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ERRATUM TO
“ADDING INVERSES TO DIAGRAMS ENCODING ALGEBRAIC
STRUCTURES” AND “ADDING INVERSES TO DIAGRAMS II:

INVERTIBLE HOMOTOPY THEORIES ARE SPACES”

JULIA E. BERGNER

(communicated by Michael A. Mandell)

Abstract
In this note, we correct an error in one of our approaches

to encode a group structure by a diagram. We show that we
instead obtain the structure of a monoid with involution.

1. Statement of previous error

In previous work, we studied various kinds of functors X : ∆op → SSets satisfying
a Segal condition, so that the maps

Xn → X1 ×X0 · · · ×X0 X1︸ ︷︷ ︸
n

are weak equivalences of simplicial sets for n > 2. When we imposed the additional
condition that X0 = ∆[0], such objects, called reduced Segal categories or Segal mon-
oids, were shown to be equivalent to simplicial monoids [4]. When instead X0 =
q∆[0], some discrete simplicial set, then X is a Segal category and can more generally
be regarded as an up-to-homotopy model for a simplicial category with this same
object set [4].

These results were used in the comparison between the model structure for all
Segal categories (not just with a fixed set in degree zero) and the model structure for
simplicial categories [6]. Furthermore, the former model structure was shown to be
Quillen equivalent to the model structure for complete Segal spaces or functors∆op →
SSets, where the discrete level zero condition is replaced with a “completeness”
condition [6].

A natural question was then whether these results could be generalized to an
“invertible”, and two methods were proposed in both of the papers [2, 3]. The first
was to replace ∆op in the above definitions with a category I∆op in which the objects
had an involution map. However, these results were in fact incorrect, in that this
involution does not adequately encode an inverse map. In this note, we clarify that
this diagram should encode the structure of a monoid with involution rather than
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a group, or category with involution rather than a groupoid, in the case of multiple
objects.

The second approach given in these papers, given by using different projection
maps as first used by Bousfield [7], is still correct.
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2. Replacing groups with monoids with involution

In the case of monoids, we consider functors ∆op → SSets, where the category
∆op has as objects finite ordered sets [n] = (0 → 1 → · · · → n) for each n > 0 and
as morphisms the opposites of the order-preserving maps between them. Notice that
each [n] can be regarded as a category with n+ 1 objects and a single morphism
i → j whenever i 6 j.

In [2] we defined a category I∆op, whose objects are given by small groupoids
I[n] = (0 � 1 � · · · � n) for n > 0. In other words, each I[n] is a category with
n+ 1 objects and a single isomorphism between any two objects. The morphisms of
I∆op are generated by two sets of maps: the opposite of the order-preserving maps
from ∆op and an involution morphism on each I[n] which sends each i to n− i.

The hope was that functors I∆op → SSets satisfying a Segal condition encoded
a group structure. Unfortunately, inverses are not adequately given, so such func-
tors actually give the structure of a monoid with involution. Thus, we change the
terminology given in [2] as follows:

In the case of ∆, the simplicial set ∆[n] is given by the representable functor
Hom∆(−, [n]). Similarly, we can define an object I∆[n] which is given by the repre-
sentable functor HomI∆(−, I[n]). These n-simplices with involution are the standard
building blocks of the spaces we consider here. In particular, every simplex should be
regarded as having a corresponding “reverse” simplex. As with simplicial sets, we can
consider the boundary of I∆[n], denoted ∂I∆[n], which consists of the nondegenerate
simplices of I∆[n] of degree less than n.

Thus, we can define a simplicial set with involution to be a functor I∆op → Sets
and, more generally, a simplicial object with involution in a category C to be a
functor I∆op → C. We denote the category of simplicial sets with involution by
ISSets. We further consider the case of simplicial spaces with involution, or func-
tors I∆op → SSets. Since there is a forgetful functor U : ISSets → SSets (respec-
tively, U : SSetsI∆op → SSets∆op

), we define a map f of simplicial sets (respectively,
spaces) with involution to be a weak equivalence if U(f) is a weak equivalence of sim-
plicial sets (respectively, spaces).

In particular, we define a Segal precategory with involution to be a simplicial space
with involution X such that the simplicial set X0 is discrete. If X0 = ∆[0], then we
call it a Segal premonoid with involution. To define a Segal category with involution,
use the maps

ξn : Xn → X1 ×X0 · · · ×X0 X1︸ ︷︷ ︸
n
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defined in [2, §4]. Thus, a Segal category with involution is a Segal precategory with
involution X such that for each n > 2 the map ξn is a weak equivalence of simplicial
sets.

Obtaining an appropriate model structure requires localization with respect to the
following map:

ξO =
∐
n>1

(
ξn :

∐
x∈On+1

(IG(n)tx → I∆[n]tx)
)
.

The proofs of the following two propositions continue to hold, with the necessary
changes in terminology:

Proposition 2.1 ([2, 4.1]). There is a model category structure LSSetsI∆op

O,f on the
category of Segal precategories with involution with a fixed set O in degree zero in
which the weak equivalences and fibrations are given levelwise. Similarly, there is a
model category structure LSSetsI∆op

O,c on the same underlying category in which the
weak equivalences and cofibrations are given levelwise. Furthermore, we can localize
each of these model category structures with the map ξO to obtain model structures
LSSetsI∆op

O,f and LSSetsI∆op

O,c whose fibrant objects are Segal categories with involu-
tion.

Proposition 2.2 ([2, 4.2]). The adjoint pair given by the identity functor induces a
Quillen equivalence of model categories

LSSetsI∆op

O,f
// LSSetsI∆op

O,c .oo

In [2], we claimed that there was a Quillen equivalence

LSSetsTG
∗ � LSSetsI∆

op

∗,f .

Unfortunately, we did not adequately establish that we obtained group structures
using this category I∆op. We seek to establish that our previous proof instead gave
a Quillen equivalence

LSSetsTMI
∗ � LSSetsI∆

op

∗,f ,

where TMI is the theory of monoids with involution.
This theory TMI has as objects Tk which are given by the free monoid with involu-

tion on k generators. In other words, Tk is free on generators x1, . . . , xk and x1, . . . , xk

with involution I(xk) = xk. There is a monoid map τ : Tk → Tk given by xj 7→ xk−j+1.
This map will correspond to the flip map of each object I[k] in I∆op.

Using Badzioch’s theorem from [1], such a Quillen equivalence will complete the
proof of the following theorem.

Theorem 2.3. The model category structure AlgTMI is Quillen equivalent to the
model category structure LSSetsI∆op

∗,f .

As in [4], we prove this theorem using several lemmas. Note that in the model
structure LSSetsI∆op

∗,c , we denote by L1 the localization, or fibrant replacement func-

tor. Analogously, we denote by L2 the localization functor in LSSetsTMI
∗ .

The first step in the proof of the theorem is to show what the localization functor
L1 does to the n-simplex with involution I∆[n]t. By Inerve(−)t, we denote the rep-
resentable functor Hom(I[n],−), viewed as a transposed constant simplicial space. It
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is here, [2, Proposition 4.5], that the major error occurred. The correct statement is
as follows:

Proposition 2.4. Let Fn denote the free monoid with involution on n generators.
Then in LSSetsI∆op

∗,c , L1I∆[n]t∗ is weakly equivalent to Inerve(Fn)
t for each n > 0.

In the proof, we defined a filtration of Inerve(F1)
t as follows:

Ψk(Inerve(F1)
t)j =

{
(xn1 | · · · |xnj ) |

j∑
`=1

|n`| 6 k

}
,

where x and its “inverse” x−1 denote the two nondegenerate 1-simplices of I∆[1]t∗ =
Ψ1. The problem is that we assumed here that x could be canceled with x−1, when
there is no structure built in to I∆op to make this cancelation possible. In short, we
do not really have the structure of a group, but only of a monoid with involution.
Therefore, we instead define the filtration of Inerve(F1)

t by

Ψk(Inerve(F1)
t)j = {(w1| · · · |wj) | `(w1 · · ·wj) 6 k} ,

where the wi are words in x and x, and ` denotes word length.
With this modification, the previous proof goes through as before.
To obtain the appropriate adjoint pair for the Quillen equivalence, we first define

a functor J : I∆op → TMI . On objects, this functor is defined by In 7→ Tn. On face
and degeneracy maps coming from ∆op, this functor behaves the same as the functor
∆op → TM as defined in [4]. Specifically, the coface and codegeneracy maps maps in
I∆ are given by

di(xk) =


xk i > k

xkxk+1 i = k

xk+1 i < k

and si(xk) =


xk i 6 k

e i = k − 1

xk−1 i < k − 1.

The involution map is sent to the map τ : T` → T` defined by xk 7→ y`−k+1.
This functor J induces a map

J∗ : LSSetsTMI

∗,f → LSSetsI∆
op

∗,f

for which we have a left adjoint J∗ via left Kan extension.
As in [2], define IM [k] to be the functor TMI → SSets given by

Fn 7→ HomTMI (Fk, Fn) = (Fk)
n,

and let H = Inerve(Fk)
t. The following results continue to hold, replacing TG with

TMI :

Lemma 2.5 ([2, 4.9]). In LSSetsTMI
∗ , L2J∗(H) is weakly equivalent to IM [k].

Proposition 2.6 ([2, 4.10]). For any object X in LSSetsI∆op

∗,c , L1X is weakly equiv-
alent to J∗L2J∗X.

Proposition 2.7 ([2, 4.11, 4.3]). The adjoint pair

J∗ : LSSetsI∆
op

∗,f
// SSetsTMI

∗ : J∗oo

is a Quillen equivalence.
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The more general fixed-object case, as well as the more general case as devel-
oped in [3], can be corrected by considering categories with involution rather than
groupoids whenever I∆op is the indexing category.
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