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STABILITY FOR CLOSED SURFACES
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Abstract
In this paper we present a new proof of the homological sta-

bility of the moduli space of closed surfaces in a simply con-
nected background space K, which we denote by Sg(K). The
homology stability of surfaces in K with an arbitrary number of
boundary components, Sg,n(K), was studied by the authors in
a previous paper. The study there relied on stability results for
the homology of mapping class groups, Γg,n with certain fami-
lies of twisted coefficients. It turns out that these mapping class
groups only have homological stability when n, the number of
boundary components, is positive, or in the closed case when
the coefficient modules are trivial. Because of this we present a
new proof of the rational homological stability for Sg(K), that
is homotopy theoretic in nature. We also take the opportunity
to prove a new stability theorem for closed surfaces in K that
have marked points.

Introduction

In [4], the authors studied stability properties for moduli spaces of surfaces in a
simply connected background spaceK. These moduli spaces, denoted Sg,n(K), consist
of surfaces Sg,n of genus g with n parametrized boundary components, together with
a map f : Sg,n → K which restricts to the boundary ∂Sg,n in a prescribed way. As
observed in [4] the homotopy type of these moduli spaces do not depend on the choice
of this boundary condition, so we will assume f is constant on ∂Sg,n, mapping it to
a fixed basepoint x0 ∈ K. The main results of [4] were Theorems 0.1 and 0.3 which
together identify the “stable homology” Hq(Sg,n(X)) for 2q + 4 6 g.

This result was proved using spectral sequence and Postnikov tower arguments,
whose main input was a calculation of the stable homology of mapping class groups
with certain families of twisted coefficients (“coefficient systems of finite degree”),
H∗(Γg,n;Vg,n). Here Γg,n is the mapping class group of orientation-preserving diffeo-
morphisms of a fixed surface Fg,n of genus g and n-boundary components that fix
the boundary pointwise, Γg,n = π0(Diff(Fg,n, ∂Fg,n)).
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The goals of the present note are threefold. First, we wish to describe an error
in [4] in the group homology calculation for closed surfaces (n = 0). Theorem 0.4
of that paper claims that for coefficient systems of appropriately finite degree d,
Hq(Γg,n, Vg,n) is independent of g and n, so long as 2q + d+ 2 6 g − 1. This theorem
is true, and the proof in [4] is correct, so long as n > 0. However, for closed surfaces,
n = 0, this theorem is not true, unless the the coefficient system has degree 0 (i.e., is
constant), which in turn was proved by Harer [6], with this improved stability range
proved by Ivanov [7]. A counterexample to this theorem in the closed case is given
by a calculation of S. Morita [9], which was pointed out to us by J. Ebert.

The second goal of this paper is to give a new proof of the homological stability the-
orem for Sg(K) for closed surfaces. This proof is purely homotopy theoretic in nature
using homological stability for Sg,n(K) for n > 0 and some basic, well-known relation-
ships between diffeomorphism groups of closed surfaces, of surfaces with boundary,
and those with marked points. We also make heavy use, as we did in [4], of the the-
orem of Madsen and Weiss [8] proving a generalization of a conjecture of Mumford
that can be viewed as establishing these stability results when X is a point.

These new methods allow us to prove the following new theorem, which deter-
mines the homotopy type, in a stable range, of the moduli space of closed surfaces
in a background space that have marked points. (This is Theorem 1.8 below.) This
theorem generalizes the results of Bödigheimer and Tillmann [2].

Theorem 0.1. Let Srg(K) be the moduli space of closed surfaces in a background
space K having genus g and r-marked points. There is a map

αr : Srg(K) → Ω∞(CP∞
−1 ∧K+)× (CP∞)r ×K

that induces an isomorphism in integral homology, Hq(−;Z), for 3q 6 2g − 2 and
r > 0.

The third and last goal of the paper is to use the homotopy theoretic techniques
mentioned above to give a new proof of Morita’s calculation of H1(Γg,H1(Fg)), which
demonstrates the lack of stability for these homology groups.

We remark that since the writing of [4], results there have been generalized in two
different ways. In his thesis [3], S. Boldsen significantly improved the stability range
of the homology of mapping class groups, both in the setting of twisted coefficients
(when the surface has at least one boundary) and in the setting of closed surfaces
when the coefficients are trivial. As we will point out below, Boldsen’s improved sta-
bility range allows for a similar improvement of the stability range for H∗(Sg,n(X)),
n > 0. Secondly, in [10], O. Randal-Williams generalized our result for the homolog-
ical stability of Sg,n(K) by proving a stability theorem for surfaces having a general
tangential structure. In particular his results show that

α : Sg(K) → Ω∞(CP∞
−1 ∧K+)

is a homology equivalence in degrees q with 3q 6 g − 2.

We take the opportunity in this note to give a new, short proof of this theorem when
one assumes rational coefficients (or coefficients in any field of characteristic zero).
This proof is quite easy and shows the relevance of the Becker-Gottlieb transfer map.
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This paper is organized as follows. In Section 1 we review the construction and
relationships between the moduli spaces Sg,n(K). We then prove the main new the-
orem of this paper, Theorem 1.7, which gives homological stability of closed surface
spaces with marked points. In Section 2 we describe a relationship with the Becker-
Gottlieb transfer map and give a short proof of the homological stability of Sg(K).
In Section 3 we give a new proof of Morita’s calculation [9].
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1. Spaces of surfaces, and stability of closed surfaces with
marked points

1.1. Spaces of surfaces and their relationships

For each n > 0, let cn ⊂ R∞ be the image of a fixed embedding en :
∐

n S
1 ↪→ R∞.

Let K be a simply connected space with basepoint x0 ∈ K. We define moduli spaces
Sg,n,m(K) much like in [4]:

Sg,n,m(K) = {(Sg,n,m, t, f): where t > 0, Sg,n,m ⊂ R∞ × [0, t] is a smooth,

oriented surface of genus g with n+m boundary components, so

that Sg,n,m ∩ (R∞ × {0}) = cn, and Sg,n,m ∩ (R∞ × {t}) = cm;

f : Sg,n,m → K is a continuous map with f(∂Sg,n,m) = x0 ∈ K}.

In this description, Sg,n,m ⊂ R∞ × [0, t] is embedded “neatly” as in [8]. In partic-
ular, the boundary components, which we call ∂inSg,n,m = cn and ∂outSg,n,m = cm,
each have fixed collars. We refer the reader to [8] for details.

Now let Fg,n,m be a fixed smooth, oriented surface of genus g with n+m parame-
trized boundary components; n of these boundary components are designated as
“incoming”, and the remaining m are designated as “outgoing”. Let Diff(Fg,n,m, ∂)
denote the group of orientation-preserving diffeomorphisms that fix the boundary
pointwise. As described in [4, 5, 8], the spaces Sg,n,m(K) are topologized so as to
give homeomorphisms

Sg,n,m(K) ∼= R× Emb∂(Fg,n,m,R∞ × [0, 1])

×Diff(Fg,n,m;∂) Map((Fg,n,m, ∂), (K,x0)). (1)

Here Emb∂(Fg,n,m,R∞ × [0, 1]) denotes the space of neat embeddings that extend
en :

∐
n S

1 → R∞ × {0} on ∂inFg,n,m, and em :
∐

m S1 → R∞ × {1} on ∂outFg,n,m.
Since this embedding space is contractible with a free action of Diff(Fg,n,m; ∂), this
gives a homotopy equivalence

Sg,n,m(K) ' EDiff(Fg,n,m; ∂)×Diff(Fg,n,m;∂) Map((Fg,n,m, ∂), (K,x0)). (2)
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For n = m = 0, we ease notation by deleting the subscripts. So

Sg(K) ∼= R× Emb(Fg,R∞)×Diff(Fg) Map(Fg,K). (3)

Finally we define the space S1g(K) to be the space of closed surfaces in the back-
ground space K that have a marked point. In other words,

S1g(K) = {(Sg, t, x, f): where t > 0, Sg ⊂ R∞ × (0, t) is a smooth, oriented

surface of genus g, x ∈ Sg, and f : Sg → Kis a continuous map}
∼= R× Emb(Fg,R∞)×Diff(Fg) (Fg ×Map(Fg,K)).

(4)

We now consider the relationships between the spaces, Sg,0,1, S
1
g, and Sg. First

consider the map p : S1g(K) → Sg(K) given by forgetting the marked point. This is
the “universal curve”. Then by (3) and (4) we have the following:

Proposition 1.1. The map p : S1g(K) → Sg(K) is a fiber bundle with fiber equal to
the surface Fg.

Consider the fiberwise or vertical tangent bundle TvS
1
g(K). This is an oriented,

two-dimensional vector bundle classified by a map τv : S
1
g(K) → CP∞. Concretely,

this can be defined as follows (following [5] and [8]):

τv : S
1
g(K) → CP∞, (Sg, t, x, f) → TxSg ⊂ R∞. (5)

Here we are thinking of CP∞ as the Grassmannian of oriented two-dimensional sub-
spaces of R∞. Now consider the evaluation map

e : S1g(K) → K, (Sg, t, x, f) → f(x). (6)

Proposition 1.2. There is a homotopy fibration sequence

Sg,0,1(K)
ι−→ S1g(K)

τv×e−−−→ CP∞ ×K.

Proof. Consider a fixed, neat embedding of the closed disk e : D2 ⊂ R∞ × (−1/2, 0],
whose boundary is the fixed embedding of the unit circle e1 : S

1 ↪→ R∞ × {0}. Now
let (Sg,0,1, t, f) ∈ Sg,0,1(K). Let Sg = Sg,0,1 ∪S1 D2. This is the closed surface one
obtains by capping off the boundary ∂Sg,0,1. One can also extend the map

f : (Sg,0,1, ∂Sg,0,1) → (K,x0)

to Sg by defining it to be constant (at the basepoint x0) on D2. This construction
defines a map

EDiff(Fg,0,1, ∂)×Diff(Fg,0,1,∂) Map((Fg,0,1, ∂), (K,x0))
q−→ EDiff(Fg, y)×Diff(Fg,y) Map((Fg, y), (K,x0)),

where y ∈ Fg is a marked point and Diff(Fg, y) is the group of orientation-preserving
diffeomorphisms that fix y ∈ Fg. We shall need the well-known homotopy fibration
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sequence (see Lemma 1.3 below):

BDiff(Fg,0,1, ∂) → BDiff(Fg, y)
τv−→ CP∞, (7)

where, if our model for the classifying space BDiff(Fg, y) is given by

Emb(Fg,R∞)/Diff(Fg, y) = {(Sg, z) : Sg ⊂ R∞, z ∈ Sg},

then τv(Sg, z) = TzSg ⊂ R∞. Furthermore, since there is an obvious relative homo-
topy equivalence

(Fg,0,1, ∂Fg,0,1) ' (Fg, y),

we then have an induced equivalence between the mapping spaces

Map((Fg,0,1, ∂), (K,x0)) ' Map((Fg, y), (K,x0)),

which is equivariant with respect to the homomorphism Diff(Fg,0,1, ∂) → Diff(Fg, y).
Therefore there is an induced homotopy fibration sequence

EDiff(Fg,0,1, ∂)×Diff(Fg,0,1,∂) Map((Fg,0,1, ∂), (K,x0))
q−→ EDiff(Fg, y)×Diff(Fg,y) Map((Fg, y), (K,x0))

τv−→ CP∞.

Now the inclusion of the based maps into the unbased maps

Map((Fg, y), (K,x0))→ Map(Fg,K)

is equivariant with respect to the action of Diff(Fg, y). Furthermore, it is the inclusion
of the fiber of the equivariant fibration

Map(Fg,K)
e−→ K, f → f(y),

where the action of Diff(Fg, y) on K is trivial. Putting these fibrations together yields
a homotopy fibration sequence

EDiff(Fg,0,1, ∂)×Diff(Fg,0,1,∂) Map((Fg,0,1, ∂), (K,x0)

q−→ EDiff(Fg, y)×Diff(Fg,y) Map(Fg,K)
τv×e−−−→ CP∞ ×K. (8)

Now notice that BDiff(Fg, y) ' EDiff(Fg)×Diff(Fg) Fg. This is seen by observing
that by the isotopy extension theorem the natural action of Diff(Fg) on Fg defines
a homeomorphism of the homogeneous space Diff(Fg)/Diff(Fg, y) with Fg. More
generally, if X is any space with a Diff(Fg)-action, there is an equivalence

EDiff(Fg)×Diff(Fg) (Fg ×X) ' EDiff(Fg, y)×Diff(Fg,y) X.

Thus fibration sequence (8) can be rewritten as a homotopy fibration sequence

EDiff(Fg,0,1, ∂)×Diff(Fg,0,1,∂) Map((Fg,0,1, ∂), (K,x0))

q−→ EDiff(Fg)×Diff(Fg) Map(Fg,K)× Fg
τv×e−−−→ CP∞ ×K.

Using (2) and (4), this sequence yields the homotopy fibration sequence

Sg,0,1(K)
ι−→ S1g(K)

τv×e−−−→ CP∞ ×K.

The homotopy fibration (7) that was used above is a special case of the following
well-known lemma:
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Lemma 1.3. Let Md be a closed, oriented smooth manifold of dimension d and let
y ∈ M be a marked point. There is a homotopy fibration sequence

Diff(M,Dε(y)) → Diff(M,y)
d−→ GL+(d,R),

where Dε(y) is a small open disk and the map d denotes the differential at y.

Proof. We fix a chart (Rd, 0) → (M,y) around y, and let Uε(y) be a small open
neighborhood of y corresponding to an open ε-disk Rd

ε ⊂ Rd around the origin. The
covering isotopy theorem shows that we have a Serre fibration

Diff(M,Uε(y)) → Diff(M,y)
D−→ Emb((Rd

ε , 0), (Rd, 0)).

It remains to show that this embedding space is homotopy equivalent to GL+(d,R).
This follows because an embedding f : (Rd

ε , 0) ↪→ (Rd, 0) is homotopic to a linear map
via the standard homotopy

ft(u) =

{
f(tu)

t , t > 0,

df0(u), t = 0.

Since Diff(M,Dε(y)) denotes the group of diffeomorphisms that fixes some open
neighborhood Dε(y) pointwise, this completes the proof.

1.2. Compatibility of the Pontrjagin-Thom maps
As described in [5], the spaces Sg,n,m(K) form the spaces of morphisms in the

topological cobordism category C2(K) whose objects are nonnegative integers n > 0
and whose morphisms MorC2(K)(n,m) are given by the disjoint union of the spaces

MorC2(K)(n,m) =
∐
g>0

Sg,n,m(K),

except if n = m, in which case MorC2(K)(n,m) =
(∐

g>0 Sg,n,n(K)
)∐

idn.

One of the main theorems of [5] was the identification of the homotopy type of the
classifying space of the cobordism category BC2(K) (as well as other, more general,
but similarly defined cobordism categories).

Remark. In Section 5 of [5] a category Cd,θ was defined, given a Serre fibration θ : B →
BO(d). If d = 2 and θ is the composition of the projection and the orientation cover,

BSO(2)×K → BSO(2) → BO(2),

we have BC2,θ ' BC2(K). The difference between C2,θ and C2(K) is that the objects of
the former are restricted to be a fixed union of circles in R∞, while in C2,θ the objects
are arbitrary closed, oriented one-dimensional manifolds. Using the covering isotopy
theorem, it follows easily that the corresponding nerves are homotopy equivalent.

The identification of the homotopy type of BC2(K) used the Pontrjagin-Thom
construction to define a functor to the path category of the zero space of a certain
Thom spectrum. More specifically, let Ω∞−1

0 (CP∞
−1 ∧K+) denote the path component

of the basepoint in the zero space of the spectrum ΣCP∞
−1 ∧K+. Let P(Ω∞−1

0 (CP∞
−1 ∧

K+)) be its path category. Namely, given any connected space Y , the path category
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P(Y ) is the topological category whose objects are the points of Y (topologized
as the space Y ), and the morphisms between points y1 and y2 are the space of
paths Py1,y2(Y ) = {(α, r) : α : [0, r] → Y is continuous, satisfying α(0) = y1, α(r) =
y2}. The following is standard:

Lemma 1.4. Given any connected space Y there is a weak homotopy equivalence
BP(Y ) ' Y .

We record the standard fact that in any connected space Y with basepoint y0 there
is a homotopy equivalence of the path space with the loop space Py1,y2(Y ) ' ΩY . Such
homotopy equivalences are given by choices of fixed paths γ1 from y0 to y1 and γ2
from y2 to y0. The homotopy equivalence sends a path α from y1 to y2 to the glued
path γ1 ◦ α ◦ γ2 which is a loop at the basepoint y0 ∈ Y .

In [5] the Pontrjagin-Thom construction was used to produce a functor

α : C2(K) → P(Ω∞−1
0 (CP∞

−1 ∧K+)),

and the following theorem was proved:

Theorem 1.5 ([5]). The functor α : C2(K) → P(Ω∞−1
0 (CP∞

−1 ∧K+)) induces a weak
homotopy equivalence on the level of classifying spaces

α : BC2(K) → BP(Ω∞−1
0 (CP∞

−1 ∧K+)) ' Ω∞−1
0 (CP∞

−1 ∧K+).

Now for each n > 0 let γn ∈ Ω∞−1
0 (CP∞

−1 ∧K+) be the image of the functor α

on n ∈ Ob C2(K). The functor α is “pointed” in that γ0 ∈ Ω∞−1
0 (CP∞

−1 ∧K+) is the
basepoint. Now consider the map defined on the level of morphisms

αn,m :
∐
g>0

Sg,n,m(K) → Pγn,γm(Ω∞−1
0 (CP∞

−1 ∧K+)) ' Ω∞(CP∞
−1 ∧K+).

We consider the homotopy compatibility of these maps as n and m vary. We focus
our attention on the two cases α0,1 and α0,0. To compare them we consider a morphism
(D2, 1, e) ∈ S0,1,0(K) ⊂ MorC2(K)(1, 0). Here D2 is embedded in R∞ × [0, 1] with its
boundary equal to c1 ⊂ R∞ × {0}. The embedding is fixed and has the property
that its intersection with R∞ × [12 , 1] is empty. (In other words its image lies in
R∞ × [0, 1

2 ).) The map e : D2 → K is constant at the basepoint x0 ∈ K.

Notice that composing with the morphism (D2, 1, e) defines a map

κ : Sg,0,1(K) → Sg(K).

This amounts to “capping off the hole” in a surface with one boundary component
and extending a map from that surface to the resulting closed surface by letting it
be constant on the capping disk.

Now let δ = α1,0(D
2, 1, e) be the image under the functor α of (D2, 1, e), viewed

as a morphism in MorC2(K)(1, 0). The following compatibility theorem is now simply
a result of the functoriality of α:
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Theorem 1.6. The following diagram commutes:

Sg,0,1(K)
α0,1−−−−→ Pγ0,γ1(Ω

∞−1
0 (CP∞

−1 ∧K+))

κ

y '
yδ

Sg(K) −−−−→
α0,0

Pγ0,γ0(Ω
∞−1
0 (CP∞

−1 ∧K+)) −−−−→
=

Ω∞(CP∞
−1 ∧K+),

where the right-hand vertical map is concatenation with the fixed path δ.

Comments.

(i) Notice that the map κ in this theorem is homotopic to the projection map

EDiff(Fg,1, ∂)×Diff(Fg,1,∂) Map((Fg,1, ∂Fg,1), (K,x0))

−→ EDiff(Fg)×Diff(Fg) Map(Fg,K)

defined by capping off the boundary of Fg,1 with a disk, and extending a map
f : (Fg,1, ∂(Fg,1)) → (K,x0) to the closed surface Fg = Fg,1 ∪D2, by defining
it on D2 to be constant at the basepoint x0 ∈ K. It therefore factors, up to
homotopy, as the composition,

Sg,0,1(K)
ι−→ S1g(K)

p−→ Sg(K),

where ι is as in Proposition 1.1, and p : S1g(K) → Sg(K) forgets the marked
point.

(ii) Similar compatibility results between the αn,m’s exist, in general, by capping
off various boundary circles. We leave the formulation of these to the reader.

1.3. Stability with marked points
We now have the ingredients necessary to prove the main theorem of this section,

which gives a stability theorem for the moduli space of closed surfaces in a background
space with marked points.

Consider the space S1g(K). Let α̃ : S1g(K) → Ω∞(CP∞
−1 ∧K+) be the composition

α̃ : S1g(K)
p−→ Sg(K)

α−→ Ω∞(CP∞
−1 ∧K+). (9)

We then define the map α1 : S1g(K) → Ω∞(CP∞
−1 ∧K+)× CP∞ ×K to be the prod-

uct α1 = α̃× τv × e, with τv and e as defined in (5) and (6).

Theorem 1.7. The map

α1 : S1g(K) → Ω∞(CP∞
−1 ∧K+)× CP∞ ×K

induces an isomorphism in integral homology, Hq(−;Z), for 3q 6 2g − 2.

Proof. By Proposition 1.1 and Theorem 1.6, we have the following homotopy com-
mutative diagram of homotopy fibration sequences:

Sg,0,1(K)
ι−−−−→ S1g(K)

τv×e−−−−→ CP∞ ×K

α0,1

y α1

y y=

Ω∞(CP∞
−1 ∧K+) −−−−→ Ω∞(CP∞

−1 ∧K+)× CP∞ ×K −−−−→ CP∞ ×K.

Since the basespace of these fibrations, CP∞ ×K, is simply connected, and since
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α0,1 induces a homology isomorphism in this range, then α1 induces a homology
isomorphism in this range.

We remark that we can also consider moduli spaces of closed surfaces in a back-
ground space K with r-marked points, Srg(K). Completely analogous arguments to
the above prove the following theorem. We leave the details to the interested reader.

Theorem 1.8. There is a map

αr : Srg(K) → Ω∞(CP∞
−1 ∧K+)× (CP∞)r ×K

that induces an isomorphism in integral homology, Hq(−;Z), for 3q 6 2g − 2.

2. Relation to the transfer

Consider the bundle Fg → S1g(K)
p−→ Sg(K) described in Proposition 1.1. The Beck-

er-Gottlieb transfer map [1] is a map of suspension spectra,

t : Σ∞(Sg(K)+) → Σ∞(S1g(K)+).

Its induced map in integral cohomology, t∗ : H∗(S1g(K)) → H∗(Sg(K)) has the follow-
ing well-known properties:

Lemma 2.1. For β ∈ H∗(Sg(K)) and ε ∈ H∗(S1g(K)),

1. t∗(p∗(β)ε) = β · t∗(ε)
2. t∗(1) = χ(Fg) ∈ H0(Sg(K)).

Here χ(Fg) = 2− 2g is the Euler characteristic.

We will need to relate the transfer map with the Pontrjagin-Thom map α described
above. To do this we first need to consider the spectrum map

w̃ : CP∞
−1 → Σ∞(CP∞

+ ).

This can be viewed as “collapsing” the −2-dimensional sphere in CP∞
−1, but more

precisely it is induced by a map of Thom spectra,

w̃ : CP∞
−1 = (CP∞)−L → (CP∞)−L⊕L = Σ∞(CP∞

+ ).

Here L → CP∞ is the canonical oriented two-dimensional bundle, and −L is the
corresponding virtual bundle given by its opposite. The exponential notation Xζ

denotes the Thom spectrum of a virtual bundle ζ over a space X. This map of
Thom spectra is induced by the inclusion of virtual bundles, −L ↪→ −L⊕ L, where,
of course, −L⊕ L is the trivial zero-dimensional virtual bundle.

Taking the smash product with the identity produces a similar map of spectra,

w̃(K) : CP∞
−1 ∧K+ = (CP∞ ×K)−L → (CP∞ ×K)−L⊕L

= Σ∞((CP∞ ×K)+). (10)

Here we are thinking of L → CP∞ ×K as the pull-back of the bundle L → CP∞

under the projection map CP∞ ×K → CP∞.
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Consider the induced map on zero spaces

w(K) : Ω∞(CP∞
−1 ∧K+) → Ω∞Σ∞((CP∞ ×K)+),

as well as the cohomology suspension map

σ∗ : H∗(CP∞ ×K) → H∗(Ω∞Σ∞((CP∞ ×K)+)).

Lemma 2.2. Let ρ = τv × e : S1g(K) → CP∞ ×K. Then if ξ ∈ H∗(CP∞ ×K),

t∗ρ∗(ξ) = α∗w(K)∗σ∗(ξ) ∈ H∗(Sg(K)).

Here α = α0,0 is the map from Theorem 1.6.

Before we prove Lemma 2.2, we show how Lemmas 2.1 and 2.2 together imply the
main theorem of this section:

Theorem 2.3.

α∗ : H∗(Ω∞
0 (CP∞

−1 ∧K+);Q) −→ H∗(Sg(K);Q)

is an isomorphism for 3∗ 6 2g − 3.

Proof. It follows from Lemma 2.1 that t∗ ◦ p∗ : H∗(Sg(K)) → H∗(Sg(K)) is multi-
plication by χ(Fg) = 2− 2g. So with rational coefficients, this composition is an iso-
morphism so long as g 6= 1. (Notice the statement of the theorem is vacuous if g = 1,
so we lose no generality in assuming g 6= 1.) It follows that p∗ is injective, and t∗ is
surjective in rational cohomology.

In the stable range (dimensions less than or equal to 2
3g − 1), Theorem 1.7 implies

that (α1)∗ : H∗(Ω∞(CP∞
−1 ∧K+)× CP∞ ×K) → H∗(S1g(K)) is an isomorphism.

Now by the definition of α1 given in (9) above, the following diagram commutes:

S1g(K)
α1

−−−−→ Ω∞(CP∞
−1 ∧K+)× CP∞ ×K

p

y yproject

Sg(K) −−−−→
α

Ω∞(CP∞
−1 ∧K+).

Thus p∗ ◦ α∗ is injective in this stable range and hence so is α∗. It remains to show
that α∗ is surjective in this range.

Let η ∈ H∗(Ω∞
0 (CP∞

−1 ∧K+);Q) and ξ ∈ H∗(CP∞ ×K;Q) be classes so that the
sum of their dimensions is in the stable range. Then, by definition, (α1)∗(η ⊗ ξ) =
p∗α∗(η) · ρ∗(ξ), and by Lemma 2.1,

t∗(α1)∗(η ⊗ ξ) = t∗p∗α∗(η) · t∗ρ∗(ξ) = (2− 2g)α∗(η) · t∗ρ∗(ξ).

Lemma 2.2 shows that t∗ρ∗(ξ) and therefore t∗(α1)∗(η ⊗ ξ) belong to the image of
α∗. Since t∗ is surjective and (α1)∗ is an isomorphism in this range, we conclude that
α∗ is surjective in this range.

It remains to prove Lemma 2.2. Consider again the fiber bundle Fg → S1g(K)
p−→

Sg(K). The transfer map t : Σ∞(Sg(K)+) → Σ∞(S1g(K)+) is defined to be the com-
position

t : Σ∞(Sg(K)+)
t̃−→ S1g(K)−τv → S1g(K)−τv⊕τv = Σ∞(S1g(K)+),

where t̃ : Σ∞(Sg(K)+) → S1g(K)−τv is the Pontrjagin-Thom map or “pretransfer”.
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The bundle τv over S1g(K) is the vertical tangent bundle classified by τv : S
1
g(K) →

CP∞. The map ρ = τv × e : S1g(K) → CP∞ ×K induces a map of Thom spectra,

T (ρ) : S1g(K)−τv → (CP∞ ×K)−L = CP∞
−1 ∧K+.

As in [5, 8], the map of spectra α̃ : Σ∞(Sg(K)+) → CP∞
−1 ∧K+ is defined to be the

composition

α̃ : Σ∞(Sg(K)+)
t̃−→ S1g(K)−τv Tρ−−→ (CP∞ ×K)−τv = CP∞

−1 ∧K+.

and α : Sg(K) → Ω∞(CP∞
−1 ∧K+) is the adjoint of this map. Using the definition of

w̃(K) given in (10), we then have the following homotopy commutative diagram of
spectra:

Σ∞(Sg(K)+)
t̃−−−−−→ S1

g(K)−τv
T (ρ)−−−−−→ (CP∞ ×K)−L '−−−−−→ CP∞

−1 ∧K+

=

y y y yw̃(K)

Σ∞(Sg(K)+)
t−−−−−→ S1

g(K)−τv⊕τv ρ−−−−−→ (CP×K)−L⊕L '−−−−−→ Σ∞((CP∞ ×K)+).

Since the top horizontal composition is α̃ : Σ∞(Sg(K)+) → CP∞
−1 ∧K+, we have that

w̃(K) ◦ α̃ ' ρ ◦ t : Σ∞(Sg(K)+) → Σ∞((CP∞ ×K)+).

So in cohomology, t∗ ◦ ρ∗ = α̃∗ ◦ w̃(K)∗. Combining this with the general relationship

α̃∗ ◦ w̃(K)∗ = α∗ ◦ w(K)∗ ◦ σ∗

between maps of suspension spectra and their adjoints, completes the proof of the
lemma.

3. A counterexample to stability for mapping class groups for
closed surfaces

The theorem below, due to S. Morita [9], is a counterexample to Theorem 0.4 of [4]
which postulates that H∗(Γg, Vg) is independent of the genus g when the Γg-module
Vg = V (Fg) is a coefficient satisfying certain degree conditions. We stress, however,
that Theorem 0.4 remains true for surfaces with at least one boundary component:
H∗(Γg,n, V (Fg,n)) does have a stable range for n > 0. Here, as usual, Γg,n is the
mapping class group of orientation-preserving diffeomorphisms of an oriented surface
Fg of genus g with n boundary components. The modules V (Fg,n) = H1(Fg,n) define a
coefficient system satisfying the stated degree requirements, but as Morita’s theorem
below clearly implies, H∗(Γg,H1(Fg)) does not satisfy any stability property. This
example was pointed out to the authors by Johannes Ebert.

Theorem 3.1 (Morita [9]).

H1(Γg;H1(Fg)) ∼= Z/2(g − 1).

We give a proof of this theorem that is somewhat different in spirit from Morita’s
proof in [9]. In fact the proof we present below is similar in spirit to the proof of our
main Theorem 2.3 above.
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Let Γ1
g = π0(Diff(Fg, x0)) and Γg,1 = π0(Diff(Fg, D

2) be mapping class groups

where D2 ⊂ Fg is a fixed, small disk with x0 ∈ D2. In Diff(Fg, D
2) the diffeomor-

phisms fix a neighborhood of D2 pointwise, and in Diff(Fg, x0) the diffeomorphisms
are only required to fix the point x0. Consider the diagram

BΓg,1 −−−−→ BΓ1
g

D−−−−→ BGL+(2,R)

κ

y p

y
BΓg −−−−→

=
BΓg.

The upper horizontal sequence is the homotopy fibration from Lemma 1.3. The map κ
caps off the boundary, and p forgets the marked point. The improved Harer stability
theorem [6], proved by Boldsen in [3], asserts that

κ∗ : H∗(BΓg,1) → H∗(BΓg)

is an isomorphism in the range 3∗ 6 2g − 2 and surjective for 3∗ 6 2g. Since κ factors

as the composition κ : BΓg,1 → BΓ1
g

p−→ BΓg, in this stable range p∗ : H∗(BΓ1
g) →

H∗(BΓg) has a right inverse S : H∗(BΓg) → H∗(BΓ1
g) satisfying p∗ ◦ S = id. In this

range we also have the computation

H2(BΓ1
g)

∼= H2(BΓg,1)⊕H2(BGL+(2,R)) ∼= Z⊕ Z.

The Serre spectral sequence for the fibration Fg → BΓ1
g

p−→ BΓg has

E2
p,q = Hp(Γg;Hq(Fg)).

The existence of the section S : H∗(BΓg) → H∗(BΓ1
g) implies that in the stable range

there are no nontrivial differential emanating from the baseline, E
2
∗,0. Now we know

that

E2
0,1 = H0(Γg;H1(Fg)) = 0

E2
1,1 = H1(Γg;H1(Fg))

E2
0,2 = H0(Γg;H2(Fg)) = H2(Fg) ∼= Z.

So the only possible differential in total degrees less than or equal to 2 is

d2 : E2
2,1 → E2

0,2.

This leads to the exact diagram

0 −−−−−→ E2
0,2/ im(d2) −−−−−→ H2(Γ

1
g)/ im(S) −−−−−→ H1(Γg;H1(Fg)) → 0x ∼=
yD

H2(Fg)
τ∗−−−−−→ H2(BGL+(2,R)) ∼= Zxd2

H2(Γg;H1(Fg)).

The groups H2(Fg) and H2(BGL+(2,R)) are each isomorphic to Z, and τ : Fg →
BGL+(2,R)) classifies its tangent bundle and hence induces multiplication by the
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Euler characteristic 2− 2g in H2. We claim that this implies that the differential d2

= 0. This is because, since τ∗ is injective and D is an isomorphism, the commutativity
of the above diagram implies H2(Fg) → E2

0,2/ im(d2) is injective, which by exactness
implies d2 is zero. Since, as remarked above, H2(Fg) → E2

0,2 is an isomorphism, the
commutativity and exactness of this diagram imply

H1(Γg;H1(Fg)) ∼= cok(τ∗) ∼= Z/(2g − 2).
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