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Abstract
In this paper we construct a spectral sequence computing a

modified version of morphic cohomology of a toric variety (even
in the singular case) in terms of combinatorial data coming from
the fan of the toric variety.

1. Introduction

Morphic cohomology is a cohomological theory on complex algebraic varieties intro-
duced by Friedlander and Lawson in [7]. On one hand this theory has a very geometric
definition, and on the other it is strongly related to the abstractly defined motivic
cohomology theory.

In this paper, we describe, following [5], a modification of morphic cohomology
on quasi-projective varieties (not only smooth) in order to have Mayer-Vietoris and
homotopy invariance properties. Then, we use these properties to construct a spectral
sequence computing the (modified) morphic cohomology of a toric variety in terms
of its combinatorial data.

In Section 2 we review some results we need about morphic cohomology and define
the modification of the theory we will use.

In Section 3 we set up the notation we use for toric varieties and write down an
explicit computation of the morphic cohomology of algebraic tori.

Finally, in Section 4 we build a resolution of the constant sheaf ZX on a toric
variety in terms of the combinatorial data. This resolution allows us to construct a
spectral sequence (Theorem 4.16) computing the hypercohomology of a complex of
sheaves F∗ on the toric variety X(∆) in terms of the combinatorial data and the
value of this hypercohomology on algebraic tori. Then we specialize this to the case
of morphic cohomology, giving a very explicit spectral sequence converging to the
morphic cohomology of X(∆) and whose second page involves only combinatorial
data. Moreover, we prove its rational degeneration (Theorem 4.18). To conclude, we
present a sample computation with this spectral sequence and two applications: one
comparing the modified morphic cohomology to the morphic cohomology with cdh
descent and the other to the Suslin conjecture for toric varieties.

Partially supported by MICINN (MTM2009-09557) from the Spanish government and the “Comis-
sionat per a Universitats i Recerca” (2009 SGR 119) from the Catalan government.
Received February 11, 2011, revised December 2, 2011; published on May 21, 2012.
2000 Mathematics Subject Classification: 14F43, 14M25.
Key words and phrases: morphic cohomology, toric variety, descent.
Article available at http://intlpress.com/HHA/v14/n1/a6 and doi:10.4310/HHA.2012.v14.n1.a6

Copyright c© 2012, International Press. Permission to copy for private use granted.
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2. Morphic cohomology

2.1. Definitions and fundamental results

In this section we recall some facts about morphic cohomology. Let Y be a pro-
jective variety over C, with a fixed projective embedding. It is a classical fact (see
Chapter 1 in [13]) that for any natural number k, the set of effective k-cycles on
Y has the structure of an algebraic variety. This variety is called the Chow variety,
and we will denote it by C(Y, k). It may have infinitely many connected components,
corresponding to the homology classes of the cycles. The Chow variety has a natu-
ral operation given by the sum of cycles. This operation is algebraic, so C(Y, k) is
a commutative monoid in the category ProjC of projective varieties. Then, the free
group Z(Y, k) of algebraic k-cycles on Y is the group completion of C(Y, k), inheriting
the topology and making it an abelian topological group. Its homotopy groups are
interesting invariants of Y : they are called the Lawson homology groups (see [3] for
the details) and are denoted by

LkHn(Y ) = πn−2kZ(Y, k).

The topological group structure on Z(Y, k) can be defined for any Y , not necessarily
projective (see [14] and [15]).

In [4] and [7], Friedlander and Lawson define a cohomological version of Lawson
homology for quasi-projective varieties, the morphic cohomology. They define it as

LqHn(X) = π2q−nM(X,Aq, 0),

where M(X,Y, k) is a topological abelian group. If X is projective, normal and Y is
projective, then this topological group is defined as

M(X,Y, k) = Hom(X,C(Y, k))+,

with the compact open topology on the space of morphisms. See the references above
for more details on the general definition. We now recall some of its properties.

Theorem 2.1.

1. (Functoriality). The spaces M(X,Y, k) are contravariantly functorial in X for
arbitrary morphisms and covariantly functorial in Y for proper morphisms.

2. (Homotopy invariance). For any quasi-projective variety X, the projection to
the first factor of X × A1 induces an isomorphism LqHn(X) ∼= LqHn(X × A1).

3. (Duality). There is a natural map Γ: LqHn(X) → Ld−qH2d−n(X), which is an
isomorphism when X is smooth.
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4. (Gysin morphism). Let i : X → Y be a closed embedding of smooth varieties
of relative dimension c. Then there is a functorial Gysin map i! : L

qHn(X) →
Lq+cHn+2c(Y ), given by i! = Γ−1i∗Γ.

5. (Mayer-Vietoris). Let X be smooth and U, V ⊂ X an open cover. Then there is
a Mayer-Vietoris long exact sequence

· · · // LqHn(X) // LqHn(U)⊕ LqHn(V ) // LqHn(U ∩ V ) // · · · .

Proof. (See [4]). Point 1 follows from Propositions 3.1 and 3.3, point 2 from Proposi-
tion 3.5, point 3 from Theorem 5.2, point 4 from Proposition 6.1, and point 5 comes
from point 3 and the localization long exact sequence for Lawson homology ([14,
Proposition 4.8]).

2.2. Descent and homotopy invariance
We are interested in using homotopy invariance and Mayer-Vietoris properties

for morphic cohomology. Homotopy invariance holds for singular varieties (point 2
in Theorem 2.1 above), but the Mayer-Vietoris property is not known to hold in
general. It does hold for smooth varieties thanks to duality (point 3 in Theorem 2.1
above). In [5] Friedlander defines a modified morphic cohomology, called topological
cycle cohomology, which satisfies a Mayer-Vietoris property for Zariski open covers
and coincides with the previous version on smooth schemes. However, there is a
catch. The sheafification involved in the construction of Friedlander’s topological
cycle cohomology seems to interfere with the argument for homotopy invariance. As
a result, we do not have a proof of homotopy invariance for Friedlander’s theory in
full generality (for smooth varieties we can use duality). As we need to use homotopy
invariance, we use a standard construction to force this property back into the theory.

First of all, taking singular chains on M(X,Y, k) we get a simplicial abelian group,
which via the Dold-Kan correspondence, produces a cochain complex. Now, taking
the special case M(X,Aq, 0), the space defining morphic cohomology, and taking into
account the functoriality in X, we have in fact a cochain complex of presheaves of
abelian groups on the category of quasi-projective varieties qProjC. We denote this
complex of presheaves by M∗(q). More precisely, we have

Mn(q)(X) = Sing2q−n M(X,Aq, 0). (1)

Recall that the Dold-Kan functor sends a simplicial abelian group A• to a chain
complex whose homology groups are isomorphic to the homotopy groups πnA•, so the
cohomology of the global sections of our cochain complex of presheaves gives exactly
the morphic cohomology

LqHn(X,Z) ∼= HnΓ(X,M∗(q)).

Let ∆• be the standard cosimplicial scheme with

∆n =
{

(x0, . . . , xn) ∈ An+1 | x0 + · · ·+ xn = 1
}

and let Shzar be the Zariski sheafification functor. Then we define the following com-
plexes of sheaves:

Mn
zar(q) = ShzarM

n(q),

Mn
zar,hi(q) = Totn M∗

zar(-×∆•, q).
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Remark 2.2. The complexes M∗(q) are unbounded below and bounded above by 2q.
This poses some homological algebra troubles as they are bounded on the wrong
side. However, due to a result of Spaltenstein [17], one can still have resolutions
M∗(q) → I∗ playing the role of injective resolutions. Those are called K-injective
in [17]. Later, we will use cohomological finiteness arguments to prove convergence
of the spectral sequences we encounter.

Remark 2.3. We think about the complexes M∗
zar(q) and M∗

zar,hi(q) as objects in the

derived category D−Sh(qProjC) of abelian sheaves on the Zariski site qProjC. For
any variety X, and a complex of sheaves F∗ ∈ D−Sh(qProjC), we will denote by
F∗|X the object in D−Sh(X) obtained by restricting F∗ to the small Zariski site
of X.

This sheaf-theoretic interpretation leads to natural reformulations of the morphic
cohomology groups.

Definition 2.4. The topological cycle cohomology groups are the hypercohomology
groups

LqHn
zar(X) = Hn(X,M∗

zar(q)|X).

The homotopy invariant topological cycle cohomology is defined by

LqHn
zar,hi(X) = Hn(X,M∗

zar,hi(q)|X).

Remark 2.5. The hypercohomologies in Definition 2.4 can be rewritten as an ext-
group either on the derived category D−Sh(X) of sheaves of abelian groups on X,
or on the derived categories of sheaves on the big Zariski site qProjC:

LqHn
zar,hi(X) ∼= ExtnSh(X)(ZX ,M∗

zar,hi(q)|X) ∼= ExtnSh(qProj
C
)(ZhX ,M∗

zar,hi(q)),

where ZX denotes the constant sheaf on X, and ZhX is the free abelian group gen-
erated by the sheaf on qProjC represented by X, i.e., ZhX(U) = ZHom(U,X).

There are comparison morphisms

M∗(q)
a // M∗

zar(q)
b // M∗

zar,hi(q) .

The first is the inclusion of a presheaf in its associated sheaf, and the second is
the inclusion into the summand of the total complex corresponding to the algebraic
simplex ∆0. These maps induce comparison maps

LqHn(X)
a // LqHn

zar(X)
b // LqHn

zar,hi(X) . (2)

Proposition 2.6. Assume X is a smooth quasi-projective variety. Then the compar-
ison morphisms (2) are isomorphisms.

Proof. From Theorem 2.1 we know that the presheaf M∗(q) restricted to smooth
varieties satisfies the Mayer-Vietoris property, that is, the square
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M∗(q)(X) //

��

M∗(q)(U)

��

M∗(q)(V ) // M∗(q)(U ∩ V )

is homotopy cartesian. Take a K-injective resolution M∗
zar(q) → I∗

zar. Using the
Brown-Gersten Theorem ([19, Lemma 3.5]) we conclude that the presheaf M∗(q)
is globally weakly equivalent to the K-injective resolution I∗

zar, so

HnΓ(X,M∗(q)) ∼= HnΓ(X, I∗
zar) = Hn(X,M∗(q)),

and this settles the first isomorphism a.

As for b, by Theorem 2.1 we know that LqHn(-) is a homotopy invariant functor,
and by the previous isomorphism coincides with LqHn

zar(-) on smooth varieties, so the
last one is also homotopy invariant on smooth varieties. Then the spectral sequence
associated to the double complex defining LqHn

zar,hi(-) degenerates on the second page
and this gives the isomorphism b.

Now, this leads to

Theorem 2.7.

1. (Mayer-Vietoris). Let U, V be an open cover of a quasi-projective variety X.
Then there is a Mayer-Vietoris long exact sequence for the groups LqHn

zar,hi(-)

· · ·LqHn
zar,hi(X) // LqHn

zar,hi(U)⊕ LqHn
zar,hi(V ) // LqHn

zar,hi(U ∩ V ) · · · .

2. (Homotopy invariance). For any quasi-projective variety X the projection to the
first factor induces an isomorphism LqHn

zar,hi(X × A1) ∼= LqHn
zar,hi(X).

Proof. In point 1 the open cover {U, V } gives an exact triangle in D−Sh(X)

ZU∩V
// ZU ⊕ ZV

// ZX
// ZU∩V [1]

and applying the functor Extn(-,M∗
zar,hi(q)) produces the desired long exact sequence.

Point 2 is a standard argument. See, for example, Corollary 2.19 in [16].

Remark 2.8. In the remainder of this paper we will deal only with the modified version
LqHn

zar,hi(X) of morphic cohomology. We will drop the subindices “zar” and “hi” from
the notation for readability and refer to it as “morphic cohomology”.

It will be useful to deal with the morphic complexes all at once, so we define the
complex of sheaves M∗ =

⊕

q>0 M
∗(q). This is a bigraded object, having the geo-

metric degree q and the cohomological degree n with a differential in the n direction.
We use the notation L∗Hn(X) for the graded group

L∗Hn(X) =
⊕

q>0

LqHn(X) ∼= Hn(X,M∗).
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2.3. Cup product and Künneth homomorphism
In this section we assume all varieties are smooth and quasi-projective. In this

case, Proposition 2.6 tells us that all three versions of morphic cohomology coincide.
Let X,X ′ be varieties over C. Following [8, Proposition 3.2], the projections from

X ×X ′ to the factors induce an exterior product

LqHn(X)⊗ Lq′Hn′

(X ′) // Lq+q′Hn+n′

(X ×X ′). (3)

Theorem 2.9. Composing the exterior product (3) with the diagonal embedding de-
fines a cup product in morphic cohomology

LqHn(X)⊗ Lq′Hn′

(X) // Lq+q′Hn+n′

(X),

which is graded commutative: a · b = (−1)nn
′

b · a for a ∈ LqHn(X), b ∈ Lq′Hn′

(X).

Proof. See [7, Corollary 6.2].

Remark 2.10. Let us denote by LH the morphic cohomology ring of a point. As stated
in Proposition 2.11 below, LH is a graded ring concentrated in cohomological degree
0, where the grading comes from the q-index. Then, the structure map X → SpecC
provides L∗Hn(X) with the structure of a graded LH-module.

We can now recall some basic computations of morphic cohomology rings.

Proposition 2.11.

1. For k > 0, L∗H∗(Ak) ∼= Z[s], where s is a free generator of bidegree (1, 0) (degree
1 with respect to the q-grading).

2. For k > 0, L∗H∗(Pk) ∼= Z[s, h]/(hk+1), where s has bidegree (1, 0) and h has
bidegree (1, 2).

3. L∗H∗(Gm) ∼= Z[s, e]/(e2), where s is a generator of bidegree (1, 0) and e is a
generator of bidegree (1, 1).

Proof. Points 1 and 2 follow from duality and the computation of Lawson homology
of Pk (see [3, Corollary 4.4]).

For point 3, we take the open cover of P1 by two affine spaces. Then we have the
following piece of Mayer-Vietoris sequence:

L∗Hn(P1) // L∗Hn(A1)⊕2 // L∗Hn(Gm) // L∗Hn+1(P1) // L∗Hn+1(A1)⊕2 ,

which, using points 1 and 2 for the computations of P1 and A1, gives the result.

Remark 2.12. Note that, in particular, LH ∼= Z[s]. Then, by Remark 2.10 the mor-
phic cohomology groups L∗Hn(X) are Z[s]-modules. The action by s on L∗Hn(X)
corresponds to the s-maps in morphic cohomology.

As this structure of LH-module in morphic cohomology is functorial, the exterior
product (3) factors through

L∗H∗(X)⊗LH L∗H∗(Y ) // L∗H∗(X × Y ). (4)

In rather special circumstances, this Künneth homomorphism (4) is an isomorphism.
We need a very special case of this Künneth isomorphism, which we now prove.
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Proposition 2.13. Let X be a smooth quasi-projective variety. The Künneth homo-
morphism

L∗H∗(X)⊗LH L∗H∗(Gm) // L∗H∗(X ×Gm)

is an isomorphism.

Proof. Let i : pt → A1 be the inclusion of a point and j : Gm → A1 its open comple-
ment. We have the following commutative diagram of long exact sequences:

· · ·L∗H∗(X)⊗LH LH
id⊗i! //

∼=

��

L∗H∗(X)⊗LH LH
id⊗j∗

//

∼=

��

L∗H∗(X)⊗LH L∗H∗(Gm) · · ·

��

· · ·L∗H∗(X × pt)
(id×i)!

// L∗H∗(X × A1)
(id×j)∗

// L∗H∗(X ×Gm) · · · .

The vertical maps are the Künneth morphisms, and i! is the Gysin map defined by
duality (Theorem 2.1, 4) as i! = Γ−1i∗Γ. The exactness of the rows comes, by duality,
from the localization theorem (Proposition 4.8 in [14]). For the first row, we also need
the computation in 2.11 to ensure that all LH-modules in the exact sequence

· · · // L∗H∗(pt)
i! // L∗H∗(A1)

j∗
// // L∗H∗(Gm) // · · ·

are flat, so that when tensoring with L∗H∗(X) the exactness is preserved.
Now the first two vertical maps are isomorphisms. The first by definition, while

the second as a consequence of homotopy invariance (point 2 in Theorem 2.1). Then
a standard application of the five lemma proves the desired isomorphism.

Remark 2.14. I became aware of a construction of a Künneth spectral sequence in
the case in which X or Y is a linear variety in a private communication with Mircea
Voineagu [20]. A similar construction is done in [12] for higher Chow groups and
K-theory.

3. Toric varieties

3.1. Definitions and notation
First we set the notation following [10]. Let N ∼= Zn be a free Z-module of rank n

and M its dual Z-module. We will denote by NR = N ⊗ R and MR = M ⊗ R. In this
way, N and M are to be thought of as lattices on NR and MR. Moreover, there is the
duality pairing 〈u, v〉 for u ∈ NR and v ∈ MR.

Let ∆ be a fan with associated toric variety X(∆) defined over C. For any cone
σ ∈ ∆ there is a Zariski open subset Xσ such that

Xσ = SpecC[σ∨ ∩M ],

where σ∨ = {v ∈ MR | 〈u, v〉 > 0, ∀u ∈ σ} is the dual cone. We denote by iσ : Xσ →֒
X(∆) these open embeddings. Moreover, inside Xσ there is a distinguished closed
subvariety Tσ such that

Tσ = SpecC[σ⊥ ∩M ],

where now σ⊥ = {v ∈ MR | 〈u, v〉 = 0, ∀u ∈ σ} is the orthogonal cone. Observe that
σ⊥ is a vector space of dimension codimσ. This means that Tσ

∼= Gcodimσ
m is an
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algebraic torus. In fact, T0 is a torus of dimension n acting on X(∆), and the torus
Tσ is the lowest dimensional orbit for this action contained in Xσ.

If τ 6 σ, then Xτ ⊂ Xσ. We denote by iτ,σ : Xτ →֒ Xσ this inclusion, which is
induced by the morphism of rings C[σ∨ ∩M ] → C[τ∨ ∩M ].

For any cone σ, the closed embedding jσ : Tσ →֒ Xσ is induced by the morphism
of rings C[σ∨ ∩M ] → C[σ⊥ ∩M ] which sends the lattice vectors in σ⊥ to themselves
and the others to 0.

Finally, there is a retraction rσ : Xσ → Tσ induced by the monomorphism of rings
C[σ⊥ ∩M ] → C[σ∨ ∩M ].

Proposition 3.1. Let X(∆) be a toric variety and σ a cone in ∆. There is a mor-
phism

h : Xσ × A1
C

// Xσ

such that h(−, 1) = id, h(−, 0) = jσrσ and h(−, t) restricts to the identity on Tσ for
every t. That is, the morphism h gives an algebraic homotopy equivalence between Xσ

and Tσ.

Proof. Recall that Xσ = SpecC[σ∨ ∩M ], Tσ = SpecC[σ⊥ ∩M ] and the inclusion
Tσ → Xσ is given by the quotient C[σ∨ ∩M ] → C[σ⊥ ∩M ], which is the identity
on σ⊥ and sends any element v ∈ σ∨ not in σ⊥ to 0 ∈ C[σ⊥ ∩M ].

Pick u0 ∈ σ such that σ⊥ = σ∨ ∩ u⊥
0 . Then define

h∗ : C[σ∨ ∩M ] → C[σ∨ ∩M ]⊗ C[t]

by h∗(v) = v ⊗ t〈u0,v〉 for every v ∈ σ∨. This gives a morphism of schemes h : Xσ ×
A1

C → Xσ with the desired properties.

We will use the notation ∆(k) for the set of all cones of codimension k in ∆.

Definition 3.2. An orientation of a cone σ is an orientation of the vector spaces
Rσ. An orientation of a fan ∆ will be a choice of an orientation for every cone in ∆.

We will always use fans with a fixed orientation.

Remark 3.3. Recall that, by definition, any face τ 6 σ is given as τ = σ ∩ u⊥ for some
u ∈ MR. Let τ 6 σ be a face of codimension 1, given as τ = σ ∩ u⊥. Then there exists
v ∈ σ such that 〈v, u〉 > 0 and

Rσ = Rv + Rτ (5)

as subspaces of NR. This last identity allows us to transfer the orientation of σ to τ as
follows: the orientation induced on τ by σ is the one compatible with the identity (5)
and taking the orientation on Rv given by the vector v.

3.2. Morphic cohomology of an algebraic torus
Now we compute the morphic cohomology ring of an algebraic torus. As we will

need this computation for subtori of a toric variety, it will be useful to have a canonical
description of this ring in terms of the lattice defining the toric variety.

Let N be a lattice of rank n, and LR ⊂ MR = N∨
R a subspace of dimension r

generated by vectors in the lattice M . Consider the rank r sublattice L = LR ∩M
and its associated torus TL = SpecC[L].
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We introduce a bit of notation. Let K be a graded LH-module. We denote by
K[l]q the graded LH-module obtained from K by shifting it l steps into the increasing
direction for the q-degree, that is, (K[l]q)i = Ki−l.

It follows from Proposition 2.11 that the piece of homological degree 1, L∗H1(Gm),
is isomorphic, as an LH-module, to LH[1]q. This is a free graded LH-module with one
generator in q-degree 1; we called this generator e in Proposition 2.11. It corresponds,
by duality, to a radial Borel-Moore chain joining 0 and ∞ in Gm. Now, any v ∈ L
defines a character χv : TL → SpecC[v, v−1] = Gm. Then, we define a graded mor-
phism of rings

ϕ :
⊕

n>0(
∧n

L⊗ LH)[n]q // L∗H∗(TL)

by

ϕ(v ⊗ 1) = χ∗
v(e),

for v ∈ L, and extended in the obvious way to the exterior algebra because L∗H∗(TL)
is a graded commutative algebra (Theorem 2.9).

Theorem 3.4. The morphism ϕ is an isomorphism.

Proof. We argue by induction on the rank of L. The isomorphism is clear when
rankL = 1 by the computation in 2.11. Let L = L0 ⊕ Zv. This gives a product decom-
position TL = TL0

×Gm. Now, because the Künneth isomorphism in 2.13 preserves
the cup product, we get a commutative diagram

(
∧n

L⊗ LH)[n]q //

ϕn

��

⊕

r+s=n(
∧r

L0 ⊗ LH)[r]q ⊗LH (
∧s

Zv ⊗ LH)[s]q

��

L∗Hn(TL) //
⊕

r+s=n L
∗Hr(TL0

)⊗LH L∗Hs(Gm).

The upper row is an isomorphism by multilinear algebra results, while the lower row
is an isomorphism by the Künneth isomorphism 2.13. The right vertical map is a
sum of tensor products of ϕ’s corresponding to lower dimensional tori, so it is an
isomorphism by induction hypothesis. We conclude then that the left vertical map is
an isomorphism.

4. Spectral sequence associated to a toric variety

Let X(∆) be a toric variety of dimension n, R a ring and F∗ a cochain complex
of sheaves of R-modules on X. As usual, the hypercohomology of F∗ is

Hn(X(∆),F∗) = HnΓ(X(∆), I∗),

where I∗ is a K-injective resolution F∗ → I∗.
In this section we will write down a spectral sequence converging to the hyperco-

homology Hn(X(∆),F∗) whose E2 page is computable in terms of the combinatorics
of the toric variety, and the hypercohomology of F∗ on algebraic tori. The spectral
sequence comes from the identification

Hn(X(∆),F∗) = Extn(RX ,F∗)

and the fact that the hyper-ext can be computed resolving either variable. We will
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choose to resolve the constant sheaf RX producing a Čech-like resolution Č∗(∆, R) →
RX from the combinatorics of the toric variety.

A similar idea, applied to singular homology and cohomology, was exploited in the
thesis [11].

4.1. Resolution associated to a fan
Let X(∆) be a toric variety defined by a fan ∆, and let R be a commutative ring.

Definition 4.1. Let Čk(∆, R) for k > 0 be the sequence of sheaves of R-modules on
X(∆) given by

Čk(∆, R) =
⊕

σ∈∆(k)

iσ!i
∗
σRX ,

where RX is the constant sheaf on X(∆) and iσ : Xσ → X(∆) is the inclusion of Xσ.
Moreover, we define a sequence of morphisms dk : Čk(∆, R) → Čk−1(∆, R) given by

dk =
⊕

σ∈∆(k−1)

τ∈∆(k)

τ6σ

ǫ(τ, σ)µτ,σ,

where µτ,σ : iτ !i
∗
τRX → iσ!i

∗
σRX is the natural inclusion of sheaves inducing the iden-

tity on the nonzero stalks, and ǫ(τ, σ) = ±1 according to whether the orientation
induced by σ on τ coincides or not with the fixed orientation in τ .

Definition 4.2. Given a fan ∆ and a cone σ ∈ ∆ of codimension k, there is a fan
∆σ defined on the lattice Nσ = N/(Rσ ∩N) of dimension k, whose cones are the
projection of cones in ∆ having σ as a face.

This way, the cones in ∆σ correspond bijectively with the cones τ ∈ ∆ having σ
as a face.

Remark 4.3. Let x ∈ X(∆) be a point. We denote by σ(x) the unique cone in ∆ such
that x ∈ Tσ(x). Observe that

(iτ !i
∗
τRX)x =

{

R if σ(x) 6 τ ,

0 otherwise.

In other words, the stalk (iτ !i
∗
τRX)x is nonzero exactly for the cones τ ∈ ∆ which

represent cones in ∆σ(x).

Proposition 4.4. Let X(∆) be a toric variety associated to a fan ∆.

1. There is a canonical isomorphism

Čk(∆, R)x ∼=
⊕

σ∈∆(k)

σ(x)6σ

R,

and the morphism induced on this stalk by dk is given by

dk,x([τ ]) =
∑

σ∈∆(k−1)

τ6σ

ǫ(τ, σ)[σ].
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2. The sequence of sheaves Čk(∆, R) together with the morphisms dk form a chain
complex of sheaves of R-modules.

3. Let ∆ ⊂ ∆ be an inclusion of fans on the same lattice, giving an open embed-
ding u : X(∆) →֒ X(∆). Then, there is a canonical isomorphism of complexes
of sheaves Č∗(∆, R) ∼= u∗Č∗(∆, R).

Proof. Point 1 follows from 4.1 and Remark 4.3.
For point 2 we need only to check that (dk−1dk) = 0 on stalks. Using the identifi-

cation of these stalks in 1), we see that for [τ ] an element of the basis of Čk(∆, R)x,
we have

dk−1,xdk,x([τ ]) =
∑

τ<σ<η

ǫ(τ, σ)ǫ(σ, η)[η].

Then, for fixed τ and η there are exactly two faces in between, giving opposite signs.
One can see this by looking at the image of η in NR/Rτ . This image is a two-
dimensional cone that obviously has exactly two faces with opposite orientation. This
shows that dk−1,xdk,x = (dk−1dk)x = 0.

Point 3 follows from the following computation:

u∗Čk(∆, R) = u∗
(

⊕

σ∈∆
(k)

iσ!i
∗
σRX(∆)

)

= u∗
(

⊕

σ∈∆(k)

(uiσ)!(uiσ)
∗RX(∆)

)

=
⊕

σ∈∆(k)

u∗u!iσ!i
∗
σu

∗RX(∆)

∼=
⊕

σ∈∆(k)

iσ!i
∗
σRX(∆) = Čk(∆, R).

Definition 4.5. Let a : Č∗(∆, R) → RX be the augmentation morphism induced by
the morphisms iσ!i

∗
σRX → RX(∆).

We will prove that a : Č∗(∆, R) → RX is a quasi-isomorphism. To do so, we will
relate the stalk complexes Č∗(∆, R)x with the cellular homology complex of a cellular
decomposition on a ball of dimension codimσ(x).

Let ∆ be a fan on a lattice N . We define

B(∆) = {p ∈ NR | ‖p‖ 6 1} ,

S(∆) = {p ∈ NR | ‖p‖ = 1} .

Pick x ∈ X(∆). Then, the space S(∆σ(x)) is a sphere of dimension codimσ(x)− 1,
and every non-zero cone σ ∈ ∆σ(x) gives a cell of dimension dimσ − 1 on S(∆σ(x)),
defined by eσ = σ ∩ S(∆σ(x)). The set {eσ}σ∈∆σ(x)

, together with the entire ball, gives

a cellular decomposition of B(∆σ(x)). However, we are interested in a dual cellular
decomposition e∨σ which we now proceed to describe.

Definition 4.6. To any complete fan ∆ we associate an abstract simplicial complex
K(∆) as follows:
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1. The vertices in K(∆) correspond to the cones in ∆.

2. The k-simplexes in K(∆) are the sets of vertices belonging to flags in ∆ of
length k, that is, sequences of strictly included cones

τ0 < τ1 < · · · < τk.

Remark 4.7. If we had omitted the cone 0 in the definition of K(∆), we would have
obtained a combinatorial model of the barycentric subdivision of the fan ∆.

For every 1-dimensional cone τ ∈ ∆(n−1) let uτ ∈ NR be the unique unit vector
generating it. Then, for any non-zero cone σ ∈ ∆, let vσ be the vector

vσ =
∑

τ∈∆(n−1)

τ6σ

uτ .

Definition 4.8. For every k-simplex (τ0, . . . , τk) ∈ K(∆) given by a flag of cones
τ0 < · · · < τk, we define a subset d(τ0,...,τk) ⊂ B(∆) as follows:

d(τ0,...,τk) =











{0} if τ0 = 0 and k = 0,

R>0 〈vτ1 , . . . , vτk〉 ∩B(∆) if τ0 = 0 and k > 0,

R>0 〈vτ0 , . . . , vτk〉 ∩ S(∆) if τ0 6= 0.

Proposition 4.9. Let ∆ be a complete fan. The subsets d(τ0,...,τk) ⊂ B(∆) are home-
omorphic to closed balls of dimension k. Together they form a cellular decomposition
of the ball B(∆), giving a geometric realization of the abstract simplicial complex
K(∆).

Proof. Let (τ0, . . . , τk) ∈ K(∆). Because the vectors vτi all belong to the cone τk, the
subsets R>0 〈vτ0 , . . . , vτk〉 are strictly convex cones, so in either case of Definition 4.8,
the resulting set d(τ0,...,τk) is a cell: it is either a connected convex subset of B(∆) or a
connected and geodesically convex subset of S(∆). The statement about the dimen-
sion of d(τ0,...,τk) follows from the linear independence of the vectors vτi associated to
the flag 0 6= τ0 < · · · < τk.

Finally, observe that the boundary of a cell d(τ0,...,τk) is formed by the cells resulting
from removing one cone in the flag, all of lower dimension. This proves that the cells
d(τ0,...,τk) give a cellular decomposition of the ball B(∆).

Definition 4.10. For every cone σ ∈ ∆, let e∨σ ⊂ B(∆) be the subset defined by

e∨σ =
⋃

k>0
(τ0,...,τk)∈K(∆)

σ6τ0

d(τ0,...,τk).

Proposition 4.11. Let ∆ be a complete fan. The subsets e∨σ ⊂ B(∆) are homeomor-
phic to closed balls of dimension codimσ and form a cellular decomposition of the
ball B(∆). The ball together with this decomposition will be denoted by B(∆)∨.

Proof. Observe that e∨σ is a geometric realization of a subcomplex of K(∆) which
is isomorphic to K(∆σ) (follows directly from the definitions). Now, Proposition 4.9
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applied to the simplicial complex K(∆σ) realizes K(∆σ) as a (codimσ)-dimensional
ball B(∆σ). So, e

∨
σ is homeomorphic to this ball.

The cells e∨σ cover all the ball B(∆) by completeness of the fan, and they are
attached properly because the d(τ0,...,τk) are.

Proposition 4.12. Let ∆ be a complete fan. There is a canonical isomorphism of
chain complexes

Č∗(∆, R)x ∼= Ccell
∗ (B(∆σ(x))

∨, R).

Proof. There is a canonical isomorphism of R-modules

Čk(∆, R)x ∼= Ccell
k (B(∆σ(x))

∨, R),

as both are generated by the cones in ∆σ(x) of codimension k (see Proposition 4.4).

It only remains to check that the differentials in Č∗(∆, R)x coincide with the cellular
ones. Note that the attaching maps fτ : ∂e

∨
τ → Skcodim τ−1B(∆σ(x))

∨ are homeomor-
phisms with the image. So, for any lower dimensional cell e∨σ on the boundary of
e∨τ , the corresponding matrix element in the cellular differential is a sign, according
to the relative orientation of the cells e∨σ and e∨τ . This is exactly the differential in
Č∗(∆, R)x.

Corollary 4.13. Let ∆ be an arbitrary fan. Then, the augmentation a : Č∗(∆, R) →
RX is a quasi-isomorphism.

Proof. First take ∆ ⊂ ∆ a completion of the fan ∆. Because of point 3 in Proposi-
tion 4.4, it is enough to check that Č∗(∆, R) → RX(∆) is a quasi-isomorphism for the

complete fan ∆.

Now, Proposition 4.12 tells us that the stalk complex Č∗(∆, R)x is isomorphic to
the cellular complex associated to the cellular decomposition of the ball B(∆σ(x))

∨,
so its homology is

HkČ∗(∆, R) ∼= HkC
cell
∗ (B(∆σ(x))

∨, R) =

{

R for k = 0,

0 for k > 0.

We conclude that the augmentation ax : Č∗(∆, R)x → R on the stalks is a quasi-
isomorphism. As quasi-isomorphisms of complexes of sheaves are detected on stalks,
we are done.

4.2. The spectral sequence

Let X(∆) be a toric variety and F∗ be a complex of sheaves on X. We describe a
spectral sequence converging to the hypercohomology Hn(X(∆),F∗).

Definition 4.14. A complex of sheaves F∗ is said to have homotopy invariant coho-
mology if for every variety X the projection p : X × A1 → X induces an isomorphisms
in hypercohomology Hn(X,F∗) ∼= Hn(X × A1,F∗).

Remark 4.15. The complex of sheaves M∗ defining morphic cohomology has homo-
topy invariant cohomology by point 2 in Theorem 2.1.
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Theorem 4.16. Let X(∆) be a toric variety associated to a fan ∆ and F∗ a bounded
above cochain complex of sheaves. There is a convergent spectral sequence

Er,s
1 = Exts(Čr(∆,Z),F∗) =⇒ Hr+s(X(∆),F∗).

Moreover, if F∗ has homotopy invariant cohomology, then

Er,s
1

∼=
⊕

σ∈∆(r)

Hs(Tσ,F
∗), (6)

and the differentials on the first page d1 : E
r,s
1 → Er+1,s

1 are given by

d1 =
∑

σ∈∆(r)

τ∈∆(r+1)

τ6σ

ǫ(τ, σ)r∗τ,σ, (7)

where

rτ,σ : Tτ = SpecC[τ⊥] // Tσ = SpecC[σ⊥]

are the morphisms induced by the natural inclusion σ⊥ → τ⊥.

Proof. Let F∗ → I∗ be a K-injective resolution of F∗ (see Remark 2.2). Let Č∗(∆,Z)
→ ZX be the resolution of the constant sheaf ZX from Corollary 4.13. We build a
double complex

Cr,s = Hom(Čr(∆,Z), Is)

with the induced differentials (going in the increasing direction of r and s). The
homology of this double complex in the s direction is Exts(Čr(∆,Z),F∗), giving the
spectral sequence

Er,s
1 = Exts(Čr(∆,Z),F∗) =⇒ Hr+s(X(∆),F∗).

As for the convergence, the complex of sheaves I∗ is bounded above, and the
schemesXσ have finite cohomological dimension. Using the hypercohomology spectral
sequence, we conclude that Hk(Xσ,F

∗) vanishes for large k. In other words, the first
page is bounded above in the s direction. By construction, it is bounded (from both
sides) in the r direction, and this is enough to establish the convergence.

If F∗ is homotopy invariant, as the immersion Tσ → Xσ are algebraic homotopy
equivalences, then we get the isomorphism (6).

Finally, the differentials on the first page are induced by the r-differentials in the
double complex Cr,s, which are given by the formula

d1 =
∑

σ∈∆(r)

τ∈∆(r+1)

τ6σ

ǫ(τ, σ)i∗τ,σ,

where iτ,σ : Xτ → Xσ is the inclusion. Formula (7) follows from the equation r∗τ,σ =
j∗τ i

∗
τ,σr

∗
σ and the fact that j∗τ and r∗σ are mutually inverse isomorphisms giving the

identification Hs(Tσ,F
∗) ∼= Hs(Xσ,F

∗).

We have a rather explicit description of the first page and differentials of the
spectral sequence in 4.16. Together with the computation in Theorem 3.4 of the
morphic cohomology of a torus we can make it more explicit.
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Corollary 4.17. Let M∗ be the complex defining morphic cohomology. Then, the
first page of the spectral sequence in 4.16 is

Er,s
1

∼=
⊕

σ∈∆(r)

(

s
∧

(σ⊥ ∩M)⊗ LH
)

[s]q,

and the differentials dr1 : E
r,s
1 → Er+1,s

1 are given by

dr1

(

∑

σ∈∆(r)

xσv1,σ ∧ · · · ∧ vs,σ

)

=
∑

σ∈∆(r)

xσ

∑

τ∈∆(r+1)

τ6σ

ǫ(τ, σ)v1,σ ∧ · · · ∧ vs,σ.

Proof. The proof follows from Theorem 4.16 and the computation 3.4.

Finally, using an idea from [11] which can be traced back to [18], we show that
this spectral sequence degenerates rationally.

Theorem 4.18. The spectral sequence from Corollary 4.17 degenerates on the second
page when tensored with Q.

Proof. Let LHQ = LH⊗Z Q. The toric variety X(∆) admits an N-action. Let m ∈ N,
then [m] : X(∆) → X(∆) is the morphism which on the open sets Xσ = SpecC[σ∨ ∩
M ] is defined through the ring homomorphism [m]∗ : C[σ∨ ∩M ] → C[σ∨ ∩M ] given
by [v] 7→ [mv] (see [18] for details).

The N-action on X(∆) induces an N-action on the spectral sequence from Corol-
lary 4.17. As the rational morphic cohomology of a torus TL = SpecC[L] is

L∗Hs(TL)Q =
(

s
∧

L⊗ LHQ

)

[s]q,

The N-action on the page Er,s
1 is just multiplication by ms. As the next pages Er,s

k

of the spectral sequence are subquotients of E∗,∗
1 , the action on those pages is also

given by ms. On the other hand the differentials go dk : E
r,s
k → Er+k,s+1−k

k and the
N-action commutes with them, so

msdk(x) = dk(m
sx) = dk([m]x) = [m]dk(x) = ms+1−kdk(x),

where x ∈ Er,s
k . Rationally, this forces dk(x) = 0 when k > 2.

4.3. cdh descent
We now describe a cdh-descent version of morphic cohomology following Section

3 in [1]. This theory will have the Mayer-Vietoris property for cdh covers built-in by
definition. Let M∗ be the presheaf of complexes defined in equation (1) and let

M∗ // M∗
cdh

be a cdh-fibrant replacement on the big cdh-site on VarC. Then we can define a
cdh-fibrant version of morphic cohomology as

LqHn
cdh(X) = Hn(X,M∗

cdh(q)|X). (8)

Proposition 4.19. The cdh version of morphic cohomology in (8) satisfies the fol-
lowing properties:
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1. For X smooth, LqHn
cdh(X) ∼= LqHn(X).

2. LqHn
cdh(-) has the Mayer-Vietoris property for Zariski covers of any quasi-

projective X, as in Theorem 2.7.

3. For any quasi-projective X, LqHn
cdh(X × A1) ∼= LqHn

cdh(X) (homotopy invari-
ance).

Proof. Point 1 is a consequence of the fact that the version of morphic cohomology
LqHn(-) already has descent for cdh covers on the smooth site. This goes as follows.
From Corollary 3.9 in [1] and resolution of singularities, we know that in order to
have descent for the cdh topology restricted to the smooth site it is enough to have
a Mayer-Vietoris property for Nisnevich covers and blow-up squares with smooth
centers. Using this, and the comparison with motivic cohomology from Corollary 3.5
in [9] it follows that LqHn(X) ∼= Hn(X, rM∗

cdh(q)). Here rM∗
cdh(q) is the restriction

to the smooth site of the complex of sheaves M∗
cdh(q). Finally, arguing as in the first

paragraph of the proof of Theorem 3.12 in [1], we conclude that Hn(X, rM∗
cdh(q))

∼=
Hn(X,M∗

cdh(q)) = LqHn
cdh(X).

Point 2 can be argued as in Theorem 2.7. It is essentially built in by definition, as
Zariski covers are cdh covers.

Point 3 follows from Hironaka’s theorem on resolution of singularities, as an arbi-
trary variety is locally smooth in the cdh topology. This means that for any X we can
take a proper smooth hypercovering U• → X (6.2.8 in [2]). Then we have a descent
spectral sequence (Section 5.3 in [2])

Er,s
1 = Hs(Ur,M

∗
cdh(q)|Ur

) =⇒ Hr+s(X,M∗
cdh(q)|X).

As the hypercovering U• is smooth, using point 1 above and homotopy invariance
for LqHn(-) (Point 1 in Theorem 2.1), we get a comparison morphism of spectral
sequences with isomorphisms on the first page

Er,s
1 = Hs(Ur,M

∗
cdh(q))

+3

∼=

��

Hr+s(X,M∗
cdh(q))

��

E
′r,s
1 = Hs(Ur × A1,M∗

cdh(q))
+3 Hr+s(X × A1,M∗

cdh(q))

from which we deduce that the map on the right is also an isomorphism.

Proceeding as in Section 2.2 we obtain a chain of comparison morphism

M∗
zar,hi

// (M∗
cdh)zar,hi M∗

cdh.
≃oo (9)

The right map is a quasi-isomorphism as a consequence of Proposition 4.19. This
leads to a comparison map on morphic cohomology

L∗H∗
zar,hi(X) // L∗H∗

cdh(X) . (10)

Now, the spectral sequence from Theorem 4.16 has the following corollary:

Corollary 4.20. Let X(∆) be a toric variety associated to a fan ∆. Then, the com-
parison morphism (10) evaluated at X(∆) is an isomorphism.
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Proof. We apply Theorem 4.16 to both complexes of sheaves M∗
zar,hi and M∗

cdh.
Then, the comparison morphism (9) gives a morphism of spectral sequences

Er,s
1 =

⊕

σ∈∆(r) H
s(Tσ,M

∗
zar,hi(q)) +3

��

Hr+s(X(∆),M∗
zar,hi(q))

��

E
′r,s
1 =

⊕

σ∈∆(r) H
s(Tσ,M

∗
cdh(q))

+3 Hr+s(X(∆),M∗
cdh(q)).

Because of point 1 in Proposition 4.19 above, this gives an isomorphism on the first
page so the vertical map on the right is also an isomorphism.

4.4. An example and an application
As an example of how the spectral sequence works, we give a sample computation.

Consider the following fan ∆ in Z2 as pictured in Figure 1:

v1 v2

v3

σ1

σ2σ3

v1 = (−1,−1),

v2 = (2,−1),

v3 = (−1, 2),

v⊥1 = 〈(1,−1)〉 ,

v⊥2 = 〈(1, 2)〉 ,

v⊥3 = 〈(−2,−1)〉 .

Figure 1: Fan ∆.

The associated toric variety X(∆) is the quotient P2/µ3, where the action of a
cubic root of unity ξ ∈ µ3 is given by ξ[x : y : z] = [x : ξy : ξ2z].

Let R = LH ∼= Z[s]. Then, the spectral sequence is represented in Figures 2 and 3.
The differentials on the first page are given by the matrices

d001 :





1 0 −1
−1 1 0
0 −1 1



 d101 : ( 1 1 1 ) d111 :

(

1 1 −2
−1 2 −1

)

.

So, the convergence of the spectral sequence tells us that

L∗Hn(X) =











R[k]q for n = 2k and k ∈ {0, 1, 2},

R/3[1]q for n = 3,

0 otherwise.

Now we describe an application to the Suslin conjecture. Let ε : Top → qProjC
be the morphism of sites, with the usual topology in Top and the Zariski topology
on qProjC. Let Rε∗Z be the derived push-forward of the constant sheaf Z on Top to
the Zariski site qProjC. There is a natural map M∗(q) → Rε∗Z which, on smooth
varieties, factors as

M∗(q) // τ6qRε∗Z. (11)

See [6] for details.
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s

2 0 0 R

1 0 R3 R2

0 R3 R3 R

0 1 2 r

d00
1 d10

1

d11
1

Figure 2: Page Er,s
1 .

s

2 0 0 R

1 0 R R/3

0 R 0 0

0 1 2 r

Figure 3: Page Er,s
2 .

There is the following conjecture, a morphic analogue of the Beilinson-Lichtenbaum
conjecture in the motivic world.

Conjecture 4.21 (Suslin). The comparison morphism (11) above is a quasi-isomor-
phism on smooth varieties.

This conjecture is proved for the class of smooth linear varieties (which include
smooth toric varieties) in [6, Theorem 7.14].

The spectral sequence 4.16 has the following corollary:

Corollary 4.22. The Suslin conjecture holds for all quasi-projective toric varieties
(not necessarily smooth).

Proof. First of all, we have to check that M∗(q)|X(∆) is exact above degree q, in order
to have a factorization M∗(q)|X(∆) → τ6qRε∗Z|X(∆) as in (11). This is a local state-
ment onX(∆), so we can restrict to an openXσ. Now the inclusion jσ : Tσ → Xσ is an
algebraic homotopy equivalence, and they induce isomorphisms on hypercohomology

Hn(Xσ,M
∗(q)|Xσ

)
∼= // Hn(Tσ,M

∗(q)|Tσ
) ,

so the natural map M∗(q)|Xσ
→ Rjσ∗M

∗(q)|Tσ
is a quasi-isomorphism. As Tσ is

smooth, its cohomology vanishes above q, and we have the desired factorization.
Now, τ6qRε∗Z has homotopy invariant cohomology, because Rε∗Z does, and the

truncation preserves the homotopy invariance of the cohomology sheaves. We can
apply Theorem 4.16 and get a spectral sequence converging to Hn(X(∆), τ6qRε∗Z).
Moreover, the comparison map (11) gives a morphism of spectral sequences

Er,s
1 =

⊕

σ∈∆(r) H
s(Tσ,M

∗(q)) +3

��

Hr+s(X(∆),M∗(q))

��

E
′r,s
1 =

⊕

σ∈∆(r) H
s(Tσ, τ6qRε∗Z)

+3 Hr+s(X(∆), τ6qRε∗Z),

which is an isomorphism on the first page by Theorem 7.14 in [6], so it gives an
isomorphism on the right, as claimed.



MORPHIC COHOMOLOGY OF TORIC VARIETIES 131

References
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