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BORIS CHORNY aND JIRI ROSICKY
(communicated by J. Daniel Christensen)

Abstract

We develop an extension of the framework of combinatorial
model categories. The category of small presheaves over large
indexing categories and ind-categories are the basic examples
of non-combinatorial model categories embraced by the new
machinery called class-combinatorial model categories.

The definition of the new class of model categories is based on
the corresponding extension of the theory of locally presentable
and accessible categories developed in the companion paper,
where we introduced the concepts of class-locally presentable
and class-accessible categories.

In this work we prove that the category of weak equivalences
of a nice class-combinatorial model category is class-accessible.
Our extension of J. Smith’s localization theorem depends on the
verification of a cosolution-set condition. The deepest result is
that the (left Bousfield) localization of a class-combinatorial
model category with respect to a strongly class-accessible local-
ization functor is class-combinatorial again.

1. Introduction

The theory of combinatorial model categories pioneered by J. Smith in the end
of 1990s has become a standard framework for abstract homotopy theory. The foun-
dations of the subject may be found in [2] and [14, 15]; a concise exposition has
appeared in [25, A.2.6].

A model category M is combinatorial if it satisfies two conditions. The first con-
dition requires that the underlying category M be locally presentable (see, e.g., [1]
for the definition and an introduction to the subject). The second condition demands
that the model structure be cofibrantly generated (see, e.g., [20] for the definition
and discussion).

Several interesting examples of non-combinatorial model categories without Quillen
equivalent combinatorial models appeared over the past decade. For example the
categories of pro-spaces and ind-spaces were applied in new contexts in homotopy
theory [12, 21] resulting in non-cofibrantly generated model structures constructed
on non-locally presentable categories. The maturation of the calculus of homotopy
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functors [17] stimulated the development of the abstract homotopy theory of small
functors over large categories [10] resulting in formulation of the basic ideas of Good-
willie calculus in the language of model categories [3]. The model categories used for
this purpose are also not cofibrantly generated and the underlying category of small
functors from spaces to spaces (or spectra) is not a locally presentable category.

However, all the model categories from the examples above are class-cofibrantly
generated (except for the pro-categories, which are class-fibrantly generated). This
extension of the classical definition was introduced in [8], which in turn developed
the ideas by E. Dror Farjoun originated in the equivariant homotopy theory [16].

The purpose of the current paper is to develop a framework extending J. Smith’s
combinatorial model categories, so that the model categories of small presheaves on
large categories and ind-categories of model categories (the opposite categories of
pro-categories) would become the examples of the newly defined class-combinatorial
model categories. The definition of a class-combinatorial model category consists,
similarly to that of a combinatorial model category, of two conditions: the underlying
category is required to be class-locally presentable and the model structure must be
class-cofibrantly generated. As we mentioned above, the second condition was studied
in the earlier work [8], while the first condition relies on a concept of class-locally
presentable category. This was introduced and studied in the companion project [11],
which is a prerequisite for reading this paper. Informally, a class-accessible category
is a category closed under sufficiently large filtered colimits and equipped with a class
of generating objects with uniformly bounded presentability ranks, such that every
object in the category is a sufficiently large filtered colimit of generating objects. A
class-accessible category is called class-locally presentable if in addition we require
existence of all limits and colimits. See [11, Def. 2.1] for the formal introduction and
discussion of these concepts.

The main results of our paper generalize the corresponding results about the
combinatorial model categories. First, in Theorem 2.12 we prove that the levelwise
weak equivalences in the category of small presheaves form a class-accessible category
(see [11] for the definition). In Remark 2.14 we formulate mild conditions which guar-
antee that a class-combinatorial model category has a class-accessible subcategory of
weak equivalences. Such class-combinatorial model categories are called nice in this
paper. Then we prove a class-version of Smith’s theorem on existence of combinatorial
model structures [2, 1.7] in Theorem 2.15.

The central result of J. Smith’s theory is the localization theorem, stating the
existence of the (left Bousfield) localization of any combinatorial model category
with respect to any set of maps. After a brief discussion of construction of localiza-
tion functors with respect to cone-coreflective classes of cofibrations with bounded
presentability ranks of domains and codomains, we prove in Theorem 3.10 a variant
of a localization theorem for nice class-combinatorial model categories with respect to
strongly class-accessible homotopy localization functors (i.e., localization functors pre-
serving A-filtered colimits and A-presentable objects for some cardinal A). Although an
application of our localization theorem depends on the verification of a cosolution-set
condition for the class of intended generating trivial cofibrations, we are able to check
this condition in many interesting situations. In the last Theorem 3.13 we prove that
in the cases where the localization with respect to a strongly class-accessible functor
exists, the localized model category is class-combinatorial again.
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We conclude the paper by several examples of localized model categories. Using
Theorem 3.13 we show that the n-polynomial model category constructed in [3] is
class-combinatorial (Example 3.15). On the other hand, there is a model category con-
structed in [9] as a localization of a class-combinatorial model category with respect
to an inaccessible localization functor that happens to be non-class-cofibrantly gen-
erated (Example 3.16).

2. Class-combinatorial model categories

Recall that the notion of a weak factorization system being class-cofibrantly gen-
erated was introduced in [11, Def. 4.7]. We repeat this definition here, since it is of
central importance for this section.

Definition 2.1. A weak factorization system (£, R) in a class-locally A-presentable
category K was called class-cofibrantly \-generated if £ = cof(C) for a cone-coreflective
class C of morphisms such that

(1) morphisms from C have A-presentable domains and codomains and

(2) any morphism between A-presentable objects has a weak factorization with the
middle object A-presentable.

To be cone-coreflective means for each f there is a subset Cy of C such that each
morphism g — f in £ with g € C factorizes as

g—h—f
WitthCf.

If the weak factorization is functorial, a cofibrantly class-A-generated weak fac-
torization system is cofibrantly class-p-generated for each regular cardinal p > A.
Without functoriality, condition (2) does not need to go up to g and thus we will
make it a part of the following definition.

Definition 2.2. Let K be a class locally-A-presentable model category. We say that
K is class-A-combinatorial if both (cofibrations, trivial fibrations) and (trivial cofi-
brations, fibrations) are cofibrantly class-u-generated weak factorization systems for
every regular cardinal g > . If in addition X is a simplicial category, then we under-
stand the completeness and cocompleteness assumptions in the enriched sense, in
particular, K is tensored and cotensored over the simplicial sets.

A model category is called class-combinatorial if it is class-A-combinatorial for
some regular cardinal \.

Any combinatorial model category is class-combinatorial. The reason is that weak
factorizations are functorial and, moreover, the resulting functors are accessible. Thus
they are strongly accessible and this property goes up for A < p (cf. [27]).

Ezxample 2.3. Let SSet denote the category of simplicial sets. Given a simplicial
category A, we denote by P(A) the category of small simplicial presheaves on A.
The objects are functors A°P? — SSet which are small weighted colimits of simplicial
representable functors. Although in [11] we used this notation for small set-valued
presheaves, in this paper we reserve the notation P(A) only for small simplicial
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presheaves in order to avoid confusion. In the rare occasions when we need to use the
category of small set-valued presheaves on 4, we denote it by Py(.A).

The simplicial category P(A) is complete provided that A is complete (see [13]);
completeness is meant in the enriched sense (see, e.g., [4] or [23]).

The category P(A) is always class-finitely-accessible, because each small simpli-
cial presheaf is a conical colimit of presheaves from G = {hom4(—, A) @ K | A € A,
K € SSet}. Therefore each small presheaf is a filtered colimit of finite colimits of
elements of G. The elements of G are, in turn, filtered colimits of the elements of
Gan = {hom(—, A)® L | A€ A, L € SSetg,)}, where SSetg, denotes the full sub-
category of SSet consisting of finitely presentable simplicial sets. Therefore, every
small presheaf is a filtered colimit of finite colimits of the elements of Gg,.

We are going to show that, for a complete simplicial category A, the category
P(A) equipped with the projective model structure is class-combinatorial. We will
need the following result.

Lemma 2.4. Let K be a class locally \-presentable simplicial category. Then p-
presentable objects in IC are closed under finite conical limits for every uncountable
regular cardinal ™ X. In the case that K = P(A) the u-presentable functors are
closed under finite weighted limits.

Proof. Finite conical limits in I coincide with finite limits in the underlying cate-
gory Ky, since we assume that /C is tensored over the simplicial sets as part of the
completeness assumption [23, 3.8]. We intend to use a similar statement proved ear-
lier in presheaf categories. For this purpose we apply the limit preserving embedding
constructed in [11, 2.6] E: Ky — Po(A), where A = pres, Ko.

Let F': D — Ky be a finite diagram of u-presentable objects. If we denote P =
limpep F(D), then EP =limpep EF (D), where EF is a diagram of u-presentable
objects, since E is strongly A-accessible, hence strongly p-accessible by [11, 2.8],
because u > .

Consider the category p-colex(A), which is a free completion of A under p-small
colimits, as a full subcategory of p-presentable objects of the free completion of A
under colimits Py(A) (by a simple observation that every p-small colimit of repre-
sentables is p-small and a more technical converse statement proved in [26, pp. 35-37].
Observe that every limit existing in p-colex(.A) remains a limit in Py(.A), in other
words, the full embedding constructed above preserves limits. We argue as follows. If
L is an inverse limit of a diagram in u-colex(.A) and L' is a possible candidate for an
inverse limit of the same diagram in Py(A), then L’ may be represented as a u-filtered
colimit of p-presentable presheaves, i.e., elements of p-colex(A): L' = colim P;. The

(]

natural map L — L’ has an inverse, since everyone of P;’s admits a natural map
into L, because it forms a cone over the original diagram through the map P; — L/,
and together these maps define a natural map L’ — L. We conclude that L = L' by
naturality considerations.

The category p-colex(.A) is closed under finite limits by [22, 4.9], hence u-present-
able objects in Py(.A) are closed under finite limits. In other words we have shown that
EP is pu-presentable, but we need to show that P is u-presentable. Let K = colim K;

K3
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be a p-filtered colimit, then
hom(P, K) = hom(EP, EK) = hom(EP, colim E(K;)) =
colimhom(E P, EK;) = colim hom(P, K;).

Now we turn to the case K = P(A). A weight W: D — SSet is finite if D has
finitely many objects and all its hom-objects D(c, d) and all values W (d) are finitely
presentable simplicial sets (see [24, 4.1]) Following [24, 4.3], finite weighted limits
can be constructed from finite conical limits and cotensors with finitely presentable
simplicial sets. Thus we have to show that p-presentable objects in I are closed under
these limits.

It remains to show that the pu-presentable functors are closed under cotensors
with finitely presentable simplicial sets. The later are finite conical colimits of A,,,
n =0,1,2,.... Thus we have to show that p-presentable objects in P(.A) are closed
under cotensors with A,,’s.

Let H be p-presentable in P(A). Since H is a p-small colimit of tensors H; of
finitely presentable simplicial sets with representables and both colimits and cotensors
in P(A) are pointwise, we have

HA2"(A) = (colim H;)*"(A) = (colim H;(A))A»
= hom(A,,, colim H;(A)) = colim hom(A,,, H;(4))
= colim H;(A)*" = (colim H™")(A)
for each A in A. Hence
HA" 2 colim HiA"
and thus it suffices to show that each BQA is p-presentable. Since each H; is equal
to V ® hom(—, B) for some finitely presentable simplical set V' and B in A, we get
for the same reasons as above
hom(A,,V ® hom(A4, B)) = hom(A,,V x hom(A4, B)) =
hom(A,,, V) x hom(A,,, hom(A4, B)) = VA" x hom(A, BA") =
(VA" @ hom(—, BA))(A)
and thus
(V @ hom(—, B))*" = VA @ hom(—, B4").
The latter objects are pu-presentable. O

Remark 2.5. 1t is possible to use the same argument as in the proof above for coten-
sors with finitely presentable simplicial sets in an arbitrary class-locally presentable
simplicial category IC, which is cotensored over the simplicial sets as we assume that
K is cocomplete in the enriched sense. In order to implement it we need to show
that the class of A-presentable objects in K is dense, so that there would exist an
embedding I — P(A) preserving Mfiltered colimits. The density of the subcategory
of A-presentable objects of I in the enriched settings may be verified similarly to the
analogous treatment of locally presentable categories [24, 7.2,7.3].
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Proposition 2.6. Let A be a complete simplicial category. Then P(A) is class-A-
combinatorial with respect to the projective model structure for each uncountable reg-
ular cardinal \.

Proof. Following [10], P(A) is a model category where the generating classes T
and J of cofibrations and trivial cofibrations are cone-coreflective and satisfy condi-
tion 2.1(1) for any regular cardinal A. In fact, Z consists of morphisms

0A,, ® hom(—, A) — A, @ hom(—, A)
and J of morphisms
AF @ hom(—, A) = A,, ® hom(—, A),

and all involved domains and codomains are finitely presentable. We have to show
that they satisfy 2.1(2) as well, i.e., that they are bounded. Let A be uncountable and
f: G — H be a morphism between A-presentable objects and consider a morphism
g — f, where g € Z. Following the proof of 3.7 in [10], this morphism corresponds to
a morphism hom(—, A) — P, where P is the pullback

GaA” X oy HA”.

Since P is A-presentable (see 2.4), there is a choice of a set 7 from [11] 4.8 (2) whose
cardinality does not exceed A. Since all morphisms from Z have finitely presentable
domains and codomains, the factorization of f stops at w. Thus the cardinality of
T; is smaller than A. Following [11] 4.8 (2), condition [11] 3.7 (2) is satisfied. The
argument for 7 is the same. O

Remark 2.7. A very useful property of a combinatorial model categories is that the
class of weak equivalences is an accessible and accessibly embedded subcategory of
the category of morphisms K~ (see [28, 4.1] or [25, A2.6.6]). Together with Smith’s
theorem [2] this implies the localization theorem for combinatorial model categories
with respect to sets of maps. It would be natural to expect that a similar property
holds in the class-combinatorial situation. Unfortunately we were unable to prove it in
this generality. But in many interesting situations we are able to prove that the class
of weak equivalences is a class-accessible subcategory of the category of morphisms.

Lemma 2.8. Let A be a complete simplicial category. Then P(A) admits a strongly
class-accessible fibrant replacement functor.

Proof. The functor Ex*: SSet — SSet is a finitely accessible fibrant replacement
simplicial functor (see [18]). For a small simplicial functor F': A°? — SSet, let Fib(F)
be the composition

F Ex™>

A°P
We will show that this composition is small.

The category of finitely accessible simplicial functors SSet — SSet is equiva-
lent to the category of simplicial functors SSetSSetan  This equivalence sends a
finitely accessible functor SSet — SSet to its restriction to SSetg,. Thus hom-
functors hom(S,—): SSet — SSet with S finitely presentable correspond to hom-
functors hom(S, —): SSets, — SSet. Since every simplical functor SSetgs, — SSet

SSet SSet .
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is a weighted colimit of hom-functors, every finitely accessible simplicial functor
SSet — SSet is a weighted colimit of hom-functors hom(S, —) with S finitely pre-
sentable. Thus the composition Ex™ F' is a weighted colimit of functors hom(S, —)F
with S finitely presentable. But the functor hom(S, —)F is small because it is isomor-
phic to the cotensor F*°. The reason is that natural transformations

A(—, A) = hom(S, —)F = hom(S, F'—)
correspond to morphisms S — F'A, i.e., to morphisms
S = P(A)(A(-, A), F)

which, by the definition of the cotensor, correspond to morphisms A(—, A) — F5.
Consequently, Ex™ F' is small as a weighted colimit of small functors.

We have obtained the functor Fib: P(A) — P(A) which clearly has fibrant values.
Moreover, the pointwise trivial cofibration

IdSSet — Ex*

yields a weak equivalence Idp(4) — Fib. Thus Fib is a fibrant replacement functor
on P(A). Since Ex* is finitely accessible, so is Fib. We know that Ex™ is a weighted
colimit of hom-functors hom(S,—) with S finitely presentable. The corresponding
weight is A-small for an uncountable regular cardinal A. Let F' be A-presentable in
P(A). Then Fib(F) is a A-small weighted colimit of hom(S, —)F = F'S and the latter
functors are A-presentable following 2.4. Hence Fib(F') is A-presentable (the argument
is analogous to [24], 4.14). Thus Fib is strongly class-A-accessible. O

Definition 2.9. Let A be a complete simplicial category and f: A — B be a mor-
phism in P(A). The mapping cocylinder on f is the object S(f) of P(A) defined as
a pullback

S(f) —— BM
q i B

A —F B,
where j: Ay — A sends 0 to 0.
Remark 2.10. Mapping cocylinders were used in the PhD thesis of J.P. Serre in order
to replace an arbitrary map of topological spaces by a fibration. We are going to

use them basically for the same purpose in P(A). The advantage over the modern
methods of factorization is the functoriality of S(—).

Lemma 2.11. Let A be a complete simplicial category and f: A — B a morphism
of fibrant objects in P(A). Then there exists a factorization

A— s 8(f)—2 =B

of f, where i is a weak equivalence and p is a fibration.
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Proof. The pullback in 2.9 may be split in two pulbacks

S(f) —— ™

q1 B
indB

Ax B X B

q2 BY

where
AO 1—)> Ao + AO L) Aq

is the factorization of j. Since both w and v are cofibrations and B is fibrant, the
vertical morphisms B* and B are fibrations (see [19] 9.3.9 (2a)). Moreover, since
j is a trivial cofibration, B’ is a trivial fibration. Thus ¢; and g» are fibrations and
q = g291 is a trivial fibration.

Let ¢t denote the unique morphism A; — Ag. Since,

BIfAMAl = fAIAF = .

there is a unique morphism i: A — S(f) such that ¢i = ids and ri = f21 A*. Since
q is a trivial fibration, i is a weak equivalence. Since BY: B x B — B is the first
projection of the product, go: A x B — A is the first projection as well. Let ps: A X
B — B, Dy: B x B — B be the second projections and v': Ag — Ag + Ag be the
second injection of the coproduct. Then py, = BY" and

paqui = Po(f X idp)qui = PyB ri = Py B fA1 At = BV B fA1 A
— Buv'fAlAt _ fAuU'At _ f
Since B is fibrant, p, is a fibration and thus p = psq; is a fibration. We have
f=npi O

Theorem 2.12. Let A be a complete simplicial category and denote by W the class
of weak equivalences in the projective model structure on P(A). Then W is a class-
accessible category strongly accessibly embedded in P(A)7.

Proof. Let Fib: P(A) — P(A) be the strongly class-accessible fibrant replacement
functor constructed in 2.8. Consider the functor

R: P(A)~ — P(A)”

assigning to a morphism f: A — B the fibration p: S(Fib(f)) — Fib(B) from 2.11.
Since the construction of S(f) uses only finite limits, the functor S(—): P(A)™ —
P(A) is strongly class-accessible by 2.4. Therefore the functor R(—) is also strongly
class-accessible. A morphism a: F' — G in P(A) is a weak equivalence if and only if
Fib(f) is a weak equivalence, hence if and only if R(f) is a trivial fibration.
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Let Fy denote the full subcategory of P(A)~ consisting of trivial fibrations. Fol-
lowing 2.6 and [11] 4.9, F; is class-A-accessible and strongly A-accessibly embedded
in P(A)~ for every uncountable regular cardinal A. Since W is given by the pullback

K= —=

IC*}

W———>F

whose vertical leg on the right is transportable, W is equivalent to the pseudopullback
(see [11] 3.2). Thus, [11] 3.1 implies that W is a class-accessible subcategory of
PA)~. O

Definition 2.13. A class-combinatorial model category I is nice if the class of weak
equivalences W is a class-accessible, strongly accessibly embedded subcategory of
K.

Remark 2.14. We have just proved that P(A) equipped with the projective model
structure is a nice model category for any complete simplicial category A. The same
argument applies to every simplicial class-combinatorial model category which is
equipped with a strongly class-accessible fibrant replacement functor and whose u-
presentable objects are closed under finite weighted limits for each > X\ (where A is
a cardinal). We are not aware of any example of a class-combinatorial model category,
which fails to be nice.

We now prove a version of Smith’s theorem [2, 1.7] in the class-combinatorial case.

Theorem 2.15. Let K be a class-locally A-presentable category, T a A-bounded class
of morphisms and W a class of morphisms of IC such that

(1) W is a class-\-accessible and strongly A-accessibly embedded subcategory of K™
with the 2-out-of-3 property,
(2) I C W, and
(3) cof(Z)NW s closed under pushout and transfinite composition and cone-co-
reflective in K.
Then, taking cof(Z) for cofibrations and W for weak equivalences, we get a model
category structure on K.

Proof. Since T is A-bounded, (cof(Z),Z") is a cofibrantly class-\-generated weak
factorization system. For every A-presentable w € W, we construct a factorization in
K into a cofibration j followed by a trivial fibration. By 2-out-of-3 property for W
and (2), 7 is in W. Let J be the class of these morphisms j for all A-presentable
w e W.

We will check now the conditions of Lemma [2, 1.8]. We have to show that for
every morphism ¢ — w in K7 with ¢ € Z and w € W there exists j € J that factors
it i — j — w. First note that there exists a A-presentable w’ € W, which factors the
original morphism, since every w is a A-filtered colimit of A-presentable objects W
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and every i € I is A-presentable in K; we used here that the inclusion of W to K™
preserves A-presentable objects. Next, decompose that morphism w’ into a cofibration
j € J followed by a trivial fibration. The lifting axiom in C finishes this argument.
Lemma [2, 1.8] implies that cof J = cof Z N W. The requirement that cof ZNW
is cone-coreflective in K™ ensures that J is cone-coreflective as well (by the same
argument as above). By construction, the domains of all the elements in J are A-
presentable. Hence J satisfies the assumptions of [11] 4.3 and thus (cof(J), ") is
a weak factorization system. Since W is closed under retracts in K= (cf. [1] 2.4 and
2.5), we get a model category structure on K. O

Remark 2.16. Let IC be a locally presentable category, Z a set of morphisms and W
a class of morphisms of I such that

(1) W has the 2-out-of-3 property and is closed under retracts in X7,

(2) 79 C W), and

(3) cof(Z) N W is closed under pushout and transfinite composition.
Then, taking cof(Z) for cofibrations and W for weak equivalences, we get a combi-
natorial model category if and only if the inclusion of W in K is accessible. This is
the content of Smith’s theorem (see [2] for sufficiency and [25] or [28] for necessity).

We do not know whether this can be generalized to class-accessible setting and 2.15

is what we are able to do. The question is whether cone-coreflectivity of cof(Z) N W

follows from the other assumptions. We also do not know whether the model category
in 2.15 is class-combinatorial. Indeed, we only know that the class J satisfies 2.1(1).

3. Left Bousfield localizations

Recall that & is a cofibrant approximation of h if there is a commutative square

A———A

B " B,
where v and w are weak equivalences and A, B are cofibrant.

Definition 3.1. Let K be a class-combinatorial simplicial model category and F a
class of morphisms of K. Assume that F contains only cofibrations between cofibrant
objects. An object K in K is called F-local if it is fibrant and

hom(f, K): hom(B, K) — hom(A, K)

is a weak equivalence of simplicial sets for each f: A — B in F.

A morphism h of K is called an F-local equivalence if hOHl(iL7 K) is a weak equiv-
alence for each F-local object K here, h is a cofibrant approximation of h.

The full subcategory of K consisting of F-local objects is denoted Loc(F) and the
full subcategory of K~ consisting of F-local equivalences is denoted LEq(F).
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We say that there exists a left Bousfield localization of F if cofibrations in K and
F-local equivalences form a model category structure on .

Remark 3.2. (1) It is easy to see that the definition of a local F-equivalence does not
depend on the choice of a cofibrant approximation.

(2) Following [19, 9.3.3(2)], any weak equivalence in K is an F-local equivalence.
On the other hand, every F-local equivalence between F-local objects is a weak
equivalence in K (cf. [19, 3.2.13]).

(3) If K is left proper then the intersection of cofibrations and F-local equivalences
is closed under pushout and transfinite composition (see [19], 13.3.10, 17.9.4 for a
non-trivial part of the proof); the trivial part is that hom(—, K) sends colimits to
limits and cofibrations to fibrations. It is also closed under retracts in K= of course.

Given a morphism f, {f}-local objects are called f-local and analogously for f-
local equivalences. The corresponding categories are called Loc(f) and LEq(f).

Proposition 3.3. Let KC be a class-combinatorial simplicial model category and F a
set of coftbrations between cofibrant objects of K. Then Loc(F) is a class-accessible
category strongly accessibly embedded in K.

Proof.

hom(f,—)
o —mE ) gger—

Loc(f) ————— =W

is a pullback where W denotes weak equivalences in SSet. Since the vertical leg on
the right is transportable, Loc(f) is a pseudopullback and thus it is class-accessible
and its inclusion to K is strongly class-accessible (see [11] 3.1, 3.2 and 2.12). Since

Loc(F) = ﬂ Loc(f),
feF
the result follows from [11] 3.3. O

Definition 3.4. Let K be a simplicial model category and f: A — B a cofibration
of cofibrant objects. Consider a pushout

A, ® A—2%T oA @B
i ®id Pni

where i,: 0A, — A, is the inclusion of the boundary into a simplex. Let
hgn: Prn— A, ® B be the canonical morphism, which is a cofibration since K is
simplicial.
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Cofibrations h¢,, n=0,1,... are called f-horns. If F is a class of cofibrations,
then we denote by Hor(F) the collection of all f-horns, for all f € F.

Remark 3.5. Every hy,, € Hor(F) is an F-local equivalence because the morphism
hom(hyn, K): hom(A, ® B, K) = hom(Pf,y, K)
is a weak equivalence for every F-local object K. In fact, the morphism
hom(id®f, K): hom(A, ® B, K) — hom(A, ® A, K)

is a weak equivalence because K is F-local and hom(p,, 2, K) is a trivial fibration as
a pullback of the trivial fibration

hom(id®f, K): hom(dA, ® B, K) — hom(90A, ® A, K).

Thus it suffices to use the 2-out-of-3 property.

We used the fact that f-horns are cofibrations between cofibrant objects and that
the definition of an F-local equivalence does not depend on the choice of a cofibrant
approximation.

Lemma 3.6. Let K be a simplicial model category and F a class of cofibrations
between cofibrant objects of KC. Then a fibrant object K of K is F-local if and only if
it is injective to all f-horns for f € F.

Proof. Since each f € F is a cofibration, hom(f, K) is a fibration for each fibrant
object K. Thus a fibrant object K is F-local if and only if hom(f, K) is a trivial
fibration for each f € F. This is the same as having the right lifting property with
respect to each inclusion i,: A, — A,. The latter is clearly equivalent to being
injective with respect to f-horns hy,, for all f € F. O

Lemma 3.7. Let F be a cone-coreflective class of cofibrations between A-presentable
cofibrant objects. Then Hor(F) is a cone-coreflective class of morphisms between A-
presentable objects.

Proof. Since 0A, ® B and Py, are A-presentable provided that A and B are -
presentable, we have to prove that Hor(F) is cone-coreflective. Let f: A — B be an
element of F. Given a commutative square

Pip ———X

hfn g

A, ® B———Y



CLASS-COMBINATORIAL MODEL CATEGORIES 275

with hy, € Hor(F) and g arbitrary, we form, by adjunction, the following commuta-
tive square:

A————— xA"

B——>Qgn

n

where Qg = XOA" xoan YA

Since F is cone-coreflective, there exists a set of morphisms F, = {f': A’ — B’} C
F such that any morphism f — ¢’ in K7 factors through some element f’ € Fy .
Unrolling back the adjunction, we obtain the set of horns Hor(Fy ) = {h n: Py n —
A" ® B’ | n > 0} which depends entirely on g. Thus Hor(F) is cone-coreflective. [

Remark 3.8. (1) Let F be a cone-coreflective class of cofibrations between A-present-
able cofibrant objects in a class A-combinatorial simplicial model category K. Then
Loc(F) is weakly reflective and closed under A-filtered colimits in K (following 3.7, 3.6
and [11] 4.4). Recall that a weak reflection rg : K — K* is obtained as a factorization

K5 JK* 1.

in (cof (Hor(F) UC), (Hor(F) UC)P), where C is a bounded class such that cof(C)
are cofibrations in IC. Thus rx belongs to cof(Hor(F) UC). If K is left proper then,
following 3.2 (3), cof(Hor(F) UC) C cof(C) N LEq(F). Hence rk is both a cofibration
and an F-local equivalence.

In order to apply the class version of Smith’s theorem 2.15 we need to know that
the local equivalences are class-accessible and strongly accessibly embedded. The only
known technique to establish it is to represent the local equivalences as a class of
maps taken into a class-accessible strongly accessibly embedded subcategory (usually
a category of weak equivalences in a nice class-combinatorial model category) and
then apply [11, 3.1].

Unfortunately we do not always know that the weak reflections constructed above
are functorial. But in the case that there exists a functor L: I — Loc(F) and a
natural transformation 7: Id — L such that nx is an F-local equivalence for each K
in IC, such a functor L is called an F-localization functor.

(2) Given a model category K and a functor L: K — K, then LEq(L) will denote
the class of morphisms sent by L to weak equivalences. If an F-localization functor
L exists, then LEq(F) = LEq(L).

In fact h is an F-local equivalence iff its cofibrant approximation h is an F-local
equivalence. Since 7 is an F-local equivalence for each K, h is an F-local equivalence
iff L(R) is an F-local equivalence, i.e., a weak equivalence in K (see 3.2 (2)).

Proposition 3.9. Let I be a nice class-combinatorial model category and L: K —
K be a strongly class-accessible functor. Then LEq(L) is a class-accessible category
strongly accessibly embedded in K.
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Proof. By assumption, the class W of weak equivalences is class-accessible and strong-
ly accessibly embedded in K. Since LEq(L) is given by the pullback

LEq(L) 4%

IC—)

L K=

having the vertical leg on the right transportable, LEq(L) is a pseudopullback and
thus class-accessible and strongly accessibly embedded in £ (see [11] 3.1 and 3.2).
O

Theorem 3.10. Let K be a nice, class-combinatorial, left proper, simplicial model
category and let F be a class of morphisms in K. Suppose there exists a strongly
class-accessible F-localization functor L: K — K. Then the left Bousfield localization
of K with respect to F exists if and only if the intersection of LEq(F) with the
cofibrations of KC is a cone-coreflective class of morphisms.

Proof. Necessity immediately follows from the existence of the (trivial cofibration,
fibration) factorizations in the localized model category cf. [11] 4.2 (2)).

In order to establish sufficiency, we will verify the conditions of 2.15. By 3.8 (2)
and 3.9 the subcategory LEq(F) is class-accessible. There is a regular cardinal A such
that LEq(F) is class-A-accessible and K is class-A-combinatorial. In fact, LEq(F) is
class-p-accessible and K is class-v-combinatorial, it suffices to take p,v << A. Let Z
be the generating class of cofibrations in K. Then ZH C LEq(F) because LEq(F)
contains all weak equivalences. Following 3.2 (3), cof ZNLEq(F) is closed under
pushouts and transfinite compositions. O

Ezample 3.11. Let A be a complete simplicial category. Then P(A) equipped with
the projective model structure is a class-combinatorial model category (see 2.6). Let
f:V — W be a cofibration of simplicial sets. Then the class F = {f ® hom(—, A) |
A € A} is bounded. The argument is the same as in the proof of 2.6. The localization
of P(A) with respect to F is equivalent to the levelwise localization with respect to f.

Let Ly: SSet — SSet be the f-localization functor, i.e., a fibrant replacement
functor in the f-localized model category structure on SSet. Then Ly is finitely
accessible provided that V' and W are finitely presentable. Moreover, L; can always
be chosen to be simplicial (see [19, 1.7] or [29, 24.2]). Similarly to Lemma 2.8, we
get a strongly class-accessible simplicial functor L: P(A) — P(A) assigning to F the
composition Ly F'. Since LEq(L) = LEq(F), LEq(F) is a class-accessible subcategory
of P(A)~ by 3.9.

In a general case, Ly is accessible and we would need an extension of 2.4 to A-small
weighted limits. This is valid but we have not burdened our paper with a proof.

Recall that if I is a model category, then a functor L: K — K equipped with
natural transformation n: Idxg — L is called homotopy idempotent if Lng and npx
are weak equivalences for each K in /.
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Definition 3.12. Let K be a model category equipped with a homotopy idempotent
functor L: K — K preserving weak equivalences. L-fibrations are the maps with the
right lifting property with respect to cofibrations that are also L-equivalences. A left
Bousfield localization of K with respect to L, or just an L-localization, is a new model
structure on K such that the class of cofibrations coincides with the original class of
cofibrations in K and the class of weak equivalences is LEq(L). New fibrations are
the L-fibrations.

Theorem 3.13. Let K a nice, proper, simplicial class-combinatorial model category
and L: KK — K a strongly class-accessible homotopy idempotent functor preserving
weak equivalences. Suppose additionally, that pullbacks of L-equivalences along L-
fibrations are L-equivalences. Then the L-localization exists and is class-combina-
torial.

Proof. Tt was shown in [6, Appendix A], that the pair
(cof () N LEq(L), (cof () N LEq(L))®)

is a weak factorization system. They argue as follows.
Take i € cof (Z) NLEq(L) and f: X — Y. For any morphism ¢ — f in £ we
perform the following construction:

A X\ LX
Z /
7
i o7 \
7
B P—W
7
7
7/
B Y LY.

After applying the functor L on the morphism f we factor Lf as a trivial cofi-
bration followed by a fibration in X, obtaining the L-fibration W — LY, since this
is a fibration of L-local objects [6, A.8(iii)]. Then constructing P =W Xy Y we
obtain an L-fibration P — Y as a pullback of an L-fibration and an L-equivalence
P — W due to the additional assumption. The induced morphism X — P is an L-
equivalence by the 2-out-of-3 property. Now we factor the morphism X — P into a
cofibration followed by a trivial fibration in . As the composition of two L-fibrations,
the morphism Z — Y is an L-fibration, hence there exists a lift B — Z, showing that
cof (I) N LEq(F) is cone-coreflective.

At this point we have already constructed the factorizations required for the local-
ized model structure showing that the pair

(cof (Z) N LEq(L), (cof(Z) N LEq(L))")

is a weak factorization system. But that was the contents of [6, Appendix A]. The
novelty of our result is that this model structure is class-combinatorial again, hence it
remains to show that this weak factorization system is cofibrantly class-A-generated
(see Definition 2.1).
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Like in the proof of 3.10, there exists a regular cardinal A such that K is A-
combinatorial and L strongly class-A-accessible. Assume that X and Y are A-present-
able. Then LX, LY and W are A-presentable. By Lemma 2.4 P is also A-presentable.
Thus Z is A-presentable. Consequently, the L-localized model category is class-A-
combinatorial. O

Example 3.14. Take f: V — 1 in Example 3.11. For such maps f-localization functor
is called also V-nullification. Then the resulting class of f-equivalences satisfies the
conditions of 3.13, since the nullification of spaces (i.e., the localization with respect
to f for f as above) is a right proper model category (see, e.g., [5]). Hence the model
category resulting from the levelwise nullification of the projective model structure
on the category of small functors is class-combinatorial again.

Ezample 3.15. Consider the category P(SSet°?) of small simplicial functors from
simplicial sets to simplicial sets equipped with the projective model structure (see 2.6).
Consider the localization functor L: P(SSet°”) — P(SSet°?), L = P, oFib,
constructed in [3], where P, is Goodwillie’s n-th polynomial approximation [17]
and Fib: P(SSet°?) — P(SSet?) is the strongly class-accessible fibrant replacement
functor from 2.8. Since P, is a countable colimit of finite homotopy limits of cubical
diagrams applied on homotopy pushouts (joins with finite sets used to construct P,
in [17] may be expresses as homotopy pushouts), it is strongly class-accessible. Thus
L is strongly class-accessible, hence the polynomial model structure constructed in [3]
is class-combinatorial.

The condition on the localization functor to be strongly class-accessible may not
be omitted in 3.13 as the following example shows.

Ezxample 3.16. The following localization of the class-combinatorial model category
P(SSet) was constructed in [9]. The localization functor L: P(SSet) — P(SSet) is
the composition of the evaluation functor at the one point space ev,(F') = F(1) with

— S

a fibrant replacement (—) in simplicial sets (chosen to be a small functor like Ids or

Ex>) and the Yoneda embedding Y: SSet — P(SSet), i.e., L(F) = hom(—,l?(T)).
This localization functor satisfies the conditions of A6 in [6] (pullback of an L-
equivalence along an L-fibration is an L-equivalence again), and hence there exists
the L-local model structure on P(SSet). The fibrant objects in the localized model
category are levelwise fibrant functors weakly equivalent to representable functors,
but they are not closed under filtered colimits, since filtered colimit of representable
functors need not be representable, no matter how large the filtered colimit is. On the
other hand, in a class-cofibrantly generated model category sufficiently large filtered
colimits of fibrant objects are fibrant again. In other words, we obtain a localization of
P(SSet), which is not class-cofibrantly generated. The reason is that the localization
functor L is not class-accessible. See [9] for more details on this model structure.
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