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ČECH APPROXIMATION TO THE BROWN-GERSTEN

SPECTRAL SEQUENCE

BENJAMIN ANTIEAU

(communicated by Brooke Shipley)

Abstract
In this paper, we show that the étale index of a torsion coho-

mological Brauer class is divisible by the period of the class.
The tool used to make this computation is the Čech approx-
imation of the title. To create the approximation, we use the
folklore theorem that the homotopy limit and Postnikov spec-
tral sequences for a cosimplicial space agree beginning with the
E2-page. As far we know, this folklore theorem has no proof in
the literature, so we include a proof.

1. Introduction

Let X be a geometrically connected scheme, and let Br′(X) = H2(Xét,Gm)tors be
the cohomological Brauer group of X. There are two integer invariants of a Brauer
class α ∈ Br′(X). The first is the period of α; it is the order of α in the group Br′(X),
and it is generally written as per(α). The second is the index of α. If A is an Azumaya
algebra on X, then it has rank n2 as a locally free OX -module. The integer n is called
the degree of A. For a class α, its index ind(α) is defined as the greatest common
divisor of all integers n such that there is an Azumaya algebra A in the class of α of
degree n. If no such Azumaya algebra exists, then the index is defined to be +∞.

In general,

per(α)|ind(α). (1)

If X = Spec k for a field k, then the index is finite, and the period and the index have
the same prime divisors. Therefore, there is a least integer e(α) such that

ind(α)|(per(α))e(α).

As α ranges over all Brauer classes, it is an interesting open question to determine
the values that e(α) can take on. In [CT], Colliot-Thélène asks whether the following
is true.
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Conjecture 1.1 (Period-Index Conjecture). Let k be a field of dimension d > 0.
Then,

ind(α)|(per(α))d−1, (2)

for all α ∈ Br(k).

The notion of dimension in the conjecture is not entirely settled. The conjecture is
made specifically [CT] for function fields of d-dimensional varieties over algebraically
closed fields, or for Cd fields. But it is known to be false for cohomological dimension.

Several cases in low dimensions are known, but the question is open in general.
For example, it is not known for any function field C(X) of an algebraic 3-fold X.
The importance of the conjecture for k(X) is that it gives information both about
the geometry of X and about the arithmetic of k(X) when X is an algebraic variety
over an algebraically closed field k.

In [A], we introduced a new invariant eti(α) for α ∈ Br′(X), which we call the
étale index. By the definition,

eti(α)|ind(α).

The main theorem of that paper is an analogue of Equation (2) when X = Spec k.
Specifically, if k is a field of finite cohomological dimension d = 2c or d = 2c+ 1, then

eti(α)|(per(α))c (3)

when the prime divisors of per(α) are “large” with respect to d. Specifically, the
statement is true when d < 2q for all primes q that divide per(α).

The main result of this paper, Theorem 8.7, is that the analogue of Equation (1)
holds for the étale index as well:

per(α)|eti(α).

In particular, it is not equal to 1 if α is non-trivial. Therefore, the étale index possesses
similar formal properties to the index. However, the étale index is always finite for
schemes X of finite étale cohomological dimension, while certain Brauer classes on
non-quasi-projective schemes have infinite index.

Here is an application of Theorem 8.7. Define

Kα
0 (k)

(0) = Kα
0 (k)/ ker (rank : Kα

0 (k)→ Z)

K
α,ét
0 (k)(0) = K

α,ét
0 (k)/ ker

(

rank : Kα,ét
0 (k)→ Z

)

,

where Kα is twisted connective K-theory, and Kα,ét is the étale sheafification. The
image of the rank on Kα

0 (k) is generated by ind(α), while the image of the rank on

K
α,ét
0 is generated by eti(α). There is an inclusion

Kα
0 (k)

(0) ⊆ K
α,ét
0 (k)(0) (4)

with cokernel F = Z/
(

ind(α)
eti(α)

)

. In the untwisted case (α = 0), the cokernel is always

zero. On the other hand, Equation (3), together with the sharpness of some known
cases of the period-index conjecture, imply that F is in general not zero when α 6= 0.

Suppose that the period-index conjecture of Colliot-Thélène is true. Then, the
fact that per(α)|eti(α) implies that the cokernel F is of order at most per(α)d−2.
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Conversely, if one could prove that the cokernel was of order at most per(α)c when d
is odd or per(α)c−1 when d is even, then Equation (3) would imply the period-index
conjecture, at least away from some small primes. Thus, our result allows a translation
of the period-index conjecture into a question about the arithmetic failure of étale
descent for twisted K-theory.

The proof of Theorem 8.7 is based on the computation of a differential in the
descent spectral sequence associated toKα. Recall that the descent spectral sequence,
or Brown-Gersten spectral sequence, is

Es,t
2 = Hs(Xét,K

α
t )⇒ K

α,ét
t−s (X),

with differentials dαr of degree (r, r − 1). In [A], we proved that the twisted K-theory
sheaves are isomorphic, in a natural way, to the untwisted K-theory sheaves. In
particular, Kα

0
∼= Z, and Kα

1
∼= Gm. The étale index is defined to be the least integer

n such that dαr (n) = 0, r > 2, where we view n as an element in H0(X,Kα
0 ). The proof

of the main theorem, that per(α)|eti(α), is given by proving that dα2 (1) = α, where
α ∈ H2(Xét,Gm) ∼= H2(Xét,K

α
1 ). Indeed, once this is done, the least integer such that

dα2 (n) = 0 is n = per(α). This computation is analogous to one given by Kahn and
Levine in [KL, Proposition 6.9.1] for the étale motivic spectral sequence converging to
étale twistedK-theory and another given by Atiyah and Segal in [AS, Proposition 4.6]
in the topological twisted case.

To make the computation of the differential, we introduce a Čech approximation
to the descent spectral sequence. This in turn relies on the comparison theorem,
Theorem 4.7, which says that the homotopy limit and Postnikov spectral sequences
for cosimplicial spaces agree beginning with the E2-page. This is a folklore theorem,
and we include a proof since we know of no reference for it. Both types of spectral
sequences arise frequently in practice in homotopy theory due to the mechanism of
cosimplicial replacement of presheaves of spaces, and the theorem easily applies in
this situation to say that for a presheaf of spaces on a small category, the homotopy
limit and Postnikov spectral sequences agree beginning with the E2-page.

Once this approximation is established, it remains to describe the d2 differential
for the homotopy limit spectral sequence of a cosimplicial space, and then to translate
this description to the Čech approximation spectral sequence.

Some background is given in Sections 2 and 3. Several spectral sequences for cosim-
plicial spaces are introduced, and a comparison theorem proven, in Section 4. This is
applied to presheaves of spectra on a Grothendieck site in Section 5. The differentials
of the homotopy limit spectral sequence are described in Section 6, and those of the
Čech approximation in Section 7. The main theorem is proven in Section 8. Finally,
in Section 9, the cokernel F of Equation (4) is related in detail to the period-index
conjecture.
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2. Spectral sequences associated to towers of fibrations

The first quadrant spectral sequences of this section are generalized in the sense
that not every term is an abelian group. They have the property Es,t

1 is a group when
t− s = 1 and it is a pointed set when t− s = 0. Nonetheless, there is a good notion
of such spectral sequences. For details on these generalized spectral sequences as well
as all the other material and notation in this section, see [BK, Section IX.4, esp. 4.1].

Construction 2.1. Let

· · · → Xn → Xn−1 → · · · → X1 → X0 → ∗

be a tower of fibrations of pointed spaces. Let Fs be the fiber of Xs → Xs−1, and
denote by X the limit of the tower.

There are long exact sequences associated to the fibrations Fs → Xs → Xs−1:

· · · → πt−sFs
k
−→ πt−sXs

i
−→ πt−sXs−1

j
−→ πt−s−1Fs → · · · . (5)

These sequences continue all the way down to π0Xs−1:

π2Xs−1
j
−→ π1Fs

k
−→ π1Xs

i
−→ π1Xs−1

j
−→ π0Fs

k
−→ π0Xs

i
−→ π0Xs−1,

and

π1Xs−1
j
−→ π0Fs

extends to an action of π1Xs−1 on π0Fs so that j is the map onto the orbit of the
basepoint of Fs under the action of π1Xs−1. Besides the usual conditions of ker = im
in the range that this makes sense, the exactness of Equation (5) means

• that the quotient of π0Fs under this action injects into π0Xs,

• that the cokernel (quotient set) of π0Fs
k
−→ π0Xs injects into π0Xs−1,

• that the stabilizer of the action of π1Xs−1 on π0Fs at the base-point of Fs is
the quotient of π1Xs by the image of π1Fs → π1Xs, and

• that π2Xs−1 maps to the center of π1Fs.

The tower of fibrations and the exact sequences above define an exact couple

D1 D1

E1

i

jk



ČECH APPROXIMATION 323

where D and E are bigraded groups:

Ds,t
1 = πt−sXs

Es,t
1 = πt−sFs.

The maps i, j, and k are of bi-degrees (−1, 1), (1,−2), and (0, 0):

i : πt−sXs → πt−sXs−1

j : πt−sXs−1 → πt−s−1Fs

k : πt−s−1Fs → πt−s−1Xs.

As usual, the exact couple gives rise to a differential d = j ◦ k on E. It is of bi-
degree (1,−2). The first derived exact couple is

πt−sX
(1)
s := Dst

2 = im(i) = im(πt−sXs+1
i
−→ πt−sXs) ⊆ πt−sXs

πt−sF
(1)
s := Est

2 = H(d) = ker(πt−sFs
k
−→ πt−sXs/ im(i))/

ker(πt−s+1Xs−1
i
−→ πt−s+1Xs−2).

When s = t, then the definition of Est
2 should be interpreted as the quotient of the

pointed set

ker(π0Fs
k
−→ π0Xs/ im(i))

by the action of ker(π1Xs−1
i
−→ π1Xs−2) ⊆ π1Xs−1. Then, the sequences

π2X
(1)
s−1

j
−→ π1F

(1)
s

k
−→ π1X

(1)
s

i
−→ π1X

(1)
s−1

j
−→ π0F

(1)
s

k
−→ π0X

(1)
s

i
−→ π0X

(1)
s−1,

are also exact in the generalized sense above.
Repeating this process, one obtains a generalized spectral sequence Es,t

1 {X∗} asso-
ciated to the tower, with

Es,t
1 = πt−sFs ⇀ πt−sX,

where Fs is the fiber ofXn → Xn−1. The differential dr is of degree (r, r − 1). See [BK,
Chapter IX]. The harpoon ⇀ means that the spectral sequence may not converge in
the usual sense. Instead, there is a filtration

QsπiX = ker(πiX → πiXs)

with successive quotients

es,t∞ = ker(Qsπt−sX → Qs−1πt−sX),

and inclusions

es,t∞ ⊆ Es,t
∞ . (6)

Write Es,t
1 ⇒ πt−sX when the spectral sequence does hold in the usual sense, in

which case equality holds in Equation (6). In this case, say that the spectral sequence
converges completely.

There is a second spectral sequence Ẽ
s,t

2 {X∗}, which is simply a re-indexed version
of the first:

Ẽ
s,t

2 = Et,2t−s
1 = πt−sFt ⇀ πt−sX.

This is derived from the exact couple
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D̃2 D̃2

Ẽ2,

i

jk

With Ẽ2 as above, and

D̃
s,t

2 = πt−sXt.

The filtration is the same:

Q̃sπiX = QsπiX,

but the successive quotients are

ẽs,t∞ = et,2t−s∞ .

Here, the differentials are also of degree (r, r − 1).
The spectral sequence and the filtration Qsπi are functorial for towers of pointed

spaces. We view the spectral sequence as including the information of the abutment
and the filtration on the abutment. Thus, a morphism of spectral sequences includes
a filtration-respecting morphism of the abutment.

Remark 2.2. Under certain conditions, these spectral sequences do converge in some
range to some of the homotopy groups of X. For instance, suppose that i > 1 and
that for each s > 0 there is an integer N(s) > 1 such that

Es,s+j
M = Es,s+j

∞ (7)

for all M > N(s) when j = i and j = i+ 1. Then, Es,t
∗ {X∗} converges to πiX. This

is also true for i = 0 when all of the homotopy sets of the spaces in the tower are
abelian groups. Again, for details see [BK, Section IX.5].

Remark 2.3. Note that in the application to K-theory, the spaces in the tower will
have homotopy sets πt which are abelian groups for all t > 0. Moreover, the con-
vergence conditions of Equation (7) will always hold under the finite cohomological
dimension conditions used in this paper.

3. Cosimplicial spaces

Definition 3.1. Let ∆ be the category of finite simplices. Objects of ∆ are non-
empty finite ordered sets, and morphisms are set morphisms that preserve order. The
category sSets of simplicial sets is the functor category Fun(∆op,Sets). In general,
if C is a category, then sC is the category Fun(∆op, C), the category of simplicial
objects in C. Objects of sSets will be called spaces. The category sSets∗ is the
category of pointed spaces.

Definition 3.2. If C is a category, then denote by cC the functor category
Fun(∆, C), the category of cosimplicial objects in C. The category of cosimplicial
spaces is the category csSets. Write csSets∗ for the category of cosimplicial pointed
spaces.



ČECH APPROXIMATION 325

Example 3.3. For a space X, let the same symbol X denote the constant cosimplicial
space n 7→ X.

Example 3.4. The cosimplicial space ∆ is the functor n 7→ ∆n, where ∆n is the stan-
dard n-simplex.

Example 3.5. Let U• be a hypercover in a site C, and let X be a presheaf of simplicial
sets on C (a presheaf of spaces). Then, XU• denotes the cosimplicial space given by
evaluating X at each level of U• in the usual way.

Definition 3.6. If F is an endofunctor of sSets, then one extends F to an endo-
functor on csSets by level-wise application. That is, for a cosimplical space X, define
F (X)n = F (Xn). The typical examples are the s-skeleton functors X 7→ X[s] and the
Ex-functor.

Definition 3.7. Let P be a property of spaces. Then, a cosimplicial space X is level
P if each space Xn is P for n > 0. Similarly, if Q is a property of morphisms of
spaces, then a morphism f : X → Y of cosimplicial spaces is level Q if fn : Xn → Y n

is Q for all n > 0.

There is a good model structure, the Reedy structure, on cosimplicial spaces. Let
X be a cosimplicial space so that Xn is a simplicial set for n > 0. A morphism
f : X → Y is a weak equivalence if each fn : Xn → Y n is a weak equivalence; that is,
if f is a level weak equivalence. The maximal augmentation of a cosimplicial space is
the simplicial set that equalizes d0, d1 : X0 → X1. A map f of cosimplicial spaces is
called a cofibration if it is a level cofibration (level monomorphism) and if it induces an
isomorphism on the maximal augmentations. The fibrations are all those morphisms
with the right lifting property with respect to acyclic cofibrations. A proof that this
is a model category may be found in [BK, Section X.5].

Example 3.8. As examples of cofibrant objects, consider ∆ and ∆[s]. Indeed, ∆0 is a
single point, and ∆1 is the 1-simplex. The coface maps d0 and d1 send the unique point
of ∆0 to the vertices 1 and 0 respectively of ∆1. Therefore, the maximal augmentation
is the empty simplicial complex. This also shows that ∆[s]→ ∆ is a cofibration.

Let X be a cosimplicial space. Then, define the nth matching object of X to be

MnX = lim←−φ:n→kX
k,

where φ runs over all surjections n→ k in ∆. There is a natural map Xn+1 →MnX.

Proposition 3.9 ([BK, Section X.4.5]). A morphism f : X → Y is a fibration if and
only if the induced map

Xn+1 → Y n+1 ×MnY MnX

is a fibration of simplicial sets for all n > −1.
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The closed model structure on cosimplicial spaces is simplicial. That is, there is a
functor

Map : csSetsop × csSets→ sSets

defined by

Map(X,Y ) : n 7→ Hom(X ×∆n, Y ).

The space Map(X,Y ) is called the function complex from X to Y . Similarly, if X
and Y are cosimplicial pointed spaces, then there is a pointed function complex

Map∗(X,Y ) ∈ sSets∗

defined by

Map∗(X,Y )n = Hom(X ∧∆n
+, Y ).

Proposition 3.10 ([BK, Section X.5]). The simplicial model category axiom SM7 is
satisfied: if A→ B is a cofibration of cosimplicial spaces and if X → Y is a fibration
of cosimplicial spaces, then

Map(B,X)→Map(A,X)×Map(A,Y ) Map(B, Y )

is a fibration.

There is a functor csSets→ csSets∗ defined by

X = (n 7→ Xn) 7→ X+ = (n 7→ Xn
+),

where Xn
+ is the space Xn with a disjoint basepoint attached.

Definition 3.11. For each integer n > 2, there is a functor

πn : csSets∗ → cAb,

where cAb is the category of cosimplicial abelian groups, defined by

πn(X)m = πn(X
m).

There are also functors, defined by the same equation,

π1 : csSets∗ → cGroups

π0 : csSets∗ → cSets∗,

where cSets∗ is the category of cosimplicial pointed sets and cGroups is the category
of cosimplicial groups.

Definition 3.12. Let A be a cosimplicial abelian group, cosimplicial group, or cosim-
plicial pointed set. A pointed cosimplicial space X is called a K(A,n)-cosimplicial
space if πnX ∼= A, while πmX ∼= ∗ for m 6= n.
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4. Spectral sequences for cosimplicial spaces

Let X be a pointed cosimplicial space. Define pointed simplicial complexes

Tot∞X = Map∗(∆+, X),

TotsX = Map∗(∆[s]+, X).

By axiom SM7 and Example 3.8, if X is fibrant, then TotsX → Tots−1X gives a
tower of pointed fibrations. The inverse limit of this tower is Tot∞X when X is
fibrant.

Definition 4.1. For an arbitrary cosimplicial pointed space X let X → HcX be a
pointed fibrant resolution. Then, the total space spectral sequence of X, T E1 X,
is defined to be the spectral sequence of the tower Tot∗HcX:

T Es,t
1 X = Es,t

1 {Tot∗HcX}⇀ πt−sTot∞HcX.

The fiber Fs of TotsHcX → Tots−1HcX and the homotopy groups of the fiber Fs

are identified in [BK, Proposition X.6.3] (see also Section 6):

Fs ≃Map∗(S
s, NXs),

where NXs is the fiber of the fibration HcX
s →Ms−1HcX; see Proposition 3.9.

Moreover,

πiNXs ∼= πiHcX
s ∩ ker s0 ∩ · · · ∩ ker ss−1,

where the maps si are the cosimplicial degeneracies:

si : HcX
s → HcX

s−1.

Therefore, there is a natural identification

T Es,t
1 X ∼= πtHcX

s ∩ ker s0 ∩ · · · ∩ ker ss−1 t > s > 0.

Note that for t > 2, T Es,t
1 X is the s-degree of the normalized cochain complex

N∗πtHcX associated to πtHcX. It is tedious but not hard to check that under this
identification, the differential d1 of the spectral sequence is chain homotopic to the
differential of the normalized cochain complex. Therefore, there are natural identifi-
cations

T Es,t
2 X ∼= Hs(N∗πtHc) ∼= Hs(C∗πtHcX) ∼= Hs(C∗πtX) t > 2, t > s > 0, (8)

where C∗πtX denotes the unnormalized cochain complex associated to the cosimpli-
cial abelian group πtX.

It is not hard to extend these identifications for t = 0 and s = 0, and for t = 1 and
s = 0, 1. For a detailed discussion, see [BK, Section X.7].

Define, for a cosimplicial abelian group A, the sth cohomotopy group for s > 0 as

πsA = Hs(C∗A).

IfG is a cosimplicial pointed set or cosimplicial group, then define π0G as the equalizer
of ∂0, ∂1 : G0 ⇉ G1. This is a group if G is.
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Similarly, define a pointed cohomotopy set π1G for G a cosimplicial group as
follows. Let

Z1G = {g ∈ G1 : (∂0g)(∂1g)−1(∂2g) = 1}.

There is an action of G0 × Z1G→ Z1G given by

(g0, g1) 7→ (∂1g0)g1(∂
0g0)

−1.

The set Z1G is pointed by the element 1 ∈ G1. Let π1G be the quotient set of Z1G
by this action, pointed by the orbit of 1 ∈ Z1G. Then, by [BK, Paragraph X.7.2],
there are natural identifications

T Es,t
2 X ∼=

{

πsπtX if t > s > 0,

0 otherwise.
(9)

There is another spectral sequence for cosimplicial spaces, which is useful whenX is
level Kan. This is the homotopy limit spectral sequence, which, in fact, exists in much
greater generality. See [BK, Chapter XI]. The main tool is a functor from cosimplicial
spaces to cosimplicial spaces called Π. Let N∆ be the nerve of the category ∆. Then
an element of N∆n is a simplex i∗ : i0 → · · · → in, where each ik is non-negative
integer, and the the arrows are order-preserving maps of the ordered sets associated
to ik: {0, · · · , k}. For X an arbitrary cosimplicial space, let ΠX denote the space
whose nth level is

ΠnX =
∏

i∗∈N∆n

Xin .

So, the nth level of ΠX is the product over all compositions i0 → in of Xin . The face
map ∂j for j < n composed with projection onto i∗ is projection onto ∂j(i∗) followed
by the identity. The face map ∂n composed with projection onto i∗ is projection onto
∂n(i∗) followed by X(in−1 → in). Similarly, the degeneracy sj followed by projection
onto i∗ is projection onto sj(i∗) followed by the identity.

The important thing about the cosimplicial replacement functor Π is that it takes
level fibrations into cosimplicial fibrations and preserves weak equivalences. See [BK,
Proposition X.5.3].

Definition 4.2. Let X be a cosimplicial pointed space. Let Ex∞X denote the cosim-
plicial pointed space obtained from X by applying the Ex∞-functor to each level.
Then, ΠEx∞X is fibrant. Define the homotopy limit spectral sequence of X,
HL E1 X, to be

HL Es,t
1 X = Es,t

1 {Tot∗ΠEx∞X}⇀ πt−sTot∞ΠEx∞X.

The space Tot∞ΠEx∞X is called the homotopy limit of X, and will be written
as holim∆ X.

Lemma 4.3. If X is a cosimplicial pointed space that is level Kan, then the natural
morphism X → Ex∞X induces an isomorphism of spectral sequences

Es,t
1 {Tot∗ΠX}

≃
→ Es,t

1 {Tot∗ΠEx∞X}.

This morphism is natural in morphisms of cosimplicial pointed level Kan spaces.
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Let X be an arbitrary pointed cosimplicial space. The functor Π can be defined
on cosimplicial objects in any category with finite products. In particular, on pointed
sets, groups, and abelian groups. There are natural isomorphisms, of cosimplicial
pointed sets for n = 0, cosimplicial groups for n = 1, and cosimplicial abelian groups
for n > 1,

πnΠX ≃ ΠπnX,

where πnX is the cosimplicial object obtained by evaluating πn at each cosimplicial
level.

For X a cosimplicial object in a category with finite products, there is an natural
morphism X → ΠX. The maps

Xn →
∏

i∗∈N∆n

Xin

are described as follows. The simplex i∗ determines a morphism (0→ 1→ · · · → n)→
in, by taking the images of 0 from each ii, 0 6 i < n. This induces the map Xn to
the product, and it extends to a cosimplicial map X → ΠX.

Proposition 4.4 ([BK, Paragraph XI.7.3]). The canonical map C∗πnX → C∗ΠπnX
is a quasi-isomorphism.

Proposition 4.5 ([BK, Paragraph XI.7.5]). If X is a fibrant cosimplicial pointed
space, then the natural morphism

T E1 X →
HL E1 X

of spectral sequences is an isomorphism.

There is also the Postnikov tower of a cosimplicial space.

Definition 4.6. Let X be a level-fibrant pointed cosimplicial space. Denote by X(n)
the level-wise application of the coskeleton functor. Then each X → X(n) and
X(m)→ X(n), m > n is a level fibration. Therefore, ΠX(m)→ ΠX(n) is a fibration
for m > n. The spectral sequence of this tower is called the Postnikov spectral

sequence for X:

P Es,t
2 X = Ẽ

s,t

2 {Tot∞ΠX(∗)} ∼= πt−sTot∞G(t) ⇀ πt−s holim
∆

X,

where G(t) is the fiber of ΠX(t)→ ΠX(t− 1). This fiber is a fibrant resolution of a
cosimplicial K(πtX, t)-space.

By [BK, Paragraphs XI.7.2-3], there are natural isomorphisms

πt−sTot∞G(t) ≃ πsπtX

for t > s > 0. Thus,
HL Es,t

2 X ∼= P Es,t
2 X.

In fact, this isomorphism comes from an isomorphism of spectral sequences.
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Theorem 4.7. Let X be level Kan. Then, there is a natural isomorphism φ of spectral
sequences

φ :HL E2 X →
P E2 X

from the homotopy limit spectral sequence beginning with the E2-page to the Postnikov
tower spectral sequence.

Proof. Recall that to create an isomorphism of spectral sequences that come from
exact couples

I D2
I D2

I E2,

i

jk

II D2
II D2

II E2

i

jk

it suffices to create a morphism of exact couples that is an isomorphism just on the
E-terms:

φ :I E2
≃
→ II E2.

Indeed, this is enough to guarantee that the morphism induces an isomorphism on
H(E) and a morphism of the derived couples. So, it follows inductively that this is
sufficient.

Since X is level Kan, there is a double tower of fibrations, of which a typical square
is

Tots+1ΠX(t− 1) ←−−−− Tots+1ΠX(t)




y





y

TotsΠX(t− 1) ←−−−− TotsΠX(t).

These fit into a bigger diagram

Tot∞ΠX(t− 1) ←−−−− Tot∞ΠX(t) ←−−−− Tot∞ΠX




y





y





y

Tots+1ΠX(t− 1) ←−−−− Tots+1ΠX(t) ←−−−− Tots+1ΠX




y





y





y

TotsΠX(t− 1) ←−−−− TotsΠX(t) ←−−−− TotsΠX.

(10)

The horizontal inverse limits are TotsΠX, and the vertical limits are Tot∞ΠX(t).
Thus the homotopy limit spectral sequence comes from the tower of fibrations at
the horizontal limit, while the Postnikov spectral sequence comes from the tower
of fibrations at the vertical limit. Define F (s+ 1) to be the fiber of Tots+1ΠX →
TotsΠX, and define G(t) be the fiber of Tot∞ΠX(t)→ Tot∞ΠX(t− 1).
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First, construct a morphism

HL Ds,t
2 = im(πt−sTots+1ΠX → πt−sTotsΠX)→ P Ds,t

2 = πt−sTot∞ΠX(t).

Let [x] ∈ HL Ds,t
2 be represented by x : St−s → Tots+1ΠX → TotsΠX. By adjunc-

tion, view this as

x : ∆[s]+ ∧ St−s → ∆[s+ 1]+ ∧ St−s → ΠX.

To create the morphism, one must “lift” this to a morphism φ(x) : ∆+ ∧ St−s →
ΠX(t). The morphism x consists of a compatible collection of morphisms

xn,i∗ : ∆n[s]+ ∧ St−s → ∆n[s+ 1]+ ∧ St−s → Xin ,

one for each i∗ ∈ N∆n. The key point underlying the details below is that Xin(t) is a
Kan complex and also has trivial homotopy groups πkX

in(t) when k > t. At various
points one needs to make choices to extend maps. These need to be compatible with
the cosimplicial structure. At any given point, this will involve finitely many choices
differing in simplicial degrees greater than t. Thus, it will always be possible to make
the choices compatibly.

Define

φ(x)0,i∗ : ∆0[r]+ ∧ St−s → Xi0(t)

for all r and i∗ ∈ N∆0 as the composition

∆0
+ ∧ St−s = ∆0[s+ 1]+ ∧ St−s x0,i∗

−−−→ Xi0 → Xi0(t).

Since the coskeleton map is a functor, this definition is functorial.

Now, suppose that

φ(x)h,i∗ : ∆h
+ ∧ St−s → Xih(t),

is defined for 0 6 h 6 k and all i∗ ∈ N∆h, compatible with all coface and codegen-
eracy maps in this range. In other words, suppose that we have defined compatible
maps

φ(x)h,∗ : ∆h
+ ∧ St−s → ΠhX(t)

for 0 6 h 6 k. If i∗ ∈ N∆k+1 is degenerate, then define

φ(x)k+1,i∗ : ∆k+1
+ ∧ St−s → Xik+1(t)

by forcing the diagram

∆k+1
+ ∧ St−s φ(x)k+1,i∗

−−−−−−−→ Xik+1(t)

sj





y

∥

∥

∥

∆k
+ ∧ St−s φ(x)k,i′

∗

−−−−−→ Xik+1(t)

to be commutative for every j such that sj(i
′
∗) = i∗ for some i′∗ ∈ N∆k. Making these

simultaneously commutative for all choices of j is possible because of the simplicial
relations si ◦ sj = sj+1 ◦ si for i 6 j.
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If i∗ ∈ N∆k+1 is not degenerate, then the cosimplicial structure requires that the
diagrams

∆k
+ ∧ St−s φ(x)k,∂j(i∗)

−−−−−−−→ Xik+1(t)

∂j





y

∥

∥

∥

∆k+1
+ ∧ St−s φ(x)k+1,i∗

−−−−−−−→ Xik+1(t)

for 0 6 j < k and

∆k
+ ∧ St−s φ(x)k,∂k(i∗)

−−−−−−−−→ Xik(t)

∂k





y

X(ik+1→ik)





y

∆k+1
+ ∧ St−s φ(x)k+1,i∗

−−−−−−−→ Xik+1(t)

be commutative. In other words, the map φ(x)k+1,i∗ is determined on ∂∆k+1
+ ∧ St−s.

Thus, to make the inductive step, one must fill in the dashed line so that the
diagram

∆k+1[s+ 1]+ ∧ St−s Xik+1

∆k+1
+ ∧ St−s Xik+1(t)

∂∆k+1
+ ∧ St−s

xk+1,i∗

φ(x)k+1,i∗

is commutative. If s > k, then ∆k+1[s+ 1]+ = ∆k+1
+ , so there is nothing to do. If

s < k, then ∆k+1[s+ 1]+ ∧ St−s ⊆ ∂∆k+1
+ ∧ St−s, and the outer square commutes

by induction. Therefore, it suffices for the dashed arrow to commute in the bot-
tom triangle. As s < k, the arrow ∂∆k+1

+ ∧ St−s → Xik+1 corresponds to a map
Sk+t−s+1 → Xik+1(t). But, k + t− s+ 1 > t. Hence, πk+t−s+1X

ik+1(t) = 0. As X(t)
is a Kan complex, such a fill exists (see [GJ, page 35]).

Choose a fill for all choices of i∗. This completes the induction, giving

φ(x)∗ : ∆∗+ ∧ St−s → Π∗X(t),

for 0 6 ∗ 6 k + 1. The process outlined earlier in the proof gives a base case. So,
induction provides the desired map

φ(x) : ∆+ ∧ St−s → Π∗X(t).

If y is another morphism St−s → Tots+1ΠX representing the class [x], then it is
straightforward, using a similar inductive argument, to lift a homotopy between x
and y to a homotopy between φ(x) and φ(y) so that the map is well-defined on the
level of homotopy groups. Thus, the construction above determines a well-defined the
map φ :HL Ds,t

2 →
P Ds,t

2 .
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It is easy to see that φ commutes with i. Indeed, on HL D2, i is given by restric-
tion from ∆[s] to ∆[s− 1]. On P D2, i is given by mapping X(t)→ X(t− 1). Now,
composing φ(x) with ΠX(t) gives a map that solves the lifting problem to define
φ(i(x)):

∆[s− 1]+ ∧ St−s i(x)
−−−−→ ΠX





y

∥

∥

∥

∆[s]+ ∧ St−s x
−−−−→ ΠX





y

∥

∥

∥

∆[s+ 1]+ ∧ St−s −−−−→ ΠX




y





y

∆+ ∧ St−s φ(x)
−−−−→ ΠX(t)

∥

∥

∥





y

∆+ ∧ St−s φ(i(x))
−−−−→ ΠX(t− 1).

Therefore, φ commutes with i.
Extend φ to HL E2 by lifting

x : St−s → F (s)

to

x : St−s → Tots+1ΠX

and applying φ (recall the description in Section 2 of E2). In other words, apply k
and then φ. This defines an element of P Ds,t

2 , and, by construction, φ(x) actually
factors through the fiber G(t). Indeed, since

x : ∆[s+ 1] ∧ St−s → ΠX

comes from the fiber Fs, it restricts to the trivial map on

∆[s− 1] ∧ St−s.

Therefore, x is trivial on the t− 1-skeleton. Extending this to a map

x : ∆ ∧ St−s → ΠX(t)

as above does not change this, so that when one composes with ΠX(t)→ ΠX(t− 1),
the map is homotopic to the constant map on the basepoint. To check that this
determines a well-defined map on E2-terms for t− s > 0, one must check that if

x = y + j(z),

where z ∈ ker(πt−s+1Xs−1 → πt−s+1Xs−2) and

x, y ∈ ker(πt−sF (s)→ πt−sXs/i(πt−sXs+1)),

then φ(x) = φ(z). The equation x = y + j(z) makes sense for t− s > 1 and for t− s =
1, since π2Xs−1 → π1Fs lands in the center of π1Fs (recall Construction 2.1). But,
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since

φ(j(z)) = φ(k(j(z))) = φ(0),

it follows that this definition of φ on HL E2, for t− s > 0 is indeed well-defined. When
t− s = 0, it is necessary to show that if x, y ∈ ker(π0F (s)→ π0Xs/i(π0Xs+1)) and
z ∈ ker(π1Xs−1 → π1Xs−2) are such that x = z · y, then φ(x) = φ(y). However, the
equation x = z · y implies that k(x) = k(y), since π0F (s)→ π0Xs factors through
the quotient onto the set of orbits of π0F (s) under the action of π1Xs−1 (Construc-
tion 2.1). Thus, φ(x) = φ(k(x)) = φ(k(y)) = φ(y).

It remains only to check that φ respects j. Again, let [x] ∈ πt−sTotsΠX be repre-
sented by

x : ∆[s+ 1]+ ∧ St−s → ΠX.

Recall that j([x]) is obtained by the map

πt−sTots+1ΠX → πt−s−1F (s+ 2),

given by lifting a horn

∆[s+ 1]+ ∧ Λs−t
i,+ → ∆[s+ 1]+ ∧ Ss−t → ΠX

to

∆[s+ 2]+ ∧∆s−t
+ → ΠX

and then restricting to the ith face to obtain

∆[s+ 2]+ ∧ St−s−1 → ΠX,

which by adjunction is in πt−s−1F (s+ 2). Lift

∆[s+ 2]+ ∧∆s−t
+ → ΠX

as above to a map

∆+ ∧∆s−t
+ → ΠX(t+ 1).

By construction, it maps down to

φ(x) : ∆+ ∧ St−s → ΠX(t),

while the restriction to ∆+ ∧ St−s−1 is in the fiber G(t+ 1). Therefore, φ commutes
with j.

To prove that φ is injective on E2, let x ∈
HL Es,t

2 be represented by

x : ∆[s+ 1]+ ∧ St−s → ΠX,

and let

φ(x) : ∆+ ∧ St−s → ΠX(t)

factor through G(t). Suppose that φ(x) is homotopic to the constant map in G(t),
and let

y : ∆1
+ ∧∆+ ∧ St−s → G(t)→ ΠX(t)

be such a homotopy. It is possible to find an extension
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∆1
+ ∧∆[s]+ ∧ St−s ΠX

∆1
+ ∧∆+ ∧ St−s ΠX(t)

y

giving a homotopy between x and the constant map by definition of the coskeleton
ΠX(t). Therefore, φ is injective on E2.

To show that φ is surjective on E2, let

y : St−s → G(t)

be represented by

∆+ ∧ St−s y
−−−−→ ΠX(t)





y





y

∗ −−−−→ ΠX(t− 1).

A lift x for the diagram

∆n[s− 1]+ ∧ St−s ∗

∆n[s]+ ∧ St−s

∆n[s+ 1]+ ∧ St−s Xin

∆n
+ ∧ St−s Xin(t)

∗ Xin(t− 1)

y

x

exists by definition for n 6 s. For n > s, the top quadrilateral means that the map

∆n[s]+ ∧ St−s → Xin

is a diagram of t− s-spheres in ΩsXin , and finding a lift x is the same as saying
that this class is 0 in πt−sΩ

sXin . But, the map y in the diagram says that this class
is 0 in πt−sΩ

sXin(t). Once again, by definition of the coskeleton functor, it follows
that it is already 0 in πt−sΩ

sXin . Now, arguing as above, one may inductively choose
extensions in the diagram to create an element x of HL Es,t

2 such that φ(x) = y.
Therefore, φ is also surjective on E2.

Remark 4.8. This theorem does not appear to be new. Indeed, it appears that Thoma-
son was aware of it: see [T, page 542, Paragraph 3]. However, we know of no reference
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for a proof. It in fact holds in the greater generality of presheaves of simplicial sets
on small categories.

Corollary 4.9. Suppose that X is a level Kan cosimplicial pointed space. If one of
the spectral sequences

HL E1 X ⇀ πt−s holim
∆

X

P E2 X ⇀ πt−s holim
∆

X.

converges, then both do, and the filtrations HLQs and PQs coincide on π∗ holim∆ X.

5. The Čech approximation

Let C be a Grothendieck site with terminal object U . Denote by Pre(C) the cate-
gory of presheaves on C, and write sPre(C) for the category of simplicial presheaves.

We use the following closed model category structure on simplicial presheaves,
called the local model category structure. The cofibrations are the pointwise cofibra-
tions. Thus, X → Y is a cofibration if and only if X(V )→ Y (V ) is a monomorphism
for every object V of C. For an object V of C, there is a site with terminal object
C/V . Each presheaf on C restricts to a presheaf on C/V . For a simplicial presheaf
X, an object V of C, and a basepoint x ∈ X(V )0, there are presheaves of homotopy
groups πp

k(X|V, x):

(f : W → V ) 7→ πk(|X(W )|, f∗(x)),

where |X(W )| denotes the geometric realization of the simplicial set X(W ). Let
πk(X|V, x) be the associated homotopy sheaf. Call w : X → Y a weak equivalence if
it induces an isomorphism of homotopy sheaves

πk(X|V, x)
≃
→ πk(Y |V,w(x))

for all choices of V , all basepoints x of X(V ), and all k > 0. The fibrations are all
maps having the right lifting property with respect to all cofibrations that are simul-
taneously weak equivalences (the acyclic cofibrations). That this is a simplicial closed
model category is due to Joyal; for a proof, see Jardine’s paper [J]. Refer to these
classes of morphisms more specifically as global fibrations, global cofibrations,
and local weak equivalences.

Theorem 5.1 (Dugger-Hollander-Isaksen [DHI]). If X is a simplicial presheaf, and
if V• → V is a hypercover in C, then let XV• denote the cosimplicial space associated
to V•. There is a canonical augmentation X(V )→ XV• . The simplicial presheaf X
is globally fibrant if and only if

X(V )→ holim
∆

XV•

is a weak equivalence for all hypercovers V• → V in C.

There are other types of morphisms, namely pointwise weak equivalences and
pointwise fibrations. A pointwise weak equivalence is a morphism f : X → Y such
that X(V )

∼
→ Y (V ) is a weak equivalence of simplicial sets for all objects V of C.

Two pointwise weak equivalent sheaves are local weak equivalent, and two local weak
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equivalent fibrant presheaves are pointwise weak equivalent. A pointwise fibration is
a morphism f : X → Y such that every f : X(V )→ Y (V ) is a fibration of simpli-
cial sets. Say that X is pointwise Kan or pointwise fibrant if X → ∗ is a pointwise
fibration

Note that if a simplicial presheaf is pointed, then the homotopy presheaves and
sheaves above may be defined globally.

Let F be a functor from simplicial sets to simplicial sets such that F (∅) = ∅, or
from pointed simplicial sets to pointed simplicial sets such that F (∗) = ∗. If X is
a simplicial presheaf, denote by FX the pointwise application of F to X, so that
(FX)(V ) = F (X(V )) for all V . For instance, below, coskn X will be the pointwise n-
coskeleton of X. If F preserves weak equivalences of simplicial sets, then it preserves
local weak equivalences of simplicial presheaves. This is the case, for instance, for the
coskeleta functors and for the Ex functor. In particular, one may always replace X
with the pointwise weakly equivalent presheaf Ex∞X, which is pointwise Kan.

Definition 5.2. If X is a presheaf of pointed spaces, and if X → HX is a pointed
fibrant resolution of X, then HX is called the hypercohomology space of X.
Hypercohomology sets, groups, and abelian groups are defined by

H
s(U,X) = πsΓ(U,HX).

Definition 5.3. LetX be a presheaf of pointed simplicial sets on C, and letX → HX
be a pointed fibrant resolution. Finally, let X(n) be a pointed fibrant resolution of
coskn HX so that X(n)→ X(n− 1) is a global fibration for all n > 0. Then, the
Brown-Gersten spectral sequence associated to X is the Ẽ2-spectral sequence
(see Section 2) associated to the tower of fibrations

Γ(U,X(n))→ Γ(U,X(n− 1)).

That is, define the Brown-Gersten spectral sequence as

BG Es,t
2 X = Ẽ

s,t

2 {Γ(U,X(∗))}⇀ πt−s lim
←

Γ(U,X(n)).

This is also called the descent spectral sequence.

Lemma 5.4 ([GS]). Suppose that the site C is locally of finite cohomological dimen-
sion. Then, the natural morphism

Γ(U,HX)→ lim
←

Γ(U,X(n))

is a weak equivalence for all objects U whenever X is locally weak equivalent to a
product of a constant pointed space and a connected space.

In the situation of the lemma, write the Brown-Gersten spectral sequence as

BG E2 X ⇀ H
t−s(U,X).

For instance, the lemma holds for presheaves of Quillen K-theory spaces on the étale
sites of schemes of finite étale cohomological dimension.

The theorem of Dugger-Hollander-Isaksen, Theorem 5.1, says that the natural map

Γ(U,X(n))→ Tot∞ΠX(n)U•

is an isomorphism whenever U• → U is a hypercover, and X(n)U• denotes the cosim-
plicial space obtained by evaluating X(n) at each level of U•.
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Definition 5.5. Let U• be a hypercover of an object U of C. Let X be a simplicial
presheaf. Then, let XU• denote the cosimplicial space one gets by evaluating X at
U•. The Čech hypercohomology of X on U• is defined as

Ȟ
s(U•, X) = πsTot∞HcXU• .

Definition 5.6. The Čech hypercohomology spectral sequence associated to
X and U• → U is the total space spectral sequence associated to HcXU• :

U
•

E1 X =T E1 XU• .

By Equation (8), the E2-terms for the corresponding spectral sequence are natu-
rally identified with

Es,t
2 ≃ Ȟ

s
(U•, πp

tX),

as desired.
There is a natural morphism from Čech hypercohomology to hypercohomology

induced by a natural morphism

Tot∞HcXU• → Γ(U,HX). (11)

This morphism is the composition of

Tot∞HcXU• → Tot∞HcΠ
∗XU• = Tot∞Π∗XU• → Tot∞Π∗(HX)U•

with the inverse of the local weak equivalence (Theorem 5.1)

Γ(U,HX)
∼
→ Tot∞Π∗(HX)U• .

Theorem 5.7. Let X be a pointed simplicial presheaf, and let U• → U be a hyper-
cover. There is a natural morphism

U
•

E2 X →
BG E2 X

from the Čech hypercohomology spectral sequence to the Brown-Gersten spectral
sequence, which on E2-terms is the natural map

Ȟ
s
(U•, πp

tX)→ Hs(U, πtX),

and which respects the morphism on abutments of Equation (11).

Proof. One may assume, possibly by applying the Ex∞ that X is pointwise Kan.
Therefore, XU• is a level Kan cosimplicial pointed space. Then, the space ΠXU• is
fibrant, so that there is a natural morphism

HcXU• → ΠXU•

making the diagram

XU• ΠXU•

HcXU•
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commutative. This induces a morphism of total space spectral sequences

U
•

E2 X →
T E2 HcXU• → HL E2 XU• (12)

There is a morphism
HL E2 XU• → HL E2(HX)U• (13)

induced by X → HX. Theorem 4.7 furnishes an isomorphism

HL E2(HX)U•

≃
→ P E2(HX)U• . (14)

Again, the fibrant replacement coskn HX → X(n) induces a morphism

P E2(HX)U• → Ẽ
s,t

2 {Tot∞ΠX(n)U•}. (15)

Finally, the result of Dugger-Hollander-Isaksen [DHI] says that the natural morphism

BG E2 X → Ẽ
s,t

2 {Tot∞ΠX(n)U•} (16)

is in fact an isomorphism.
The theorem follows by taking the composition of the morphisms of Equations (12),

(13), (14), and (15), and the inverse of the morphism of Equation (16).

6. Differentials in the holim spectral sequence

Lemma 6.1 ([BK, Proposition X.6.3.i]). Take X to be a fibrant pointed cosimplicial
space. There are equivalences F (s) ≃Map∗(S

s, NXs), where F (s) is the fiber of
TotsX → Tots−1X, and NXs is the fiber of the fibration Xs →Ms−1X.

Sketch of proof. Let β : ∆n → F (s). By adjunction, this is a morphism

∆[s]+ ∧∆n
+

β
−→ X

such that the restriction to ∆[s− 1]+ ∧∆n
+ factors through the base-point. In par-

ticular, the level s picture is a map of pointed spaces ∆s
+ ∧∆n

+ → Xs such that
the restriction to the s− 1-skeleton on the left ∆s[s− 1]+ ∧∆n

+ factors through the
base-point of Xs. Therefore, this is a morphism Ss ∧∆n

+ → X. That is, β determines
an n-simplex of Map∗(S

s, Xs). However, the degeneracy siβ : ∆s−1[s]+ ∧∆n
+ →

Xs−1 factors through ∆s−1[s− 1]+ ∧∆n
+ and so is trivial. Therefore the n-simplex of

Map∗(S
s, Xs) actually lives in Map∗(S

s, NXs). Conversely, suppose that γ is an
n-simplex of Map∗(S

s, NXs). Again, by adjunction, view this as a map Ss ∧∆n
+ →

NXs → Xs. Extend this as follows into a map ∆[s]+ ∧∆n
+ → X. The lift of γ to

∆s
+ ∧∆n

+ is the s-level of this morphism. Since λ factors through ∗ for any degener-
acy on ∆s, let ∆k[s]+ ∧∆n

+ → ∗ → Xk for k < s. If k > s, use the following diagram:

∆s[s]+ ∧∆n
+

β
−−−−→ Xs

∂





y
∂





y

∆k[s]+ ∧∆n
+

∂◦β◦s
−−−−→ Xk

s





y

s





y

∆s[s]+ ∧∆n
+

β
−−−−→ Xs,

(17)
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where the face map ∂ (resp. the degeneracy map s) is some composition of face (resp.
degeneracy) maps such that the vertical compositions are the identity. This defines
the extension inductively on the faces of ∆k[s]. But, one need only define it up to
faces, since k > s. This gives us an n-simplex of TotsX. Clearly, these constructions
are mutually inverse.

It is not hard, using this identification, to show that the homotopy groups of F (s)
are the groups of the normalized cochain complexes associated to X. That is

πt−sF (s) ≃ πt−sMap∗(S
s, NXs) ≃ πtX

s ∩ ker s0 ∩ · · · ∩ ker ss−1,

where ker si is ker(si : πtX
s → πtX

s−1). See [BK, Proposition X.6.3].

The differentials in the homotopy limit spectral sequence are those of the spectral
sequence associated to a tower of fibrations. In particular, they arise from trying to
lift simplices to higher and higher levels of the tower. The recipe is as follows: let

· · · → Xs+1 → Xs → Xs−1 → · · ·

be a tower of fibrations, and let δ : St → Xs−1 be a homotopy class. Writing St as
the quotient of ∆t by its boundary, we get a map ∆t → Xs−1 that is trivial on the
boundary ∂∆t. We can obviously then map any horn Λt

i to Xs by sending it to the
base-point. Then, there is a lifting problem

Λt
i −−−−→ Xs





y





y

∆t −−−−→ Xs−1.

Since the map on the right is a fibration, we do get a lift to a map ∆t → Xs. However,
it may no longer map the boundary of ∆t to the base-point of Xs. Instead, the ith
face determines a map ∆t−1 → Xs that is trivial on the boundary. The corresponding
class in πn−1F (s) is the obstruction to lifting the homotopy class of δ to a homotopy
class on Xs.

Below, the tower of fibrations is the total space tower associated to a fibrant
cosimplicial space (see Section 3).

Remark 6.2. We briefly indicate how to show that d1 is homotopic to the cochain
differential on the normalized cochain complex for πtX. Let β this time represent a
class in πt−sMap∗(S

s, NXs). This determines a corresponding map Ss ∧ St−s → Xs.
Extending this, one gets a map ∆[s]+ ∧ St−s → X. Lift this, using some horn Λt−s

i ,
to a map ∆[s+ 1]+ ∧∆t−s

+ → X. On ∆[s]+ ∧∆t−s
+ this agrees with β. Restricting

to the ith face of ∆t−s, one gets a map ∆[s+ 1]+ ∧ St−s−1 → X. Then, look at just
∆s+1

+ ∧ St−s−1 → Xs+1, and check that one lands in the fiber. The reason that this

agrees with the alternating sum d = Σ(−1)idi is that the simplices ∆s+1
+ ∧∆t−s

+ →
Xs+1 give a homotopy between d(β) and d1(β).

Construction 6.3. Let δ : St → Xs represent a class [δ] of πsπtX, where t− s > 0,
and suppose that δ factors as δ : St−s →Map∗(S

s, NXs). That is, suppose that δ
represents [δ] in the normalized chain complex. Then, as in the proof of Lemma 6.1,
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extend δ to a map

δ′ : ∆[s]+ ∧∆t−s
+ → X.

Now, the restriction of this map to ∆[s]+ ∧ ∂∆t−s
+ factors through the base-point.

Choosing a horn Λt−s
i ⊂ ∂∆t−s and the map ∆[s+ 1]+ ∧

(

Λt−s
i

)

→ ∗ → X, one gets,
using the fact that Tots+1X → TotsX is a fibration, a lift to a map

γ : ∆[s+ 1]+ ∧∆t−s
+ → X

such that the following diagram commutes

∆[s+ 1]+ ∧∆t−s
+

γ
−−−−→ X

x





∥

∥

∥

∆[s]+ ∧∆t−s
+

δ
′

−−−−→ X.

The fact that δ represents a homotopy class implies, by Remark 6.2, that the restric-
tion of γ to

∆s+1
+ ∧ ∂i∆

t−s
+ → Xs+1

is contractible in Map∗(S
s+1, NXs+1). Therefore, one can replace γ by a homotopic

map γ′ such that the restriction to γ′ : ∆[s+ 1]+ ∧ ∂∆t−s
+ → X factors through the

base-point. Thus, one can repeat the process, using a trivial map

∆[s+ 2]+ ∧
(

Λt−s
j

)

+
→ ∗ → X,

to get a lift ǫ : ∆[s+ 2]+ ∧∆t−s
+ → X, using some horn Λt−s

j . The differential d2([δ])

is the class of ǫ : ∆s+2
+ ∧ ∂j∆

t−s
+ → Xs+2 in πs+2πt−s−1X.

Note the following, which will be an aid to making the extensions described above.
We claim that to extend ∆[s]+ ∧∆t−s

+ → X to ∆[s+ 1]+ ∧∆t−s
+ it is sufficient to

describe the extension of ∆s+1[s]+ ∧∆t−s
+ → Xs+1 to ∆s+1

+ ∧∆t−s
+ . Indeed, make

the same argument as in the proof of Lemma 6.1, especially the argument using
Diagram (17).

7. Description of d2 for the Čech spectral sequence

The descriptions of the differentials above translate into the following theorem in
the setting of the Čech approximation.

Theorem 7.1. Let X be a presheaf of pointed simplicial sets on the site C, and let
U• : VA → UI → U be a 1-hypercover in C. Thus, for α ∈ A, V α

ij → Uij is a covering
morphism, where Uij = Ui ×U Uj. Then, for t > 0, the differentials

d2 : Ȟ
0
(U•, πtX)→ Ȟ

2
(U•, πt+1X)

can be described as follows. An element [δ] of Ȟ
0
(U•, πtX) is represented by a map

δ : St → X0
U• =

∏

i∈I

X(Ui)
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such that δi is homotopic to δj on V α
ij for every i, j, α. Pick a specific based homotopy

yαij : δi → δj

on V α
ij . This data determines a map ∂∆2

+ ∧∆t
+ → X2

U• such that on each face of

∆2, the component in X(V αβγ
ijk ) is one of the homotopies yαij, y

β
jk, or yγki. Then, let

Λt
n ⊆ ∆t be a horn, and let

∆2
+ ∧∆t

+ → X2
U•

be a fill of the horn. Then, the restriction to

∆2
+ ∧ ∂n∆t

+

is in the class of d2([δ]).

Proof. The proof follows immediately from Construction 6.3 and Definition 5.6.

8. Divisibility theorem

In this section, the Čech spectral sequence is used to study the differentials dα2 in
the Brown-Gersten spectral sequence of twisted algebraic K-theory.

To a class α ∈ H2(Uét,Gm), one associates a stack Projα of α-twisted coherent
sheaves locally free and of finite rank. This is a stack of exact categories. The pointwise
K-theory of this stack will be written Kα, where

Kα(V ) = KQ(ProjαV ) = BQ(ProjαV ),

for V → U , and where BQ(ProjαV ) is the classifying space of Quillen’s category
Q(ProjαV ) [Q]. The homotopy presheaves are

Kα
k : V 7→ πk+1K

α(V ),

and the associated sheaves are Kα
k . The differentials of the Brown-Gersten spectral

sequence associated to Kα are written dαr . The idea of an α-twisted sheaf was appar-
ently created by Giraud [G], and was revived in the thesis of Căldăraru [C]. For a
modern geometric approach, see Lieblich [L]. In the context of K-theory, see [A].

Let Kα,ét = HKα be a fibrant replacement for Kα in the local model category
of presheaves of spaces on Uét. When U is of finite cohomological dimension, the
Brown-Gersten spectral sequence of Kα,

Es,t
2 = Hs(Uét, πtK

α) = Hs(Uét,K
α
t−1)⇒ πt−sK

α,ét(U),

converges strongly to the homotopy of Kα,ét.

Definition 8.1. In [A], natural isomorphisms Kα
k
≃
→ Kk are given. It follows that,

for U geometrically connected, H0(Uét,K
α
0 )
≃
→ Z. The étale index of α, denoted by

eti(α), is defined to be the smallest integer n ∈ H0(Uét,K
α
0 ) such that dαk (n) = 0 for

all k > 2. In other words, eti(α) is the generator of

E0,1
∞ ⊆ H0(Uét,K

α
0 ) = H0(Uét, π1K

α).

Equivalently, eti(α) is the positive generator of the image of the rank mapK
α,ét
0 (U)→

Z. The period of α, denoted by per(α), is the order of α in H2(Uét,Gm).
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Remark 8.2. In general, if X is a presheaf of spaces, then the differentials leaving
H0(U, π0X) in the Brown-Gersten spectral sequence for X are all zero. This is why
we use BQ(Projα) instead of ΩBQ(Projα) as our model for K-theory. Of course, one
can stabilize the argument and work with presheaves of spectra. But, that argument
requires another level of complexity which we wished to avoid.

A key ingredient of our main theorem is the following lemma, which allows us
to identify the critical lift in the description of d2 in the Čech spectral sequence for
twisted K-theory. First, some notation.

Let E be an exact category, let Mi, i = 0, 1, 2, be objects of E, and let θij : Mi →
Mj be isomorphisms for θ01, θ12, and θ20. Then, the Mi determine loops in BQE,
that is, elements of π1BQE. Recall here that the base-point of BQE is the zero object
of E. The isomorphisms θij determine homotopies of the loops. We are thus in the
position of having a map ∂∆2

+ ∧∆1
+ → BQE. Use the horn Λ1

0 ⊆ ∆1 to create a lift
∆2

+ ∧∆1
+ → BQE. Then, ∆2

+ ∧ ∂0∆1
+ → BQE is an element of π2BQE, say σ.

Lemma 8.3. The element σ ∈ π2BQE is the same as the class of π2BQE canoni-
cally associated to the automorphism θ20 ◦ θ12 ◦ θ01 of M0.

Proof. Each face ∂n∆2
+ ∧∆1, i.e., each homotopy θij , corresponds to map

θij : S
2 −

(

D1 ∨D1
)

→ BQE,

where the restriction of θij to the first (resp. second) boundary disc is Mi (resp.
Mj). Let X = S2 −

(

D1 ∨D1
)

. Then, together, θ01 and θ12 induce a map from the
connected sum of X with itself glued alongM1. This connected sum is itself homotopy
equivalent to X. Throwing θ20 into the picture, we get two maps X → BQE which
on one disc boundary are M0 and on the second are M2. Thus, they induce a map
from the connected sum of X with itself along the figure eight S1 ∨ S1. But, this
connected sum is homotopy equivalent to S2. The homotopy class of this map is σ.

Now we check that σ agrees with the automorphism of M0 above.

Recall that the categoryQE consists of the same objects as E but has as morphisms
from L to N the collection of diagrams L և M →֒ N , where և and →֒ denote admis-
sible surjections and injections in E, modulo isomorphisms of such diagrams which
are equalities on L and N .

An element M of E gives rise to an element rM in K0(E). As a based loop in
BQE, this is constructed as the composition of iM : 0 և 0 →֒M with the inverse of
qM : 0 և M →֒M . See [S].

As explained in [S, pp. 43-45], an exact sequence 0→ L →֒M ։ N → 0 in E
corresponds to a choice of homotopy between rM and rL · rN . This homotopy is
constructed explicitly in ibid. as a map from the 2-sphere with a wedge sum of three
discs removed, where the boundaries of these discs are the correctly oriented r∗.

In particular, given an isomorphism θ : L
≃
→M , we get a map

aθ : S2 −
(

D1 ∨D1 ∨D1
)

→ BQE

with three discs removed. Since θ is an isomorphism, one of those discs can be filled
in in BQE, and we get a map X → BQE. So, the map from the punctured S2 is just
a proof of the equality [L] = [M ] in K0(E).
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When θ : L
≃
→ L, the map aθ is a map from X to BQE whose restrictions to the

two boundary discs is the same. Thus, aθ induces a map S2 → BQE. This is the
element of π2BQE associated to θ.

In our situation of the Mi and the θij , we have maps aθij : X → BQE. Looking at
the construction of these maps, it is easy to see that aθ12◦θ01 : X → BQE is homo-
topic to gluing the two maps aθ01 and aθ12 along their common boundary circle M1.
Similarly, gluing aθ20 to aθ12◦θ01 along M2 is homotopic to

a = aθ20◦θ12◦θ01 .

As identified above, since a agrees on its two boundary circles, a induces a map
S2 → BQE that is homotopic to σ. But, this map is also the map associated to the
automorphism θ20 ◦ θ12 ◦ θ01 of M0, so the lemma follows.

Construction 8.4. We describe how to reconstruct the class α ∈ H2(Uét,Gm) from
the stack Projα. The rank 1 objects of Projα form a Gm-gerbe, Picα. Recall from [G,
Section IV.3.4] or [B, Theorem 5.2.8] the following procedure. First, one takes a cover
U of U such that there is an object of Li ∈ PicαUi

for all i. Second, choose isomorphisms

σi : Aut(Li)
≃
→ Gm|Ui

,

Third, pick isomorphisms

θαij : Li
≃
→ Lj

on a suitable refinement 1-hypercover VA → UI → U . The composition

θδki ◦ θ
β
jk ◦ θ

α
ij

is an element of Aut(Li)(Z
αβδ
ijk ), where

Zαβδ
ijk = V α

ij ×Uj
V β
jk ×Uk

V δ
ik.

Then,

σi(θ
δ
ki ◦ θ

β
jk ◦ θ

α
ij) ∈ Gm(Zαβδ

ijk )

defines a 2-cocycle in Gm which is in the same cohomology class as α.

Theorem 8.5. Suppose that U is geometrically connected and quasi-separated. Let
α ∈ H2(Uét,Gm). Then, dα2 ([1]) = α, through the natural isomorphism

H2(Uét,K
α
1 )
≃
→ H2(Uét,K1)

≃
→ H2(Uét,Gm).

Proof. Let α ∈ H2(Uét,Gm) be defined by a Čech cocycle α̌ ∈ Ȟ
2
(U•,Gm) for a hyper-

cover V → U → U . Using Theorem 5.7, in order to prove the theorem, it suffices to
prove that d2([1]) = α̌ in the Čech approximation spectral sequence associated to U•.
(The existence of such a hypercover is where the quasi-separated hypothesis is used;
see [AGV, Theorem V.7.4.1].) Let

Zαβδ
ijk = V α

ij ×Uj
V β
jk ×Uk

V δ
ik.

We may represent [1] ∈ Ȟ
0
(U•,Kα

0 ) by an α-twisted line bundle Li on each Ui of U
•.



ČECH APPROXIMATION 345

A homotopy from Li to Lj is just an isomorphism

θαij : Li|V α
ij

≃
→ Lj |V α

ij
,

where such an isomorphism exists, up to possibly refining the hypercover U•. Then,
by Theorem 7.1 and Lemma 8.3, the class of the automorphism

θδki ◦ θ
β
jk ◦ θ

α
ij

of Li|Zαβδ

ijk

in Kα
1 (Z

αβδ
ijk ) is the Zαβδ

ijk -component of dα2 ([1]).

The α-twisted line bundles Li on Ui induce pointwise weak equivalences of K-

theory presheaves φi : K
α|Ui

≃
→ K|Ui

by tensor product with L−1i . As shown in [A],
these local morphisms patch to create natural isomorphisms of K-theory sheaves

φi : K
α
k
≃
→ Kk,

and of K-cohomology groups, in particular of

H2(Uét,K
α
1 )
≃
→ H2(Uét,K1).

Define σi by fixing an isomorphism

σi : Li ⊗ L
−1
i
≃
→ Gm|Ui

,

possibly refining U•. Then, the diagram

Aut(Li)
σi,∗
−−−−→ Gm|Ui





y





y

Kα
1 (Ui)

φi
−−−−→ K1(Ui)

is commutative, where σi,∗ is the natural isomorphism induced by σi.
The diagram and Construction 8.4 imply that dα2 ([1]) maps to the image of α̌ in

the map Ȟ
2
(U•,Gm)→ Ȟ

2
(U•,K1).

Remark 8.6. There is a more sophisticated version of this theorem which uses the K-
theory ring spectrum K. Then the Kα are module spectra over this ring spectrum.
In this situation, the descent spectral sequence for Kα is a module over the descent
spectral sequence for K, and thus, if x ∈ Hs(Uét,K

α
t ), we may write x = 1α ∪ y, with

y ∈ Hs(Uét,Kt) and 1 ∈ H0(Uét,K
α
0 ) the generator. Thus,

dα2 (x) = dα2 (1α) ∪ x± 1α ∪ d2(y) = α ∪ x± 1α ∪ d2(y).

So, all of the differentials in the E2-page are determined by the theorem and the
differentials of the descent spectral sequence for K.

Theorem 8.7 (Divisibility). Let U be geometrically connected and quasi-separated.
If α ∈ H2(Uét,Gm), then

per(α)|eti(α).

Proof. This follows immediately from Theorem 8.5. Indeed, since dα2 ([1]) = α, it fol-
lows that per(α) generates E0,1

3 ⊆ H0(Uét,Z) in the Brown-Gersten spectral sequence.
Therefore, the generator of E0,1

∞ belongs to the subgroup per(α) ·Z. In other words,
per(α) divides eti(α).
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Remark 8.8. In [KL], there is an Atiyah-Hirzebruch spectral sequence in étale motivic
cohomology

Hp−q
ét (X,Z(−q))⇒ Két

−p−q(A),

where A represents a class α ∈ Br(X). Kahn and Levine show [KL, Proposition 6.9.1]
that

d2([1]) = α

in H3
ét(X,Z(1)) = Br(X).

Similarly, in [AS], in the Atiyah-Hirzebruch spectral sequence

Hp(X,Z(q/2))⇒ KUp−q(X)α

converging to twisted topological K-theory, it is shown [AS, Proposition 4.6] that

d3([1]) = α

in H3(X,Z). Note that, to be precise, the statement in the paper of Atiyah-Segal
gives a spectral sequence for α-twisted topological K-theory and the differential is
d3([1]) = −α. However, their construction of α-twisted topological K-theory is in
some sense dual to ours, which explains the difference in sign. This distinction is
discussed in [ABG, Section 5].

9. Index and étale index

Let k be a field of finite etale cohomological dimension. Then the main result of [A]
is that

eti(α)|per(α)[
d
2 ], (18)

for all α ∈ Br(k) having period not divisible by a few small primes. Define e(k) to be
the smallest integer such that

eti(α)|per(α)e(k)

for all α ∈ Br(k) whose period is not divisible by the characteristic of k. Such an
integer exists by [A, Theorem 6.10]. Moreover, Theorem 8.7 says that e(k) > 1. Recall,
in the notation of the introduction, the group

Fα = K
α,ét
0 (k)(0)/Kα

0 (k)
(0).

Its order is ind(α)
eti(α) .

Definition 9.1. Say that the field k has property Bn if Fα is of order at most per(α)n

for all α ∈ Br(k).

Proposition 9.2. Let k be a field of finite etale cohomological dimension d, and let
e(k) be the integer defined above. Then, the period-index conjecture holds for k if k
has property Bd−1−e(k). If the period-index conjecture holds for k, then k has property
Bd−2.
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Proof. Fix α ∈ Br(k). Then, eti(α)|per(α)e(k). If the order of Fα is at most

per(α)d−1−e(k),

then,

ind(α)|eti(α)d−1−e(k),

whence the first statement. To prove the second statement, it suffices to note that

ind(α)

eti(α)
6

per(α)d−1

per(α)
,

by the period-index conjecture and Theorem 8.7.

Question 9.3. If the period-index conjecture holds for k does it imply that k has
property Bd−1−e(k)?

Remark 9.4. The proposition is interesting because it reveals a connection between
the period-index conjecture and étale descent for (twisted) K-theory.

Remark 9.5. We do not know the integer e(k) for any fields besides 2-dimensional
fields where the period-index conjecture is known, in which case e(k) = 1. Our guess
is that it is as big as possible, namely [d2 ]. Some evidence for this may be that the fields

such as k = C((t1)) · · · ((td)) have ind(α)|per(α)[
d
2 ], so it is natural to ask whether

eti(α) = ind(α) for these fields. This is a line of inquiry we are currently pursuing.
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Inc., Boston, MA, 1996.
[T] Robert W. Thomason, Algebraic K-theory and étale cohomology, Ann. Sci. École Norm. Sup.
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