
Homology, Homotopy and Applications, vol. 13(1), 2011, pp.59–74

HOMOLOGY AND CENTRAL EXTENSIONS OF
LEIBNIZ AND LIE n-ALGEBRAS
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Abstract
From the viewpoint of semi-abelian homology, some recent

results on homology of Leibniz n-algebras can be explained cate-
gorically. In parallel with these results, we develop an analogous
theory for Lie n-algebras. We also consider the relative case: ho-
mology of Leibniz n-algebras relative to the subvariety of Lie
n-algebras.

1. Introduction

In his article [5], Casas studied a homology theory for Leibniz n-algebras [9] based
on Leibniz homology [22, 23]. The definition of homology used there exploits the
remarkable properties of the so-called Daletskii–Takhtajan functor

dn−1 : nLb → 2Lb = Lb

from the category of Leibniz n-algebras to the category of Leibniz 2-algebras, i.e.,
ordinary Leibniz algebras. Among other results, the author obtained a Hopf formula
expressing the second homology of a Leibniz n-algebra as a quotient of commutators.
Later, using Čech derived functors [12], Casas, Khmaladze and Ladra characterised
the higher homology vector spaces in terms of higher Hopf formulae [8].

Even though Lie n-algebras are very close to Leibniz n-algebras, it is not easy to
extend these results from the Leibniz case to the Lie case, because presently a suitable
functor—i.e., a functor with properties similar to dn−1—from the category nLie of
Lie n-algebras to the category 2Lie = Lie of Lie algebras is missing.
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In this article we study the problem from a different point of view which does allow
us to easily carry over results from the Leibniz case to the Lie case. First we refor-
mulate the known results on homology of Leibniz n-algebras in terms of categorical
Galois theory, and then we can use the same proofs to compute the homology of Lie
n-algebras.

It was shown in the article [8] that the homology of Leibniz n-algebras from [5]
coincides with their Quillen homology. Since this Quillen homology is equivalent to
comonadic homology relative to the comonad induced by the forgetful/free adjunc-
tion to Set, and since the categories of Leibniz and Lie n-algebras are semi-abelian
varieties, the theory introduced in [14] applies to this situation. Hence the higher
Hopf formulae obtained in [8] may be computed using higher-dimensional central
extensions [14] instead of Čech derived functors. In principle, the only difficulty now
lies in giving an explicit characterisation of the m-fold central extensions of Leibniz
n-algebras. It turns out, however, that such an explicit characterisation is not hard
to find at all. Moreover, this characterisation is easily adapted to work in the case of
Lie n-algebras.

Structure of the text

In the following section we recall the basic ideas behind semi-abelian homology
with, in particular, the approach based on categorical Galois theory and higher-
dimensional central extensions. Section 3 treats homology of Leibniz and Lie
n-algebras from this perspective. It contains a characterisation ofm-fold central exten-
sions (Propositions 3.1 and 3.2), a Galois-theoretic proof of the higher Hopf formulae
obtained in [8] (Theorem 3.3) and its corresponding version for the Lie case. Section 4
is devoted to the homology theory which arises when the reflector from nLb to nLie
is derived. We characterise the central extensions of Leibniz n-algebras relative to
the subvariety nLie (Propositions 4.2 and 4.3) and obtain a Hopf style formula for
the relative homology (Theorem 4.4). The final Section 5 contains some results on
the universal central extensions induced by these three homology theories and on the
relations between them: Propositions 5.1, 5.5 and 5.6.

2. Preliminaries

We sketch the basic ideas behind the theory of higher central extensions in semi-
abelian categories.

2.1. Semi-abelian categories

We shall be using techniques which were developed in the general framework of
semi-abelian categories. Here it suffices to recall that a category is semi-abelian
when it is pointed, Barr exact and Bourn protomodular with binary coproducts [21].
In this context there is a suitable notion of short exact sequence, and the basic
homological lemmas such as the Snake Lemma and the 3× 3 lemma are valid [2].
Furthermore, homology of simplicial objects is well-behaved, so that Barr and Beck’s
definition of comonadic homology [1] may be extended as explained in Subsection 2.3
below [15]:

We write Ker f : K[f ] → B for the kernel of a morphism f : B → A.
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2.2. Leibniz and Lie n-algebras

The two principal examples of semi-abelian categories we shall meet in this article
are the categories of Leibniz and Lie n-algebras. Throughout the text, we fix a natural
number n > 2 and a ground field K.

Recall that a Leibniz n-algebra [9] consists of a K-vector space L with an addi-
tional n-ary operation [−, . . . ,−] that is n-linear and satisfies the fundamental identity

[[l1, . . . , ln], l
′
1, . . . , l

′
n−1] =

∑
16i6n

[l1, . . . , li−1, [li, l
′
1, . . . , l

′
n−1], li+1, . . . , ln], (A)

for all l1, . . . , ln, l′1, . . . , l
′
n−1 ∈ L. By n-linearity, [−, . . . ,−] induces a linear map

L⊗n → L usually called the bracket of L.

Since the underlying vector space L is, in particular, an (abelian) group, the cate-
gory nLb of Leibniz n-algebras is a variety of Ω-groups and as such, Leibniz n-algebras
form a semi-abelian category with enough projectives. The notions of (n-sided) ideal,
quotient, etc. considered in [5] coincide with the categorical notions of normal sub-
object, cokernel, etc.

A Lie n-algebra [16] is a skew-symmetric Leibniz n-algebra, i.e., it is a vector
space L equipped with a linear map [−, . . . ,−] : L⊗n → L that satisfies the iden-
tity (A) as well as the further identity

[l1, . . . , ln] = sgn(σ)[lσ(1), . . . , lσ(n)]

called skew symmetry. Here l1, . . . , ln are elements of L, σ ∈ Sn is a permutation
of {1, . . . , n} and sgn(σ) ∈ {−1, 1} is the signature of σ. The category nLie of Lie
n-algebras, being a subvariety of nLb, is a semi-abelian variety. In order to recover
the case of Lie algebras for n = 2, we assume that the characteristic of the ground
field K is not equal to 2.

2.3. Comonadic homology

Let A be a category and B a semi-abelian category. Let I : A → B be a functor
and G a comonad on A . If A is an object of A and m > 0, then

Hm+1(A, I)G = HmNIGA

is the (m+ 1)-st homology object of A with coefficients in I relative to G.
Here N : SB → ChB denotes the Moore functor, which maps a simplicial object S
to its normalised chain complex NS. It has objects

NnS =
n−1∩
i=0

K[∂i : Sn → Sn−1]

for n > 0, N0S = S0 and NnS = 0 for n < 0, and boundary operators

dn = ∂n◦
∩
i

Ker ∂i : NnS → Nn−1S

for n > 1. As shown in [15, Theorem 3.6], the boundary operators dn are always
proper—their images are kernels—so that computing the homology of NS makes
sense.
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The simplicial object GA is part of the simplicial resolution of A induced by the
comonad

G = (G : A → A , δ : G ⇒ G2, ε : G ⇒ 1A )

on A . Putting

∂i = GiεGn−iA : Gn+1A → GnA, σi = GiδGn−iA : Gn+1A → Gn+2A,

for 0 6 i 6 n, gives the sequence (Gn+1A)n>0 the structure of a simplicial object
GA of A . It has an augmentation εA : GA → A; this augmented simplicial object
(GA, εA : GA → A) is the canonical G-simplicial resolution of A.

If A is a semi-abelian variety and B is a subvariety of A , then one may consider
the canonical comonad G on A induced by the forgetful/free adjunction to Set, the
category of sets, and one may take I to be the left adjoint to the inclusion functor.
For instance, every variety of Ω-groups (i.e., every variety of universal algebras that
has amongst its operations and identities those of the variety of groups and just one
constant [17]) is semi-abelian. Hence a choice of a subvariety here induces a canonical
homology theory.

The main result of [14] gives an interpretation of such a homology theory in terms
of higher Hopf formulae. The technique used to obtain these Hopf formulae is based on
categorical Galois theory, with, in particular, the theory of higher central extensions.
We recall some of the basic concepts; see [14] for more details.

2.4. Higher arrows, higher extensions, higher presentations
For any m > 1, let 〈m〉 denote the set {1, . . . ,m}; write 〈0〉 = ∅. The set 2〈m〉 of

all subsets of 〈m〉, ordered by inclusion, is considered as a category in the usual way:
an inclusion I ⊆ J in 〈m〉 corresponds to a map !IJ : I → J in 2〈m〉.

Let A be a semi-abelian category. The functor category Fun(2〈m〉,A ) is denoted
ArrmA . The objects of this category are called m-fold arrows in A (m-cubes
in [4, 8, 12]). We write fI for f(I) and f I

J for f(!IJ). When, in particular, I is ∅
and J is a singleton {j}, we write fj = f∅

{j}.

Any (m+ 1)-fold arrow f may be considered as a morphism between m-fold ar-
rows as follows: if B denotes the restriction of f to 〈m〉 and A is its restriction to
{I ⊂ 〈m+ 1〉 | m+ 1 ∈ I}, then f is a natural transformation from B to A, i.e., a
morphism f : B → A in ArrmA .

An m-fold arrow f is called an extension (exact m-cube in [4, 8, 12]) if, for
all I ( 〈m〉, the induced morphism fI → limJ⊃I fJ is a regular epimorphism. This
notion of extension is easily seen to coincide with the one defined inductively in [14].
In particular, a one-fold extension (usually just called extension) is a regular epi-
morphism in A , and a two-fold extension (usually called a double extension) is a
pushout square. The full subcategory of ArrmA determined by the m-fold extensions
is denoted ExtmA . When m > 1 this category is generally no longer semi-abelian, so
concepts such as exact sequences, etc. will be considered in the semi-abelian cate-
gory ArrmA instead. We further write ExtA = Ext1A and ArrA = Arr1A .

Given an object A of A , an m-extension f is said to be an m-fold presentation
of A (a free exact m-presentation of A in [4, 8, 12]) when f〈m〉 = A and fI
is projective for all I ( 〈m〉. In the varietal case, canonical presentations may be
obtained through truncations of canonical simplicial resolutions.
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2.5. Higher central extensions
A Birkhoff subcategory [20] of a semi-abelian category is a full and reflective

subcategory which is closed under subobjects and regular quotients. For instance, a
Birkhoff subcategory of a variety of universal algebras is the same thing as a subvari-
ety. Given a semi-abelian category A and a Birkhoff subcategory B of A , we denote
the induced adjunction

A
I ,2
⊥ B.
⊃

lr (B)

Together with the classes of extensions in A and B, this adjunction forms a Galois
structure in the sense of Janelidze ([3]; see also [19]). The coverings with respect to
this Galois structure are the central extensions introduced in [20] (see Section 2.7
below for an explicit definition). These central extensions in turn determine a re-
flective subcategory CExtBA of ExtA , which together with the appropriate classes
of double extensions again forms a Galois structure. The coverings with respect to
this Galois structure are called double central extensions. This process may be
repeated ad infinitum, on each level inducing an adjunction

ExtmA
Im ,2
⊥ CExtmBA
⊃

lr (C)

between the m-fold extensions in A and the m-fold central extensions in A . In
order to understand the higher Hopf formulae, we need an explicit description of those
higher central extensions. We now sketch how, in general, the functors Im work.

2.6. Dimension zero
For every object A of A , the adjunction (B) induces a short exact sequence

0 ,2 [A]B
µA ,2 A

ηA ,2 IA ,2 0.

Here the object [A]B, defined as the kernel of ηA, acts as a zero-dimensional commu-
tator relative to B. Of course, IA = A/[A]B, so that A is an object of B, if and only
if [A]B is zero. We shall also write L0[A] for this object [A]B.

2.7. Dimension one
An extension f : B → A in A is central with respect to B or B-central if and

only if the restrictions [f0]B, [f1]B : [R[f ]]B → [B]B of the kernel pair projections
f0, f1 : R[f ] → B coincide. This is the case precisely when [f0]B and [f1]B are iso-
morphisms, or, equivalently, when the kernel Ker [f0]B : L1[f ] → [R[f ]]B of [f0]B is
zero.

L1[f ]

Ker [f0]B

��

��

0 ,2 [R[f ]]B
µR[f] ,2

[f0]B

��
[f1]B

��

R[f ]

f0

��
f1

��

ηR[f] ,2 IR[f ]

If0

��
If1

��

,2 0

0 ,2 [B]B µB

,2 B ηB

,2 IB ,2 0
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Through the composite f1◦µR[f ]◦Ker [f0]B the object L1[f ] may be considered as
a normal subobject of B. It acts as a one-dimensional commutator relative to B
and, if K denotes the kernel of f , it is usually written [K,B]B. One computes the
centralisation I1f of f , i.e., its reflection into the subcategory CExtBA of ExtA ,
by dividing out this commutator. This yields a morphism of short exact sequences

0 ,2 L1[f ] ,2

[f ]CExtBA

��

B ,2

f

��

B
[K,B]B

,2

I1f

��

0

0 ,2 A ,2 A ,2 0

in A which may be considered as a short exact sequence

0 ,2 [f ]CExtBA

µ1
f ,2 f

η1
f ,2 I1f ,2 0

in ExtA . A crucial point here is that the extension [f ]CExtBA , which is to be divided
out of the extension f to obtain I1f , is completely determined by an object L1[f ]
in A . This remains true in all higher dimensions.

2.8. Higher dimensions
For any m > 1, it may be shown that the object [f ]CExtmBA in the short exact

sequence

0 ,2 [f ]CExtmBA

µm
f ,2 f

ηm
f ,2 Imf ,2 0 ,

induced by the centralisation of an m-fold extension f via the adjunction (C), is zero
everywhere except in its “top object” Lm[f ] = ([f ]CExtmBA )∅. In parallel with the
case m = 1, this object Lm[f ] of A acts as an m-dimensional commutator which may
be computed as the kernel of the restriction of (f0)∅ : R[f ]∅ → B∅ to a morphism
Lm−1[R[f ]] → Lm−1[B]. Likewise, an m-fold extension f is central if and only if the
induced morphisms

(f0)∅, (f1)∅ : Lm−1[R[f ]] → Lm−1[B]

of A coincide.

3. Central extensions and homology

In this section we characterise the m-fold central extensions of Leibniz and Lie
n-algebras (Propositions 3.1 and 3.2). We use this characterisation to give a Galois-
theoretic proof of the higher Hopf formulae for Leibniz n-algebras obtained in [8]
(Theorem 3.3) and to extend these formulae to Lie n-algebras.

3.1. The adjunction to vector spaces
Any K-vector space L may be considered as a Leibniz n-algebra by equipping it

with the trivial bracket: [l1, . . . , ln] = 0 for l1, . . . , ln ∈ L. The image of this inclusion
Vect → nLb consists precisely of the abelian Leibniz n-algebras: those that admit an
internal abelian group structure. Proving this fact is not difficult and is analogous
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to the case of rings [2, Example 1.4.10]. Hence the left adjoint abnlb : nLb → Vect to
this inclusion is the abelianisation functor; it may be described as follows.

Given n ideals N1, . . . ,Nn of a Leibniz n-algebra L, we shall denote by [N1, . . . ,Nn]
the commutator ideal of L generated by the elements [l1, . . . , ln], where either
(l1, . . . , ln) or any of its permutations is in N1 × · · · ×Nn. In case N2 = · · · = Nn = L,
the subspace of L generated by those elements is automatically an ideal. Clearly, a
Leibniz n-algebra L is abelian if and only if [L, . . . ,L] is zero; hence, for any L in

nLb, its reflection abnlb(L) into Vect is L/[L, . . . ,L].

The theory for Lie n-algebras is almost literally the same as in the Leibniz
n-algebra case. The abelianisation functor for Leibniz n-algebras restricts to a func-
tor abnlie : nLie → Vect which is left adjoint to the inclusion functor. Given n ideals
N1, . . . ,Nn of a Lie n-algebra L, by skew symmetry the object [N1, . . . ,Nn] is the
ideal of L generated by the brackets [l1, . . . , ln] for all l1 ∈ N1, . . . , ln ∈ Nn (here no
further permutations of (l1, . . . , ln) are necessary). Again, a Lie n-algebra L is abelian
if and only if [L, . . . ,L] is zero; hence, for any L in nLie, its reflection abnlie(L) into
Vect is L/[L, . . . ,L].

3.2. Central extensions

The central extensions induced by the adjunction of nLb to Vect are the ones we
expect them to be, i.e., the ones introduced in [7]:

Proposition 3.1. In nLb, an extension f : B → A with kernel K is central if and
only if the ideal [K,B . . . ,B] is zero. Hence, in any case, the object L1[f ] is equal to
this ideal of B.

Proof. By definition, the extension f is central if and only if the restrictions of the
kernel pair projections f0, f1 to the brackets

[R[f ], . . . , R[f ]] → [B, . . . ,B]

coincide.

This latter condition implies

[b1, . . . , bn] = f0[(b1, b1), . . . , (bi−1, bi−1), (bi, 0), (bi+1, bi+1), . . . , (bn, bn)]

= f1[(b1, b1), . . . , (bi−1, bi−1), (bi, 0), (bi+1, bi+1), . . . , (bn, bn)]

= [b1, . . . , bi−1, 0, bi+1, . . . , bn] = 0

for any b1, . . . , bn ∈ B with bi ∈ K. Hence when f is central [K,B, . . . ,B] is zero.

Now let [(b1, b1 + k1), . . . , (bn, bn + kn)] be a generator of [R[f ], . . . , R[f ]]; here
b1, . . . , bn ∈ B and k1, . . . , kn ∈ K. Then

f0[(b1, b1 + k1), . . . , (bn, bn + kn)] = [b1, . . . , bn],

while also

f1[(b1, b1 + k1), . . . , (bn, bn + kn)] = [b1 + k1, . . . , bn + kn] = [b1, . . . , bn]

since the bracket is n-linear and [K,B, . . . ,B] is zero. This implies that f is a central
extension.
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3.3. Higher central extensions
Using essentially the same proof as in Proposition 3.1, this result may be extended

to higher dimensions and to Lie n-algebras as follows.

Proposition 3.2. Consider m > 1. An m-fold extension f : B → A in nLb is central
if and only if the object ∑

I1∪···∪In=〈m〉

[∩
i∈I1

K[fi], . . . ,
∩
i∈In

K[fi]
]

(D)

is zero. Hence, in any case, it is equal to Lm[f ]. When f is an m-fold extension in

nLie, its centrality is determined by precisely the same expression.

Proof. We give a proof of the Leibniz case by induction on m. Since the case m = 1
was considered in Proposition 3.1, we may suppose that the result holds for m− 1.
Hence the m-extension f is central if and only if the restrictions of the kernel pair
projections f0, f1 to morphisms∑

I1∪···∪In

=〈m−1〉

[∩
i∈I1

K[R[f ]i], . . . ,
∩
i∈In

K[R[f ]i]
]
→

∑
I1∪···∪In

=〈m−1〉

[∩
i∈I1

K[Bi], . . . ,
∩
i∈In

K[Bi]
]

coincide. In what follows, the arguments given for generators may easily be extended
to general elements.

Suppose that the latter condition holds, let I1 ∪ · · · ∪ In be a partition of 〈m〉 and
consider [k1, . . . , kn] in [∩

i∈I1

K[fi], . . . ,
∩
i∈In

K[fi]
]
⊂ f∅.

Suppose that m ∈ Ij . Then kj ∈ K[fm], so that

[(k1, k1), . . . , (kj−1, kj−1), (kj , 0), (kj+1, kj+1), . . . , (kn, kn)]

is in R[f ]∅; in fact, it is easily seen to be an element of[∩
i∈I1

K[R[f ]i], . . . ,
∩

i∈Ij\{m}

K[R[f ]i], . . . ,
∩
i∈In

K[R[f ]i]
]
.

Hence

[k1, . . . , kn] = (f0)∅[(k1, k1), . . . , (kj−1, kj−1), (kj , 0), (kj+1, kj+1), . . . , (kn, kn)]

= (f1)∅[(k1, k1), . . . , (kj−1, kj−1), (kj , 0), (kj+1, kj+1), . . . , (kn, kn)]

= [k1, . . . , kj−1, 0, kj , . . . , kn] = 0,

which proves that (D) is zero.
Conversely, suppose that (D) is zero, let I1 ∪ · · · ∪ In be a partition of 〈m− 1〉 and

consider [(b1, b1 + k1), . . . , (bn, bn + kn)] in[∩
i∈I1

K[R[f ]i], . . . ,
∩
i∈In

K[R[f ]i]
]
;

here b1, . . . , bn ∈ B∅ and k1, . . . , kn ∈ K[fm]. Now

(f0)∅[(b1, b1 + k1), . . . , (bn, bn + kn)] = [b1, . . . , bn],
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while also

(f1)∅[(b1, b1 + k1), . . . , (bn, bn + kn)]

= [b1 + k1, . . . , bn + kn]

= [b1, b2 + k2, . . . , bn + kn] + [k1, b2 + k2, . . . , bn + kn]

= [b1, b2, b3 + k3, . . . , bn + kn] + [b1, k2, b3 + k3, . . . , bn + kn]

= · · · = [b1, . . . , bn]

since (D) is zero.

3.4. Homology

In his article [5], Casas studied a homology theory for Leibniz n-algebras based
on Leibniz homology [22, 23]. The latter homology theory is extended to Leibniz
n-algebras via the Daletskii–Takhtajan functor [11]

dn−1 : nLb → 2Lb = Lb,

which takes a Leibniz n-algebra L and maps it to the Leibniz algebra dn−1(L) with
underlying vector space L⊗(n−1) and bracket

[l1 ⊗ · · · ⊗ ln−1, l
′
1 ⊗ · · · ⊗ l′n−1] =

∑
16i6n−1

l1 ⊗ · · · ⊗ [li, l
′
1, . . . , l

′
n−1]⊗ · · · ⊗ ln−1.

It is explained in [5] that the underlying vector space of a Leibniz n-algebra L always
carries a structure of dn−1(L)-corepresentation. By definition, the m-th homology
of L is

nHLm(L) = HLm(dn−1(L),L),

i.e., the homology of the associated Leibniz algebra dn−1(L) with coefficients in the
dn−1(L)-corepresentation L.

Among other results, in [5] a Hopf formula expressing the first homology of a Leib-
niz n-algebra as a quotient of commutators is obtained (it is the first homology rather
than the second homology due to a dimension shift caused by this particular defi-
nition). Later Casas, Khmaladze and Ladra also characterised the higher homology
vector spaces in terms of Hopf formulae [8].

In the latter article it is also shown that this concept of homology for Leibniz
n-algebras coincides with the Quillen homology [8, Theorem 4]. On the other hand,
the category nLb, being a semi-abelian variety, admits a canonical homology theory,
namely the comonadic homology with coefficients in the abelianisation functor, rel-
ative to the canonical comonad G on nLb. Since both may be expressed as Quillen
homology, up to a dimension shift the two homology theories coincide:

Hm+1(L, abnlb)G ∼= nHLm(L),

for all L in nLb andm > 0. As such, the standard techniques of semi-abelian homology
are available, and Proposition 3.2 combined with [14, Theorem 8.1] provides us with
an alternative proof for Theorem 17 in [8]. Furthermore, this result now extends
trivially to Lie n-algebras, as follows.



68 J.M. Casas, E. Khmaladze, M. Ladra and T. Van der Linden

Theorem 3.3 (Hopf type formula for absolute homology). Consider m > 1. If f is
an m-fold presentation of a Leibniz n-algebra L, then

Hm+1(L, abnlb)G ∼=
[f∅, . . . , f∅] ∩

∩
i∈〈m〉 K[fi]∑

I1∪···∪In=〈m〉

[∩
i∈I1

K[fi], . . . ,
∩

i∈In
K[fi]

] .
When f is an m-fold presentation of a Lie n-algebra L, the same expression gives
Hm+1(L, abnlie)H, where H is the canonical comonad on nLie.

4. The relative case

Now we consider the homology theory which arises when the reflector from nLb to

nLie is derived. We characterise the central extensions of Leibniz n-algebras relative
to the subvariety nLie (Propositions 4.2 and 4.3) and obtain a Hopf style formula for
the relative homology (Theorem 4.4).

4.1. The Liesation of a Leibniz n-algebra
The inclusion of nLie into nLb has a left adjoint, called the Liesation functor

and denoted

nlie : nLb → nLie.

Let L be a Leibniz n-algebra. Given a permutation σ ∈ Sn and elements l1, . . . , ln ∈ L,
we write

〈l1, . . . , ln〉σ = [l1, . . . , ln]− sgn(σ)[lσ(1), . . . , lσ(n)].

Note that for any given σ, 〈l1, . . . , ln〉σ is n-linear in the variables l1, . . . , ln and thus
determines a linear map 〈−, . . . ,−〉σ : L⊗n → L. Given n ideals N1, . . . ,Nn of L, we
write 〈N1, . . . ,Nn〉 for the ideal of L generated by all elements 〈l1, . . . , ln〉σ, where
l1 ∈ N1, . . . , ln ∈ Nn and σ ∈ Sn. We call this object the relative commutator of
N1, . . . ,Nn. Since a Leibniz n-algebra L is a Lie n-algebra if and only if the relative
commutator 〈L, . . . ,L〉 is zero, the functor nlie maps the algebra L to the quotient
L/〈L, . . . ,L〉. Thus we obtain a commutative triangle of left adjoint functors:

nLb
nlie ,2

abnlb
�$?

??
??

??
??

nLie

abnlie
z���

��
��

��
�

Vect.

In case n = 2 we regain the triangle of adjunctions considered in [10].

Remark 4.1. Since any permutation may be expressed as a composite of transposi-
tions, the relative commutator 〈L, . . . ,L〉 is generated by those brackets [l1, . . . , ln]
in L, where li = li+1 for some 1 6 i 6 n− 1.

4.2. Relative central extensions
We are now ready to characterise the central extensions of Leibniz n-algebras

relative to the subvariety of Lie n-algebras. This is an extension of the case n = 2
considered in [10].
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Proposition 4.2. An extension of Leibniz n-algebras f : B → A with kernel K is
central with respect to nLie if and only if the ideal 〈K,B, . . . ,B〉 is zero.

Proof. The extension f is central if and only if the restrictions of the kernel pair
projections f0, f1 : R[f ] → B to morphisms

〈R[f ], . . . , R[f ]〉 → 〈B, . . . ,B〉

coincide.
If x1 ∈ K and x2, . . . , xn ∈ B, then y1 = (x1, 0), y2 = (x2, x2), . . . , yn = (xn, xn)

are all elements of R[f ]. Moreover, for all σ ∈ Sn,

〈x1, . . . , xn〉σ = f0〈y1, . . . , yn〉σ,

while also

f1〈y1, . . . , yn〉σ = 〈0, x2, . . . , xn〉σ = 0.

Hence f being central implies that 〈K,B, . . . ,B〉 = 0.
Conversely, any generator of 〈R[f ], . . . , R[f ]〉 may be written as

〈(b1, b1 + k1), . . . , (bn, bn + kn)〉σ
for some b1, . . . , bn ∈ B, k1, . . . , kn ∈ K and σ ∈ Sn. Now if the ideal 〈K,B, . . . ,B〉 is
zero, then 〈b1, . . . , bn〉σ, the image of this generator through f0, is equal to its image
through f1, since by n-linearity of 〈−, . . . ,−〉σ,

〈b1 + k1, b2 + k2, . . . , bn + kn〉σ
= 〈b1, b2 + k2, . . . , bn + kn〉σ + 〈k1, b2 + k2, . . . , bn + kn〉σ
= 〈b1, b2 + k2, . . . , bn + kn〉σ = · · · = 〈b1, . . . , bn〉σ.

This proves that the extension f is central.

In case n = 2, 〈K,B〉 = 0 if and only if K ⊆ ZLie(B), so we recover the characteri-
sation given in [10] for central extensions relative to Lie.

4.3. Higher relative central extensions
Using the ideas from the proof of Proposition 4.2, it is now easy to adapt the proof

of Proposition 3.2 to the relative case so that the following characterisation of m-fold

nLie-central extensions is obtained:

Proposition 4.3. Consider m > 1. An m-fold extension f : B → A in nLb is central
with respect to nLie if and only if the object∑

I1∪···∪In=〈m〉

〈∩
i∈I1

K[fi], . . . ,
∩
i∈In

K[fi]
〉

is zero.

This now implies

Theorem 4.4 (Hopf type formula for Leibniz n-algebras vs. Lie n-algebras). Con-
sider m > 1. If f is an m-fold presentation of a Leibniz n-algebra L, then there exists
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an isomorphism

Hm+1(L, nlie)G ∼=
〈f∅, . . . , f∅〉 ∩

∩
i∈〈m〉 K[fi]∑

I1∪···∪In=〈m〉

〈∩
i∈I1

K[fi], . . . ,
∩

i∈In
K[fi]

〉 .
In case n = 2 and m = 1 this formula takes the usual shape

H2(L, lie)G ∼=
〈F,F〉 ∩ R

〈R,F〉
for

0 ,2 R ,2 F ,2 L ,2 0

any free presentation of the Leibniz algebra L.

5. Universal central extensions

Let A be a semi-abelian category and B a Birkhoff subcategory of A . Let I
denote the reflector from A to B. An object A of A is called perfect with respect
to B when IA is zero. For instance, a Leibniz n-algebra L is perfect with respect to
Vect if and only if L = [L, . . . ,L], and L is perfect with respect to nLie if and only
if L = 〈L, . . . ,L〉. A Lie n-algebra L is perfect with respect to Vect if and only if
L = [L, . . . ,L].

A B-central extension u : U → A is called universal when for every B-central
extension f : B → A there exists a unique map f : U → B such that f◦f = u. An
object A admits a universal B-central extension if and only if it is B-perfect, in
which case this universal B-central extension uI

A : U(A, I) → A is constructed as
follows [10]: given a 1-presentation f : B → A with kernel K, the object U(A, I) is
the quotient [B,B]B/[K,B]B, and u is the induced morphism.

The results from [10] on universal central extensions in semi-abelian categories
now particularise to the following generalisation of the case n = 2 treated in the same
paper.

Proposition 5.1. A Vect-central extension of Leibniz n-algebras u : U → L is uni-
versal if and only if H2(U, abnlb)G = H1(U, abnlb)G = 0. Similarly, a Vect-central
extension of Lie n-algebras u : U → L is universal if and only if H2(U, abnlie)H =
H1(U, abnlie)H = 0.

A Leibniz n-algebra L is perfect with respect to Vect if and only if L admits a
universal Vect-central extension

uabnlb
L : U(L, abnlb) → L

with kernel H2(L, abnlb)G. A Lie n-algebra L is perfect with respect to Vect if and only
if it admits a universal Vect-central extension uabnlie

L : U(L, abnlie) → L with kernel
H2(L, abnlie)H.

The following explicit construction of the universal Vect-central extension of a
Vect-perfect Leibniz n-algebra was obtained in [6].
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Construction 5.2. Let L be a Leibniz n-algebra. We write U for the quotient of the
vector space L⊗n by the subspace spanned by the elements of the form

[l1, . . . , ln]⊗ l′2 ⊗ · · · ⊗ l′n −
∑

16i6n

l1 ⊗ · · · ⊗ [li, l
′
2, . . . , l

′
n]⊗ · · · ⊗ ln.

The vector space U inherits a structure of Leibniz n-algebra by means of the n-ary
bracket

[l11 ∗ · · · ∗ l1n, . . . , ln1 ∗ · · · ∗ lnn] = [l11, . . . , l
1
n] ∗ · · · ∗ [ln1 , . . . , lnn],

where l1 ∗ · · · ∗ ln ∈ U denotes the equivalence class of l1 ⊗ · · · ⊗ ln ∈ L⊗n. If L is a
Vect-perfect Leibniz n-algebra, then by [6, Theorem 5] we have that the morphism
of Leibniz n-algebras

u : U → L : l1 ∗ · · · ∗ ln 7→ [l1, . . . , ln]

is a universal Vect-central extension of L.

It may be modified to the following explicit construction—which does not use free
objects—of the universal Vect-central extension of a perfect Lie n-algebra.

Construction 5.3. Let L be a Lie n-algebra. We write U for the quotient of the
vector space L⊗n by the subspace spanned by the elements of the form

[l1, l2, . . . , ln]⊗ l′2 ⊗ · · · ⊗ l′n −
∑

16i6n

l1 ⊗ l2 ⊗ · · · ⊗ [li, l
′
2, . . . , l

′
n]⊗ · · · ⊗ ln

and all

l1 ⊗ l2 ⊗ · · · ⊗ ln with li = li+1 for some i ∈ {1, . . . , n− 1}.

Let l1 � l2 � · · · � ln denote the equivalence class of l1 ⊗ l2 ⊗ · · · ⊗ ln. It is routine to
check that U carries a Lie n-algebra structure given by the n-ary bracket

[l11 � l12 � · · · � l1n, . . . , l
n
1 � ln2 � · · · � lnn] = [l11, l

1
2, . . . , l

1
n]� · · · � [ln1 , l

n
2 , . . . , l

n
n]. (E)

Moreover, there is a well-defined morphism of Lie n-algebras

u : U → L : l1 � l2 � · · · � ln 7→ [l1, l2, . . . , ln].

Now suppose that L is a Vect-perfect Lie n-algebra. Then it follows from the equal-
ity (E) that U is also a Vect-perfect Lie n-algebra. Furthermore, u is an epimorphism
of Lie n-algebras.

We claim that u : U → L is a universal Vect-central extension of the Vect-perfect
Lie n-algebra L. Indeed, thanks again to the equality (E), the ideal [K[u],U, . . . ,U]
is trivial, and thus u is a Vect-central extension. Given any other Vect-central ex-
tension of L, say f : H → L, there is a morphism of Lie n-algebras f : U → H given
by f(l1 � l2 � · · · � ln) = [h1, h2, . . . , hn], where hi ∈ H such that f(hi) = li for 1 6
i 6 n. Here f is well-defined because of the centrality of f : H → L. Clearly f◦f = u,
and if g : U → H is another morphism with this property, then for any x ∈ U there
exists a z in the centre of H such that g(x) = f(x) + z. It follows that g[x1, . . . , xn] =
f [x1, . . . , xn], for all xi ∈ U and 1 6 i 6 n. Since U is a Vect-perfect Lie n-algebra we
deduce that g = f .



72 J.M. Casas, E. Khmaladze, M. Ladra and T. Van der Linden

Remark 5.4. For n = 2 the Lie algebra U in Construction 5.3 is isomorphic to the
non-abelian Lie exterior square of L. Thus if L is a Vect-perfect Lie algebra, then it
is the same as the non-abelian Lie tensor square of L [13]. This fact follows easily
from [18, Proposition 1]. Moreover, we recover the description of the universal central
extension of a Vect-perfect Lie algebra obtained in [13, Theorem 11].

In the relative case we obtain the next result.

Proposition 5.5. An nLie-central extension of Leibniz n-algebras u : U → L is uni-
versal if and only if H2(U, nlie)G = H1(U, nlie)G = 0.

A Leibniz n-algebra L is perfect with respect to nLie if and only if it admits a
universal nLie-central extension

unlie
L : U(L, nlie) → L

with kernel H2(L, nlie)G.

Finally we describe the relation between the universal Vect-central extensions in

nLb and nLie. Given a Vect-perfect Lie n-algebra L, it is also Vect-perfect as a Leibniz
n-algebra. The universal Vect-central extension in nLie,

uabnlie
L : U(L, abnlie) → L,

is a Vect-central extension in nLb of L. Hence there is a morphism of Leibniz
n-algebras f : U(L, abnlb) → U(L, abnlie) such that uabnlb = uabnlie◦f . Using the no-
tation as in Construction 5.2 and Construction 5.3, f is explicitly given by

f(l1 ∗ l2 ∗ · · · ∗ ln) = l1 � l2 � · · · � ln,

and in fact it is an epimorphism of Leibniz n-algebras. Restriction of f to the kernel
of uabnlb yields an epimorphism from H2(L, abnlb)G to H2(L, abnlie)H, and we obtain
the following proposition, which is also a special case of a result in [10].

Proposition 5.6. When a Lie n-algebra L is perfect with respect to Vect, we have a
short exact sequence

0 ,2H2(U(L, abnlie), abnlb)G ,2H2(L, abnlb)G ,2H2(L, abnlie)H ,20.

Moreover,

〈H2(L, abnlb)G, . . . , H2(L, abnlb)G〉 = H2(U(L, abnlie), abnlb)G,

and uabnlb
L = uabnlie

L if and only if H2(L, abnlb)G ∼= H2(L, abnlie)H.
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Leibniz, Enseign. Math. (2) 39 (1993), no. 3-4, 269–293.

[23] J.-L. Loday and T. Pirashvili, Universal enveloping algebras of Leibniz algebras
and (co)homology, Math. Ann. 296 (1993), no. 1, 139–158.
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