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ON THE K-THEORY AND HOMOTOPY THEORY
OF THE KLEIN BOTTLE GROUP

JENS HARLANDER and ANDREW MISSELDINE

(communicated by Graham Ellis)

Abstract
We construct infinitely many chain homotopically distinct

algebraic 2-complexes for the Klein bottle group and give vari-
ous topological applications. We compare our examples to other
examples in the literature and address the question of geometric
realizability.

1. Introduction

Let G be a group. A (G,n)-complex X is a finite n-dimensional CW-complex
with π1(X) = G and πi(X) = 0 for 2 6 i < n. Its directed Euler characteristic is the
alternating sum χ(X) = cn − cn−1 + · · · ± c0, where ci is the number of i-cells. An
algebraic (G,n)-complex X is an exact sequence

ZGmn → ZGmn−1 → · · · → ZGm0 → Z → 0.

Thus, an algebraic (G,n)-complex is a partial free resolution of the trivial module Z
of length n. Its directed Euler characteristic is defined as the alternating sum χ(X ) =

mn −mn−1 + · · · ±m0. Note that the augmented cellular chain complex C∗(X̃) →
Z → 0 of the universal covering X̃ of a (G,n)-complex X is an algebraic (G,n)-
complex. The geometric realization problem poses the question: Given an algebraic
(G, 2)-complex X , does there exist a (G, 2)-complex X so that X and C∗(X̃) →
Z → 0 are chain homotopy equivalent? The realization question came out of work of
Wall [21]. Closely related to the geometric realization problem is Wall’s D(2) problem:

Suppose that X is a finite 3-complex such that H3(X̃,Z) = H3(X,B) = 0 for all local
coefficient systems B on X. Is X homotopy equivalent to a finite 2-complex? In [10,
appendix B], Johnson proved the following realization theorem: Let G be a finitely
presented group of type FL(3); then the D(2)-property holds for G if and only if
every algebraic (G, 2)-complex admits a geometric realization. More information on
the history of the geometric realization problem and the D(2)-problem can be found
in the introduction of Johnson’s book [10]. See also [6].

The theorem below is the main contribution of this article.
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Theorem 1.1. Let

G = 〈x, y | xyx−1 = y−1〉

be the Klein bottle group. There exists infinitely many chain homotopically distinct
algebraic (G, 2)-complexes of Euler characteristic 1. Thus, if there are only finitely
many homotopically distinct (G, 2)-complexes of Euler characteristic 1, then both the
geometric realization and the D(2)-problem can be answered negatively.

The last statement in the theorem follows from Johnson’s realization theorem men-
tioned above. Other potential counterexamples to the geometric realization and the
D(2) problem are in the literature. See, for instance, Beyl-Waller [3]. A finitely gener-
ated G-module M is stably free if M ⊕ ZGa ∼= ZGb for some a, b ∈ N. The difference
b− a is called the stably free rank of M . It follows from work of Artamonov [1] and
Stafford [20] that there are infinitely many stably free G-modules of rank 1, where G
is the Klein bottle group (the fact that the Klein bottle group admits any such module
has independently been observed by Lewin [13]). We use these modules to construct
infinitely many chain homotopically distinct algebraic (G, 2)-complexes with Euler
characteristic 1 mentioned in the above theorem. We do not know at the time of
writing whether any of them can be geometrically realized. The result has various
other topological consequences. It implies that there are infinitely many homotopi-
cally distinct (G, 3)-complexes with fixed Euler characteristic, and that there is a
finite (G, 3)-complex that dominates infinitely many homotopically distinct (G, 3)-
complexes.
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2. Stably free modules for the Klein bottle group

In this section we review work of Artamonov [1] and Stafford [20] on K-theoretic
aspects of polycyclic groups. Let R be a ring (with unity). Let σ : R→ R be a ring
automorphism and let R[x, x−1, σ] be the skewed Laurent polynomial ring over R.
Elements in R[x, x−1, σ] are polynomials in x and x−1 with coefficients in R, but coef-
ficients and variables do not commute. We have xr = σ(r)x and x−1r = σ−1(r)x−1.

Theorem 2.1 ([20, Thm. 1.2]). Let R be a commutative Noetherian domain and let
S = R[x, x−1, σ] be a skew Laurent polynomial ring over R. Suppose r, s ∈ R and the
following conditions hold:

1. r is not a unit in R.

2. Sr + S(x+ s) = S, that is, r and x+ s generate S as a left S-module.

3. σ(r)s /∈ Rr.

Let φ : S ⊕ S → S be the S-module epimorphism [r, x+ s] (that is, φ(1, 0) = r and
φ(0, 1) = x+ s). Then kerφ is a stably free, non-free, S-module of stably free rank 1.
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Let G = 〈x, y | xyx−1 = y−1〉 be the Klein bottle group. Let R = Z[y, y−1] and
let σ : R→ R be the ring automorphism that sends y to y−1 and fixes Z. Then the
group ring ZG is the skewed Laurent polynomial ring R[x, x−1, σ]. Let rn = 1 + ny +
ny3 and sn = σ(rn) = 1 + ny−1 + ny−3, n ∈ N. Note that the elements rn, x+ sn
of R[x, x−1, σ] satisfy the three conditions stated in the above theorem. Condition 1
holds because units in skewed Laurent polynomial rings are monomials. For Condition
2 notice that

(x− rn)(x+ sn) + σ(rn)rn = x2 + xσ(rn) − rnx− rnσ(rn) + σ(rn)rn.

Since xσ(rn) = σ2(rn)x and σ2 = id and R = Z[y, y−1] is commutative, we see that
the sum equals the unit x2. Thus rn and x+ sn generates S. Let us address the final
Condition 3. Assume that σ(rn)sn ∈ Rrn. Then (1 + ny−1 + ny−3)2 ∈ Rrn, and thus
(y3 + ny2 + n)2 ∈ Rrn. If we multiply with an appropriate yk, we obtain an equation
yk(y3 + ny2 + n)2 = f(y)(ny3 + ny + 1) in Z[y], where f(y) is some polynomial in
Z[y]. So ny3 + ny + 1 divides yk(y3 + ny2 + n)2. Since ny3 + ny + 1 is irreducible in
Q[y] (it does not have a rational root) and does not divide a monomial, it divides
y3 + ny2 + n, which is a contradiction (long division). Stafford’s theorem now implies
that kerφn is stably free, non-free of rank 1, where φ : S ⊕ S → S, defined by the
matrix [rn, x+ sn].

Artamonov [1] studied K-theoretic properties of solvable groups. Slight adapta-
tions to the Klein bottle group yield the following result.

Theorem 2.2 (Artamonov [1]). Let G = 〈x, y | xyx−1 = y−1〉 be the Klein bottle
group and let φn : ZG⊕ ZG→ ZG, n ∈ N, be the epimorphism given by the matrix
[rn, x+ sn] (that is, φ(1, 0) = rn and φ(0, 1) = x+ sn), where rn = 1 + ny + ny3 and
sn = 1 + ny−1 + ny−3. Then the set {kerφn}n∈N contains infinitely many isomorphi-
cally distinct stably free non-free modules of rank 1.

Proof. Recall Dirichlet’s theorem on primes in arithmetic progressions [19], which
states that for any relatively prime a, b ∈ Z, there are infinitely many primes p equal
to a mod b. This guarantees, in particular, that for every m there is a prime p that
is 1 mod m. We recursively define a set Q of prime numbers in the following way:
Let q1 = 2 and assume qi has been defined for i 6 n. Let qn+1 be a prime that is 1
modulo the product q1 · · · qn.

Let Kq = kerφq and Kq,p = Kq/pKq. Note that since φp : ZG⊕ ZG→ ZG splits,
Kq,p is the kernel of the map φq,p : ZpG⊕ ZpG→ ZpG (φq mod p). Note that φq,q =
[1, x+ 1]; thus the kernel Kq,q is free of rank 1. Now assume that p, q ∈ Q and
p < q. By construction of Q we have q = 1 mod p. Thus φq,p = [1 + y + y3, x+ 1 +
y−1 + y−3]. We can apply Stafford’s Theorem 2.1 with R = Zp[y, y−1], σ(y) = y−1

(as before), r = 1 + y + y3 and s = 1 + y−1 + y−3 to see that Kq,p is not free. This
shows that Kp and Kq are not isomorphic because Kp,p is free but Kq,p is not.

3. Algebraic 2-complexes for the Klein bottle group

Let X be the standard 2-complex built from the presentation 〈x, y | xyx−1 = y−1〉
of the Klein bottle group. Note that X is the usual description of the Klein bottle as
a cell complex: X has a single 0-cell, two 1-cells denoted by x and y and one 2-cell d
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with boundary xyx−1y. Let X̃ be the universal covering of X. Fix a vertex 1 in X̃.
Let x̃ and ỹ be lifts of x and y, respectively, starting at 1. Let d̃ be the lift of d to 1.
Consider the augmented cellular chain complex C∗(X̃) → Z → 0:

0 → ZG ∂2−→ ZG⊕ ZG ∂1−→ ZG ε−→ 0

with bases {d̃} and {x̃, ỹ} for C2(X̃) and C1(X̃), respectively. Note that since X

is aspherical (X̃ is R2), ∂2 is injective, so the image ZG∂2(d̃) is free of rank 1. Let
rn, sn ∈ ZG be the elements defined in the previous section. Define an epimorphism
ψn : ZG⊕ ZG→ ZG∂2(d̃) by ψn = [rn∂2(d̃), (x+ sn)∂2(d̃)]. Let j : ZG∂2(d̃) ↪→ ZG⊕
ZG be the inclusion and define ∂n2 = j ◦ ψn. Let Xn be the algebraic 2-complex

ZG⊕ ZG
∂n
2−−→ ZG⊕ ZG ∂1−→ ZG ε−→ Z → 0.

Notice that H2(Xn) is isomorphic to Kn = kerφn and hence is stably free non-free
of rank 1 by Theorem 2.2. We have the following result.

Theorem 3.1. The set {Xn}n∈N contains infinitely many chain homotopically dis-
tinct algebraic (G, 2)-complexes of directed Euler characteristic 1, where G is the
Klein bottle group.

4. Topological applications

Let X be a (G,n)-complex. Then the homotopy type of X is captured by the
triple (π1(X), πn(X), κX), where κX ∈ Hn+1(X,πn(X)) is the k-invariant of X. See
MacLane-Whitehead [16] and also [9, Chap. 2, §4]. In particular, if Hn+1(G,M) = 0
for every G-module M , then two (G,n)-complexes are homotopic if and only if their
nth homotopy modules are isomorphic.

As before, let X be the standard 2-complex built from the presentation

〈x, y | xyx−1 = y−1〉

of the Klein bottle group and let Y = X ∨ S2, where S2 is a 2-sphere. Note that
π2(Y ) = ZG. Let fn, gn : S2 → Y be maps that represent the generators rn, x+ sn
as defined in Section 2, respectively. Attach two 3-balls to X, using the attaching
maps fn and gn to obtain a (G, 3)-complex Zn. Note that π3(Zn) is isomorphic to
Kn = kerφn, the stably free non-free module of Section 2.

Theorem 4.1. The set {Zn}n∈N contains infinitely many homotopically distinct
(G, 3)-complexes of directed Euler characteristic 1, where G is the Klein bottle group.

Note that π3(Zn ∨ S3) = ZG⊕ ZG. Thus, all (G, 3)-complexes Zn ∨ S3 are homo-
topically equivalent to the (G, 3)-complex W = Z1 ∨ S3 by what was said in the first
paragraph of this section (H4(G,M) = 0 for all G-modules M because the Klein bot-
tle group G is 2-dimensional). Since every Zn is a retract of Zn ∨ S3, it follows that
Zn is a homotopy retract of W . So the finite 3-complex W dominates infinitely many
homotopically distinct 3-complexes. See Ko lodziejczyk [11] for a similar result.

Theorem 4.2. The finite 3-complex W = ((X ∨ S2) ∪f1 B
3 ∪g1 B

3) ∨ S3 dominates
infinitely many homotopically distinct finite 3-complexes.
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5. Relation modules

Given a generating tuple g = (g1, . . . , gn) for a group G, we denote by

pg : F (a1, . . . , an) → G

the projection from the free group to G defined by pg(ai) = gi, 1 6 i 6 n. The kernel
R of the projection pg is the relator group associated with g, and the ZG-module
R/[R,R] is the relation module associated with g.

Stably free non-free G-modules often arise as relation modules (see Dunwoody [5],
Harlander and Jensen [8], Lustig [15]). It was shown in [8] that for groups that
are fundamental groups of 2-dimensional aspherical complexes, relation modules can
always be realized as second homotopy modules π2(X) for some (G, 2)-complex X.
In particular, if the stably free G-modules Kn constructed earlier for the Klein bottle
group G could be shown to be isomorphic to relation modules, then all the algebraic
2-complexes Xn of Theorem 3.1 could be geometrically realized. In this section we
show that relation modules for the Klein bottle group are free. Hence none of the Kn

is a relation module unless it is free.

Theorem 5.1. Relation modules for the Klein bottle group G are free.

Proof. The above theorem follows from the fact that there is only one Nielsen class
of generating n-tuples for G, and that Nielsen equivalent generating n-tuples give rise
to isomorphic relation modules. This is indeed true for all closed surface groups; see
Louder [14]. We will present the proof for the Klein bottle group which is considerably
simpler than the general case. Recall that two generating n-tuples g = (g1, . . . , gn) and
g′ = (g′1, . . . , g

′
n) are called Nielsen equivalent if the following holds: There exists an

automorphism φ ∈ Aut(Fn), where Fn = F (a1, . . . , an) is a free group of rank n, such
that (pg′ ◦ φ(a1), . . . , pg′ ◦ φ(an)) = (pg(a1), . . . , pg(an)). Note that any generating
n-tuple (xi1 , . . . , xin) of the infinite cyclic group 〈x〉 is Nielsen equivalent to the tuple
(x, 1, . . . , 1). This follows from the Euclidean algorithm.

Let G = 〈x, y | xyx−1 = y−1〉 be the Klein bottle group and consider a generat-
ing n-tuples g = (xi1yj1 , . . . , xinyjn). We will show that it is Nielsen equivalent to
(x, y, 1, . . . , 1). Hence the relation module associated with g is isomorphic to ZGn−2.
First note that h = (xi1 , . . . , xin) is a generating tuple for the infinite cyclic group
〈x〉, and hence the Nielsen equivalent to h′ = (x, 1, . . . , 1) under some automorphism
φ. Let α : G→ 〈x〉, sending x to x and y to 1. Since α ◦ pg = ph and α ◦ pg′ = ph′ ,
it follows that g is Nielsen equivalent to g′ = (xyk1 , yk2 , . . . , ykn). Next notice that
i = (yk2 , . . . , ykn) is a generating tuple for the (normal) subgroup 〈y〉 of G. Indeed, let
H be the subgroup of G generated by yk2 , . . . , ykn . Note that H is normal, and if d is
the greatest common divisor of k2, . . . , kn, then H = 〈yd〉. Note further that G/H is
cyclic, generated by xyk1 . Now G/H = 〈x, y | xyx−1 = y−1, yd〉, which is cyclic only
if d = 1.

Now the generating tuple i is Nielsen equivalent to i′ = (y, 1, . . . , 1) under some
ψ′ : F (a2, . . . , an) → F (a2, . . . , an). We extend the automorphism ψ′ to an automor-
phism ψ ∈ Aut(Fn) by defining ψ(a1) = a1. Now note that g′ is Nielsen equivalent to
(xyk1 , y, 1, . . . , 1) under ψ which is clearly Nielsen equivalent to (x, y, 1, . . . , 1).
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6. Geometric realization

In this section we introduce the relation lifting problem which is a stronger version
of the geometric realization problem. We prove a theorem that can be used to con-
struct potential counterexamples to both problems. We call [x1, . . . , xn | s1, . . . , sm]
an almost presentation of G if there is an epimorphism q : 〈x1, . . . , xn | s1, . . . , sm〉
→G with perfect kernel P , that is Pab = P/[P, P ] = 1 (see also Mannan [17]). Let S =
〈〈s1, . . . , sm〉〉. Then P = R/S for some normal subgroup R of F (x1, . . . , xn) and G =
F (x1, . . . , xn)/R. Note that Pab = R/S[R,R] = 1 implies that R = S[R,R]. Hence the
si, i = 1, . . . ,m, generate the relation ZG-module R/[R,R]. The other direction is
also true: If the elements s1, . . . , sm generate the relation ZG-module R/[R,R], then
the kernel of the epimorphism q : 〈x1, . . . , xn | s1, . . . , sm〉 → G = F (x1, . . . , xn)/R is
perfect, and hence [x1, . . . , xn | s1, . . . , sm] is an almost presentation of G.

Note that if [x1, . . . , xn | s1, . . . , sk] is an almost presentation of G and X is the
standard 2-complex |〈x1, . . . , xn | s1, . . . , sk〉|, then X = {C∗(XP ) → Z → 0} is an
algebraic (G, 2)-complex, where XP is the covering of X associated with P . We also
write X = |[x1, . . . , xn | s1, . . . , sk]|.

In this section we address a version of the geometric realization problem, called
the relation lifting problem: Given a presentation F (x1, . . . , xn)/R of a group G and
relation module generators s1, . . . , sm. Do there exist elements r1, . . . , rm so that
si[R,R] = ri[R,R], i = 1, . . . ,m, and 〈〈r1, . . . , rm〉〉 = R? We remark that, in gen-
eral, the relation lifting problem has a negative answer (see Dunwoody [4]). Note
that an affirmative answer implies that the algebraic 2-complex X = |[x1, . . . , xn |
s1, . . . , sm]| can be geometrically realized. Indeed, the chain complex of the universal
covering of Y = |〈x1, . . . , xn | r1, . . . , rm〉| is identical to X .

It turns out that in case G is the fundamental group of an aspherical 2-complex,
almost presentations for G can be easily constructed. In fact, any choice of generator
of the cyclic module ZG yields an almost presentation for G. In the following we give
the details of this construction and discuss the trefoil group and the Klein bottle
group in that context.

Let G be a group and FG be the free group on basis the elements of G. Note
that FG is a G-group which yields the group ring ZG when abelianized. If α =
(g1) · · · (gn) ∈ FG and h ∈ G, then we write αh = (g1hg

−1
1 ) · · · (gnhg−1

n ). If f : F → G
is a group epimorphism and α = (w1) · · · (wn) ∈ FF , then we write ᾱ = g1 + · · · +
gn ∈ ZG, where gi = f(wi), i = 1, . . . , n.

Theorem 6.1. Let 〈x1, . . . , xn | r1, . . . , rm〉 be a presentation for a group G whose
associated standard 2-complex is aspherical. Let α1, . . . , αk ∈ FF (x1, . . . , xn). Let α̂i

be the image of αi under the map FF (x1, . . . , xn) → FG and let ᾱi be the image of
α̂i under the map FG→ ZG. Let P = FG/〈〈gα̂i, g ∈ G, i = 1, . . . , k〉〉.

1. P is isomorphic to the kernel of the map

Ĝ = 〈x1, . . . , xn, y | r1, . . . , rm, α1y, . . . , αky〉
→ G = 〈x1, . . . , xn, y | r1, . . . , rm, y〉.

2. X = |[x1, . . . , xn, y | r1, . . . , rm,α1 y, . . . ,αk y]| is an algebraic (G, 2)-complex if
and only if the elements ᾱ1, . . . , ᾱk ∈ ZG generate ZG as a left module (or,
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equivalently, P is perfect). In that case H2(X ) = kerφ, where φ : ZGk → ZG is
defined by the matrix [ᾱ1, . . . , ᾱk].

3. X = |〈x1, . . . , xn, y | r1, . . . , rm, α1y, . . . , αky〉| is a (G, 2)-complex if and only if
P is trivial. In that case π2(X) = kerφ, where φ : ZGk → ZG is defined by the
matrix [ᾱ1, . . . , ᾱk].

Proof. Let

Y = |〈x1, . . . , xn | r1, . . . , rm〉|

and

X = |〈x1, . . . , xn, y | r1, . . . , rm, α1y, . . . , αky〉|.

Let Ĝ be the fundamental group of X and let P = 〈〈y〉〉 be the normal closure of y
in Ĝ. Note that P is the kernel of an epimorphism Ĝ→ G. Let XP be the covering
of X associated with P . We analyze the cell structure of XP . Since Y is a retract
of X, the complex XP contains Ỹ , the universal covering of Y , as a subcomplex.

Indeed, X
(0)
P = Ỹ (0) = G, and X

(1)
P is the 1-skeleton of Ỹ with a loop yg attached at

the vertex g, g ∈ G. Furthermore, the 2-cells in XP are the 2-cells in Ỹ together with
the lifts of the 2-cells for the relations αiy, i = 1, . . . , k. If we smash the contractible
subcomplex Ỹ of XP to a point, then we obtain a 2-complex Z with a single vertex
that is homotopically equivalent to XP . In particular, its fundamental group is P .
The 1-skeleton is a wedge of circles yg in one-to-one correspondence with the elements
of G. Consider a 2-cell d in X with boundary αiy = w1yw

−1
1 · · ·wlyw

−1
l , where αi =

(w1) · · · (wl). If we lift d to a vertex g and then smash Ỹ , then we obtain a 2-cell dg
with boundary ygŵ1 · · · ygŵl

. Thus P = π1(Z) → FG/〈〈gα̂1, . . . , gα̂k, g ∈ G〉〉, sending
yg to (g), is an isomorphism. We have established (1).

We turn to statement (2). Note that by definition X is the augmented cellular
chain complex C∗(XP ) → Z → 0. It is an algebraic 2-complex, that is, it is exact,
if and only if P = H1(X ) = 0. The above analysis of the cell structure reveals that
C∗(XP ) → Z → 0 is of the form

ZGk ⊕ ZGm φ⊕∂2−−−→ ZG⊕ ZGn 0⊕∂1−−−→ ZG→ Z → 0,

where

0 → ZGm ∂2−→ ZG⊕ ZGn ∂1−→ ZG→ Z → 0

is the augmented cellular chain complex C∗(Ỹ ) → Z → 0, which is exact because Y
is assumed to be aspherical. It follows that kerφ⊕ ∂2 = kerφ, and that the former
chain complex is exact if and only if φ is onto, which is the case if and only if the
elements ᾱ1, . . . , ᾱk generate ZG. We have shown (2).

Finally, we prove (3). The first statement is clear. Note thatXP is now the universal
covering of X, so by the Hurewicz’s Theorem that π2(X) = H2(XP ). The remaining
statements in (3) follow from (2).

The following example illustrates the use of the Theorem 6.1. Let G = 〈x〉 be the
infinite cyclic group. Then the group ring ZG = Z[x±1] is a Laurent polynomial ring.
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Let f(x) = a0 + a1x+ · · · + anx
n and g(x) = b0 + b1x+ · · · + bmx

m be two polyno-
mials that generate the group ring as a left module. Then

[x, y | ya0xya1x−1 · · ·xnyanx−n, yb0xyb1x−1 · · ·xmybmx−m]

is an almost presentation of G, by Theorem 6.1. Is it a presentation of G? It is
conceivable that one can choose the polynomials f(x) and g(x) so that the result-
ing almost presentation does not lift to an actual presentation. This would imply
that the infinite cyclic group does not have the relation lifting property despite the
fact that every algebraic (G, 2)-complex is geometrically realizable (see Johnson [10,
Proposition A.10 in appendix A]. Dunwoody showed in [4] that the group Z ∗ Z5 does
not have the relation lifting property, that is, there exists an almost presentation for
Z ∗ Z5 that does not lift to an actual presentation. His construction relies on non-
trivial units in the group ring. As far as we know, no torsion free groups that do not
have the relation lifting property have been constructed.

We next look at Dunwoody’s well-known trefoil group examples. Consider the
elements α = (1)(a)(a2), β = (1)(b)(b2)(b3) ∈ FF (a, b). Dunwoody showed that ᾱ =
1 + a+ a2, β̄ = 1 + b+ b2 + b3 ∈ ZG generate the group ring ZG of the trefoil group
G = 〈a, b | a2 = b3〉. Hence the relation module R/[R,R], R = 〈〈r〉〉, r = a2b−3 is
generated by αr and βr. He further showed that the kernel of the homomorphism
φ : ZG⊕ ZG→ ZG, defined by the matrix [ᾱ, β̄], is non-free stably free of rank 1.
This results in an algebraic (G, 2)-complex X = [a, b | αr, βr] with H2(X ) = kerφ
and Euler characteristic 1. Dunwoody proceeded to show that this algebraic 2-complex
is geometric, that is |〈a, b |α r, βr〉| is a (G, 2)-complex. Since the second homotopy
module of this complex is kerφ, it is not free. So this complex is not homotopically
equivalent to |〈a, b | r, 1〉|. We will recall Dunwoody’s realization results from our
viewpoint. Note that since the elements ᾱ, β̄ generate ZG, we know by Theorem 6.1
that X = |[a, b, c | a2 = b3, αc, βc]| is an algebraic (G, 2)-complex.

Theorem 6.2. X = |〈a, b, c | a2 = b3, αc, βc〉| is a (G, 2)-complex for the trefoil group
G. Since π2(X) = kerφ is not free, X is not homotopically equivalent to |〈a, b, c | a2 =
b3, c, 1〉|.

Proof. We will only show that X is a (G, 2)-complex. In the light of Theorem 6.1,
the only thing we have to show is that P = FG/〈〈gα, gβ, g ∈ G〉〉 = 1. Note that
(1)(a)(a2) = 1 in P and (a)(a2)(a3) = 1 in P imply that (a3) = (1) in P . Also,
(1)(b)(b2)(b3) = 1 and (b)(b2)(b3)(b4) = 1 imply that (b4) = (1). Since a3 and b4 gen-
erate G, it follows that (g) = (1) in P for all g ∈ G. So P is cyclic, generated by
(1). Now 1 = (1)(a)(a2) = (1)3 and 1 = (1)(b)(b2)(b3) = (1)4; hence (1) = 1 and P is
trivial.

We next look at the Klein bottle group G = 〈x, y | xyx−1 = y−1〉 again. Let αn =
(1)(y)n(y3)n, βn = (1)(y−1)n(y−3)n(x) ∈ FF (x, y). It was shown in Section 2 that
the elements ᾱn = 1 + ny + ny3, β̄n = 1 + ny−1 + ny−3 + x generate ZG, where G
is the Klein bottle group. Hence Xn = [x, y, z | xyx−1 = y−1, αnz, βnz] is an algebraic
(G, 2)-complex by Theorem 6.1.

Question. Is there an n ∈ N so that |〈x, y, z | xyx−1 = y−1, αnz, βnz〉| is a (G, 2)-
complex?
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By Theorem 6.1 one would have to show that P = FG/〈〈gα, gβ, g ∈ G〉〉 = 1. We
have not been able to adapt the arguments given for the trefoil group to the Klein
bottle group.
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