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Abstract

Discovering and constructing the topological structure in
data has attracted the attention within the community of data
analysis. However, most methods developed so far are unsuit-
able for very large sets of data because of their computational
difficulties. This paper presents a fast algorithm for construct-
ing the inherent topological structure in large sets of data that
might be noisy in order to enhance the MAPPER algorithm
introduced by Singh, Mémoli and Carlsson. The limitation of
our method, as shown by our experiments, lies with the storage
in the main memory rather than the computing time.

1. Introduction

An important feature of modern science and engineering is that data of various
kinds are collected at an unprecedented rate. This is particularly true with different
sensors installed to collect data streams. At the same time, data obtained currently
tend to contain missing values and are noisier than those collected before sensors were
used. The development of the relevant methods of analyzing such data, in terms of
both the quantity and nature of the available data, has clearly not kept with the pace
of how fast the data are collected. To this end, there is a growing interest about how
geometry and topology can be applied to the analysis of data [4, 5, 6, 7, 9, 8, 10,
11, 12, 13, 14, 15, 23, 24, 26, 31, 32], which has been known as topological data
analysis (TDA). A lot of attention has been given to the problem of how to uncover
and construct the topological structure in point cloud data, which means such a set of
data points that are separated by distance. This problem is ill-posed so far, because
different topological structures can be found in the same set of data when different
scaling is used. To possibly resolve this problem, Carlsson et al. [25, 30] developed a
good method along with their software MAPPER.

MAPPER employs a filter function to map a point cloud data set (X,d(-,)) into
some well-structured space (Y, p(+, -)), such as 2D-Euclidean space, and then splits the
space Y into overlapping pieces by covers and clusters the embedded data inside each
cover by some clustering algorithm, such as the single linkage method [30]. These
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clusters are then taken as a node set for building a simplified network with links
generated between clusters with common points in the original data set.

The merit of MAPPER is that different filter functions can be employed to gain
insight into any specific aspect of the data, while drawbacks include that one needs
to know the topological structure of the filtered space or even the distribution of the
filtered data in order to generate an appropriate cover; the cover and the filtered space
limit the topological structure extracted by MAPPER. These two drawbacks control
the resolution, namely the size of the small patches in the cover and the percentage
overlap between successive patches. A different choice of either the topological struc-
ture or the distribution make the results of MAPPER very different. The decision of
how to choose these two factors is in principle difficult to make. Adding salt to the
wound, there is no guidance developed for the general use.

Inspired by the published methods, this paper focuses on extracting topological
structures from point cloud data quickly and directly without constructing covers,
without any knowledge of the topology of the embedded space, by making use of the
distance function only. In other words, topological structures can be extracted from
point cloud data even without knowing the explicit representation of the data. Our
method uses only a distance matrix and a choice of scale threshold as input to extract
the hidden topological structure of the data. A network will be constructed from the
data and clustered directly. In our algorithm the data points are treated as abstract
objects, as nodes of the network. The corresponding graph of the resultant clustering
structure provides us a view of the same topological structure derived from the data
as MAPPER [25, 30] does. The clustering structure in the network is known as the
community structure [21] in network analysis.

In general, given a network NW = (V, E), where V is the node set and E the edge
set, by community it means such a subset C' of V', whose nodes are more closely con-
nected to one another than to the nodes outside C'. The major difference of community
structures from the traditional clusters as used by MAPPER is that communities can
be connected to each other but clusters cannot. Thus simplified connected graphs
from community structures can be generated; a topological structure of the original
network, developed from the point cloud data with some given connection threshold,
can be constructed.

Constructing the community structure in a given network, before anything else,
requires a partition of the network into clusters of densely connected nodes so that
nodes in different clusters are only sparsely connected. Precise formulations of this
optimization problem are known to be NP-complete [3]. Several approximation algo-
rithms have therefore been proposed to find reasonably good partitions within a
reasonable time frame [1, 2, 17, 19, 20, 22, 29]. In this paper, we apply a label
propagation approach to detect the topological structures of large point cloud data
sets containing probably noisy values. Here is a list of some advantages of our method:

1. The algorithm extracts the topological structure of a large data set and is shown
to outperform all other known structure detection methods in terms of compu-
tation time. More importantly, the quality of the detected topological structure
is very good.

2. The algorithm is extremely time efficient; the algorithm’s complexity is O(n).
This is due to the facts that the possible gains in modularity are easy to compute
and we typically only need to scan the data just a few rounds.
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3. The algorithm is insensitive to the topological structure of the embedded space
of the data set. It only depends on the scale parameter and the processing
ordering of the data points.

Comparing with MAPPER, our algorithm has two differences:

1. Our algorithm does not need any filter and cover at all. The essential reason for
building filters and covers is to keep the information of cluster connections. Our
algorithm clusters the data points and maintains their connections simultane-
ously so that there is no need to generate covers of the embedded space and/or
to check the intersection between clusters.

2. Instead of using filters and the associated covers, our algorithm uses the Vietoris-
Rips complex as a starting point for a modularity based clustering algorithm.

The rest of this paper is organized as follows. We begin with a discussion on fast
methods, which provides the mathematical formalism that permits us to quickly infer
topological information from a sample of data of a geometric object. Then we show
how this formalism can be applied to particular data sets with noise. After that, we
show how our method can decrease the number of the origin data vertices and produce
a new data set, not by embedding in a Euclidean space but instead by producing a
simplicial complex associated with certain initial information about the data set. This
presentation is concluded with how this work might be developed more generally.
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2. Elements of our algorithm

In this section, we develop a mathematical formalism useful for constructing topo-
logical structures in point cloud data using finite sets of points and distance functions
without assuming any knowledge on the topology of the embedded space of the data.
In this analysis, the point cloud data are thought to be a finite number of samplings
of a geometric object and may contain noise. Tools from various branches of topol-
ogy are employed to analyze point clouds. Our fundamental method to guarantee
that the simplicial complex computes the homology of the geometric object is to pro-
duce a homotopy equivalence between the object and the simplicial complex. Since
the homology of simplicial complexes is algorithmically computable, it is frequently
desirable to construct simplicial complexes that compute or at least have a strong
relationship with the homology of the object. There are a number of simplicial com-
plexes that can be constructed from the available data. In our fast method, we begin
with the construction of a network for the cloud data. This mathematical formal-
ism permits us to infer topological information from the data set. We then apply
the network clustering method to drastically decrease the number of vertices in the
cloud point data set. Then, we produce a simplicial complex for the data set by using
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the Vietoris-Rips complex, a topological concept, by associating with certain initial
information, instead of by embedding in a Euclidean space. We then compute the
homology that in turn provides the desired structure and information about the data
set in question. Here are some of the key steps that come up when applying our fast
method to data analysis.

2.1. Building e-network from data
Denote the point cloud data as (X,d(-,-)), where X = {X; |i=1,2,...,n}, and
d(-,-) is a distance function defined on the data set X satisfying

d(X“XJ):d” 20,0<Z#]<H,TLEN

We build the skeleton of complexes, namely the network of data, by using a very
simple rule: If the distance of two points is no more than some given threshold value
€ € RT, then we connect the points with an edge. Since a topological structure only
concerns the connection information inherent in the data, the network constructed is
undirected. So an edge from V; to V; means an edge from Vj to V;, for any 0 <4 # j
< n. We thus construct a network NW,.(X) = (V, E), where V ={V; | i=1,2,...,n}
is the set of 0-simplexes or nodes of the network and E = {(V;,V}) | d(X;,X;) < &,0 <
i # j < n} is the set of 1-simplexes or edges of the network. Here we do not allow self-
loops because they do not mean anything interesting for the extraction of topological
structures.

Our construction of the network depends on the parameter £ and the point cloud
data set (X,d(-,-)). As for how to choose an e value, it is in principle a difficult
concern, and there is currently not any ready guidance. However, one may run our
algorithm multiple times with different € values, i.e., 0 < €1 < &5 < --- < g, for some
n € N, to see the potential impact of this threshold. This is similar to the strategy
adopted by persistent homology [5]. Because each computation for a fixed € runs very
fast, the entire procedure can be finished quickly.

2.2. Network clustering by local relabeling

Clustering a network can be seen as assigning labels to the nodes such that the
nodes with the same label belong to the same cluster. In the case of point cloud data,
we may consider points in one cluster as close enough that the cluster can then be seen
as one single node. These higher level nodes together with their links actually provide
a sketch of the topological structure hidden in the data. The proposed algorithm is
shown in Figure 2, and we are now going to explain it in detail.

A network NW.(X) = (V,E) can be represented by its adjacency matrix A =
(Aij)nxn defined as follows:

A — 1, if edge V;V; exists;
10, otherwise.

For any given node V; € V, the total number of edges incident with V; is called the
degree of the node V; , denoted by deg(V;) or k; for short, which can be computed as

I{ii = i: Aij .
j=1
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(a) A simple network with three communities. (b) Adjacency matrix.

Figure 1: Example of network with community structure. (a) is the original network,
and (b) is the image for its adjacency matrix. See text for details.

Denoting the total number of edges in the network by m leads to

Assuming that there is no community structure in the network and the edges between
the nodes are totally random connections, let us disconnect all the edges and rewire
the network. Then the probability of a node with degree k; connected to a node with
degree k; is [1]

The key point of network clustering is that each community is a subgraph or cluster
that is more densely connected than a cluster that is randomly connected. This dif-
ference can be measured by comparing the number of the actual connections and the
number of expected connections with random rewiring;:

1
Q=g > (A - Py); (1)
L;=L;=l
here [ is the identity of the given cluster, and L; is the label of node V; € V i =
1,2,...,n.

Clustering a set of nodes is a procedure that gives each node a unique label such
that the nodes with the same label belong to the same community, while its labeling
scheme optimizes a certain quality function used to measure how good the parti-
tion is. The most prominent quality function used for network clustering is called
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1: Input:
Graw = (V, E)//a network for analysis
maz_loops € N//maximum number of loops supplied by user
min_modularity_gain € R+//minimal modularity gain supplied by user
2: Output:
G simple / /& simplified network
3: for V; € V do
4 L; = i//initiate labeling,each vertex is labeled uniquely
5: end for
6: num-_of -loops = 0//loop counter
7: modularity_gain = 1000.0//a very big value
8: current_-modularity = modularity(G, L)//modularity of the initial labeling
9: while modularity_gain > min_modularity_gain or num_of -loops < maz_loops do

10: vertex_order = shuffle(V')//random permutation

11: for vertex € verter_order do

12: NbrLabelSetyertes = { Lyertes }//record current label,the current label may be the best label
13: for nbr € Neighbor(vertex) do

14: NbrLabelSetyerter = NbrLabelSetyertes |J{ Lnbr }//collect neighbors’ labels

15: end for

16: Ly, = arg maxr, e NorLabelSet ZjeNeighbm‘('ueTtE't) (Avertez,j — Puertex,j) 0(L, Lj)//relabeling
17: Lyerter = Lier.,//update the label set

18: end for

19: new_modularity = modularity(G, L)//modularity of the new labels

20: modularity_gain = new_modularity — current_modularity

21: current_modularity = new_modularity

22: num_of _loops = num_of _loops + 1

23: end while

24: Vymple = unique(L)//unique labels are used to index the nodes in the simplified network
25: Egimpie = ®//empty edge set

26: for verter € V do

27: for nbr € Neighbor(vertex) do

28: if Lyerter 7 Lnpr then

29: Eyertex,nbr = makeEdge(Lyertes, Lnbr)//add edge between different clusters
30: Eimple = Esimpte U{ Fvertez,nbr }

31: end if

32: end for

33: end for

34: Gsimple = makeGraph(Vsimpic, Esimple)

35: return Ginpie

Figure 2: Pseudocode for building simplified network

modularity [21], which can be written as follows:

1 n n
Q= %ZZ(AU—HJ')CS(L%LJ') ZZQl, (2)
i=1 j=1 leL
where L is the set of all possible labels, i.e., L ={L; |i=1,...,n}, and ¢ is Kro-
necker’s delta function, i.e.,

]., lleiL],

o(L;, L) =
( 2 0, otherwise.

An intuitive insight of the community structure in networks is that nearby nodes
tend to have the same label in order to keep a high value of the modularity computed
out of equation (2). The simple example in Figure 1(a) represents a network with
three communities indicated by different colors. Each community is a full connected
subgraph, and there are sparse links between the communities. This feature turns out
to be the obvious block pattern in Figure 1(b), the image of the adjacency matrix.
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This matrix is symmetric, where “red” denotes 1 and “yellow” denotes 0. It can be
seen that, except for some nodes that lay between two or more different communities,
like nodes 1, 7, and 13 in Figure 1, all other nodes belong exclusively to just one
community. For the general network, this pattern may exist but not as sharply as it
shows here, and algorithms are needed to extract this pattern.

Here we develop a simple strategy that repeatedly re-labels each given node the
same label as its neighbors that best optimizes the modularity. The merit of this
method is that all operations can be done locally, saving time and making it suitable
for very large data sets. Our algorithm is much like the two phase method as proposed
by Vincent et al. [2]. The algorithm begins to label every node with a unique label.
That is, we have as many communities as the number of nodes in the network. Then
the algorithm re-assigns the labels of each nodes in turn by maximizing the modularity
contribution computed using equation (1).

In our method, we first randomly order the nodes in the network, i.e., a random
permutation of the given order, for instance shuffle({V1, V2, V3, V4 }) = {Va, Vo, V4, V3}
means that the algorithm will deal with nodes Vi, V5, Vi, V3 one after another in
order. At each step the procedure will re-label, say V;, by denoting its neighbors
as Nbors(V;) = {V; | (V;V}) € E}. Let NbrLabelSet; = {Ly | Vi € {V;} U Nbrs(V;)} be
all possible labels of V; and its neighbors. The new label of node V; is chosen from
NbrLabelSet; to satisfy

L' =arg  max > (A = Py)d(L,Ly). (3)

LeNbrLabelSet,
JENbrs(V;)
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Figure 3: Relabeling of a toy network. Each node is marked by its id and label in
the form of id : label, i.e., V; : L;. (a) is the original network with initial labels, where
each node belongs to exact one cluster. (b)—(h) indicate the relabeling process. The
order of the nodes being relabeled is generated randomly as V3, Vo, V7, Vi, Vg, Vi, Vs,
and the currently relabeled node is enlarged. After one pass of relabeling, the network
is split into two clusters. See text for details.
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If there are multiple equal maximum labels in the right-hand side of equation (3),
then the L*" is chosen randomly from among these labels. That is, we choose a
new label for V; to maximize its contribution to the modularity on the condition
that all other labels stay unchanged. Continue this operation with each node in the
network in a random order. After all nodes in the network are treated precisely one
time, all labels are adjusted to maximize their contributions to the total modularity
in a local fashion. Multiple runs may be taken to make the labeling stable. Or when
the modularity stops growing significantly, we stop any further run and produce a
labeling of the network with an optimal modularity score.

In order to clearly illustrate our relabeling process, we generate a toy network with
seven nodes, consisting of one 3-clique, one 4-clique, and one edge connection (see Fig-
ure 3(a)). All nodes are marked by its id and label in the form of V; : L;;i =1,...,7,
and colors are used to indicate the labels. So the network is initiated with seven clus-
ters and is shown in seven different colors. Then a random order as 3,2,7,1,6,4,5 of
the nodes is generated. So, the algorithm will re-label node V3 first, followed by node
Va, ... until finally node V5. Figure 3(b) shows the result of relabeling node V3. It
has three neighbors, i.e., Neighbor(V3) = {Vi, Vo, V3, Vi}, together with three differ-
ent labels, i.e., NbrLabelSety, = {1,2,3,4}. The respective modularity contributions
are 0.7,0.7,0.0,0.4, and the optimal new label for V5 is L; or Ly (see equation (3)).
As a matter of fact, the algorithm runs a simple random drawing and chooses L1 = 1
as the new label for Vs, i.e., LF* = 1. Figure 3(c) shows the result of relabeling
node Vo. We have Neighbor(Va) = {V1, Vs, V3} and NbrLabelSety, = {1,2}, and the
corresponding modularity contributions are respectively 1.5 and 0. So L§” = 1. In
Figure 3(d) we have L7 =5 as the result of relabeling V7. Again double optimal
modularity contributions 0.55 are obtained at L = 5 and L = 6 due to the symmetry
of the network. In Figure 3(e) V1’s neighbor has only one unique label that stays the
same after the relabeling. In Figure 3(f) we see that the optimal new label for Vs is
5, because the modularity contributed by relabeling this node as 5 is 1.1, comparing
to 0.4 when labeling the node as 4. In Figure 3(g) V4 has an optimal label with the
modularity gain of 1.2 with L = 5, and the runner up is only 0.4 with the label L = 1.
For the last step we get a new label for V5 as LP” = 5, because NbrLabelSety, = {5}
has only one member. After this relabeling procedure is finished, the toy network is
split into two groups, and each group consists of a clique (see Figure 3(h)).

The second phase of our algorithm consists of building a simplified network whose
vertices are now the clusters found in the first phase. To do so, the weights of the
links between the new vertices can be given by the sums of the weights of all links
between vertices in the corresponding clusters. Since the main focus here is to extract
connections, we neglect the weight of these links and only build a binary network from
the previous clustering result. The weighted simplified network is left for future work.
Links between vertices of the same cluster lead to self-loops for this cluster in the new
network. Thus they are omitted. (Please see Figure 2 for details.) Once this second
phase is completed, it is then possible to reapply the first phase of the algorithm to
the resulting weighted network and the iteration continues. However, for some data
sets, one application of the procedure is enough to extract the topological structure
from the data. The previously detailed procedure is summarized in Figure 4.

Our algorithm takes as input a finite set of data and a parameter € which is used to
generate the e-network. It then constructs a much smaller simplified network than the
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Figure 4: Diagrammatic sketch of clustering of data by relabeling. (a) Point cloud
data set drawn randomly from a torus surface. (b) An e-network built from the data
set for some given threshold. (c) Clustering result of the e-network by relabeling
to maximize modularity. Clusters are identified by colors. (d) Simplified network
extracted from the clustering result shows the same topological structure hidden in
the original data set.

original e-network, while retaining the most significant topological structure of the
point cloud data set. Throughout the computation, the number of meta-communities
decreases with each iteration. So, consequently, it can be imagined that most of the
computing time is consumed during the first pass. Passes are iterated until there is
no more improvement in the modularity so that a maximum modularity is reached
or the pre-determined maximum number of allowed passes is used up. The output
of our algorithm depends on the order in which the vertices are considered. Thus we
shuffle the vertices in each pass in order to avoid any bias possibly introduced by a
fixed ordering of the nodes. In the following experiments, the results of several test
cases seem to indicate that the idea of shuffling works well and does not influence the
final modularity significantly.

In summary, we conclude that the algorithm proposed in this paper has three main
advantages:

1. The algorithm can run unsupervised and only a few parameters are needed.
Especially, the number of clusters can be automatically decided by the algorithm
during the optimization procedure in the form of relabeling.

2. The number of clusters decreases drastically after just a few passes so that most
of the computing time is spent on the first pass.

3. The algorithm is extremely fast and its time complexity is linear against the
number of links in the e-network. For a typical sparse data set, the number of
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links is linear against the number of data points, leading to a linear computing
time.

3. Results

In this section we will test the proposed method method on computer generated
point cloud data sets, both with and without noise, in order to verify the effectiveness
of the network clustering procedure, and a real world point cloud data set will also be
tested. The results of the tests show that the proposed method efficiently enhances
MAPPER in terms of extracting topological structure. Our implementation is in
GNU C and utilizes GraphViz [16] for visualization. All tests run on a laptop with
Intel®Core i5 M 430 CPU @2.27 GHz and 2.9GB available memory, using a single
thread.

3.1. Experiments on point cloud data set without noise

In this subsection we generate random data from three overlapping circles and
apply the proposed method to reconstruct it. We generate three circles together (see
Figure 5) and use MAPPER together with the proposed method to reconstruct it. The
result shows that our method performs better than MAPPER. (We have conducted a
similar experiment on data from a simple unit circle. Both MAPPER and our method
perform equally well on the reconstruction of a single unit circle, and we omit it here
due to space limitations.)

The data set X consists of 900 points embedded in the 2D-Euclidean plane and
each circle consists of 300 points. The usual Euclidean distance d(-, -), together with
X, composes the point cloud data set (X,d(-,")).

base point

Figure 5: Samples from three circles. The base point in the center used by MAPPER
is marked as a red cross. The colors of the points indicate their distances to the base
point.

The result of MAPPER is shown in Figure 6(a). The filter function for a node
in the data set is chosen as its distance from the predetermined base point, which
is marked as a red cross in the center. So, the interval [0,2.2] € R is the mapped
space. We choose the cover of this mapped space as 21 overlapping intervals such
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that the percentage of overlap for each pair of adjacency intervals is 50%, i.e., cp =
[0.01(k —1),0.01(k + 1)],k = 1,...,21. We also try other parameter settings and run
MAPPER multiple times. The above parameters setting gets the most prominent
performance, shown in Figure 6(a).

3
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(a) The result by MAPPER.  (b) The result by our method.
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(¢) Connecting graph of the gen- (d) Connecting graph of the gen-
erators of the first homology erators of the first homology
classes for simplicial complex in classes for simplicial complex in
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Figure 6: Experimental results for the three toruses in Figure 5. The nodes with
numbers are the generators of the first homology classes of the simplicial complex,
i.e., the simplified network.

When applying the proposed method, we set € = 0.2 to generate the e-network and
run the relabeling procedure with only one pass, where the minimal modularity gain
is set to a very small value: 0 : 000001. Because the procedure is run with only one
pass, this parameter takes no actual effects. The simplified network, see Figure 6(b),
contains the same first simplicial homology group as the three overlapping circles
from where the data is sampled. To see this end clearly, we further simplify the
result in Figure 6(a) and (b) into that shown in Figure 6(c) and (d), respectively.
Both of them have the same homological group and the 1-dimensional Betti number:
£1 = 5. However, if one is not content with the recovery of the Betti number of the
homological groups of the point cloud data, but also likes to honestly recover other
topological features of the data, then our proposed method outperforms MAPPER
in terms of generating the optimal generator of the homology classes. The three
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overlapping circles have five generators, i.e., the five cross points between the circles;
see Figure 5. However, for the 1-dimensional homological group, MAPPER extracts
seven generators. In comparison, our method extracts five generators. Our method
not only recovers the correct homology group of the original point cloud data, but it
also correctly extracts the homology generators. This simple experiment shows that
our method indeed enhances the accuracy of MAPPER, and it can better express the
topological property of the original geometric object.

3.2. Dealing with noisy data

In this subsection we proceed to evaluate the performance of the proposed method
on random point cloud data with noise. The results indicate that although MAPPER
fails to deal with noisy data, our proposed method can reconstruct the topology of
the data set if the data contains only a mild degree of noise. To this end, one may
argue that the noise could be filtered out before a topological reconstruction algorithm
is applied. However, in the following experiments we apply our method directly to
the noisy point cloud data without first employing any specialized outlier detection
and/or smoothing treatment. Even so, the result shows that our method is quite
robust and can significantly alleviate the effects of the noise, at least for the data set
used here.

LB i

(a) Sample on three circles with noise.  (b) e-network built from (a).

Figure 7: The base point in the center used by MAPPER is marked as a red cross.
Colors of the points indicate the points’ distances to the base point.

We add 300 randomly sampled data points from [—1, 3] x [—1,2] € R? to the three
crossed circles used in the last experiment to generate a noisy point cloud data set; see
Figure 7. The global noise imposes quite a big challenge to the topology reconstruction
algorithm, because the noise may lead to the generation of many fake connections and
mislead the algorithm. If the noisy points are removed, then MAPPER will certainly
cluster the data correctly, as we can see from the previous experiment. However, in
this experiment the noisy points act as bridges and actually connect the separated
clusters to form a single cluster. MAPPER produces the result in Figure 8(a). Like the
previous experiment, we have tried several different parameters and only report the
most meaningful result here. The most prominent cover consists of 21 equal-length
intervals with 50% overlapping percentage between adjacent intervals. From the result
it can be seen that the true circles disappear while some fake circles emerge. So, we
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(a) Result by MAPPER. (b) Result by the proposed method.

Figure 8: Experimental results for the noisy data.

may conclude that MAPPER totally fails to find the most significant topological
structure due to the large amount of noise, at least for the data set tested here.

We apply our method to generate the e-network with € = 0.2, see Figure 7(b), and
run the relabeling procedure for just one pass. Here the minimal modularity gain
is set to a very small value: 0.000001. The resultant simplified network is shown in
Figure 8(b). From the result, it can be seen that our method preserves the most
significant topological structure hidden in the original data set.

3.3. Test on 3D shape data

In this subsection we proceed to evaluate the performance of the proposed method
on point cloud data sampled from a “real-world” 3D shape, which is one of the seven
objects from a publicly available database [27]. We only test one of the elephant
shapes shown in Figure 9, and tests on the rest of the objects in the database are
very similar and we omit them here. Roughly speaking, the shape data is topolog-
ically equal to a 2D-spherical surface in the sense that it has By =1, 81 =0 and
B2 =1 as the first three Betti numbers. It is very interesting that our experiments
tell us that the elephant is slightly different from the 2D-spherical surface. When we
apply the proposed method to it, we get an estimation ﬁl =1, which greatly vio-
lates our intuition. Fortunately, we carefully check the elephant shape by actually
rendering it by Ink9000. (This is an open source mesh renderer available at http:/
/inkulator.sourceforge.net/); see Figure 9(a). We find that the end of its right
ear is actually attached together with its right shoulder and creates a 1-dimensional
hole in the shape. Thus we have $; = 1, and our method gets the right answer. We
will see this “hole” later in the simplified network.

This 3D elephant shape is in the form of triangulated meshes, and we only take the
Cartesian coordinates of the points. There are 42,321 points and the distance matrix
of them cost about 13GB memory, so we cannot use all of them as input for MAPPER
since its implementation relies on the distance matrix. Fortunately, we do not need
to use all these data, and by down sampling we will get the same answer [23]. So
we randomly choose 10,000 nodes. Like the previous tests, we choose one node as
the base point and run MAPPER to get the simplified network. The filter used by
MAPPER is chosen as the distance to the base point, and the base point is the point
that is the farthest one from all the reset points in the 10,000 sampled points. That



234 XU LIU, ZHENG XIE axpD DONGYUN YI

b y

7 -
base poimj// I J »
B
v B
0
)

the "hole" 03

2
04
06" 05 04

v

(a) The elephant shape rendered by Ink9000. (b) Samples from surface.

Figure 9: The elephant shape.The base point in the elephant’s tail used by MAPPER
is marked as a red cross. Colors of the points indicate their the distances to the base
point.

is to say, for each point, we calculate the sum of its distances between all the other
points, and the base point is chosen as the node where the sum attains the maximum.
The base point turns out to be the very point at the end of the tail of the elephant;
see Figure 9(b). This filter function maps all the points into the interval [0, 1.39], and
we use 61 overlapping intervals to cover it. Again the percentage of overlap for each
pair of adjacency intervals is 50%. (Please see Figure 10(a) for the result returned by
MAPPER.) Using the simplified network, we get BO =1, Bl =0 and Bg =0 as the
estimate of the first three Betti numbers from which we can see that only the first
order homology group is preserved by MAPPER.

(a) Result by MAPPER. (b) Result by the proposed
method.

Figure 10: Experimental results for the elephant shape.

When we apply our proposed method, we use all 42,321 points since the proposed
method is more memory efficient due to the fact that it does not explicitly store the



A FAST ALGORITHM FOR CONSTRUCTING TOPOLOGICAL STRUCTURE 235

distance matrix. So all the data can be processed and no sampling is needed here.
Also, our method runs much faster than MAPPER, and we soon find the optimal
scale parameter. The result shown in Figure 10(b) is obtained by € = 0.05, and the
minimal modularity gain is 0.000001. The relabeling procedure runs 35 pass, and the
modularity attains its maximum. The extra relabeling procedures are caused by the
fact that the points in the elephant shape are much more numerous than the points in
the previous tests. Thus, it needs more rounds to reduce the number of nodes in the
simplified network. From the simplified network we build the Vietoris-Rips complex
and get. 50 =1, 51 =1and Bg = 1 as the estimations of the first three Betti numbers,
where 3y = 1 means the simplified network is connected and 3; = 1 is caused by the
quadrangle ADHF in Figure 10(b). Interestingly, one may see that it corresponds to
the right ear “hole” of the elephant; see Figure 9(a). Another interesting fact is that
By =1 is caused by the irregular convex octahedron ABCDEF. To see it clearly, we
can classify the eight faces into two categories: the four front side ones and the four
back side ones, all of them are triangles.The four front side ones are AABF, ABCF,
ACEF and ACDE. They cover the hexagon ABCDEF completely. The four back
side ones are: AAEF, AADE, AACD and AABC. They again cover the hexagon
ABCDEF completely. So the above eight triangle faces actually seal an irregular
convex octahedron inside and thus create a void in the Vietoris-Rips complex. Thus
we have BQ = 1. To sum up, we can see that our method recovers the first three
homology groups of the elephant shape, and MAPPER only retains the first one.

4. Conclusion and future work

In this paper we conduct a clustering operation on the network or simplicial com-
plex, constructed from a point cloud data set, in order to generate a simplified sim-
plicial complex that preserves the most significant topological structure of the data.
This study enhances the previous work by Carlsson et al. [4], namely the MAPPER
framework. MAPPER uses a filter function, typically the distance function, to map
the data into a well-structured space. Then it applies a cover to split the mapped
space into overlapping patches. A simplified simplicial complex is then obtained by
constructing connections between the clusters with common points in the original
space. However, the choices of the filter function and the cover of the mapped space
are not easy, and there is no general guidance for users of MAPPER to follow. Any
inappropriate choice of the filter function and cover will lead to the failure of recon-
structing the topological structure hidden in the data. Moreover, MAPPER needs
special pre-processes when noise exists in the point cloud data. Without the neces-
sary pre-processes, MAPPER will produce totally misleading results.

The method proposed in this paper greatly remedies these drawbacks of Mapper.
The only key parameters needed for our algorithm is the connection threshold of the
e-network and the ordering of the nodes being processed in the clustering procedure.
Comparing to Mapper, these two limitations are much less troublesome since they
can be alleviated fairly easy. For the choice of scale parameter ¢, one may run our
fast algorithm multiple times for different scales to choose the best one. Also, the
effects of the ordering can be alleviated by running the algorithm multiple times,
using totally random ordering independently. For example, for some circumstances,
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(a) Simple sensor network. (b) The simplified coverage net-
work.

Figure 11: Detecting coverage holes in a simple sensors network. (a) A simple network
consists of 200 sensors. Sensors with overlapping coverage are connected to form a
e-network. (b) The simplified network produced by using our method shows the most
significant holes of the sensors network.

such as the simple sensors (see Figure 11), the scale parameter is fixed; the user does
not need to set it at all.

A simple sensors network consists of thousands of inexpensive mobile sensors [18,
28]. The problem of detecting coverage holes in such a network with no location
information is a crucial task of engineering concern. It reflects how well a region of
interest is monitored or tracked by sensors. Each sensor broadcasts within a nearby
disk region of a given radius. So this radius gives rise to a e-network; see Figure 11(a).
We may refer to this e-network as the coverage network of the sensors, in which any
subset of nodes that are in pairwise communication cover their entire convex hull.
The Rips complex corresponding to this communication graph of the sensor network
is then used to detect coverage holes, and the first homology group of this simplicial
complex provides sufficient information about the coverage [28]. The most significant
holes of the coverage network are preserved by our network clustering method; see
Figure 11(b). Because the network shown here is quite small with only 200 nodes, the
relabeling procedure only needs to be run once to converge. Only when the network
of concern is sufficiently large, i.e., with tens of thousands nodes, one may need to
run the relabeling procedure several rounds.

Another issue in our proposed method is that the label propagation aims at maxi-
mizing the modularity of the network clusters and is not in direct service of preserving
the topological feature of the simplicial complex. So, one possible future work will be
looking at how to develop a homology preserving relabeling algorithm.
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