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Abstract
Scissors congruence groups have traditionally been expressed
algebraically in terms of group homology. We give an alternate
construction of these groups by producing them as the 0-level
in the algebraic K-theory of a Waldhausen category.

1. Introduction

The classical question of scissors congruence concerns the subdivisions of poly-
hedra. Given a polyhedron, when is it possible to dissect it into smaller polyhedra
and rearrange the pieces into a rectangular prism? Or, more generally, given two
polyhedra when is it possible to dissect one and rearrange it into the other?

In more modern language, we can express scissors congruence as a question about
groups. Let P(E3) be the free abelian group generated by polyhedra P, quotiented
out by the two relations [P] = [Q] if P = Q, and [P U P’] = [P] + [P’] if PN P’ has
measure 0. Can we compute P(E?)? Can we construct a full set of invariants on it?
More generally, let X be E™ (Euclidean space), S™, or H" (hyperbolic space). We
define a simplex of X to be the convex hull of n 4+ 1 points in X (restricted to an
open hemisphere if X = S™), and a polytope of X to be a finite union of simplices.
Let G be any subgroup of the group of isometries of X. Then we can define a group
P(X,G) to be the free abelian group generated by polytopes P of X, modulo the
two relations [P] = [g - P] for any polytope P and g € G, and [P U P'] = [P] + [P’]
for any two polytopes P, P’ such that P N P’ has measure 0. The goal of Hilbert’s
third problem is to classify these groups.

The traditional approach to this question has been using the tools of group homol-
ogy. It is easy to see from the definition above that

P(X7 G) = HO(G7,P(X> {}))7
and more generally that for any normal subgroup H of G,

To see a detailed exploration of this perspective, see [2].
On the other hand, the question of scissors congruence is highly reminiscent of a K-
theoretic question. Algebraic K-theory classifies projective modules according to their
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decompositions into smaller modules; topological K-theory classifies vector bundles
according to decompositions into smaller-dimensional bundles. Thus it is reasonable
to ask whether scissors congruence can also be expressed as a K-theoretic question
about polytopes being decomposed into smaller polytopes. In addition, as K-theory
has a different array of computational tools than group homology it is possible that
this new perspective would create new approaches for computing scissors congruence
groups.

In addition, there are many seemingly-coincidental appearances of algebraic K-
groups in the theory of scissors congruence. In [3] Dupont and Sah construct the
following short exact sequence,

0 —— (K5(C)"*¢)~ ——> P(H?) —= R @z R/Z —> Ka(C)~ —>0

(where the negative subscripts indicate the —1-eigenspace of complex conjugation,
and “indec” indicates the indecomposable elements of K3). A more general result
was obtained by Goncharov in [6], where he constructs a morphism from certain
subquotients of the scissors congruence groups of spherical and hyperbolic space to
certain subquotients of the Milnor K-theory of C. Both of these results, however, are
highly computational rather than conceptual; one goal of the current project would
be to find a more conceptual basis for these results.

In order to put scissors congruence into a K-theoretic framework we move away
from the geometry of the problem and create an algebraic formulation of what it
means to decompose polytopes. In his book [7], Sah defined a notion of “abstract
scissors congruence”, an abstract set of axioms that are sufficient to define a scissors
congruence group. Inspired by this, we define a “polytope complex” to be a cate-
gory which contains enough information to encode scissors congruence information.
We then use a modified Q-construction to construct a category which encodes the
movement of polytopes and which has a K-theory spectrum associated to it. We then
prove that Ky of this category is exactly P(X,G).

Our main goal is to prove a slight generalization the following theorem. (For the
full statement, see theorem 4.2.)

Theorem 1.1. Given a manifold X, equal to S™, E™, or H", and a subgroup G of
the isometries of X, there exists a Waldhausen category SC(X) such that KoSC(X) =
P(X,G).

The organization of this paper is as follows. Section 2 introduces the two categorical
constructions we will use: a Grothendieck construction indexed over finite sets, and a
double category. Section 3 explores the abstract notion of a polytope, and introduces
the types of objects for which we can define scissors congruence categories. Sections 4
and 5 define the Waldhausen category structure and give some examples of the kinds
of spectra we can produce; in particular, section 5.3 covers theorem 1.1. Section 6
consists of technical results and the proof of the main theorem.
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2. Categorical Preliminaries

2.1. Grothendieck Twists
Definition 2.1. Given a category D we define the contravariant functor

Fp: FinSet®® — Cat [ — DI,

The Grothendieck twist of D, written Tw(D), is defined to be a Grothendieck con-
struction applied to Fp as follows. We let the objects of Tw(D) be pairs I € FinSet,
and z € DI. A morphism (I,7) — (J,y) in Tw(D) will be a morphism I — J €
FinSet, together with a morphism y — Fp(f)(z) € D!. We will often refer to the
function I — J as the set map of a morphism.

Tw(D) is the Grothendieck construction (g, goer Fn )" More concretely, an
object of Tw(D) is a finite set I and a map of sets f: I — obD; we will write an
object of this form as {a;};cr, with the understanding that a; = f(¢). A morphism
{ai}ier = {bj}jcs € Tw(D) is a pair consisting of a morphism of finite sets f: I — J,
together with morphisms Fj: a; — by for all i € I.

In general we will denote a morphism of Tw(D) by a lower-case letter. By an abuse
of notation, we will use the same letter to refer to the morphism’s set map, and the
upper-case of that letter to refer to the D-components of the morphism (as we did
above). If a morphism f: {a;}ier — {b;},es has its set map equal to the identity on
I we will say that f is a pure D-map; if instead we have F;: a; — by(;) equal to the
identity on a; for every ¢ we will say that f is a pure set map.

If we consider an object {a;}ic; of Tw(D) to be a formal sum ., a; then we
see that Tw(D) is the category of formal sums of objects in D. Then we have a
monoid structure on the isomorphism classes of objects of Tw(D) (with addition
induced by the coproduct). In later sections we will investigate the group completion
of this monoid, but for now we will examine the structures which are preserved by
this construction.

Much of Tw(D)’s structure comes from “stacking” diagrams of D, so it stands
to reason that much of D’s structure would be preserved by this construction. The
interesting consequence of this “layering” effect is that even though we have added
in formal coproducts, computations with these coproducts can often be reduced to
morphisms to singletons. Given any morphism f: {a;},e;r — {b;};jes We can write it
as

)
11 ( {aidies 1) ——2={bs} |-
jeJ

Lemma 2.2. If D has all pullbacks then Tw(D) has all pullbacks. The pullback of

the diagram {a;Yier o {c brex <7 {b;}jes is {ai X, bj i g)ers -
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However, sometimes the categories we will be considering will not be closed under
pullbacks. It turns out, however, that if we are simply removing some objects which
are “sources” then Tw(D) will still be closed under pullbacks.

Lemma 2.3. Let C be a full subcategory of D which is equal to its essential image,
and let D' be the full subcategory of D consisting of all objects not in C. Suppose that
C has the property that for any A € C, if Hom(B, A) # & then B € C. Then if D has
all pullbacks, so does Tw(D’).

Proof. Let U: Tw(D') — Tw(D) be the inclusion induced by the inclusion D' — D.
We define a projection functor P: Tw(D) — Tw(D’) by P({a;}icr) = {a:}icr, where
I’:{iEI\ai ¢C}

Suppose that we are given a diagram A — C + B in Tw(D'). Let X be the pull-
back of UA — UC <+ UB in Tw(D); we claim that PX is the pullback of A — C' + B
in Tw(D’). Indeed, suppose we have a cone over our diagram with vertex D, then
UD will factor through X, and thus PUD = D will factor through PX. Checking
that this factorization is unique is trivial. O

We finish up this section with a quick result about pushouts. It’s clear that Tw(D)
has all finite coproducts, since we compute it by simply taking disjoint unions of
indexing sets. However, it turns out that a lot more is true.

Lemma 2.4. If D contains all finite connected colimits then Tw(D) has all pushouts.

Proof. Consider a morphism f: {a;}ier = {b;};es € Tw(D). We can factor f as a
pure D-map followed by a pure set map. Thus to show that Tw(D) contains all
pushouts it suffices to show that Tw(D) contains all pushouts along pure set maps
and pure D-maps separately.

Now suppose that we are given a diagram

{ertner <—— {as}ier S {bj}je.

It suffices to show that the pushout exists whenever g is a pure set-map or a pure D-
map. Suppose that g is a pure set map. For x € J Uy K we will write I, (resp. J;, K,)
for those elements in I (resp. J, K) which map to z under the pushout morphisms.
The pushout of the above diagram in this case will be {d; }.c.7u, i, where d, is defined
to be the colimit of the following diagram (if it exists in D). The diagram will have
objects a;, b;,ci forall i € I, j € J, and k € K. There will be an identity morphism
a; = Cg(;y and a morphism F;: a; — by(;) for all ¢ € I,. Note that this colimit must
be connected, since otherwise x wouldn’t be a single element in J Uy K.

If g is a pure D-map the pushout of this diagram will be {d;};cs, where d; is
defined to be the colimit of the diagram

Hz‘EIj G ]—[iEIj F

iel; %

Hiefj Ci bj I = f71(5),

which exists as the diagram is connected. (Also, while we wrote the above diagrams
using coproducts, they do not actually need to exist in D. In that case, we just expand
the coproduct in the diagram into its components to produce a diagram whose colimit
exists in D.) O



SCISSORS CONGRUENCE AS K-THEORY 185

Remark 2.5. In order for D to contain all finite connected colimits it suffices for it to
contain all pushouts and all coequalizers. If D has all pushouts (but not necessarily
all coequalizers) then examination of the proof above shows that Tw(D) must be
closed under all pushouts along morphisms with injective set maps.

2.2. Double Categories
We will be using the notion of double categories originally introduced by Ehres-
mann in [4]; we follow the conventions used by Fiore, Paoli and Pronk in [5].

Definition 2.6. A small double category C is a set of objects ob C together with two
sets of morphisms Hom, (A, B) and Homy, (A, B) for each pair of objects A, B € ob_,
which we will call the vertical and horizontal morphisms. We will draw the vertical
morphisms as dotted arrows, and the horizontal morphisms as solid arrows. C with
only the morphisms from the vertical (resp. horizontal) set forms a category which
will be denoted C, (resp. Cp,).

In addition, a double category contains the data of “commutative squares”, which
are diagrams

v v
¢ ——D,
which indicate that “qo = 7p”. Commutative squares have to satisfy certain compo-
sition laws, which we omit here as they simply correspond to the intuition that they
should behave just like commutative squares in any ordinary category.
Given two small double categories C and D, a double functor F': C — D is a pair
of functors F,: C, — D, and F}: C;, — Dy, which takes commutative squares to com-
mutative squares. We will denote the category of small double categories by DblCat.

Remark 2.7. A small double category is an internal category object in Cat. We do
not use this definition here, however, since it obscures the inherent symmetry of a
double category.

In general we will label vertical morphisms with Latin letters and horizontal mor-
phisms with Greek letters. We will also say that a diagram consisting of a mix of
horizontal and vertical morphisms commutes if any purely vertical (resp. horizontal)
component commutes, and if all components mixing the two types of maps consists
of squares that commute in the double category structure.

Now suppose that C is a small double category. We can define a double category
Tw(C) by letting ob Tw(C) = ob Tw(C},) (which are the same as ob Tw(C,) so there is
no breaking of symmetry). We define the vertical morphisms to be the morphisms of
Tw(C,) and the horizontal morphisms to be the morphisms of Tw(Cy). In addition,
we will say that a square

{aiYier ——{bj}jes
P q
\ A
{ertver —— {dihier
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commutes if for every i € I the square
P
a; ——— b (i)

P; Qo (i)
Y T v
Cp(i) —23 dy (i)

commutes. It is easy to check that with this definition Tw(C) forms a double category
as well, and in fact that Tw is a functor DblCat — DblCat.

3. Abstract Scissors Congruence

In this section we will deal with scissors congruence of abstract objects.
Definition 3.1. A polytope complex is a double category C satisfying the following
properties:

(V) Vertically, C is a preorder which has a unique initial object and is closed under
pullbacks. In addition, C has a Grothendieck topology.

(H) Horizontally, C is a groupoid.

(P) For any pair of morphisms P: B’->B and ¥: A—— B, where P is ver-
tical and ¥ horizontal, there exists a unique commutative square

»*B'—= B’

sp p
v \

A B,

The functor £*: (C, | B) — (Cy } A) is an equivalence of categories.

(C) I { Xy > X }aea is a set of vertical morphisms which is a covering family of
X,and ¥: Y ——= X is any horizontal morphism, then { ¥*X, - >Y }aca
is a covering family of Y.

(E) If { X >X }oca is a covering family such that for some ap € A we have
Xo = 0, then the family { X > X }azq, is also a covering family.

A polytope is a non-initial object of C. The full double subcategory of polytopes
of C will be denoted C,. We will say that two polytopes a,b € C are disjoint if there

exists an object ¢ € C with vertical morphisms a->c and b >c such that the
pullback a x. b is the vertically initial object.

The main motivating example that we will refer to for intuition will be the example
of Euclidean scissors congruence. Let the polytopes of C be polygons in the Euclidean
plane, where we define a polygon to be a finite union of nondegenerate triangles.
We define the vertical morphisms of C to be set inclusions (where we formally add
in the empty set to be the vertically initial object). The topology on C, will be
the usual topology induced by unions; concretely, { P, > P }oea will be a cover

if UaeA P, = P. We define the set of horizontal morphisms P——=Q to be {g €
E@2)|g-P=Q}
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Then axiom (V) simply says that the intersection of two polygons is either another
polygon or else has measure 0 (and therefore we define it to be the empty set). Axiom
(H) is simply the statement that F(2) is a group. Axiom (P) says that if we have
polygons P and ) and a Euclidean transformation g that takes P to @, then any
polygon sitting inside P is taken to a unique polygon inside (). Axiom (C) says that
Euclidean transformations preserve unions. Axiom (B) says that if you have a set of
polygons {P,}aca and sets { Pyg}gep, such that

U Pss=P. and U U Ps=r

BEBa a€A BEB,

then we must have originally had P = J,c4 Po = P.

In order to define scissors congruence groups we want to look at the formal sums
of polygons, and quotient out by the relations that [P] = [Q] if P & @, and if we have
a finite set of polygons {P;};c; which intersect only on the boundaries that cover
P then [P] =}, ;[P]. Using a Grothendieck twist we can construct a category
whose objects are exactly formal sums of polygons, and whose isomorphism classes
will naturally quotient out the first of these relations. Thus we can now draw our
attention to the second relation, which concerns ways of including smaller polygons
into larger ones. In the language of polytope complexes, we want to understand the
vertical structure of Tw(C).

We start with some results about how to move vertical information along horizontal
morphisms. C has the property that “pullbacks exist”, namely that if we have the
lower-right corner of a commutative square consisting of a vertical and a horizontal
morphism then we can complete it to a commutative square in a suitably universal
fashion. It turns out that Tw(C,) has the same property.

Lemma 3.2. Given any diagram

A—2—>p=<1! B’

in Tw(Cp), let (Tw(Cp) | (A, B’)) be the category whose objects are commutative
squares

A ——p
9 r
VooV
A—">B8

and whose morphisms are commutative diagrams

I
A
o : \B’
T
x. P2 : T2 N
\
AL /
2

Then (Tw(Cp) | (A, B')) has a terminal object.

p1 .-

A

We will refer to this terminal object as the pullback of the diagram, and the
square that it fits into a pullback square. We denote this terminal object by o*B’,
and call the vertical morphism o*q: o*B’ - > A and the horizontal morphism
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o: 0*B'——= B’. Note that if o (resp. ¢) is an isomorphism, then so is & (resp.
o*q).

Proof. Let A" = {7V}, }i jnerx, - We also define morphisms 7: A’——B' by
the set map mo: I x;J' — J' and the horizontal morphisms %;: ;b —0,
and p: A’ >A by the set map m: I x;.J — I and the vertical morphisms

S0 >by(;j) ). Then these complete the original diagram to a commutative
square by definition; the fact that it is terminal is simple to check. O

Our second relation between polygons had the condition that we needed polygons
to be disjoint, so we restrict our attention to vertical morphisms which have only
disjoint polygons in each “layer.”

Definition 3.3. Given a vertical morphism p: {a;}ier >{b;j}jcs € Tw(Cp)y we
say that p is a sub-map if for every j € J and any two distinct 4,7 € p~1(j) we have
ai Xp; ayp = in C,. We will say that a sub-map p is a covering sub-map if for every
J € J the sets { a; - >bj }iep-1(;) are covers according to the topology on C,.

We will denote the subcategory of sub-maps by Tw(C,)5".

In the polygon example, a sub-map is simply the inclusion of several polygons
which have measure-0 intersection into a larger polygon. A covering sub-map is such
an inclusion which is in fact a tiling of the larger polygon. For example:

covering sub-map sub-map

From this point onwards in the text all vertical morphisms of Tw(C,) will be sub-
maps. If a sub-map is in fact a covering sub-map we will denote it by A B. We
will also refer to horizontal morphisms as shuffles for simplicity. From lemma 2.3 we
know that Tw(C,), has all pullbacks, and it is easy to see that the pullback of a sub-
map will also be a sub-map. From axiom (B) we know that if { X, - >X }acaisa

covering family and X,, = 0 for an oy € A, then the family { X, - > X }aeA\fao}
is also a covering family. Thus the pullback of a covering sub-map will be another
covering sub-map, which means that not only is TW(CP)EU‘]D a category which has
all pullbacks, but in fact the Grothendieck topology on C, induces a Grothendieck
topology on Tw(C,),. It turns out that the pullback functor defined above acts con-

tinuously with respect to this topology.

Lemma 3.4. Let 0: A——= B be a shuffle.
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1. We have a functor o*: (Tw(Cp)S" | B) — (Tw(C,)5"P | A) given by pulling
back along o. This functor preserves covering sub-maps.

2. 0* has a right adjoint o, which also preserves covering sub-maps. If o has an
injective set map (in the sense of definition 2.1) then o*c, = 1; if o has a
surjective set map then o,o0* = 1.

Intuitively speaking, o* looks at how each polytope in the image is decomposed and
decomposes its preimages accordingly. o, figures out what the minimal subdivision of
the image that pulls back to a refinement of the domain is. In our polygon example,
we have the following:

XA N X

o*q q b 0P
o o
_ _
pulling back ¢ along o pushing forward p along o
Proof.

1. From lemma 3.2 we know that o* is a functor (Tw(C,)5" | B) — (Tw(Cp).
A), so it remains to show that o* maps sub-maps to sub-maps. This follows
from the explicit computation of ¢* in the proof of lemma 3.2 and axiom (P)
which gives us that pulling back along a horizontal morphism in C preserves
pullbacks. The fact that o* preserves covers is true by axiom (C).

2. We will show that ¢* has a right adjoint by showing that the comma category
(o* | A") has a terminal object. We will write A = {a;}ier, A’ = {a} }ier, ete.
In addition, for any vertical morphism f: Y = {yy }wew > {2z }rex we will
use the notation Y, for the object {yuw }wes—1(z)-
Suppose that we have a sub-map ¢q: B’ > B such that the pullback o*¢ fac-
tors through A’. For all 7 € I we have horizontal morphisms E;l : ba(i) —a;,
so by the definition of pullback we have sub-maps B;(i) R (Zi_l)*Ag and

thus we must have a sub-map
() > Hieafl(j)(2;1>*Ag-

(As vertically we are in a preorder, products and pullbacks are the same when
they exist; we are omitting the object that we take the pullback over for con-
ciseness of notation.) Thus the object

x=11( I @

JEJ \i€o—1(j)

B/
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is clearly terminal in (o* | A’), and if A’ > A was a cover, then X > B
will also be one. (Note that if c~!(j) = () then the product becomes {b;}, as all
of these products are in the category of objects with sub-map to B.) If o had
an injective set map then o~1(5) has size either 0 or 1 we must have o*o, = 1.
If o has a surjective set map then by definition A, = X*B; for i € o~ !(j) and
all j € J will be represented, and so in fact X = B’ and o,0* = 1. O

We wrap up this section by defining the category of polytope complexes.

Definition 3.5. Let C,D be two polytope complexes. A polytope functor F': C — D
is a double functor satisfying the two additional conditions

(FC) the vertical component F,: C, — D, is continuous and preserves pullbacks and
the initial object, and

(FP) for any pair of morphisms P: B’ >B and ¥: A——= B, where P is vertical
and ¥ horizontal, we have F(X*P) = F(X)*F(P). (In other words, F preserves
mixed pullbacks.)

We denote the category of polytope complexes and polytope functors by PolyCpx.

4. Waldhausen Category Structure

Now that we have developed some machinery for looking at formal sums of polygons
we can start constructing the group completion of our category Tw(C,). In order to
get this we will use Waldhausen’s machinery for categories with cofibrations and
weak equivalences (see [9] for more details); we denote the category of Waldhausen
categories and exact functors by WaldCat. Our cofibrations will be inclusions of
polygons which lose no information. Our weak equivalences will be the horizontal
isomorphisms, together with vertical covering sub-maps (which will quotient out by
both of the relations we are interested in). Since we now want to be able to mix
sub-maps and shuffles we define our Waldhausen category by applying a sort of Q-
construction to the double category Tw(C,).

Definition 4.1. The category SC(C) is defined to have ob SC(C) = ob (Tw(C,)). The
morphisms of SC(C) are equivalence classes of diagrams in Tw(C,)

A=< P A 7 o B,
where two diagrams are considered equivalent if there is a vertical isomorphism
LAY > Af € Tw(Cp), which makes the following diagram commute:
A/

p1 -1
N
e /0'2

A
s \%
Ay

We will generally refer to a morphism as a pure sub-map (resp. pure shuffle) if in
some representing diagram the shuffle (resp. sub-map) component is the identity.

We say that a morphism A< PoA—2~Bisa
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cofibration if p is a covering sub-map and ¢ has an injective set map, and a
weak equivalence if p is a covering sub-map and ¢ has a bijective set map.

The composition of two morphisms f: A — B and g: B — C represented by

A<P A _2.B and B<Y B _T.0

is defined to be the morphism represented by the sub-map po o*q and the shuffle
Toa.

Our goal is to prove the following theorem, which states that this structure gives
us exactly the scissors congruence groups we were looking for.

Theorem 4.2. SC is a functor PolyCpx — WaldCat. Every Waldhausen category
in the image of SC satisfies the Saturation and Extension axioms, and has a canon-
ical splitting for every cofibration sequence. In addition, for any polytope complex C,
KoSC(C) is the free abelian group gemerated by the polytopes of C modulo the two
relations

[a] = Z[ai] for covering sub-maps {ai}iel’“ . {a}
iel
and

[a] = [b] for horizontal morphisms a——b € C.

We will defer most of the proof of this theorem until the last section of the paper,
as it is largely technical and not very illuminating. Assuming the first part of the
theorem, however, we will perform the computation of Ky here.

Proof. In a small Waldhausen category £, where every cofibration sequence splits,
K is the free abelian group generated by the objects of £ under the relations that
[ALl B] = [A] + [B] for all A,B € &, and [A] = [B] if there is a weak equivalence
A—=1B.

In SC(C) an object {a;}ics is isomorphic to [[,.;{a}, so KoSC(C) is in fact gener-

ated by all polytopes of C. Now consider any weak equivalence f: A——= B € SC(C).
We can write this weak equivalence as a pure covering sub-map followed by a pure
shuffle with bijective set map (which will be an isomorphism of SC(C)). Any iso-
morphism of SC(C) is a coproduct of isomorphisms between singleton objects; any
isomorphism between singletons is simply a horizontal morphism of C. Any pure
covering sub-map is a coproduct of covering sub-maps of singletons. Thus the weak
equivalences generate exactly the relations given in the statement of the theorem,
and we are done. O

5. Examples

5.1. The Sphere Spectrum

Consider the double category S with two objects, (# and . We have one vertical
morphism @ >% and no other non-identity morphisms. There are no nontrivial
covers. Then S is clearly a polytope complex.
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Tw(S) will be the category of pointed finite sets, where the cofibrations are the
injective maps and the weak equivalences are the isomorphisms. By direct computa-
tion and the Barratt-Priddy-Quillen theorem ([1]) we see that K (SC(S)) is equivalent
to the sphere spectrum (which justifies our notation).

5.2. (G-analogs of Spheres
Consider the double category Sg with two objects, (§ and . We have one vertical
morphism )-->x%. In addition, Aut,(x) = G. This is clearly a polytope complex.
The objects of SC(S¢) are the finite sets. As all weak equivalences are isomor-
phisms (and thus all cofibration sequences split exactly) we can compute the K-
theory of SC(Sg) by considering QB B(iso SC(S¢g)). The automorphism group of a
set {1,2,...,n} is the group G %,,, whose underlying set is X,, x G™, and where

(0,(915---,9n)) - (0", (915 -+ 9n)) = (00", (9o (1) 915 o' (2) 925 - - + > G (m) I)) -

Thus the K-theory spectrum of this category will be ]_[n>0 B(G1%,) on the 0-level,
B(I1,50 B(G1%y)) on the 1-level, and an Q-spectrum above this.

5.3. Classical Scissors Congruence

Let X = E™,S™ or H" (n-dimensional hyperbolic space), and let C be the poset of
polytopes in X. (A polytope in X is a finite union of n-simplices of X; an n-simplex
of X is the convex hull of n + 1 points (contained in a single hemisphere, if X = S™).)
The group G of isometries of X acts on C; we define a horizontal morphism P — @ to
be an element g € G such that g - P = Q. We say that { P, > P }aea is a covering
family if (J,c 4 Po = P. Then C is a polytope complex.

Then by theorem 4.2 we obtain theorem 1.1: Ky(SC(C)) = P(X,G), the classical
scissors congruence group of X. Thus it makes sense to call K(SC(C)) the scissors
congruence spectrum of X.

5.4. Sums of Polytope Complexes

Suppose that we have a family of polytope complexes {Cs}aca. Then we can
define the “wedge” of this family by defining C to be the double category, where
obC = {0} UJ,eca0bCap (where ) will be the initial object), and all morphisms
are just those from the C,. We define Aute, (0) = @, ¢4 Autnc, (0). Then C will
be a polytope complex which represents the “union” of the polytope complexes in
{Ca}taca- SC(C) = @, SC(Ca), where the summation means that all but finitely
many of the objects of each tuple will be equal to the zero object. Then K(SC(C)) =

Vaea K(SC(Ca))-

5.5. Numerical Scissors Congruence

Suppose that K is a number field. Let Cx be the polytope complex whose objects
are the ideals of O. We have a vertical morphism [ > J if I|J, and no nontrivial
horizontal morphisms. (Note that Ok is the initial object.) We say that a finite
family { Jo -~ >1 }aea is a covering family if I|]],c 4 Jo, and an infinite family is a
covering family if it contains a finite covering family. In this case it is easy to compute
that K(Ck) is a bouquet of spheres, one for every prime power ideal of Ok.

Now suppose that K/Q is Galois with Galois group Gk /. We define Cx/q to be
the polytope complex whose objects and vertical morphisms are the same as those of
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Ck, but where the horizontal morphisms [ ——=J are {g € Gg/qg|g-I = J}. Then
the K-theory K(Cg/q) will be

\/ K(SDp )7
pEZ
where for each p, p is a prime ideal of K lying above p and D, is the decomposition
group of p. (For more information about factorizations of prime ideals, see for exam-
ple [8].) Thus this spectrum encodes all of the inertial information for each prime
ideal of Q.

From the inclusion Q — K/Q we get an induced polytope functor Cg — Cx/q, and
therefore an induced map f: K(Cq) — K(Cx/q). To compute this map, it suffices to
consider what this map does on every sphere in the bouquet K(Cg). Consider the
sphere indexed by a prime power p®. If we factor p = p{ ---py then this sphere maps
to g times the map K(S) — K(Sp,) (induced by the obvious inclusion S — Sp, ),
with target the copy of this indexed by p®®. Thus f encodes all of the splitting
and ramification data of the extension K/Q. In particular, we see that the map
K(Cq) — K(Ck/q) contains all of the factorization information contained in K/Q.

Note that we can generalize the definition of C /g to any Galois extension L/K;
with this definition Cx = Cx/ k-

6. Proof of theorem 4.2

This section consists mostly of a lot of technical calculations which check that
SC(C) satisfies all of the properties that theorem 4.2 claims. In order to spare the
reader all of the messy details we isolate these results in their own section.

6.1. Some technicalities about sub-maps and shuffles

In this section all diagrams are in Tw(C,), and all vertical morphisms are sub-maps.

The following lemmas formalize the idea that we can often commute shuffles and
sub-maps past one another. In particular, it is obvious that if we have a sub-map
whose codomain is a horizontal pushout, then we can pull this sub-map back to the
components of the pushout. However, it turns out that we can do this in the other
direction as well: given suitably consistent sub-maps to the components of a pushout,
we obtain a sub-map between pushouts.

Lemma 6.1. Given a diagram

C/ é’ A/ UH/ B/

3 X

R A

C<~—A——DB,
where the right-hand square is a pullback square and o has an injective set map, there
is an induced sub-map C' Uy B’ >C'Ua B. If p,q,r are all covering sub-maps
then this map will be, as well.

Proof. Consider the right-hand square. Write A = {a;}icr, B = {b;}jcs (and analo-
gously for A’, B'). Write J = I U Jy for Jy = J\imI; and J' = I’ U J/, analogously.
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We claim that ¢ can be written as g7 U qo, where gr: {0 }jrer >{b;}jer and

qo: 1V Yjreqy s >{b;};es, - Indeed, q; is well-defined because the diagram com-
mutes, and qg is well-defined because the right-hand square is a pullback. But then
we can write the given diagram as the coproduct of two diagrams

C'<— 4 = {b;/}j’elf )<~—0—> {b;'/}j/ng)

"“ p QI qo0
VoY, v y v v
C<—A {bj}jer 0 <~—0—=1{bj}jern-

As the statement obviously holds in the right-hand diagram, it suffices to consider
the case of the left-hand diagram, where o is bijective. In this case, o and ¢’ are both
isomorphisms, and so the morphism we are interested in is r, for which the lemma
clearly holds. O

Suppose that we are given a diagram

A’ L/> B’ <f -

p q T
N 7 \
A—2-B <f -C.
Then from the definition of o* and (¢’)* it is easy to see that we get an induced sub-
map (¢')*C’->0g*C , which will be a covering sub-map if p, ¢, r are. The analogous
statement for o, is more difficult to prove, but is also true.

Lemma 6.2. Given a diagram

A R
O ot > A —2= B,

where the right-hand square is a pullback, the induced sub-map o, C’ >0,C etists
and is a covering sub-map if ¢ and f' are covering sub-maps.

Proof. We can assume that o’s set map is surjective, since otherwise we can write
the right-hand square as the coproduct of two squares

’

A —Z> B} ) — B;
SR N
A—— Bo Q] —_— Bl.
In the right-hand case the map we are interested in is just Bj > By, so the result

clearly holds. So we focus on the original question when o has a surjective set-map.
As (Tw(C,)S"" | B) is a preorder and both o/.C’ and 0.C sit over B it suffices to
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show that this morphism exists in (Tw(C,)5"" | B). We claim that it suffices to show
that 0.C’ = 0,C’, as if this is the case then
Hom yc,)sw 1 5y (0.C", 0.C) = Hom pyc, s, 5y (0.C", 0.C)
2 Hompyc,ysuwya)(C', C) # 0
so we will be done.

Write A = {a;}ier, A" ={aj, }ser, B={bj}jes, etc., and let C] = {c} }ppr (k)=
for i € I and C}, = {¢}, } y(ky=i for i’ € I'. Then we know that

oo =1[ 11 eive wa ao=11 I[ ora.
jeJico—1(j) Jj'editea’ m1(5")

(Note that all of these products exist because C is vertically closed under pullbacks,
and in a preorder a pullback is the same as a product.) Now

[[ ehe= 11 1T ea.

i€o~1(j) i€o~1(j) i'E€pi(d)
Because the right-hand square is a pullback square we can associate I’ to pairs
(i,7") € I x5 J'. For any two such pairs ¢} = (i1, ;) and i, = (49, 7%) if j1 # j4 then
(E;,lfl)*Cz{,l X (22,271)*6';,2 = (J; in particular we know that most of the crossterms in
this product will be ). Thus we can reorder the indexing of the product and swap the
coproduct and the product to get

I I e ha= 11 I o

i€o=1(j)'€p=1(3) J'€q () irea’ =1 (5")

I II e ha.

J’€qT(G) i€a’ T (5)

Thus
o' =11 Il = ea=11 II H (¥;)Cl =0l
Jj€Ji€o—1(j) JEJ j'eq1(j) i’ €a’~1(j")

and we have our desired sub-map o, C’ >0,C . If g and f’ are covering sub-maps
then o’ f’ is a covering sub-map, which means that o, C’ >0,C is a covering
sub-map (as it is the pullback of go, f’ along o, f), as desired. O

Lastly we prove a couple of lemmas which show that covering sub-maps do not lose
any information. The first of these shows that if two shuffles are related by covering
sub-maps then they contain the same information; the second shows that pulling back
a covering sub-map along a shuffle cannot lose information.

Lemma 6.3. Suppose that we have the following diagram:
A ——pB
.

Yooy
A—— B.
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Then this diagram is a pullback square. If q has a surjective set-map and T is an
isomorphism then o must also be an isomorphism.

Proof. Pulling back ¢ along o gives us a commutative square
A —I > p
T =

Voo

o
oc*B'— B’

so it suffices to show that in any such diagram r is an isomorphism. Suppose it
were not. Then there would exist ' € A" and an a € ¢* B’ such that we have a non-
invertible vertical morphism a’ >a , and horizontal morphisms F,,: a——=b (for
some b € B’) such that the pullback of the vertical identity morphism on b is the non-
invertible morphism a’ >a . Contradiction. Thus r must be an isomorphism, and
we are done with the first part.

Now suppose that ¢ has a surjective set map and 7 is an isomorphism. As any
shuffle with bijective set map is an isomorphism it suffices to show that o has a
bijective set map. However, as this is a pullback square on the underlying set maps
we can just consider it there. As ¢ has a surjective set map and the pullback of o
along ¢ is a bijection ¢ must also be a bijection, and we are done. O

6.2. Checking the axioms

We now verify that our definition of SC(C) works and then check the axioms for it
to be a Waldhausen category. First we check that all of our definitions are well-defined.

Lemma 6.4. SC(C) is a category, and the cofibrations and weak equivalences form
subcategories of SC(C).

Proof. We need to check that composition is well-defined. Suppose that we are given
morphisms f: A — B and g: B — C in SC(C), and suppose that we are given two
different diagrams representing each morphism. Then we have the following diagram,
where the top and bottom squares are pullbacks:

* /
qi UlBl 0'/1
A’ 2 \ B!
p1 . 1 -1

J1 qa -
e -

P2 4y o2 q2 /‘r2/
~

Ay _

A

/‘ e ’
qs DI oy
03B,

As each vertical section represents the same map we have reindexings t4: A; — As
and tp: By — Bs; we need to show that we therefore have a reindexing o B} — o} B).
It is easy to see that pulling back a reindexing along either a sub-map or a shuffle
produces another reindexing. Thus if we pull back ¢4 along ¢} to get a morphism ¢/,
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and then pull back ¢p along ¢/, to get ¢’y we get a diagram

*x N/
0157

A<"""Ai:%>3< ......... B, ——=C,
.

where 5t} : X — o3 Bj. However, as both the upper and lower squares are pullbacks
they are unique up to unique vertical isomorphism, so we obtain a vertical isomor-
phism X - >oF B}, and we are done.

It remains to show that weak equivalences and cofibrations are preserved by com-
position. Consider a composition of morphisms determined by the following diagram:

q oc*B’ ’

If ¢ is a cover then so is ¢’, so if both p and ¢ are covers then ¢'p is also a cover.
From the formula in lemma 2.2 it is easy to see that if a shuffle has an injective
(resp. bijective) set map then so will its pullback, so if both ¢ and 7 are injective
(resp. bijective) then 7o’ will be as well. Thus cofibrations and weak equivalences
form subcategories, as desired. O

Lemma 6.5. Any isomorphism is both a cofibration and a weak equivalence.

Proof. Suppose that f: A — B is an isomorphism with inverse g: B — A. In Tw(C,)
f and g are represented by diagrams

p o q T

A

respectively. As gf = 14 we must have p o *(g) be invertible, so in particular p must
be an isomorphism; thus we can pick a diagram representing f such that p=14
(which is in particular a covering sub-map). Applying the analogous argument to g
we can see that we can pick a diagram representing g such that ¢ = 1. In that case,
it is easy to see that we must have 7 = ¢~! in Tw(Cp)p, so o and 7 must be invertible.
From this we see that any isomorphism is both a cofibration and a weak equivalence,
as desired. O

Now we move on to proving some of the slightly more complicated axioms defining
a Waldhausen category. We check that pushouts along cofibrations exist, and that
they preserve cofibrations. In fact, in SC(C) pushouts not only preserve cofibrations;
they also preserve weak equivalences.

Lemma 6.6. Given any diagram

C Al p
the pushout C Uy B of this diagram exists, and the morphism C' — C U4 B is a cofi-
bration. If f were also a weak equivalence, then this map would also be a weak equiv-
alence.
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Proof. The diagram above is represented by the following diagram in Tw(C,):

A ......... > A/
’ p

Now we define s: C'=C to be 7.(p'). As 7*7.(p') must factor through p’,
go7*71.(p') must factor through p, so we can write qo 7*7.(p’) =por’. We then
define r: B’ >B to be o.(r'). (Note that if 7 has an injective set map then
r = 0.(¢').) Now we have the following diagram in Tw(Cp):

’ ’

O < T A A 9 B’
O v
C<——A4" A —— B,

where both squares are pullback squares. The top row of this diagram consists only
of maps in Tw(Cp). As Cp, is a groupoid it in particular has all pushouts, and so by
lemma 2.4 the pushout C’ U B’ exists in Tw(Cp); we claim that gives us the pushout
of the original diagram. Note that the set-map of the shuffle C' ——=C" Uy B’ will
be injective (and bijective, if 0’s was) because it is the pushout of ¢/, so the pushout of
a cofibration (resp. weak equivalence) is another cofibration (resp. weak equivalence).

To check that this is indeed the pushout, suppose that we are given any commu-
tative square

(—f>B

]

—D.

The diagonal morphism A — D is represented by a diagram A<'iZ—L>D in

Tw(Cp). Considering the composition around the top, we see that A factors through
p, and considering the composition around the bottom it must factor through ¢. In
addition, as ¢t comes from the bottom composition we know that c*o,t =t and thus
t must factor through A”’. We can now apply lemma 6.1 to see that we indeed get a
unique factorization through our pushout, as desired. O

We have now shown that SC(C) is a category with cofibrations which is equipped
with a subcategory of weak equivalences, and we move on to proving that all cofi-
bration sequences split canonically. Given a cofibration f: A < B we say that the
cofiber of f is the pushout of f along the morphism A — %. We will denote such a
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map by
B —— B/A.
Corollary 6.7. Any cofiber map has a canonical section; this section is a cofibration.

Proof. Suppose that we are given a cofiber map B——s= B/A. Suppose that this
map is represented by the diagram

p o

B/A.

From the computation in the proof of lemma 6.6 it is easy to see that if we write
B ={b;};cs then B' = {b;};c;, where J' C J and o has a bijective set-map. Thus
we can define a pure shuffle 0 =!: B/AC—— B which will be our section. If we change
the diagram representing the fiber map by a reindexing then o' changes exactly by
this reindexing, so this construction is well-defined. O

Remark 6.8. This construction is canonical in the twisted arrow category whose
objects are cofibrations of SC(C). It is not canonical in the ordinary arrow category.

Now it only remains to show that the weak equivalences of SC(C) satisfy all of the
axioms we desire of a Waldhausen category.

Lemma 6.9. For any two composable morphisms [ and g, if gf and f are weak
equivalences then so is g. If C satisfies the extra condition

(G) The empty family is not a covering family for any polytope of C. Given a fam-
ily A={Xo =X }aca and covering families { Xopg - > X, }geB, s if the
refined family

{ Xog =X Hapel Lo, Ba
s a covering family then so is A.

then if gf and g are weak equivalences, then so is f. (In other words, if (G) is satisfied
then SC(C) satisfies the Saturation Aziom.)

Proof. Let f: A— B and g: B — C be morphisms in SC(C). As weak equivalences
form a subcategory of SC(C) we already know that if f and g are both weak equiv-
alences then so is gf. So it suffices for us to focus on the other two cases. In the
following discussion we will be considering the following diagram

where the middle square is a pullback.

First suppose that gf and f are weak equivalences. Then we know that pq’ is a
covering sub-map, which means that ¢’ must be a covering sub-map as well. We know
that ¢’ = 0*q, and as o is an isomorphism we must have ¢ = 0=1)*¢’. As covering
sub-maps are preserved by pullback ¢ must also be a covering sub-map. In addition,
by lemma 6.3 as o is an isomorphism so is o/, and thus (as 70’ is an isomorphism) 7
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must be as well. Thus we see that ¢ is a covering sub-map and 7 an isomorphism, so
g is a weak equivalence as desired.

Now, suppose that gf and g are weak equivalences and that (G) is satisfied. We
know that both 7 and 7¢’ are isomorphisms, which means that ¢’ must be as well. In
addition, pq’ is a covering sub-map and so is ¢’ (as covers are preserved by pullbacks)
which means (by (G)) that p must be as well. As ¢ is a cover with surjective set-map
(as by (G) there are no empty covers), by lemma 6.3 o therefore must also be an
isomorphism. As p is a covering sub-map and ¢ is an isomorphism, f is also a weak
equivalence. O

Lemma 6.10. SC(C) satisfies the extension axiom. In other words, given any dia-
gram

A———B—B/A

|

A ——pB' ——> B /A
f is also a weak equivalence.

Proof. 1t is easy to see that the two sections given by corollary 6.7 are going to be
consistent in the sense that they will split the above diagram into two diagrams

A ] By——> B/A
Nl lfA fBl Nl
A T B} _ = B'/A

where f will equal f4 U fp up to isomorphism. Thus it suffices to show that both
fa and fp are weak equivalences. That fp is a weak equivalence is obvious from the
diagrams. The fact that f4 is a weak equivalence follows from lemma 6.9. O

Lemma 6.11. SC(C) satisfies the gluing axziom. In other words, given any diagram
C<—A——2B
O <—— A o B’

the induced morphism C Uq B — C' Uar B’ is also a weak equivalence.

Proof. Tt is a simple calculation to see that it suffices to consider diagrams represented
in Tw(C,) by

C <" Ac > A< B

A A A

D z

é«/ < 07, A/C > Al < B/

By pulling back p along o we get a cover Ay - > A . Then we have a cover
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Al X ar B Ac x4 B, and thus a diagram

C<LAC< ......... 'ACXAB
:A A A
I N

to which we can apply lemma 6.2, resulting in a cover
(A x4 B') =0, (Ac x4 B) .

However, a simple computation using the definition of the pushout shows us that
this is exactly the morphism between the pushouts of the top and bottom row. As it
is represented in Tw(C,) by a covering sub-map, it must be a weak equivalence, as
desired. O

Lastly we prove that our construction is in fact functorial.

Proposition 6.12. A polytope functor F': C — D induces an ezxact functor of Wald-
hausen categories SC(F): SC(C) — SC(D).

Proof. A polytope functor F': C — D induces a double functor Tw(F): Tw(C) —
Tw(D). Then we define the functor SC(F): SC(C) — SC(D) to be the one induced
by Tw(F'). This is clearly well-defined on objects. As F;, preserves pullbacks and the
initial object, Tw(F), takes sub-maps to sub-maps, and thus SC(F) is well-defined on
morphisms. Composition in SC(C) is defined by pulling back vertical morphisms along
horizontal morphisms, which commutes with F' as F' is a polytope functor, so SC(F')
is a well-defined functor. If f is a (vertical or horizontal) morphism in Tw(C) then
F(f) and f have the same set-map, so Tw(F') preserves injectivity and bijectivity of
set-maps, so to see that SC(F) preserves cofibrations and weak equivalences it suffices
to check that Tw(F') preserves covering sub-maps, which it must as F;, is continuous.
So in order to have exactness it suffices to show that SC(F') preserves pushouts along
cofibrations.
Suppose that we are given the diagram

C A€ B

in SC(C), which is represented by the diagram

in Tw(C). The pushout of this is computed by computing the pullback of the two sub-
maps, pushing forward the result along 7, pulling it back along 7, and then pushing
it forward along o. Thus in order to see that SC(F') preserves pushouts it suffices
to show that Tw(F') commutes with pullbacks of sub-maps, and pulling back or
pushing forward a sub-map along a shuffle. By considering the formulas for pullbacks
and pushforwards we see they they consist entirely of pulling back squares in C and
taking vertical pullbacks in C, so we are done. O
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