
Homology, Homotopy and Applications, vol. 13(2), 2011, pp.159–164

REMARK ON RIGIDITY OVER SEVERAL FIELDS

SERGE YAGUNOV

(communicated by J.F. Jardine)

Abstract
It is shown that T -spectrum representable cohomology the-

ories on smooth algebraic varieties satisfy normalization con-
dition over nonreal fields. As a consequence, one can see that
the rigidity property holds for all representable theories over
considered fields.

1. Introduction

Consider some category of schemes (spaces) S over a base scheme (space) B
together with a cohomology theory E∗ : Sop → Ab. We say that E∗ satisfies rigid-

ity if for every irreducible scheme (arc-connected space) X
χ→ B, any two sections

σ0, σ1 : B → X of the structure morphism χ induce the same homomorphism
σ∗
0 = σ∗

1 : E
∗(X) → E∗(B). (Here and below we will omit the bigrading of scheme

cohomology groups.) In classical topology, the rigidity property is an obvious conse-
quence of homotopy invariance of cohomology theories. However, in algebraic geom-
etry A1-invariance does not always imply rigidity. (See [16] for details.) It only holds
under certain restrictions on the category S and the cohomology theory E∗.

Rigidity property played an important role in the calculation of algebraicK-groups
of fields [12] and Henselian rings. One should mention corresponding results obtained
for algebraic K-functor with finite coefficients by Suslin, Gabber, and others (see [1,
2, 13, 14]). Similar results for hermitian K-theory are given in [4, 6], and for Witt
groups in [7], [10, p. 208].

In [3], the author, together with Jens Hornbostel, established the rigidity property
and some of its corollaries for every cohomology theory represented by a T -spectrum
and satisfying the so-called normalization condition (see loc. cit., Definition 1.3). This
gives a complete investigation of the orientable case; however, unorientable cohomol-
ogy theories (such as Witt groups or cohomotopy) are more subtle. Generally, for
a given cohomology theory it is not obvious whether the normalization property is
satisfied over a concrete field. Below we will show that for the category of smooth
separated schemes of finite type (algebraic varieties) over a nonreal field the normal-
ization condition automatically holds for every T -representable theory that makes
the main result of [3] a powerful tool to study unorientable theories.
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sur-Yvette). I am deeply grateful to the institute for its hospitality and excellent
working atmosphere. I also thank Ivan Panin for several valuable discussions during
my work. Finally, I should say that this paper would never be published without
the prompt and excellent help of doctor Michail L. Gordeev (MD, Ph.D.) and all his
team, to whom I am grateful from the bottom of my heart.

2. The main result

Consider a category Sm/k of smooth algebraic varieties over a field k. Also consider
a category of pointed varieties Sm+/k whose objects are pairs (X, ∗ → X) consisting
of a variety and a morphism of the basepoint to it.1 Morphisms in this category are
ones of Sm/k, preserving the basepoint choice. By default, the basepoints of Gm :=
Spec k[t, t−1] and A1 := Spec k[t] are {1} and of the projective line P1 is [1 : 1]. The
forgetful functor Sm+/k → Sm/k admits a left-adjoint functor ()+ : Sm/k → Sm+/k
that adds an external basepoint to a scheme.

The category Sm/k can be embedded in the category of sheaves in the Nisnevich
topology or spaces Spc/k := ShvNis(Sm/k). The embedding functor sends a scheme
V to a presheaf HomSm/k(−, V ) represented by V that automatically happens to be
a sheaf in the Nisnevich topology (see details in [15]). The same procedure works for
pointed varieties and one finishes in the category Spc+/k of pointed spaces. Below, we
will identify varieties with corresponding representable sheaves and call them spaces.

Since the category Spc+/k admits all small limits and colimits, one can define the
wedge sum X ∨ Y of two pointed spaces as the colimit of the diagram:

∗ //

��

X

Y.

For a given morphism Y
f→ X one sets X/Y as the colimit of the diagram:

Y
f //

��

X

∗.
One also defines the smash-product of two pointed spaces as

X ∧ Y := X × Y/ ((∗ × Y ) ∨ (X × ∗)) .

Finally, following Voevodsky, we define the 0-sphere S0 as Spec k+ and the simplicial
sphere S1 := A1/S0, where the embedding map S0 ↪→ A1 sends Spec k to the point
{0}.

From now on we pass to the stable homotopy category of symmetric T -spectra
SpΣ

T /k (see [5]). The functor Σ∞
T sends a pointed space to a suspension T -spectrum.

1Here and below ∗ denotes the terminal object of a category.
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Abusing the notation we will often use the same letters for spaces like Gm,P1, etc.
and the corresponding T -suspension symmetric spectra, unless this leads to possible
misunderstanding.

Following Morel’s notation, we denote by Sp(q) the sphere (S1)∧p ∧G∧q
m . Recall the

definition of the Hopf morphism [8]. Consider a standard morphism A2 − {0} → P1

induced by the map: (a, b) 7→ [a : b]. One can see that the spaces above are homotopy
equivalent to corresponding motivic spheres. Hence, we get the morphism: S1(2) →
S1(1).

Desuspending in the category SpΣ
T /k, one also obtains the morphism H : S0(1) :=

Gm → ∗ that will be called Hopf morphism below. Let E∗ denote a cohomology theory
represented by a symmetric T -spectrum.

Lemma 2.1. If the map H∗ induced in the theory E∗ by Hopf morphism vanishes,
then the map E∗(P2) → E∗(P1) given by the standard embedding P1 ↪→ P2 is an epi-
morphism.

Proof. Following Morel, consider the distinguished square:

A2 − {0} � � //

��

A2
_�

��
P1 � � // P2.

Here the left vertical arrow is the suspension of the Hopf map. Its cone, as it follows
from the square above, is isomorphic to P2/A2 ' P2. If the induced Hopf map in
cohomology vanishes, then the map E∗(P2) → E∗(P1) is an epimorphism.

Let us define several important homotopy classes of morphisms and clarify their
interrelation. Let ε : Gm → Gm ∈ [S0, S0] be the homotopy class induced by the mor-
phism α 7→ α−1. For every u ∈ k× denote by 〈u〉 ∈ [S0, S0] the homotopy class of the
morphism P1 → P1 given as: [x : y] 7→ [x : uy].

Further, we will need the following fact that is well-known in the classical algebraic
topology (see [8, Lemma 6.2.2]). Since the sphere S1 is a cogroup object in SpΣ

T /k,
the cofiber sequence of spectra induced by the sequence Gm ∨Gm → Gm ×Gm →
Gm ∧Gm splits. Therefore, in the category SpΣ

T /k the spectrum Σ∞
T (Gm ×Gm)

can be decomposed as a wedge of spectra Gm ∨Gm ∨ Σ∞
T (Gm ∧Gm). Consider the

morphism of spectra η̃ : Σ∞
T (Gm ∧Gm) → Gm determined on the component

Σ∞
T (Gm ∧Gm) by the product map Gm ×Gm

×→ Gm and denote by η ∈ [Gm, S0]
its homotopy class.

The homotopy class of 〈−1〉 can be represented by the morphism ϕ : P1 → P1

sending [x : y] to [y : x]. One can easily see that the corresponding matrices(
0 1
1 0

)
SL2∼

(
1 0
0 −1

)
are SL2-equivalent and, therefore, induce the same homotopy class.

The morphism ϕ acts as ε being restricted to Gm ↪→ P1 and swaps two standard
copies of A1 lying into P1. Since P1 = S1 ∧Gm, one can see that ε = −〈−1〉.

Using similar matrix argument as above, one sees that the morphism τ : P1 ∧ P1 →
P1 ∧ P1, interchanging two copies of P1 in the smash-product, corresponds to the
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element ε ∈ [P1,P1] = [S0, S0]. Since P1 is a suspension of Gm, this implies that the
homotopy class of the induced morphism τ̃ : Σ∞

T (Gm ∧Gm) → Σ∞
T (Gm ∧Gm) equals

to −ε ∈ [S0, S0].
Composing τ̃ and η̃ and taking into account commutativity of the product in Gm,

one sees that ηε = η.
Finally, embedding Gm ×Gm into A2 − {0}, we obtain that the Hopf morphism

is homotopy equivalent to S1-suspension of the morphism Σ∞
T (Gm ∧Gm) → Gm

induced by (α, β) 7→ α−1β. This identifies homotopy classes H ' ηε ' η. The dis-
cussion altogether yields the following simple lemma, which is also definitely a formal
consequence of relation [9, 6.1.2.4].

Lemma 2.2. If the endomorphism 〈−1〉∗ − id has 2-primary (additive) order in the
group End (E∗(Gm)), then so does the map H∗.

Proof. Let us mention, first, that every cohomology group E∗(Gm) is a π0(S
0) =

[S0, S0]-module, so that the class 〈−1〉∗ − id determines a well-defined group endo-
morphism.

The statement H ' ηε ' η above together with the explicit calculation of the mor-
phism ε implies that (〈−1〉∗ + id)H∗ = 0. Subtracting (〈−1〉∗ − id)H∗ from the former
and multiplying by some large enough power of 2, we get the desired result.

Let us recall that a field k is called formally real if −1 is not a sum of squares in
k. Otherwise, k is said to be nonreal.

Lemma 2.3. Let k be a field and Î(k) denote the fundamental ideal in its Grothen-
dieck–Witt ring GW (k). Then, the following conditions are equivalent:

1. The field k is nonreal;

2. The ideal Î(k) is a 2-group;

3. The element 〈−1〉 − 1 ∈ GW (k) has 2-primary order;2

4. The element 〈−1〉 − 1 ∈ GW (k) has finite order.

Proof. (1 ) ⇒ (2 ). See [10, Theorem 6.4(i,ii)].
(2 ) ⇒ (3 ). Obvious, since dim(〈−1〉 − 1) = 0 and, therefore, 〈−1〉 − 1 ∈ Î(k).
(3 ) ⇒ (4 ). Trivial.
(4 ) ⇒ (1 ). Assume that the element 〈−1〉 − 1 has finite order in the additive group

GW (k). It means, by definition, that for some large enough integer n and some m > 0
the quadratic forms

∑
i=1···n −x2

i +
∑

j=1···m y2j and
∑

k=1···m+n z
2
k are equivalent. In

particular, they represent the same sets of numbers. But, the first form represents −1
and therefore so does the second.

Combining the three lemmata above with Morel’s computation of the A1-homotopy
ring [Gm,Gm], one obtains the following proposition.

Proposition 2.4. Let k be a perfect nonreal field of char 6= 2. Let E∗ be a cohomol-
ogy theory represented by a symmetric T -spectrum and assume that 2 is invertible
in E0,0(S0). Then, the map E∗(P2) → E∗(P1) induced by the standard embedding
P1 ↪→ P2 is an epimorphism.

2Here 〈−1〉 denotes the class of the quadratic form −x2 in the Grothendieck–Witt ring GW (k).
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Proof. By Morel’s theorem3 [9, 6.2.2], the ring of A1-homotopy classes [Gm,Gm] is
naturally isomorphic to GW (k). Under this isomorphism, the class of the self-map
u : P1 → P1 ([x : y] → [x : uy]) passes to the class of the corresponding quadratic form
〈u〉 ∈ GW (k). By Lemma 2.3, the element of the Grothendieck–Witt ring correspond-
ing to the homotopy class of 〈−1〉 − 1 has 2-primary order. Taking into account that
E∗(Gm) is a π0(S

0)-module and applying Lemma 2.2, one sees that H∗ = 0. Finally,
by Lemma 2.1, the natural map E∗(P2) → E∗(P1) is an epimorphism.

This proposition shows that cohomology theories over nonreal fields satisfy the
normalization criterion (see [3, Definition 1.3]). Hence, the rigidity result of loc. cit.
holds for these fields without any additional conditions. For completeness we repro-
duce modified forms of the rigidity theorem [3, 0.3] and its corollary [3, 0.4] here.

Theorem 2.5. Let L be an infinite field of char 6= 2. Let also R be a Henselian local
ring essentially smooth over L with a perfect nonreal field of fractions Frac (R) = k.
Consider a T -representable cohomology theory E on the category of smooth schemes
of finite type over L that satisfies the condition `E = 0 for some odd integer ` that is
invertible in R. Let f : M → SpecR be a smooth affine morphism of (pure) relative
dimension d, and s0, s1 : SpecR → M two sections of f such that s0(P ) = s1(P ) at
the closed point P of SpecR. Then, the maps s∗0, s

∗
1 induced in cohomology groups E∗

are equal.

Corollary 2.6. Let E and L be as in the previous theorem, V a smooth variety over
L, P ∈ V (L) a L-rational point of V , and R be a henselisation of V at P with a

perfect nonreal fraction field. Then, E∗(SpecR)
∼=−→ E∗(SpecL) is an isomorphism.

Finally, let us give some explicit examples of fields satisfying the conditions of
Proposition 2.4.

Example 2.7. As it was well-known before, every cohomology theory has rigidity prop-
erty over quadratically closed fields. Certainly, this case is covered (at least for perfect
fields) by our result.

Example 2.8. Every perfect field of finite characteristic (6= 2) also satisfies the condi-
tions of our proposition, as −1 is obviously a sum of squares.

Example 2.9. Let k be a field, containing for some prime p a field Qp of rational
p-adic numbers. Let us show that this field is nonreal. Certainly, it is sufficient to check
that every p-adic integer is a sum of squares. For example, one can write any x ∈ Zp

as x = 1 + 1 + · · ·+ 1 + y such that y ≡ 1 mod n(p), where n(p) = p for p > 2 and
n(2) = 8. By a well-known property of p-adic numbers (see, for example, [11, II.3.3])
y is a square in Zp that proves the desired property.

3Here we use the requirement that the field k is perfect of char 6= 2.
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