more recently in [Mal, Cis03, Gro13]. It is closely related to the other notions men-
tioned above: stable model categories and stable (∞, 1)-categories both give rise to
stable derivators, while each (strong) stable derivator has an underlying triangulated
category.

Among these choices, derivators are a convenient level of generality because they
are better-behaved than triangulated categories, while requiring less technical machin-
ery than model categories or (∞, 1)-categories. To be precise, a stable derivator
enhances a derived category or homotopy category (such as a triangulated category)
by also including the homotopy categories of diagrams of various shapes. This allows
homotopy limits and colimits to be characterized by ordinary universal properties.

The main concrete result of this paper is that Mayer–Vietoris sequences exist in
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any stable derivator. Precisely, this means that for any cocartesian square

x
f //

g

��

y

j

��
z

k
// w,

there is a distinguished triangle (i.e., a fiber and cofiber sequence)

x
(f,−g) // y ⊕ z

[j,k] // w // Σx. (1.1)

As in any triangulated category, this yields long exact sequences in homology and
cohomology. The corresponding result for stable model categories is [May01,
Lemma 5.7], while for triangulated categories there is no notion of “cocartesian
square” other than the existence of (1.1). It seems that such a result for stable
(∞, 1)-categories is not yet explicitly in the literature; we can now conclude it from
our theorem about stable derivators.

However, the point of our new proof is not so much that it applies to new examples
but that it advances the theory of stable derivators, which can be easier to work
with for the above-mentioned reasons. Indeed, along the way we improve some basic
computational lemmas about derivators, such as a characterization of homotopy exact
squares and a tool to identify colimiting subdiagrams. We conclude by showing that
a derivator is stable (i.e., cocartesian and cartesian squares agree) if and only if it is
cofiber-stable (i.e., its cofiber and fiber functors are equivalences) if and only if it is
Σ-stable (i.e., its suspension and loop space functors are equivalences).

We begin in §2 by establishing notation and recalling basic definitions and facts
about derivators. In §3 and §4 we give the aforementioned characterizations and
detection results. Then in §5 we recall definitions and facts about pointed and stable
derivators, and in §6 we establish our main result on the existence of Mayer–Vietoris
sequences. Finally, in §7 we prove the equivalence of the three notions of stability.
In Appendix A we summarize the “calculus of mates” for natural transformations,
which is used extensively in the theory of derivators.

This paper can be thought of as a sequel to [Gro13] and a prequel to [GPS12]
and [GS13].

Acknowledgments

We would like to thank the referee for suggesting a more elegant proof of Theo-
rem 6.1.

2. Review of derivators

In this section we recall the definition of a derivator and fix some notation and
terminology. Let Cat and CAT denote the 2-categories of small and large categories,
respectively. We write 1 for the terminal category. For an object a ∈ A we also use a
to denote the functor 1→ A whose value on the object of 1 is a.
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Definition 2.1. A derivator is a 2-functor D : Catop → CAT with the following
properties.

(Der1) D : Catop → CAT takes coproducts to products. In particular, D(∅) is the
terminal category.

(Der2) For any A ∈ Cat , the family of functors a∗ := D(a) : D(A)→ D(1), as a
ranges over the objects of A, is jointly conservative (isomorphism-reflecting).

(Der3) Each functor u∗ := D(u) : D(B)→ D(A) has both a left adjoint u! and a
right adjoint u∗.

(Der4) For any functors u : A→ C and v : B → C in Cat , let (u/v) denote their
comma category, with projections p : (u/v)→ A and q : (u/v)→ B. If B = 1 is
the terminal category, then the canonical mate-transformation (see Appendix A)

q!p
∗ → q!p

∗u∗u! → q!q
∗v∗u! → v∗u!

is an isomorphism. Similarly, if A = 1 is the terminal category, then the canon-
ical mate-transformation

u∗v∗ → p∗p
∗u∗v∗ → p∗q

∗v∗v∗ → p∗q
∗

is an isomorphism.

There are also notions of morphisms of derivators and transformations between
such morphisms giving rise to a well-behaved 2-category of derivators, but we will
have no need of them in this paper.

Warning 2.2. Ours is one of two possible conventions for the definition of a derivator;
it is based on the idea that the basic example should consist of (covariant) diagrams
(see Example 2.3). The other convention, which defines a derivator to be a 2-functor
Catcoop → CAT (where Catcoop denotes reversal of both 1-cells and 2-cells), requires
that the basic example consist of presheaves (i.e., contravariant diagrams). Our con-
vention is that of Heller [Hel88] and Franke [Fra96]; the other convention was used
by Grothendieck [Gro90] and Cisinski [Cis03]. The two definitions are equivalent,
by composition with the isomorphism (−)op : Catop → Catcoop, but the directions of
various 2-cells in each convention are reversed with respect to the other.

For a functor u : A→ B, we write u∗ : D(B)→ D(A) for its image under the 2-
functor D and refer to it as restriction along u. The category D(1) is the underlying
category of D . We call the objects of D(A) (coherent, A-shaped) diagrams in
D , motivated by the following examples.

Example 2.3. Any (possibly large) category C gives rise to a represented 2-functor
y(C) defined by

y(C)(A) := CA.

Its underlying category is C itself. If C is both complete and cocomplete, then y(C)
is a derivator (and in fact the converse also holds). The functors u! and u∗ are left
and right Kan extensions, respectively, and when B is the terminal category they
compute colimits and limits. Axiom (Der4) expresses the fact that Kan extensions
can be computed “pointwise” from limits and colimits, as in [ML98, X.3.1].



268 MORITZ GROTH, KATE PONTO and MICHAEL SHULMAN

Any coherent diagram X ∈ D(A) has an underlying (incoherent) diagram,
which is an ordinary diagram in D(1), i.e., an object of the functor category D(1)A.
For each a ∈ A, the underlying diagram of X sends a to a∗X. We may also write Xa

for a∗X. More generally, any X ∈ D(B ×A) has an underlying “partially coherent”
diagram, which is an object of D(B)A, sending a ∈ A to the diagram Xa = a∗X =
(1B × a)∗X.

We will occasionally refer to a coherent diagram as having the form of, or looking
like, its underlying diagram and proceed to draw that underlying diagram using
objects and arrows in the usual way. It is very important to note, though, that in a
general derivator a coherent diagram is not determined by its underlying diagram,
not even up to isomorphism. This is the case in the following two examples, which
are the ones of primary interest.

Example 2.4. Suppose C is a Quillen model category (see, e.g., [Hov99]), with class
W of weak equivalences. Its derived or homotopy derivator Ho(C) is defined from
y(C) by formally inverting the pointwise weak equivalences:

Ho(C)(A) := (CA)[(WA)−1].

See [Cis03, Gro13] for proofs that this defines a derivator. Its underlying category
is the usual homotopy category C[W−1] of C, while its functors u! and u∗ are the
left and right derived functors, respectively, of those for y(C).

Example 2.5. If C is a complete and cocomplete (∞, 1)-category as in [Lur09, Joy],
then it has a homotopy derivator defined by

Ho(C)(A) := Ho(CA),

where Ho denotes the usual homotopy category of an (∞, 1)-category, obtained by
identifying equivalent morphisms. Since this fact does not seem to appear in the
literature, we briefly sketch a proof.

Axiom (Der1) is easy, while (Der2) follows from [Joy, Theorem 5.C]. For (Der3)
and (Der4), let C be a simplicial category that presents C, and let SSET denote the
category of simplicial sets in a higher universe, so that there is a simplicial Yoneda
embedding C→ SSETCop

. Now the projective model structure on SSETCop

gives rise
to a derivator Ho(SSETCop

) (in the higher universe). As with any model category,
its right Kan extension functors are computed in terms of model-categorical homo-
topy limits. Moreover, by [Lur09, 5.1.1.1], SSETCop

presents the (∞, 1)-category

∞GPDC
op

, and these homotopy limits present (∞, 1)-categorical limits therein.

Finally, the simplicial Yoneda embedding C→ SSETCop

presents the (∞, 1)-cate-

gorical Yoneda embedding C → ∞GPDC
op

, which by [Lur09, 5.1.3.2] is fully faithful
and closed under small limits. Thus, each Ho(C)(A) can be identified with a full sub-

category of Ho(SSETCop

)(A) = Ho(∞GPDC
op

)(A). Since the right Kan extension
functors of the latter are computed by small (∞, 1)-categorical limits, they preserve
the image of Ho(C)(A). Thus, Ho(C) inherits the “right half” of (Der3) and (Der4)

from Ho(SSETCop

). Applying the same argument to Cop yields the other half of
these axioms.

In addition, we note that if C is presented by a combinatorial model category
M, then the derivator Ho(C) constructed above agrees with the derivator Ho(M)
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constructed in Example 2.4. If M = sSetB , then this follows essentially from [Lur09,
5.1.1.1]. It is straightforward to verify that left Bousfield localization of a model
category of simplicial presheaves corresponds to accessible localization of the (∞, 1)-
category it presents, and that both act pointwise on functor categories; thus we can
extend the claim from simplicial presheaves to any Bousfield localization thereof.
Finally, by [Dug01], any combinatorial model category is equivalent to a localization
of a simplicial presheaf category.

Following established terminology for (∞, 1)-categories, in a general derivator we
refer to the functors u! and u∗ in (Der3) as left and right Kan extensions, respec-
tively, rather than homotopy Kan extensions. This is unambiguous since actual “cat-
egorical” Kan extensions are meaningless for an abstract derivator. Similarly, when
the target category B is 1, we call them colimits and limits. In this language,
(Der4) says that right and left Kan extensions are “computed pointwise” in terms of
limits and colimits.

Note that (Der1) and (Der3) together imply that each category D(A) has (actual)
small coproducts and products.

We say that a derivator is strong if it satisfies:

(Der5) For any A, the induced functor D(A× 2)→ D(A)2 is full and essentially
surjective, where 2 = (0→ 1) is the category with two objects and one non-
identity arrow between them.

Represented derivators and homotopy derivators associated to model categories or
∞-categories are strong.

Remark 2.6. Axiom (Der5) is necessary whenever we want to perform limit construc-
tions starting with morphisms in the underlying category D(1), since it enables us to
“lift” such morphisms to objects of D(2). Combined with (Der2), it implies that if two
objects of D(A× 2) become isomorphic in D(A)2, then they were already isomorphic
in D(A× 2)—although such an isomorphism is not in general uniquely determined
by its image in D(A)2.

The exact form of axiom (Der5) is also negotiable; for instance, Heller [Hel88]
assumed a stronger version in which 2 is replaced by any finite free category.

The following examples are also often useful.

Example 2.7. For any derivator D and category B ∈ Cat , we have a shifted derivator
DB defined by DB(A) := D(B ×A). This is technically very convenient: it enables
us to ignore extra “parameter” categories B by shifting them into the (universally

quantified) derivator under consideration. Note that y(C)
B ∼= y(CB) and Ho(C)

B ∼=
Ho(CB).

Similarly, the opposite derivator of D is defined by Dop(A) := D(Aop)op. Note

that y(C)op = y(Cop) and Ho(Cop) = Ho(C)op and (DB)op = (Dop)
Bop

.
If D is strong, so are DB and Dop; see [Gro13, Theorem 1.25].

3. Homotopy exact squares

The primary tool for calculating with Kan extensions in derivators is the notion
of a homotopy exact square (see also [Mal12]), which is defined as follows. If we are
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given any natural transformation in Cat that lives in a square

D
p //

q

��
|� α

A

u

��
B

v
// C,

(3.1)

then, by 2-functoriality of D , we have an induced transformation

D(C)
u∗ //

v∗

��
�� α∗

D(A)

p∗

��
D(B)

q∗
// D(D).

As summarized in Appendix A, this transformation has mates

q!p
∗ → q!p

∗u∗u!
α∗−−→ q!q

∗v∗v! → v∗u! and (3.2)

u∗v∗ → p∗p
∗u∗v∗

α∗−−→ p∗q
∗v∗v∗ → p∗q

∗, (3.3)

of which one is an isomorphism if and only if the other is.

Definition 3.4. The square (3.1) is homotopy exact if the two mate-transforma-
tions (3.2) and (3.3) are isomorphisms in any derivator D .

For instance, Axiom (Der4) asserts that the following canonical squares are homo-
topy exact:

(u/c)
p //

q

��
~� α

A

u

��
1

c
// C

and

(c/v)
p //

q

��
~� α

1

c

��
B

v
// C.

Some other examples are:

• If (3.1) is a pullback square, then it is homotopy exact if u is an opfibration or
v is a fibration; see [Gro13, Prop. 1.24].

• By the functoriality of mates, the horizontal or vertical pasting of homotopy
exact squares is homotopy exact.

• If u : A→ C is fully faithful, then the identity u ◦ 1A = u ◦ 1A is homotopy
exact; see [Gro13, Prop. 1.20]. Thus, in this case u! and u∗ are fully faithful.

• For any u : A→ C and v : B → C, the comma square

(u/v)
p //

q
�� ~�

A

u
��

B
v
// C

is homotopy exact; see [Gro13, Proposition 1.26]. In other words, the conditions
“B = 1” or “A = 1” in (Der4) can be removed.
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The main result of this section is a characterization result for all homotopy exact
squares, which reduces them to the following simpler notion.

Definition 3.5. A small category A is homotopy contractible if the counit

(πA)!(πA)∗ → 1D(1) (3.6)

is an isomorphism in any derivator.

We use πA to denote the functor A −→ 1. More generally, we will use π to denote
projections.

Thus, A is homotopy contractible if the A-shaped diagram that is constant at an
object x ∈ D(1) has colimit x. Note that in a represented derivator y(C), (3.6) is an
isomorphism whenever A is connected. However, being homotopy contractible is a
much stronger condition than being connected.

Definition 3.7. For a square as in (3.1), and a ∈ A, b ∈ B, and γ : u(a)→ v(b), let

(a/D/b)γ be the category of triples (d ∈ D, a φ−→ p(d), q(d)
ψ−→ b) such that vψ ◦ αd ◦

uφ = γ.

Theorem 3.8. If (a/D/b)γ is homotopy contractible for all a, b, and γ, then (3.1)
is homotopy exact.

Proof. By (Der2) and (Der4), homotopy exactness of (3.1) is equivalent to homotopy
exactness of the pasted squares

(q/b) //

�� ~�

D
p //

q
�� {� α

A

u
��

1
b
// B

v
// C

for all b ∈ B. Extending the diagram and applying the same argument, homotopy
exactness of (3.1) is equivalent to all of the following pastings being homotopy exact,

where the objects of (a/D/b) are triples (d ∈ D, a φ−→ p(d), q(d)
ψ−→ b):

(a/D/b) //

�� ��

1

a
��

(q/b) //

�� ��

D
p //

q
�� |� α

A

u
��

1
b
// B

v
// C.

(3.9)

The top-right and left-bottom composites around the boundary of (3.9) applied to
(d, φ, ψ) ∈ (a/D/b) yield ua and vb, respectively, and the corresponding component
of the pasted natural transformation (3.9) is the composite

ua
uφ−−→ upd

αd−−→ vqd
vψ−−→ vb.
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However, the square

C(ua, vb) //

�� �	

1

ua
��

1
vb

// C

(3.10)

is also homotopy exact, since the discrete category C(ua, vb) is also the comma
category (ua/vb). Now (3.9) factors through (3.10) by a functor ka,b : (a/D/b)→
C(ua, vb), whose fiber over γ is (a/D/b)γ . Thus, by the functoriality of mates, (3.9)
is homotopy exact if and only if the induced transformation

π!(ka,b)!(ka,b)
∗π∗ → π!π

∗ (3.11)

is an isomorphism, where π : C(ua, vb)→ 1. Finally, by (Der1), (ka,b)
∗ is the product

of all the induced functors D(1)→ D((a/D/b)γ), and likewise for (ka,b)!. Thus, if
each (a/D/b)γ is homotopy contractible, (3.11) is an isomorphism.

As a particular case of Theorem 3.8, we obtain a sufficient condition for a functor
to be homotopy final.

Definition 3.12. A functor f : A→ B is called homotopy final if the square

A
f //

��

B

��
1 // 1

is homotopy exact; i.e., for any X ∈ D(B), the colimits of X and of f∗X agree.

In particular, if f : A→ B is homotopy final, then A is homotopy contractible if
and only if B is.

Corollary 3.13. A functor f : A→ B is homotopy final if for each b ∈ B, the comma
category (b/f) is homotopy contractible.

Any right adjoint is homotopy final by [Gro13, Prop. 1.18]. Thus, if two categories
are connected by an adjunction, each is homotopy contractible if and only if the other
is. Often the easiest way to verify homotopy contractibility of a small category is to
connect it to 1 with a zigzag of adjunctions. In particular, any category with an initial
or terminal object is homotopy contractible.

Remark 3.14. Although we will not need it in this paper, the converse of Theorem 3.8
also holds by the following argument. A functor f : A→ B is a homotopy equiva-
lence if the map

(πA)!(πA)∗ ∼= (πB)!f!f
∗(πB)∗ → (πB)!(πB)∗ (3.15)

is an isomorphism in any derivator. Heller [Hel88] and Cisinski [Cis06] showed that
a functor f is a homotopy equivalence if and only if the nerve of f is a weak homotopy
equivalence.

Now the proof of Theorem 3.8 shows that (3.1) is homotopy exact if and only if
each ka,b is a homotopy equivalence. Since ka,b is the disjoint union of the functors
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ka,b,γ : (a/D/b)γ → 1, by Heller and Cisinski’s characterization ka,b is a homotopy
equivalence if and only if each of ka,b,γ is. This implies that also the converse of
Corollary 3.13 is true; i.e., a functor f : A→ B is homotopy final if and only if the
comma categories (b/f) have weakly contractible nerves.

We do not know how to show the converse of Theorem 3.8 without using a charac-
terization such as Heller and Cisinski’s. It is true that if f =

⊔
fi :

⊔
Ai →

⊔
Bi is a

coproduct of functors, then the map (3.15) in any derivator splits up as a coproduct
of the corresponding maps for the fi’s. However, in a general derivator a coproduct
of maps can be an isomorphism even if not all the summands are. For instance, in
Setop, and in the category of commutative rings, the terminal object is annihilating
for coproducts, so that the coproduct of any map with the identity of the terminal
object is again the identity of the terminal object.

It is true in a pointed derivator (see §5) that if a coproduct of maps is an isomor-
phism, then each summand must be an isomorphism, since in the pointed case every
summand of a coproduct is naturally a retract of it. Moreover, as soon as (3.15)
is an isomorphism in every pointed derivator, the functor f must be a homotopy
equivalence—but the only proof we know of this latter fact uses Heller and Cisinski’s
characterization, noting that the morphism Ho(sSet)→Ho(sSet∗) that adjoins a
disjoint basepoint is cocontinuous and conservative. The analogous argument fails
for a general derivator D , since while it does has a “pointed variant” D∗, the map
D → D∗ may not be conservative. For instance, if D is represented by Setop or com-
mutative rings, then D∗ is trivial. (By contrast, asking that (3.15) is an isomorphism
in every stable derivator is a genuinely weaker statement, corresponding to the nerve
of f being a stable homotopy equivalence.)

Heller and Cisinski’s characterization also implies that the notions of homotopy
exact square, homotopy equivalence functor, and homotopy contractible category are
not actually dependent on the definition of a derivator.

Theorem 3.16. For a square (3.1) in Cat, the following are equivalent:

(i) The square is homotopy exact; i.e., the mate-transformation q!p
∗ → v∗u! is an

isomorphism in any derivator D .

(ii) As in (i), but only for derivators of the form Ho(C) for C a model category.

(iii) As in (i), but only for derivators of the form Ho(C) for C a complete and
cocomplete (∞, 1)-category.

(iv) As in (i), but only for the particular derivator Ho(sSet) = Ho(∞Gpd).

(v) Each functor ka,b is a homotopy equivalence.

(vi) Each nerve Nka,b is a weak homotopy equivalence of simplicial sets.

(vii) Each category (a/D/b)γ is homotopy contractible.

(viii) Each nerve N(a/D/b)γ is a weakly contractible simplicial set.

4. Detection lemmas

In this section we discuss several lemmas for detecting when certain diagrams are
left or right Kan extensions. Recall that a functor u : A→ B is called a sieve if it
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is fully faithful, and for any morphism b→ u(a) in B there exists an a′ ∈ A with
u(a′) = b. There is a dual notion of a cosieve. As observed above, left or right Kan
extension along a sieve or cosieve is fully faithful.

Lemma 4.1 ([Gro13, Prop. 1.23]). If u : A→ B is a sieve and D is a derivator,
a diagram X ∈ D(B) is in the essential image of u∗ if and only if Xb ∈ D(1) is a
terminal object for all b /∈ u(A). Dually, if u is a cosieve, X ∈ D(B) is in the essential
image of u! if and only if Xb is an initial object for all b /∈ u(A).

Remark 4.2. In particular, if u : A→ B is a sieve and we have X,Y ∈ D(B) such that
Xb and Yb are terminal for b /∈ u(A), and moreover u∗X ∼= u∗Y , then X ∼= u!u

∗X ∼=
u!u
∗Y ∼= Y . This fact and its dual are very convenient, because one of the trickiest

parts of working with derivators is that coherent diagrams which “look the same”
(have the same underlying diagram) may not be isomorphic. In the context of the
inclusion of a (co)sieve, Lemma 4.1 says that if the “nontrivial parts” of two coherent
diagrams are isomorphic, then the entire diagrams are isomorphic.

Our second detection lemma is a version of the familiar theorem from category
theory that limits and colimits in functor categories may be computed pointwise.

Lemma 4.3 ([Gro13, Corollary 2.6]). If u : A→ B is fully faithful, then X ∈ DC(B)
lies in the essential image of u! (with respect to DC) if and only if for each c ∈ C the
diagram Xc ∈ D(B) lies in the essential image of u! (with respect to D).

We now give a criterion to detect when sub-diagrams of a Kan extension are
“colimiting cocones,” generalizing a theorem of [Fra96]. For any category A, let A�

be the result of freely adjoining a new terminal object to A. Call the new object ∞
and the inclusion i : A ↪→ A�. Then the square

A

��
}�

A

i
��

1 ∞
// A�

(4.4)

is homotopy exact as a special case of a comma square. Thus, left Kan extensions
from A into A� are an alternative way to compute and characterize colimits over A.
We may refer to a coherent diagram in the image of i! as a colimiting cocone.

The proof of the following lemma is an immediate generalization of [Gro13,
Prop. 3.10]. Its hypotheses may seem technical, but in practice this is the lemma
we reach for most often when it seems “obvious” that a certain cocone is colimiting.

Lemma 4.5. Let A ∈ Cat, and let u : C → B and v : A� → B be functors. Suppose
that there is a full subcategory B′ ⊆ B such that

• u(C) ⊆ B′ and v(∞) /∈ B′,
• vi(A) ⊆ B′, and

• the functor A→ B′/v(∞) induced by v has a left adjoint.

Then for any derivator D and any X ∈ D(C) the diagram v∗u!X is in the essential
image of i!. In particular, (v∗u!X)∞ is the colimit of i∗v∗u!X.
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Proof. We want to show that the mate-transformation associated to the square

A
vi //

i ��

B

A�
v
// B

is an isomorphism when evaluated at u!X. By [Gro13, Lemma 1.21], it suffices to
show this for the pasted square

A //

�� }�

A
vi //

i ��

B

1 ∞
// A�

v
// B.

But this square is also equal to the pasting composite

A //

��

B′/v(∞) //

�� �	

B′ //

��

B

1 1
v(∞)

// B B.

Now the mates associated to each of these three squares are isomorphisms: the left-
hand square by the fact that right adjoints are homotopy final, the middle one by
(Der4), and the right-hand one because B′ ↪→ B is fully faithful.

Franke’s version of this was the special case for cocartesian squares. Let 2 denote
the category 2× 2

(0, 0) //

��

(0, 1)

��
(1, 0) // (1, 1).

Let p and y denote the full subcategories 2 \ {(1, 1)} and 2 \ {(0, 0)}, respectively,
with inclusions ip : p ↪→ 2 and iy : y ↪→ 2. Since ip and iy are fully faithful, so are (ip)!

and (iy)∗.

Definition 4.6. A coherent diagram X ∈ D(2) is cartesian if it is in the essential
image of (iy)∗, and cocartesian if it is in the essential image of (ip)!.

Taking A = p in (4.4) implies that if X ∈ D(p) looks like (y ← x→ z) and w =
(πp)!(X) is its pushout, then there is a cocartesian square

x //

��

z

��
y // w,

(4.7)

and conversely, if there is a cocartesian square (4.7), then w ∼= (πp)!(X).

Remark 4.8. If we have two cocartesian squares X,Y ∈ D(2) such that (ip)∗X ∼=
(ip)∗Y , then in fact X ∼= Y , and in particular X1,1

∼= Y1,1.
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Since cartesian and cocartesian squares play an essential role in the theory of
pointed and stable derivators, it is useful to identify them in larger diagrams. This is
the purpose of Franke’s lemma, which we can now derive.

Lemma 4.9. Suppose u : C → B and v : 2→ B are functors, with v injective on
objects, and let b = v(1, 1) ∈ B. Suppose furthermore that b /∈ u(C), and that the func-
tor p→ (B \ b)/b induced by v has a left adjoint. Then for any derivator D and any
X ∈ D(C), the square v∗u!X is cocartesian.

Proof. Since 2 ∼= (p)�, we can apply Lemma 4.5 with A = p and B′ = B \ b. (Injec-
tivity of v is needed to ensure that v(A) ⊆ B′.)

Franke’s lemma immediately implies the usual “pasting lemma” for cocartesian
squares. Let � denote the category 2× 3

(0, 0) //

��

(0, 1) //

��

(0, 2)

��
(1, 0) // (1, 1) // (1, 2).

Let ιjk denote the functor 2→ � induced by the identity of 2 on the first factor and
the functor 2→ 3 on the second factor that sends 0 to j and 1 to k.

Corollary 4.10 ([Gro13, Prop. 3.13]). If X ∈ D(�) is such that ι∗01X is cocartesian,
then ι∗02X is cocartesian if and only if ι∗12X is cocartesian.

Proof. Let A be the full subcategory 00-01-02-10 of �, with j : A ↪→ � the inclusion.
Then Lemma 4.9 implies that ι∗01j!Y and ι∗02j!Y and ι∗12j!Y are cocartesian for any
Y ∈ D(A). Thus, for X ∈ D(�) with ι∗01X cocartesian, it will suffice to show that
cocartesianness of ι∗02X and of ι∗12X each imply that ε : j!j

∗X → X is an isomorphism.
Since j is fully faithful, by (Der2) it suffices to check this at (1,1) and (1,2). However,
cocartesianness of ι∗01X implies that ε11 is an isomorphism, while cocartesianness of
ι∗02X and of ι∗12X each imply that ε12 is an isomorphism.

Here is another useful consequence of the general form of Lemma 4.5.

Corollary 4.11. Coproducts in a derivator are the same as pushouts over the initial
object. More precisely, for any objects x and y there is a cocartesian square

∅ //

��

x

��
y // x t y.

Proof. Taking B = 2 and C = B′ = A = {(1, 0), (0, 1)} and A� = y in Lemma 4.5,
with X = (x, y) ∈ D(C) ∼= D(1)×D(1), yields the desired square. Its lower-right cor-
ner is x t y by Lemma 4.5, and its upper-left corner is initial by (Der4), and it is
cocartesian since the left Kan extension from C to B factors through p.

Finally, the following lemma says that squares which are constant in one direction
are (co)cartesian. From now on we will use this observation without comment.

Lemma 4.12 ([Gro13, Prop. 3.12(2)]). Let π2 : 2→ 2 denote a projection (either
one). Then any square in the image of (π2)∗ is cartesian and cocartesian.
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5. Pointed derivators and stable derivators

In this section we discuss pointed and stable derivators. Parts of this section are
from [Gro13], but we also introduce some convenient new results.

Definition 5.1. A derivator D is pointed if the category D(1) has a zero object (an
object that is both initial and terminal).

Since π∗A : D(1)→ D(A) is both a left and a right adjoint, it preserves zero objects.
Hence, in a pointed derivator each category D(A) also has a zero object.

Examples 5.2. A complete and cocomplete category C is pointed if and only if y(C)
is so. If a model category or (∞, 1)-category is pointed, then so is its homotopy
derivator. Finally, if D is pointed, so are DB and Dop.

Lemma 4.1 is especially important for pointed derivators, in which case its two
characterizations become identical since initial and terminal objects are the same.
Thus, in this case, when u is a sieve we refer to u∗ as an extension by zero functor,
and similarly for u! when u is a cosieve.

In a pointed derivator D , the suspension functor Σ: D(1)→ D(1) is the com-
posite

D(1)
(0,0)∗−−−−→ D(p)

(ip)!−−−→ D(2)
(1,1)∗−−−−→ D(1).

Since (0, 0) is a sieve in p, the functor (0, 0)∗ is an extension by zero; thus, for any
x ∈ D(1) we have a cocartesian square of the form

x //

��

0

��
0 // Σx.

(5.3)

More generally, any cocartesian square of the form

x //

��

0

��
0 // w

(5.4)

induces a canonical isomorphism w ∼= Σx. Note that by Remark 4.2 and Remark 4.8,
any two such cocartesian squares containing the same object x are isomorphic.

It is very important to note that if we restrict a cocartesian square (5.4) along the
automorphism σ : 2→ 2 that swaps (0, 1) and (1, 0), we obtain a different cocartesian
square (with the same underlying diagram), and hence a different isomorphism w ∼=
Σx. The relationship between the two is the following.

Lemma 5.5. In any pointed derivator, Σx is a cogroup object, and the composite
Σx ∼−→ w ∼−→ Σx of the two isomorphisms arising from a cocartesian square (5.4) and
its σ-transpose gives the “inversion” morphism of Σx.

Proof. In [Gro13, Prop. 4.12] this is proven under the additional assumption that
the derivator is additive, which will always be the case in this paper (see Lemma 5.19).
A different proof that works more generally can be found in [Hel88, §VI.3].
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We generally write this cogroup structure additively, and thus denote this mor-
phism by “−1.”

Remark 5.6. This may seem strange, but it is not really a new sort of phenomenon.
Already in ordinary category theory, a universal property is not merely a property of
an object, but of that object equipped with extra data, and changing the data can
give the same object the same universal property in more than one way. For instance,
a cartesian product A×A comes with two projections π1, π2 : A×A⇒ A exhibiting
it as a product of A and A, whereas switching these two projections exhibits the
same object as a product of A and A in a different way. In that case, the induced
automorphism of A×A is the symmetry, (a, b) 7→ (b, a). In the case of suspensions,
the “universal property data” consists of a cocartesian square (5.3), and transposing
the square is analogous to switching the projections.

The suspension functor of Dop is called the loop space functor of D and denoted Ω.
By definition, Ωx comes with a coherent diagram of shape 2 in Dop. In D , this is a
diagram of shape 2op, and hence looks like

x ooOO 0OO

0 oo Ωx.

(5.7)

Restricting this along the isomorphism τ : 2 ∼−→ 2op that fixes (0, 1) and (1, 0) and
exchanges (0, 0) with (1, 1), we obtain a cartesian square in D of the form

Ωx //

��

0

��
0 // x.

(5.8)

It may seem terribly pedantic to distinguish between diagrams of shape 2 and 2op,
but we find that it helps avoid confusion with minus signs. In particular, if instead
of the isomorphism τ we used the isomorphism τσ (which “rotates” (5.7) to make it
look like (5.8)), we would obtain a different cartesian square of shape (5.8) in D . The
difference would, again, be the inversion map −1: Ωx→ Ωx.

Lemma 5.9 ([Gro13, Prop. 3.17]). There is an adjunction Σ a Ω.

The cofiber functor cof : D(2)→ D(2) in a pointed derivator is the composite

D(2)
(0,−)∗−−−−→ D(p)

(ip)!−−−→ D(2)
(−,1)∗−−−−→ D(2).

Here (0,−) : 2→ p indicates the inclusion as the objects with first coordinate 0, and
similarly for (−, 1) : 2→ 2. Since (0,−) is a sieve, (0,−)∗ is an extension by zero;
thus, by stopping after the first two functors, we have a cocartesian square

x
f //

��

y

cof(f)
��

0 // z.

(5.10)

By Remarks 4.2 and 4.8, any two cocartesian squares (5.10) with the same underlying

object (x
f−→ y) of D(2) are isomorphic.
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Remark 5.11. In a strong pointed derivator, every morphism in D(1) underlies some
object of D(2). Thus, we can construct “the” cofiber of any morphism in D(1) by
first lifting it to an object of D(2). By Remark 2.6, the result is independent of the
chosen lift, up to non-unique isomorphism.

Dually, the fiber functor fib : D(2)→ D(2) is the cofiber functor of Dop, which
can be identified with the composite

D(2)
(−,1)!−−−−→ D(y)

(iy)∗−−−→ D(2)
(0,−)∗−−−−→ D(2)

so that we have a cartesian square

w
fib(f) //

��

x

f
��

0 // y.

Lemma 5.12 ([Gro13, Prop. 3.20]). There is an adjunction cof a fib.

In a pointed derivator D , we define a cofiber sequence to be a coherent diagram
of shape � = 2× 3 in which both squares are cocartesian and whose (0, 2)- and (1, 0)-
entries are zero objects:

x
f //

��

y //

g

��

0

��
0 // z

h
// w.

Suitable combinations of Kan extensions give a functorial construction of cofiber
sequences D(2)→ D(�). This functor induces an equivalence onto the full subcat-
egory of D(�) spanned by the cofiber sequence. Thus, for derivators a morphism is
equivalent to its cofiber sequence, and there are variants of this for iterated cofiber
sequences, fiber sequences, and similar such constructions.

Recall that ιjk denotes the functor 2→ � induced by the identity of 2 on the
first factor and the functor 2→ 3 on the second factor that sends 0 to j and 1
to k. Then a cofiber sequence is an X ∈ D(�) such that X(0,2) and X(1,0) are zero
objects and ι∗01X and ι∗12X are cocartesian. By Corollary 4.10, ι∗02X is also cocartesian
and therefore induces an isomorphism w ∼= Σx. (This implies σ∗ι∗02X is cocartesian,
but it would induce the opposite isomorphism w ∼= Σx.) Of course, by restricting to
the two cocartesian squares, we also obtain canonical isomorphisms g ∼= cof(f) and
h ∼= cof(g).

As suggested in [Ayo07, Remarque 2.1.62], the identification of w with Σx can
also be made functorial.

Lemma 5.13. The functor cof3 : D(2)→ D(2) is naturally isomorphic to the sus-
pension functor Σ of D2.

Proof. Let A be the full subcategory of 3× 3 that omits (2, 0). Using a combination of
extension by zero functors and left Kan extensions, we have a functor D(2)→ D(A)
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that sends x
f−→ y to a diagram of the following form:

x
f //

��

y

g

��

// 02

��
01

// z
h //

��

w

k
��

03
// v.

(5.14)

(Ignore the subscripts for now; all objects denoted 0k are zero objects.) Lemma 4.9
implies that all squares and rectangles in this diagram are cocartesian. Thus, we have
a canonical identification of g ∈ D(2) with cof(f), and similarly of h and k with
cof2(f) and cof3(f).

Now let C = 23 be the shape of a cube, and let q : C → A be the functor such that
q∗ of (5.14) has the following form:

x
f //

  

��

y

  

��

02
//

��

02

��

01

!!

// 03

!!
w

k
// v.

Here the subscripts match those in (5.14) to indicate the definition of q precisely.
This cube may be regarded as a coherent square in D2 (with the 2-direction going
left to right). Moreover, since its left and right faces are cocartesian in D , applying
Lemma 4.3 with A = p, B = 2, and C = 2, we see the cube is cocartesian in D2.
Thus, it naturally identifies k ∼= cof3(f) with Σ(f).

Remark 5.15. The identification of k with Σ(f) in the proof of Lemma 5.13 mandates
that we identify w and v with Σx and Σy using the cocartesian squares

x //

��

02

��
01

// w

and

y //

��

02

��
03

// v,

respectively. Of course, if we were to instead use the transpose of one of these squares,
then k would instead be identified with −Σf . This is exactly what happens in the
proof in [Gro13, Theorem 4.16] that distinguished triangles can be “rotated” (axiom
(T2) of a triangulated category).

We define a fiber sequence in D to be a cofiber sequence in Dop. Thus, it is a
diagram of shape �op in D , which looks like

z ooOO y ooOO 0OO

0 oo x oo w.
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By restricting along the “rotation” isomorphism ρ : � ∼−→ �op, we can draw this as a
diagram of shape � in D

w //

��

x //

��

0

��
0 // y // z

in which both squares are cartesian. As before, it follows that the outer rectangle
is also cartesian, and hence we can identify w with the loop space object Ωz. Note,
though, that the isomorphism 2 ∼−→ 2op induced on the outer rectangle by ρ is τσ, not
τ . In fact, there is no isomorphism � ∼−→ �op that induces τ on the outer rectangles.

We now turn to stable derivators. In contrast to pointedness, which at least has
nontrivial examples in the representable case (even if suspensions and loops are gen-
erally not very interesting there), stability is entirely a homotopical notion: the only
stable represented derivator is y(1). For now, we give three versions of the definition;
we will see in §7 that they are actually equivalent.

Definition 5.16. Let D be a pointed derivator.

(i) D is stable if a coherent square

x //

��

y

��
z // w

is cartesian if and only if it is cocartesian.

(ii) D is cofiber-stable if this is true under the additional assumption that z is a
zero object.

(iii) D is Σ-stable if this is true under the additional assumption that y and z are
both zero objects.

A square that is both cartesian and cocartesian is called bicartesian. In particular,
in a Σ-stable derivator the bicartesian square (5.3) induces an isomorphism x ∼= ΩΣx,
and similarly (5.8) induces an isomorphism ΣΩx ∼= x. Thus, the adjunction Σ a Ω is
an equivalence. Similarly, cof a fib is an equivalence in a cofiber-stable derivator.

Example 5.17. A stable model category is, by definition, a pointed model category
whose homotopy derivator is Σ-stable. However, by [Hov99, Remark 7.1.12] such a
derivator is in fact stable. (In Theorem 7.1 we will generalize this fact to all deriva-
tors.) Thus, any stable model category gives rise to a stable derivator.

Example 5.18. As defined in [Lur, 1.1.1.9], a stable (∞, 1)-category is a pointed
(∞, 1)-category with fibers and cofibers and in which fiber sequences agree with
cofiber sequences. Thus, a complete and cocomplete (∞, 1)-category is stable if and
only if its homotopy derivator is cofiber-stable.

One of the basic facts about stable derivators is the following.

Lemma 5.19. Any Σ-stable derivator is additive in the sense that finite products
and coproducts coincide naturally.
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The proof of this fact in [Gro13, Prop. 4.7] uses “full” stability. In the next
section we will need the fact that additivity requires only Σ-stability, so we sketch an
alternative proof.

Sketch of proof. It is well known that a category with products and coproducts is
additive when every object has a commutative monoid structure and every mor-
phism is a monoid map. Now by [Gro13, Lemma 4.11], any object of the form ΩX is
a monoid; the statement in [Gro13] assumes stability, but the proof uses only point-
edness. The construction is natural, so every morphism of the form Ωf is a monoid
map. The usual Eckmann–Hilton argument implies that any object of the form Ω2X
is a commutative monoid. However, Σ-stability implies that every object is of the
form Ω2X and every morphism is of the form Ω2f .

In a cofiber-stable derivator, if we have a cofiber sequence

x
f //

��

y //

g

��

0

��
0 // z

h // w,

(5.20)

then we say that the induced string of composable arrows in D(1)

x
f // y

g // z
h′ // Σx

is a distinguished triangle. Here h′ is the composite z
h−→ w ∼−→ Σx, the isomor-

phism being induced by the outer rectangle of (5.20). Note that a distinguished tri-
angle is an incoherent diagram; i.e., an object of D(1)3 rather than D(3). As usual,
we also extend the term distinguished triangle to any such incoherent diagram that
is isomorphic to one obtained in this way.

Theorem 5.21 ([Gro13, Theorem 4.16]). If D is a strong, stable derivator, then
the suspension functor and distinguished triangles defined above make D(1) into a
triangulated category in the sense of Verdier.

Remark 5.22. We need the assumption that D is strong because the triangulation
axioms for D(1) refer only to morphisms of D(1) (having no other option), whereas
to prove the axioms we need to lift such morphisms to objects of D(2). For instance,
to extend a morphism f : x→ y to a distinguished triangle, we need f to be an object
of D(2) so as to be able to extend it to a cofiber sequence. Thus, the strongness is
only needed to relate properties of derivators to structure on its values but not for
the theory of derivators itself.

It is crucial that in passing from cofiber sequences to distinguished triangles we
use the isomorphism w ∼= Σx obtained from the outer rectangle of (5.20) and not
its σ-transpose. In particular, this implies that although fiber sequences and cofiber
sequences essentially coincide in a stable derivator (modulo ρ∗), they do not induce
the same notion of “distinguished triangle.” This is expressed by the following lemma,
whose analogue for homotopy categories of stable model categories is well-known (see,
e.g., [Hov99, Theorem 7.1.11]).
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Lemma 5.23. If D is a stable derivator, then the distinguished triangles in Dop(1)
are the negatives of those in D(1).

Recall that the negative of a triangulation is obtained by negating an odd number
of the morphisms in each given distinguished triangle.

Proof. Suppose X ∈ D(�) is a cofiber sequence in D that looks like (5.20). Then
since cocartesian squares in D are also cartesian, ρ∗X ∈ D(�op) = Dop(�)op is a fiber
sequence in D , i.e., a cofiber sequence in Dop. It therefore induces a distinguished
triangle in Dop, which interpreted in D looks like

w oo
h

z oo
g

y oo
f ′

Ωw. (5.24)

Since Σ is inverse to Ω, we can turn this around and write it as

Ωw
f ′ // y

g // z
h // ΣΩw

and then use (either) isomorphism x ∼= Ωw to write it as

x
f ′ // y

g // z
h // Σx.

However, because in (5.24) x is identified with Ωw (the suspension of w in Dop) not
via the outer cartesian rectangle of (5.20), but its σ-transpose (since ρ restricts to τσ
on the outer rectangle of �), we have f ′ = −f and not f .

6. Mayer–Vietoris sequences

The following is our main result. It was previously known to be true for homotopy
categories of stable model categories (see [May01, Lemma 5.7]).

Theorem 6.1. In a cofiber-stable derivator D , if we have a cocartesian square

x
f //

g

��

y

j

��
z

k
// w,

then there is a cocartesian square

x
(f,−g) //

��

y ⊕ z

[j,k]

��
0 // w

and hence a distinguished triangle

x
(f,−g) // y ⊕ z

[j,k] // w // Σx.
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Proof. Suppose that we are given a cocartesian square of the following form:

x
f //

g

��

y

j

��
z

k
// w.

(6.2)

We will construct a cofiber sequence

y ⊕ z
[j,k] //

��

w //

��

0

��
0 // Σx

Σ(−f,g)
// Σy ⊕ Σz

and hence a distinguished triangle

y ⊕ z
[j,k] // w // Σx

Σ(−f,g) // Σy ⊕ Σz .

Rotating backward (which we can do in any cofiber-stable derivator, where fiber
sequences coincide with cofiber sequences) will produce the desired result. (Recall
that rotating a triangle negates the suspended morphism, so that Σ(−f, g) becomes
(f,−g).)

We begin by restricting from (6.2) to obtain a diagram as on the left below.

y

��

z

��

x

��

// y

  
z // w

0 //

��

��

y

""

��

z //

��

y ⊕ z

��

x

��

// y

##
z // w.

Then by left Kan extension we obtain a cube as on the right, whose upper and
lower squares are cocartesian. Cocartesianness of the upper square, along with the
identification of 0 and y ⊕ z, follow as in the proof of Corollary 4.11.

Regarding this right-hand cube as an object of D2(2), with its domain and co-
domain being the top square and bottom square, respectively, we can construct its
cofiber sequence. The result is a diagram in D of the “double hypercube” shape
2×� shown in Figure 1. As before, the subscripts are merely to distinguish different
occurrences of the same (or isomorphic) objects. Since left Kan extensions in D2 are
pointwise by Lemma 4.3, all the squares in Figure 1 whose sides are parallel to the
axes are cocartesian. This allows us to identify the objects labeled 04, 05, and 09

as zero objects, and the objects labeled Σy and Σz as the suspensions indicated, by
using the squares

y1
//

��

06

��
03

// Σy

and

z1
//

��

07

��
01

// Σz.
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0 x1

y1 y2

z1 z2

y ⊕ z w

01 05

02 Σx

0 x2

03 04

0

06

07

08

Σy

09

Σz

Σy ⊕ Σz

Figure 1: The double hypercube

Next, since the diagram of categories

p× p //

��

p×2

��
2× p // 2×2

commutes, the pushout in D2 of a diagram of cocartesian squares is cocartesian.
Since the constant zero square is also cocartesian, all the squares occurring as objects
in the cofiber sequence in D2 are cocartesian. In particular, the squares in Figure 1
labeled as

x2
//

��

04

��
05

// Σx

and

09
//

��

Σy

��
Σz // Σy ⊕ Σz

(6.3)

are cocartesian, allowing us to identify their lower-right corners as indicated. Note
that the latter is consistent with our identifications of Σy and Σz and the isomorphism
Σ(y ⊕ z) ∼= Σy ⊕ Σz. By contrast, there is no canonical reason to choose the former
over its transpose; our choice determines the appearance of (−f, g) in the cofiber
sequence rather than (f,−g).
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Inside Figure 1 we see our desired cofiber sequence

y ⊕ z //

��

w //

��

08

��
02

// Σx // Σy ⊕ Σz.

It is obvious that the map y ⊕ z → w in this cofiber sequence is [j, k]; thus, it remains
only to identify the map Σx→ Σy ⊕ Σz with Σ(−f, g) = (−Σf,Σg). Since D is addi-
tive by Lemma 5.19, it will suffice to show that the composites of this map with the
two projections Σy ⊕ Σz → Σy and Σy ⊕ Σz → Σz are −Σf and Σg, respectively.

We will show that the composite with the second projection Σy ⊕ Σz → Σz is Σg
and then indicate how the other argument differs. For this, we will extend Figure 1 to
a larger coherent diagram that includes the second projection: this diagram is shown
in Figure 2 (we have neglected to draw the left half of the diagram in Figure 2 for
brevity). To obtain Figure 2 from Figure 1, first we extend by zero to add the zero

x1

y2

z2

w

05

Σx

x2

04

0

06

07

08

Σy

09

Σz2

Σy ⊕ Σz

010

011

Σz3

Σz4

Figure 2: The extended double hypercube

objects 010 and 011 and the dotted arrows. Then we left Kan extend to add the other
two objects and the dashed arrows.

Now by Lemma 4.9, the squares

09
//

��

010

��
Σz2

// Σz3

and

Σy //

��

Σy ⊕ Σz

��
011

// Σz4

appearing in Figure 2 are cocartesian. The first allows us to identify the object Σz3
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as isomorphic to Σz2. From the second, we deduce by Corollary 4.10 that the square

09
//

��

Σz2

��
011

// Σz4

is also cocartesian, allowing us to also identify Σz4 as isomorphic to Σz2. Now the
commutativity of the squares

Σy //

��

Σy ⊕ Σz

��
011

// Σz4

and

Σz2
//

��

Σy ⊕ Σz

��
Σz3

// Σz4

implies that the composites Σy → Σy ⊕ Σz → Σz4 and Σz2 → Σy ⊕ Σz → Σz4 are
zero and the identity, respectively. Therefore, the map Σy ⊕ Σz → Σz4 is in fact the
projection out of Σy ⊕ Σz regarded as a product. (It is also possible to construct
Figure 2 using a cofiber sequence in D2×2.)

We now identify the composite Σx→ Σy ⊕ Σz → Σz4 appearing in Figure 2 with
Σg. By definition of the functor Σ, the map Σg is uniquely determined by occurring
as the (1, 1)-component of a morphism in D(2) from

x2
//

��

04

��
05

// Σx

to

z1
//

��

07

��
01

// Σz2

whose (0, 0)-component is g : x→ z. An obvious way to obtain such a morphism
would be if we could find a coherent cube

x1

��

//

��

04

~~

��

05

��

// Σx

��

z1

��

// 07

~~
01

// Σz2.

Unfortunately, there is no map from 04 to 07 in Figure 2, so we cannot obtain such
a cube by restriction. However, we can instead obtain a “coherent zigzag” of cubes,
as shown in Figure 3. This is an object of D(2× F ), where F is the diagram shape

(· → · ← · → · ← ·).

We then apply the partial underlying diagram functor to Figure 3, obtaining an
incoherent F -shaped diagram in D(2). However, since all the upward-pointing arrows
in Figure 3 are isomorphisms, by (Der2) so are the corresponding morphisms in D(2).
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x1

��

//

��

04

}}

��

05

��

// Σx

��

x1

��

//
OO 011

}}
OO

05OO
// Σz4OO

x1

��

//

��

09

}}

��

05

��

// Σz4

��

z2

��

//
OO 08

}}
OO

05OO
// Σz4OO

z1

��

// 07

}}
01

// Σz2

Figure 3: Identification of Σg

Thus, we can compose with their inverses to obtain a composite morphism x1
//

��

04

��
05
// Σx

→
 x1

//

��

011

��
05
// Σz4

 ∼=←−

 x1
//

��

06

��
05
// Σz4

→
 z2

//

��

08

��
05
// Σz4

 ∼=←−

 z1
//

��

07

��
01
// Σz2


in D(2). Since the domain and codomain of this morphism are cocartesian squares,
and its (0, 0)-component is g, its (1, 1)-component must be Σg.

A symmetrical argument implies we can identify the map Σx→ Σy with Σf . How-
ever, in this case the domain of the corresponding morphism in D(2) will be

x2
//

��

05

��
04

// Σx,

which is transposed relative to our above choice of (6.3) to identify Σx. Thus, when
we make the identifications consistently, we obtain −Σf in the second case.

Remark 6.4. Inspecting the proof of Theorem 5.21 in [Gro13, Theorem 4.16], we see
that Theorem 6.1 and Lemma 4.9 imply that the triangulation of a stable derivator
is always strong in the sense of [May01, Definition 3.8]. (This use of “strong” is
unrelated to the notion of a derivator being strong.)
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7. On the definition of stable derivators

Finally, we use Theorem 6.1 to show that all three notions of stability for a derivator
are equivalent:

Theorem 7.1. For a pointed derivator D , the following are equivalent:

(i) D is stable.

(ii) D is cofiber-stable.

(iii) The adjunction cof a fib is an equivalence.

(iv) D is Σ-stable.

(v) The adjunction Σ a Ω is an equivalence.

Proof. Clearly, (i)⇒(ii)⇒(iv). By the construction of the adjunctions Σ a Ω and
cof a fib in Lemmas 5.9 and 5.12, we easily deduce (ii)⇔(iii) and (iv)⇔(v).

On the other hand, assuming (v), the suspension functor of D is an equivalence,
and therefore (using Lemma 4.3) the suspension functor of D2 is an equivalence.
Since cof3 = Σ, this implies that cof is also an equivalence (e.g., by using the “two-
out-of-six property” for equivalences); hence (iii) holds. (This argument can be found
in [Hel97], among other places.)

It remains to show (iii)⇒(i), and here we can mostly mimic the proof of [Lur,
1.1.3.4]. LetX ∈ D(p) be of the form z ← x→ y; we want to show that the cocartesian
square (ip)!X is also cartesian. (The dual argument will be identical.) Now X can be
left extended by zero to a diagram of the following form:

0

��
x

��   
z y.

(7.2)

Let B denote the shape of (7.2), and let A be the category (· ← · → · ← · → ·). Then
there is a functor r : A� × p→ B such that if Y is (7.2), then r∗Y has the form shown
in Figure 4. It is straightforward to conclude that each vertical level of this diagram is
in the image of (iA)!, where iA : A→ A� is the inclusion. Therefore, by Lemma 4.3,
the whole diagram is in the image of (iA × 1p)!. It follows that (πA)!(iA × 1p)∗r∗Y ∼=
X, where πA denotes the projection A× p→ p. That is, if we view (iA × 1p)∗r∗Y as
an A-shaped diagram in Dp, then its colimit is X.

The diagram

A× p πA //

1A×ip
��

p

ip

��
A×2

πA // 2
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y ddiikkllmmOO

0 ooOO 0 //
OO x ooOO x //

OO yOO

x ddjjkkllmm

��

0 oo

��

0 //

��

x oo

��

0 //

��

0

��

z ddjjkkllmm

z oo x // x oo 0 // 0.

Figure 4: Building a span as a colimit of simpler ones

commutes, so the colimit of (1A × ip)!(iA × 1p)∗r∗Y ∈ D2(A) as an A-shaped dia-
gram is (ip)!X. However, this diagram has the following form in D :

0 oo

��

��

0 //

��

��

x oo

��

��

0 //

��

��

0

��

��
0 oo

��

0 //

��

x oo

��

x //

��

y

��

z oo

��

x //

��

x oo

��

0 //

��

0

��
z oo x // x oo x // y.

When regarded as an A-diagram in D2, all its objects are cartesian as well as cocarte-
sian squares in D , since they are constant in at least one direction (see Lemma 4.12).
Therefore, it will suffice to show that cartesian squares are closed under A-shaped
colimits in D2.

Toward this end, we first note that A-shaped colimits can be constructed from
pushouts. Namely, if D denotes the category

· //

��

·

��
· //

��

· // ·

��
· // ·

with j : A ↪→ D the inclusion of the solid arrows, then in a diagram of the form j!Z
both the square and the rectangle are cocartesian (by Lemma 4.9), while the lower-
right corner is the colimit over A (by Lemma 4.5 with B′ = C = A). Thus, if cartesian
squares are closed under pushouts, they are also closed under A-colimits.

Now since cof : D2×2 → D2×2 is an equivalence of derivators, it preserves cartesian
squares; i.e., cartesian squares are closed under cofibers. In particular, they are closed
under suspension (and under loop spaces).

On the other hand, if X and Y are cartesian squares in D , then the following
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squares in D2 (i.e., objects of D2(2)) are cocartesian:

ΩX //

��

0

��
0 // X

and

0 //

��

Y

��
0 // Y,

and hence so is their coproduct

ΩX //

��

Y

��
0 // X t Y.

Thus, X t Y is the cofiber of a map from ΩX to Y , both of which are cartesian;
hence it is also cartesian. Thus, cartesian squares are closed under coproducts.

Finally, for an arbitrary cocartesian square

X //

��

Y

��
Z // W

in D2, Theorem 6.1 yields a cocartesian square

X //

��

Y t Z

��
0 // W.

Thus, if X, Y , Z, and hence also Y t Z are cartesian, then W is the cofiber of a
map between cartesian squares and hence is also cartesian. Thus, cartesian squares
are closed under pushouts in D2, as desired.

Remark 7.3. Theorem 7.1 can be regarded as a converse to Theorem 5.21: if the
structure defined on a pointed derivator D in §5 makes D(1) triangulated, then in
particular the suspension functor must be an equivalence; hence D is stable.

Appendix A. The calculus of mates

We briefly recall a very useful tool called the calculus of mates for natural trans-
formations. More information can be found in, e.g., [KS74] or [Ayo07, 1.1].

Suppose that we are given a square of functors containing a natural transformation

A
f∗ //

h∗

��
|� α

B

k∗

��
C

g∗
// D.

If the functors f∗ and g∗ have left adjoints f! and g!, respectively, then α has a mate
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transformation α! : g!k
∗ → h∗f!, defined to be the composite

g!k
∗ g!k

∗η−−−→ g!k
∗f∗f!

g!αf!−−−→ g!g
∗h∗f!

εh∗f!−−−→ h∗f!,

where η and ε denote the unit and counit of the adjunctions f! a f∗ and g! a g∗,
respectively. Similarly, if instead k∗ and h∗ have right adjoints k∗ and h∗, respectively,
then α has another mate α∗ : f∗h∗ → k∗g

∗

f∗h∗
ηf∗h∗−−−−→ k∗k

∗f∗h∗
k∗αh∗−−−−→ k∗g

∗h∗h∗
k∗g
∗ε−−−−→ k∗g

∗.

These operations are inverses, in that if we reorient α! to look like α

B k∗ //

f!

��
|� α!

D

g!

��
C

h∗
// A,

then apply the second mate-construction to it (which we can do since f! and g! have
right adjoints, namely, f∗ and g∗), then we have (α!)∗ = α, and dually. (This follows
from the triangle identities for the adjunctions f! a f∗ and g! a g∗.)

On the other hand, if all four functors f∗, g∗, h∗, and k∗ have left adjoints f!, g!,
h!, and k!, respectively, then we can apply the first mate-construction to α! to obtain
(α!)! : h!g! → f!k!. In this case, we can also regard α as a transformation

A

g∗h∗

��
|� α

A

k∗f∗

��
D D.

Then since g∗h∗ and k∗f∗ have left adjoints h!g! and f!k!, respectively, we can con-
struct a mate α! : h!g! → f!k!, and we have α! = (α!)!.

The mate-construction is functorial with respect to horizontal and vertical pastings
of squares. This can be expressed formally as an isomorphism of double categories;
see [KS74]. However, it is not a functor in the ordinary sense, and in particular the
mate of an isomorphism need not be an isomorphism.

It is true, however, that if h∗ and k∗ are identities (or even equivalences), then
α is an isomorphism if and only if α! is so, and dually. In particular, if f∗ and
g∗ have left adjoints and h∗ and k∗ have right adjoints, then α! : g!k

∗ → h∗f! is an
isomorphism if and only if α∗ : f∗h∗ → k∗g

∗ is so, using the above fact about “iterated
first mate-constructions.” This is relevant to the definition of homotopy exact square,
Definition 3.4.
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