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ON LEFT AND RIGHT MODEL CATEGORIES AND LEFT AND
RIGHT BOUSFIELD LOCALIZATIONS

CLARK BARWICK

(communicated by Brooke Shipley)

Abstract
We verify the existence of left Bousfield localizations and of

enriched left Bousfield localizations, and we prove a collection
of useful technical results characterizing certain fibrations of
(enriched) left Bousfield localizations. We also use such Bous-
field localizations to construct a number of new model cate-
gories, including models for the homotopy limit of right Quillen
presheaves, for Postnikov towers in model categories, and for
presheaves valued in a symmetric monoidal model category sat-
isfying a homotopy-coherent descent condition. We then verify
the existence of right Bousfield localizations of right model cat-
egories, and we apply this to construct a model of the homotopy
limit of a left Quillen presheaf as a right model category.

Introduction

A class of maps H in a model category M specifies a class of H-local objects, which
are those objects X with the property that the morphism RMorM(f,X) is a weak
equivalence of simplicial sets for any f ∈ H. The left Bousfield localization of M with
respect to H is a model for the homotopy theory of H-local objects. Similarly, if M is
enriched over a symmetric monoidal model category V, the class H specifies a class of
(H/V)-local objects, which are those objects X with the property that the morphism
RMorVM(f,X) of derived mapping objects is a weak equivalence of V for any f ∈ H.
The V-enriched left Bousfield localization of M is a model for the homotopy theory
of (H/V)-local objects.

The (enriched) left Bousfield localization is described as a new “H-local” model
category structure on the underlying category of M. The H-local cofibrations of the
(enriched) left Bousfield localization are precisely those of M, the H-local fibrant
objects are the (enriched) H-local objects that are fibrant in M, and the H-local
weak equivalences are those morphisms f of M such that RMorM(f,X) (resp.,
RMorVM(f,X)) is a weak equivalence. This is enough to specify H-local fibrations,

This work was supported by a research grant from the Yngre fremragende forskere, administered by
J. Rognes at the Matematisk Institutt, Universitetet i Oslo.
Received April 3, 2008, revised March 31, 2009, July 3, 2009; published on November 3, 2010.
2000 Mathematics Subject Classification: 18G55.
Key words and phrases: model category, Bousfield localization.
This article is available at http://intlpress.com/HHA/v12/n2/a9

Copyright c© 2010, International Press. Permission to copy for private use granted.



246 CLARK BARWICK

but it can be difficult to get explicit control over them. Luckily, it is frequently pos-
sible to characterize some of the H-local fibrations as fibrations that are in addition
homotopy pullbacks of fibrations between H-local fibrant objects (4.30).

The (enriched) Bousfield localization gives an effective way of constructing new
model categories from old. In particular, we use it to construct models for the homo-
topy limit of a right Quillen presheaf (4.38) and for presheaves valued in a symmetric
monoidal model category satisfying a homotopy-coherent descent condition (4.56).

The right Bousfield localization — or colocalization — of a model category M with
respect to a setK of objects is a model for the homotopy theory generated byK — i.e.,
of objects that can be written as a homotopy colimit of objects of K. Unfortunately,
the right Bousfield localization need not exist as a model category unless M is right
proper. This is a rather severe limitation, as many operations on model categories
— such as left Bousfield localization — tend to destroy right properness, and as
many interesting model categories are not right proper. Fortunately, right Bousfield
localizations of these model categories do exist as right model categories (5.13).

The right Bousfield localization gives another method of constructing new model
categories. In particular, we use it to construct models for the homotopy limit of a left
Quillen presheaf 5.25. We use both left and right Bousfield localizations to construct
for Postnikov towers in model categories (5.31 and 5.49).

Plan
In the first section, we give a brief review of the general theory of left and right

model categories. This section includes a discussion of properness in model categories,
and the notions of combinatorial and tractable model categories. The section ends
with a discussion of symmetric monoidal structures.

The next section contains J. Smith’s existence theorem for combinatorial model
categories. This material is mostly well-known. There one may find two familiar but
important examples: model structures on diagram categories and model structures
on section categories.

We then turn to the Reedy model structures. After a very brief reprise of well-
known facts about the Reedy model structure, we give a very useful little criterion to
determine whether composition with a morphism of Reedy categories determines a left
or right Quillen functor. We then give three easy inheritance results, and the section
concludes with a somewhat more difficult inheritance result, providing conditions
under which the Reedy model structure on diagrams valued in a symmetric monoidal
model category is itself symmetric monoidal.

In the fourth section, we define the left Bousfield localization and give the well-
known existence theorem due to Smith. Following this, we continue with a small
collection of results that permit one to cope with the fact that left Bousfield localiza-
tion ruins right properness, as well as a characterization of a certain class of H-local
fibrations. We give three simple applications of the technique of left Bousfield local-
ization: Dugger’s presentation theorem, the existence of homotopy images, and the
construction of homotopy limits of diagrams of model categories. We then describe
the enriched left Bousfield localization and prove an existence theorem, and we give
an application of the enriched localization: the existence of local model structures on
presheaves valued in symmetric monoidal model categories.
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In the final section, we show that the right Bousfield localization of a model cate-
gory M naturally exists instead as a right model category. This result holds with no
properness assumptions on M. As an application of the right Bousfield localization,
we produce a good model for the homotopy limit of left Quillen presheaves. Finally,
we discuss Postnikov towers in various contexts using both left and right Bousfield
localizations.
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Notations
All universes X will by assumption contain natural numbers objects N ∈ X. For

any universe X, denote by SetX the X-category of X-small sets, and denote by CatX
the X-category of X-small categories.

Denote by ∆ the X-category of X-small totally ordered finite sets, viewed as a full
subcategory of CatX, for some universe X. The category ∆ is essentially X-small and
is essentially independent of the universe X; in fact, the full subcategory comprised
of the objects

p := [0 //1 // · · · //p ]

is a skeletal subcategory.
Suppose X a universe. For any X-category E and any X-small category A, let EA

denote the category of functors A //E , and let E(A) := EA
op

denote the category
of presheaves Aop //E . Write cE for E∆, and write sE for E(∆).
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1. A taxonomy of homotopy theory

It is necessary to establish some general terminology for categories with weak
equivalences and various bits of extra structure. This terminology includes such arcane
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and baroque concepts as structured homotopical categories and model categories.
Most readers can and should skip this section upon a first reading, returning as
needed.

1.0. Suppose X a universe.

Structured homotopical categories
Here we define the general notion of structured homotopical categories. Structured

homotopical categories contain lluf subcategories of cofibrations, fibrations, and weak
equivalences, satisfying the “easy” conditions on model categories.

Definition 1.1. Suppose (E, wE) a homotopical X-category [8, 33.1] equipped with
two lluf subcategories cof E and fibE.
(1.1.1) Morphisms of cof E (respectively, of fibE) are called cofibrations (resp., fibra-

tions).
(1.1.2) Morphisms of w cof E := wE ∩ cof E (respectively, of w fibE := wE ∩ fibE)

are called trivial cofibrations (resp., trivial fibrations).
(1.1.3) Objects X of E such that the morphism ∅ //X (respectively, the morphism

X //?) is an element of cof E (resp., of fibE) are called cofibrant (resp.
fibrant); the full subcategory comprised of all such objects will be denoted Ec
(resp., Ef ).

(1.1.4) In the context of a functor C //E , a morphism (respectively, an object) of C
will be called a E-weak equivalence, a E-cofibration, or a E-fibration (resp.,
E-cofibrant or E-fibrant) if its image under C //E is a weak equivalence, a
cofibration, or a fibration (resp., cofibrant or fibrant) in E, respectively. The
full subcategory of C comprised of all E-cofibrant (respectively, E-fibrant)
objects will be denoted CE,c (resp., CE,f ).

(1.1.5) One says that (E, wE, cof E, fibE) is a structured homotopical X-category if
the following axioms hold.
(1.1.5.1) The category E contains all limits and colimits.
(1.1.5.2) The subcategories cof E and fibE are closed under retracts.
(1.1.5.3) The set cof E is closed under pushouts by arbitrary morphisms; the

set fibE is closed under pullbacks by arbitrary morphisms.

Lemma 1.2. The data (E, wE, cof E, fibE) is a structured homotopical X-category
if and only if the data (Eop, w(Eop), cof(Eop),fib(Eop)) is as well, wherein

w(Eop) := (wE)op cof(Eop) := (fibE)op fib(Eop) := (cof E)op.

1.3. One commonly refers to E alone as a structured homotopical category, omitting
the explicit reference to the data of wE, cof E, and fibE.

Left and right model categories
Left and right model categories are structured homotopical categories that, like

model categories, include lifting and factorization axioms, but only for particular
morphisms. Following the definition, we turn to a sequence of standard results from
the homotopy theory of model categories, suitably altered to apply to left and right



LEFT AND RIGHT BOUSFIELD LOCALIZATIONS 249

model categories. We learned of nearly all of the following ideas and results from
M. Spitzweck and his thesis [19].

Definition 1.4. Suppose C and E two structured homotopical X-categories.

(1.4.1) An adjunction
FC : E //Coo : UC

is a left E-model X-category if the following axioms hold.
(1.4.1.1) The right adjoint UC preserves fibrations and trivial fibrations.
(1.4.1.2) Any cofibration of C with E-cofibrant domain is an E-cofibration.
(1.4.1.3) The initial object ∅ of C is E-cofibrant.
(1.4.1.4) In C, any cofibration has the left lifting property with respect to

any trivial fibration, and any fibration has the right lifting property
with respect to any trivial cofibration with E-cofibrant domain.

(1.4.1.5) There exist functorial factorizations of any morphism of C into a
cofibration followed by a trivial fibration and of any morphism of
C with E-cofibrant domain into a trivial cofibration followed by a
fibration.

(1.4.2) An adjunction
FC : C //Eoo :UC

is a right E-model X-category if the corresponding adjunction

Uop
C : Eop //Copoo :F op

C

is a left E-model X-category.
(1.4.3) One says that C is a(n) (absolute) left model X-category if the identity adjunc-

tion
C //Coo

is a left C-model category.
(1.4.4) One says that C is a(n) (absolute) right model X-category if Cop is a left

model X-category.
(1.4.5) One says that C is a model X-category if it is both a left and right model

X-category.

1.5. In unambiguous contexts, one refers to C alone as the E-left model or E-right
model X-category, omitting explicit mention of the adjunction.

Lemma 1.6. The following are equivalent for a structured homotopical category C.

(1.6.1) C is a left ?-model category.
(1.6.2) C is a right ?-model category.
(1.6.3) C is a model category.

Proof. To be a left ?-model category is exactly to have the lifting and factorization
axioms with no conditions on the source of the morphism, hence to be a right model
category as well. The dual assertion follows as usual.
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Lemma 1.7. Suppose E a structured homotopical category, C a left (respectively,
right) E-model X-category.
(1.7.1) A morphism i : K //L (resp., a morphism i with E-fibrant codomain L) has

the left lifting property with respect to every trivial fibration (resp., every
trivial fibration with E-fibrant codomain) if and only if i is a cofibration.

(1.7.2) Any morphism i : K //L with E-cofibrant domain K (resp., any morphism
i) has the left lifting property with respect to every fibration if and only if i
is a trivial cofibration.

(1.7.3) Any morphism p : Y //X with E-cofibrant domain Y (resp., any morphism
p) has the right lifting property with respect to every trivial cofibration with E-
cofibrant domain (resp., every trivial cofibration) if and only if p is a fibration.

(1.7.4) A morphism p : Y //X (resp., a morphism p with E-fibrant codomain) has
the right lifting property with respect to every cofibration if and only if p is a
trivial fibration.

Proof. This follows immediately from the appropriate factorization axioms along with
the retract argument.

Corollary 1.8.

(1.8.1) If C is a left model X-category, a morphism p : Y //X satisfies the right
lifting property with respect to the trivial cofibrations with cofibrant domains
if and only if there exists a trivial fibration Y ′ //Y such that the composite
morphism Y ′ //X is a fibration.

(1.8.2) Dually, if C is a right model X-category, a morphism i : K //L satisfies the
left lifting property with respect to the trivial fibrations with fibrant codomains
if and only if there exists a trivial cofibration L //L′ such that the composite
morphism K //L′ is a cofibration.

Proof. The assertions are dual, so it is enough to prove the first. Morphisms satisfying
a right lifting property are of course closed under composition. Conversely, suppose
Y //X a morphism, Y ′ //Y a trivial fibration such that the composition Y ′ //X
satisfies the left lifting property with respect to a trivial cofibration K //L is a trivial
cofibration with cofibrant domain K. Then for any diagram

K

²²

// Y

²²
L // X,

there is a lift to a diagram

Y ′

²²
K

==zzzzz

²²

// Y

²²
L // X.

By assumption there is a lift of the exterior quadrilateral, and this provides a lift of
the interior square as well.
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Proposition 1.9 ([19, Proposition 2.4]). Suppose E a structured homotopical X-
category, and suppose C a left E-model X-category. Suppose f, g : B //X two maps
in C.

(1.9.1) Suppose f l∼ g; then h ◦ f l∼ h ◦ g for any morphism h : X //Y of C.

(1.9.2) Dually, suppose f r∼ g; then f ◦ k r∼ g ◦ k for any morphism k : A //B of C.

(1.9.3) Suppose B cofibrant, and suppose h : X //Y any morphism of CE,c; then
f

r∼ g only if h ◦ f r∼ h ◦ g.
(1.9.4) Dually, suppose X fibrant, and suppose k : A //B any morphism of CE,c;

then f
l∼ g only if f ◦ h l∼ g ◦ h.

(1.9.5) If B is cofibrant, then left homotopy is an equivalence relation on Mor(B,X).

(1.9.6) If B is cofibrant and X is E-cofibrant, then f
l∼ g only if f r∼ g.

(1.9.7) Dually, if X is fibrant and B is cofibrant E-cofibrant, then f
r∼ g only if

f
l∼ g.

(1.9.8) If B is cofibrant, X is cofibrant E-cofibrant, and h : X //Y is either a triv-
ial fibration or a weak equivalence between fibrant objects, then h induces a
bijection

(Mor(B,X)/ l∼) //(Mor(B, Y )/ l∼) .

(1.9.9) Dually, if A is E-cofibrant, X is fibrant and E-cofibrant, and k : A //B is
either a trivial cofibration with A D-cofibrant or a weak equivalence between
cofibrant objects, then k induces a bijection

(Mor(B,X)/ r∼) //(Mor(A,X)/ r∼) .

The obvious dual statements for right model categories and E-right model categories
also hold.

Corollary 1.10. Suppose E a left (respectively, right) model X-category, C a left
E-model (resp., right E-model) X-category. Then HoC is an X-category.

Definition 1.11. Suppose E a left (respectively, right) model X-category, C a left E-
model (resp., right E-model) X-category; suppose h a homotopy class of morphisms
of C. Then a morphism f of C is said to be a representative of h if the images of f
and h are isomorphic as objects of the arrow category (HoM)1.

Definition 1.12. Suppose E a homotopical X-category, and suppose C and C′ two
left (respectively, right) model E-categories.

(1.12.1) An adjunction

F : C //C′oo :U

is a Quillen adjunction if U preserves fibrations and trivial fibrations (resp.,
if F preserves cofibrations and trivial cofibrations).
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(1.12.2) Suppose
F : C //C′oo :U

a Quillen adjunction. Then the left derived functor LF of F is the right Kan
extension of the composite

C
F // C′ // HoC′

along the functor C // HoC , and, dually, the right derived functor RU of
U is the left Kan extension of the composite

C′
U // C // HoC

along the functor C′ // HoC′ .

Proposition 1.13 ([19, p. 12]). Suppose E a structured homotopical category, and
suppose C and C′ two left or right model E-categories, and suppose

F : C //C′oo :U

a Quillen adjunction. Then the derived functors

LF : HoC //HoC′oo :RU

exist and form an adjunction.

Properness
The suitable left and right properness conditions for left or right model categories

are slightly more restrictive than the usual conditions for model categories.

1.14. Suppose E a structured homotopical X-category, and suppose C a left (respec-
tively, right) E-model X-category.

Definition 1.15. One says that C is left (resp., right) E-proper if pushouts (resp.,
pullbacks) of elements of w(CE,c) (resp., of w(CE,f )) along cofibrations (resp., fibra-
tions) are weak equivalences. One says that C is right (resp., left) proper if pullbacks
(resp., pushouts) of weak equivalences along fibrations (resp., cofibrations) are weak
equivalences.

1.16. When E ∼= ?, the condition of left (resp., right) E-properness reduces to the
classical notion of left (resp., right) properness of model categories.

Lemma 1.17. In the absolute case, when E = C, and the adjunction is the identity,
C is automatically left (resp., right) C-proper.

Proof. This is Reedy’s observation [16, Theorem B] or [9, Proposition 13.1.2].

Definition 1.18.

(1.18.1) A pushout diagram

K //

²²

Y

²²
L // X

in C in which K //L is a cofibration is called an admissible pushout diagram,
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and the morphism L //X is called the admissible pushout of K //Y along
K //L .

(1.18.2) Dually, a pullback diagram

K //

²²

Y

²²
L // X

in C in which Y //X is a fibration is called an admissible pullback diagram,
and the morphism K //Y is called the admissible pullback of L //X along
Y //X .

Proposition 1.19.

(1.19.1) If C is left (respectively, right) E-proper, admissible pushouts (resp., pull-
backs) of E-cofibrant (resp., E-fibrant) objects are homotopy pushouts (resp.,
pullbacks).

(1.19.2) If C is right (respectively, left) proper, admissible pullbacks (resp., pushouts)
are homotopy pullbacks (resp., pushouts).

Proof. We discuss the case of left E-model categories; the case of right E-model
categories is of course dual.

Suppose

K //

²²

Y

²²
L // X

a pushout of E-cofibrant objects, in which K //L is a cofibration. The claim is that
X is isomorphic to the homotopy pushout L th,K Y in HoC. To demonstrate this,
choose a functorial factorization of every morphism into a cofibration followed by a
trivial fibration. Using this, replace K cofibrantly by an object K ′, factor the com-
posite K ′ //Y as a cofibration K ′ //Y ′ followed by a trivial fibration Y ′ //Y , and
factor the composite K ′ //L as a cofibration K ′ //L′ followed by a trivial fibration
L′ //L . By the standard argument, the pushout X ′ := L′ tK′ Y ′ is isomorphic to
the desired homotopy pushout in HoC.

Now form also the pushout of the left face, L′′ := K tK′ L′ as well as the pushout
X ′′ := L′′ tK Y . Thus we have the diagram

K

®®»»
»»
»»
»»
»»
»»
»»
»»
»»
»

//

²²

Y

²²

¶¶(
((
((
((
((
((
((
((
((
((
(

K ′ //

²²

bbEEE

Y ′

²²

<<xxxx

L′ //

||zz
z

X ′

""EE
E

L′′

~~||
|

// X ′′

""EE
E

L // X.
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By left E-properness, the morphism X ′ //X ′′ is a weak equivalence, since it is the
admissible pushout of Y ′ //Y along Y ′ //X ′ . It now suffices to show that the mor-
phism X ′′ //X is a weak equivalence.

Now factor K //Y as a cofibration K //Z followed by a trivial fibration Z //Y ,
and form the associated pushouts W ′′ := L′′ tK Z and W := L tK Z:

K

²²

// Z

²²

// Y

²²
L′′

²²

// W ′′

²²

// X ′′

²²
L // W // X.

Now left E-properness implies that W ′′ //X ′′ , W //X , and W ′′ //W are weak
equivalences; hence it follows that X ′′ //X is a weak equivalence, as desired.

The second part is almost dual to the first, save only the observation that in
order to perform the needed fibrant replacements, one must first make an E-cofibrant
replacement. Indeed, suppose

K //

²²

Y

²²
L // X

a pullback square, in which Y //X is a fibration. The aim is to show that this is in
fact a homotopy pullback square.

Without loss of generality, one may assume that L is E-cofibrant, for if not, it can
be replaced E-cofibrantly, and right properness guarantees that the resulting pullback
along Y //X is weakly equivalent to K.

Let X ′ //X be a trivial fibration with X ′ E-cofibrant, form the pullbacks
Y ′ := X ′ ×X Y and L′′ := X ′ ×X L, and let L′ //L′′ be a trivial fibration with L′

E-cofibrant. Now form the pullback K ′ := L′ ×X′ Y ′:
K

²²

// Y

²²

K ′ //

²²

aaCCC

Y ′

²²

<<zzz

L′ //

}}{{{
{

X ′

""DD
D

L // X.

One can again assume that L′ is E-cofibrant, and now the dual of the previous
argument applies to show that K ′ is the desired homotopy pullback. But K ′ //K is
the pullback of the trivial fibration L′ //L , hence a trivial fibration itself.

Combinatorial and tractable model categories
Combinatorial model categories are those whose homotopy theory is controlled

by the homotopy theory of a small subcategory of presentable objects. A variety of
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algebraic applications require that the sets of (trivial) cofibrations can be generated
(as a saturated set) by a given small set of (trivial) cofibrations with cofibrant domain.
This leads to the notion of tractable model categories. Many of the results here have
satisfactory proofs in print; the first section of [1] in particular is a very nice reference.1

Notation 1.20. For any X-small regular cardinal λ and any λ-accessible X-category
C, denote by Cλ the full subcategory of C spanned by the λ-presentable objects, i.e.,
those objects that corepresent a functor that commutes with all λ-filtered colimits.

Definition 1.21. Suppose E a homotopical X-category, and suppose C a left (respec-
tively, right) E-model X-category. Suppose, in addition, that λ is a regular X-small
cardinal.
(1.21.1) One says that C is λ-tractable if the underlying X-category of C is locally

λ-presentable, and if there exist X-small sets I and J of morphisms of
Cλ ∩CE,c (resp., of Cλ) such that the following hold.
(1.21.1.1) A morphism (resp., a morphism with E-fibrant codomain) satis-

fies the right lifting property with respect to I if and only if it is
a trivial fibration.

(1.21.1.2) A morphism satisfies the right lifting property with respect to J
if and only if it is a fibration.

(1.21.2) Suppose E ∼= ?, so that C a model category. Then one says that C is λ-
tractable if its underlying left model category is so, and one says that C is
λ-combinatorial if its underlying X-category is locally λ-presentable, and if
there exist X-small sets I and J of morphisms of Cλ such that the following
hold.
(1.21.2.1) A morphism satisfies the right lifting property with respect to I

if and only if it is a trivial fibration.
(1.21.2.2) A morphism satisfies the right lifting property with respect to J

if and only if it is a fibration.
One says that C is X-tractable or X-combinatorial if C is a model category just

in case there exists a regular X-small cardinal λ for which it is λ-tractable.

Definition 1.22. Suppose E a homotopical X-category. An X-small full subcategory
E0 of E is homotopy λ-generating if every object of E is weakly equivalent to a λ-
filtered homotopy colimit of objects of E0. The subcategory E0 is said to be homotopy
X-generating if it is λ-generating for some regular X-small cardinal λ.

1.23. Observe that for a model category C, the condition of λ-tractability amounts
to λ-combinatoriality plus the condition that I and J can each be chosen to have
cofibrant sources.

Observe that a model category whose underlying right model category is X-
tractable need not even be X-combinatorial itself. For a related example, see 5.21.
The lemma below, the transfinite small object argument 1.25, is critical to the con-
struction of all combinatorial model categories in this work.

1I would like to thank M. Spitzweck for suggesting this paper; this exposition has benefited greatly
from his recommendation.
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Notation 1.24. Suppose C an X-category, and suppose I an X-small set of mor-
phisms of C. Denote by inj I the set of all morphisms with the right lifting property
with respect to I, denote by cof I the set of all morphisms with the left lifting prop-
erty with respect to inj I, and denote by cell I the set of all transfinite compositions
of pushouts of morphisms of I.

Lemma 1.25 (Transfinite small object argument, [1, Proposition 1.3]). Suppose λ a
regular X-small cardinal, C a locally λ-presentable X-category, and I an X-small set
of morphisms of Cλ.

(1.25.1) There is an accessible functorial factorization of every morphism f as p ◦ i,
wherein p ∈ inj I, and i ∈ cell I.

(1.25.2) A morphism q ∈ inj I if and only if it has the right lifting property with
respect to all retracts of morphisms of cell I.

(1.25.3) A morphism j is a retract of morphisms of cell I if and only j ∈ cof I.

Proof. Suppose κ a regular cardinal strictly greater than λ. For any morphism
f : X //Y , consider the set (I/f) of squares

K

i
²²

// X

f
²²

L // Y,

where i ∈ I, and let K(I/f)
//L(I/f) be the coproduct qi∈(I/f)i. Define a section P

of d1 : C2 //C1 by

Pf := [X //X tL(I/f) K(I/f)
//Y ]

for any morphism f : X //Y . For any regular cardinal α, set Pα := colimβ<α P
β .

This provides a functorial factorization Pκ with the required properties.
The remaining parts follow from the existence of this factorization and the retract

argument.

Symmetric monoidal model categories and enrichments
We present a thorough, if somewhat terse, review of the basic theory of symmetric

monoidal and enriched model categories.

1.26. Again suppose X a universe.

Definition 1.27.

(1.27.1) Suppose D, E, and F model X-categories. Suppose

⊗ : D×E //F Mor: Eop × F //D mor: Dop × F //E

form an adjunction of two variables. Then (⊗,Mor,mor) is a Quillen adjunc-
tion of two variables if the following axiom holds.
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(1.27.1.1) (Pushout-product axiom) For any pair of cofibrations c : Q //R
of D and d : S //T of E, the pushout-product

c2d : (Q⊗ T ) t(Q⊗S) (R⊗ S) //R⊗ T

is a cofibration of F that is trivial if either f or g is.2

(1.27.2) A symmetric monoidal model X-category is a symmetric monoidal closed
X-category (V,⊗V,1V,MorV) [2, Definitions 6.1.1–3], equipped with a
model structure such that the following axioms hold.
(1.27.2.1) The tuple (⊗V,MorV,MorV) is a Quillen adjunction of two vari-

ables.
(1.27.2.2) (Unit axiom) For any object A, the canonical morphism

QV1V ⊗V A //1V ⊗V A //A

is a weak equivalence for some cofibrant replacement Q1V
//1V .

(1.27.3) An internal closed model category is a symmetric monoidal model category
V in which ⊗V is the categorical (cartesian) product ×.

(1.27.4) If V is a symmetric monoidal model X-category, then a model V-category is
a tensored and cotensored V-category (C,MorVC ,⊗V

C ,morVC) [2, Definitions
6.2.1, 6.5.1], equipped with a model structure on the underlying X-category
of C such that the following axioms hold.
(1.27.4.1) The tuple (⊗V

C ,MorVC ,morVC) is a Quillen adjunction of two vari-
ables.

(1.27.4.2) (Unit axiom) For any object X of C, the canonical morphism

QV1V ⊗V
C X //1V ⊗V

C X //X

is a weak equivalence for some cofibrant replacement Q1V
//1V .

(1.27.5) A simplicial model X-category (M,MapM,⊗M,morM) is a model sSetX-
category.

(1.27.6) Suppose V a symmetric monoidal model category and C and C′ model
V-categories.
(1.27.6.1) A left (respectively, right) V-adjoint F : C //C′ [2, Definition

6.7.1] whose underlying functor F0 is a left (resp., right) Quillen
functor will be called a left (resp., right) Quillen V-functor.

(1.27.6.2) If F0 is in addition a Quillen equivalence, then F will be called a
left (resp., right) Quillen V-equivalence.

Notation 1.28. Of course the sub- and superscripts on ⊗, 1, and Mor will be
dropped if no confusion can result, and by the standard harmless abuse, we will
refer to V alone as the symmetric monoidal model category.

Lemma 1.29 ([10, Lemma 4.2.2]). The following are equivalent for three model
X-categories D, E, and F and an adjunction of two variables

⊗ : D×E //F Mor: Eop × F //D mor: Dop × F //E .

2If S and T are sets of morphisms, it will be convenient to denote by S2T the set of morphisms of
the form f2g for f ∈ S and g ∈ T .
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(1.29.1) The tuple (⊗,Mor,mor) is a Quillen adjunction of two variables.
(1.29.2) For any cofibration d : S //T of E and any fibration b : V //U of F, the

morphism

Mor2(d, b) : Mor(T, V ) // Mor(S, V )×Mor(S,U) Mor(T,U)

is a fibration that is trivial if either d or b is.
(1.29.3) For any cofibration c : Q //R of D and any fibration b : V //U of F, the

morphism

mor2(c, b) : mor(R, V ) // mor(Q,V )×mor(Q,U) mor(R,U)

is a fibration that is trivial if either c or b is.

Lemma 1.30 ([10, Lemma 4.2.4]). Suppose D an X-cofibrantly generated model X-
category, with generating cofibrations ID and generating trivial cofibrations JD. Sup-
pose E an X-cofibrantly generated model X-category, with generating cofibrations IE
and generating trivial cofibrations JE. Suppose F a model X-category, and suppose

⊗ : D×E //F Mor: Eop × F //D mor: Dop × F //E

form an adjunction of two variables. Then (⊗,Mor,mor) is a Quillen adjunction of
two variables if and only if the following conditions hold.
(1.30.1) ID2IE consists only of cofibrations.
(1.30.2) ID2JE consists only of weak equivalences.
(1.30.3) JD2IE consists only of weak equivalences.

Lemma 1.31. Suppose V and C symmetric monoidal model X-categories, wherein
the unit 1C is cofibrant. Then a model V-category structure on C is equivalent to a
Quillen adjunction

real : V //Coo : Π

in which the left adjoint real is symmetric monoidal.

Proof. Suppose (⊗V
C ,MorVC ,morVC) a model V-category structure on C. Set

real := −⊗V
C 1C Π := MorVC(1C,−).

For any objects K and L of V, one verifies easily that the objects (K ⊗V L)⊗V
C 1C

and (K ⊗V
C 1C)⊗V (L⊗V

C 1C) corepresent the same functor. Since 1C is cofibrant,
the pushout-product axiom implies that real is left Quillen.

On the other hand, suppose

real : V //Coo : Π

a Quillen adjunction in which the left adjoint real is symmetric monoidal. For K and
object of V, and X and Y objects of C, set

MorVC(X,Y ) := Π MorC(X,Y ),
K ⊗V

C X := real(K)⊗C X,

morVC(K,Y ) := MorC(real(K), Y ).

The pushout-product axiom for ⊗C implies the pushout-product axiom for ⊗V
C .

These two definitions are inverse to one another.
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Lemma 1.32. Suppose C a simplicial, internal model X-category in which the termi-
nal object ? is cofibrant. Then for any X-small set S, the object real(S) is canonically
isomorphic to the copower S · ?.
Proof. The functor real is a left adjoint and thus respects copowers; it is symmetric
monoidal and thus preserves terminal objects.

Proposition 1.33. Suppose V internal. Then for any object Y of V, the comma
category (V/Y ) is a V-model category with

Z ⊗V
(V/Y ) X := Z ×X

morV(V/Y )(Z,X
′) := Y ×MorV(Z,Y ) MorV(Z,X ′)

MorV(V/Y )(X,X
′) := ?×MorV(X,Y ) MorV(X,X ′)

for any object Z of V and any objects X and X ′ of (V/Y ).

Proof. A morphism of the comma category (V/Y ) is a cofibration, fibration, or weak
equivalence if and only if its image under the forgetful functor (V/Y ) //V is so; hence
the pushout-product and unit axioms for (V/Y ) follow directly from those for V.

1.34. We will be interested in localizing enriched model categories using derived map-
ping objects in lieu of the homotopy function complexes. The result will have a uni-
versal property that is rather different from the ordinary left Bousfield localization.
Suppose (V,⊗V,1V,MorV) a symmetric monoidal model X-category, and suppose
C a model V-category.

Definition 1.35.

(1.35.1) The left Kan extension (if it exists) of the composite

Cop ×C //V // HoV

along the localization functor Cop ×C // Ho(Cop ×C) is the derived map-
ping object functor, denoted RMorVC .

(1.35.2) Suppose q and r cofibrant and fibrant replacement functors for C; then the
(q, r)-derived mapping object functor is the functor

RMorC,q,r : Cop ×C // HoV
(A,B) Â // MorC(qA, rB).

Proposition 1.36. Suppose q and r cofibrant and fibrant replacement functors for
C, respectively. Then the derived mapping object functor RMorC exists, and, up to
isomorphism of functors, RMorC,q,r factors through it.

Proof. This is an immediate consequence of [9, Proposition 8.4.8].

Lemma 1.37. The following are equivalent for a morphism A //B of C.
(1.37.1) The morphism A //B is a weak equivalence.
(1.37.2) For any fibrant object Z of C, the induced morphism

RMorC(B,Z) // RMorC(A,Z)

is an isomorphism of HoV.
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(1.37.3) For any cofibrant object X of C, the induced morphism

RMorC(X,A) // RMorC(X,B)

is an isomorphism of HoV.

Proof. That (1.37.1) implies both (1.37.2) and (1.37.3) follows from the pushout-
product axiom.

To show that (1.37.1) follows from (1.37.2), suppose A //B a morphism of C such
that for any fibrant object Z of C, the induced morphism

RMorC(B,Z) // RMorC(A,Z)

is an isomorphism of HoV; one may clearly assume that A and B are cofibrant, so
that the morphism

MorC(B,Z) // MorC(A,Z)

is a weak equivalence of V. Applying RMorV(1V,−) yields an isomorphism

RMorC(B,Z) // RMorC(A,Z)

of Ho sSetX for any fibrant object Z of C. Now apply [9, 17.7.7].
The same argument, mutatis mutandis, shows that (1.37.1) follows from (1.37.3).

2. Smith’s theorem

The result
J. Smith’s insight is that the transfinite small object argument and the solution

set condition on weak equivalences together provide a good recognition principle for
combinatorial model categories. In effect, one requires only two-thirds of the data
normally required to produce cofibrantly generated model structures.

2.1. Suppose C an accessible X-category. Recall that a subcategory D ⊂ C that is
itself accessible is said to be accessibly embedded if there exists an X-small regular
cardinal λ such that D and C are each λ-accessible, and D is closed under λ-filtered
colimits in C. Recall that the inverse image of an accessibly embedded accessible
subcategory of an accessible category under an accessible functor is itself an accessibly
embedded accessible subcategory!

Proposition 2.2 (Smith, [1, Theorem 1.7 and Propositions 1.15 and 1.19]). Suppose
C a locally X-presentable X-category, W an accessibly embedded, accessible subcate-
gory of C(1), and I an X-small set of morphisms of C. Suppose in addition that the
following conditions are satisfied.
(2.2.1) W satisfies the two-out-of-three axiom.
(2.2.2) The set inj I is contained in W .
(2.2.3) The intersection W ∩ cof I is closed under pushouts and transfinite composi-

tion.
Then C is a combinatorial model category with weak equivalences W , cofibrations
cof I, and fibrations inj(W ∩ cof I).
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Proof. The transfinite small object argument 1.25 and retract arguments apply once
one constructs an X-small set J such that cof J = W ∩ cof I. The following pair of
lemmas complete the proof.

Lemma 2.3 (Smith, [1, Lemma 1.8]). Under the hypotheses of proposition 2.2, sup-
pose J ⊂W ∩ cof I a set such that any commutative square

K

²²

// M

²²
L // N

in which [K //L ] ∈ I and [M //N ] ∈W can be factored as a commutative diagram

K

²²

// M ′

²²

// M

²²
L // N ′ // N,

in which [M ′ //N ′ ] ∈ J . Then cof J = W ∩ cof I.

Proof. To prove this, one need only factor any element of W as an element of cell J
followed by an element of inj I. The result then follows from the retract argument.

Suppose κ an X-small regular cardinal with the property that every codomain
of I is κ-presentable. For any morphism [f : X //Y ] ∈W , consider the set (I/f) of
squares

K

i
²²

// X

f
²²

L // Y,

where i ∈ I; for each such square choose an element j(i,f) ∈ J and a factorization

K

i
²²

// M(i)

j(i,f)
²²

// X

f
²²

L // N(i) // Y,

and let M(I/f)
//N(I/f) be the coproduct qi∈(I/f)j(i,f). Define an endomorphism Q

of (W/Y ) by

Qf := [X tN(I/f) M(I/f)
//Y ]

for any morphism [f : X //Y ] ∈W . For any regular cardinal α, let Qα be the colimit
colimβ<αQ

β . This provides, for any morphism [f : X //Y ] ∈W , a factorization

X //Qκf //Y

with the desired properties.

Lemma 2.4 (Smith, [1, Lemma 1.9]). Under the hypotheses of proposition 2.2, an
X-small set J satisfying the conditions of lemma 2.3 can be found.
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Proof. Since W is an accessibly embedded accessible subcategory of C(1), it follows
that for any morphism [i : K //L ] ∈ I, there exists an X-small subset W (i) ⊂W
such that for any commutative square

K

i
²²

// M

²²
L // N

in which [M //N ] ∈W , there exist a morphism [P //Q ] ∈W (i) and a commutative
diagram

K

²²

// P

²²

// M

²²
L // Q // N.

It thus suffices to find, for every square of the type on the left, an element of W ∩ cof I
factoring it.

For every element [i : K //L ] ∈ I, every element [w : P //Q ] ∈W (i), and every
commutative square

K

i
²²

// P

²²
L // Q,

factor the morphism L tK P //Q as an element of [L tK P //R ] ∈ cell I followed
by an element of [R //Q ] ∈ inj I; this yields a commutative diagram

K

²²

// P

²²

P

²²
L // R // Q

factoring the original square, in which [P //R ] ∈W ∩ cof I.

Proposition 2.5 (Smith, [4, Propositions 7.1–3]). Suppose C an X-combinatorial
model X-category. For any sufficient large X-small regular cardinal κ, the following
hold.
(2.5.1) There exists a κ-accessible functorial factorization C(1) //C(2) of each mor-

phism into a cofibration followed by a trivial fibration.
(2.5.2) There exists a κ-accessible functorial factorization C(1) //C(2) of each mor-

phism into a trivial cofibration followed by a fibration.
(2.5.3) There exists a κ-accessible cofibrant replacement functor.
(2.5.4) There exists a κ-accessible fibrant replacement functor.
(2.5.5) Arbitrary κ-filtered colimits preserve weak equivalences.
(2.5.6) Arbitrary κ-filtered colimits in C are homotopy colimits.
(2.5.7) The set of weak equivalences wC form a κ-accessibly embedded, κ-accessible

subcategory of C1.
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Proof. Observe that (2.5.1) and (2.5.2) (and therefore (2.5.3) and (2.5.4) as well)
follow directly from the transfinite small object argument 1.25.

To verify (2.5.5) — and therefore (2.5.6) — fix κ, an X-small regular cardi-
nal for which: (a) there are κ-accessible functorial factorizations of each kind, (b)
there is an X-small set I of generating cofibrations with κ-presentable domains and
codomains, and (c) the full subcategory of I-tuples of surjective morphisms is a κ-
accessibly embedded, κ-accessible subcategory of SetX(I · 1). Suppose A an X-small
κ-filtered category, and suppose F //G an objectwise weak equivalence in CA. The
κ-accessible functorial factorizations in C permit one to give a κ-accessible factoriza-
tion of F //G into an objectwise trivial cofibration F //H followed by an objectwise
fibration (which is therefore an objectwise trivial fibration) H //G . Hence the mor-
phism colimH // colimG is a fibration, and it remains only to show that it is also a
trivial fibration; for this one need only show that for any morphism f : K //L and
element of I and any diagram

K

²²

// colimF

²²
L // colimG,

a lift L // colimF exists. This follows from the κ-presentability of K and L.
To verify (2.5.7), let us note that it follows from the existence of a κ-accessible

functorial factorization that it suffices to verify that the full subcategory of C(1)
comprised of trivial fibrations is a κ-accessibly embedded, κ-accessible subcategory.
For this, consider the functor

MorC,2 : C1 −→ SetX(I · 1)
[Y → X] 7→ ([MorC(L, Y ) → MorC(L,X)×MorC(K,X) MorC(K,Y )])[K→L]∈I ,

where SetX(I · 1) is the category of presheaves on the copower category

I · 1 :=
∐

i∈I
1.

Since the domains and codomains of I are κ-presentable, this is a κ-accessible functor.
The trivial fibrations are by definition the inverse image of the full subcategory of
I-tuples of surjective morphisms under MorC,2.

Corollary 2.6. Any X-combinatorial model X-category satisfies the hypotheses
of 2.2.

Corollary 2.7. An X-combinatorial model X-category C is X-tractable if and only
if the X-small set I of generating cofibrations can be chosen with cofibrant domains.

Proof. Suppose I is an X-small set of generating cofibrations with cofibrant domains,
and suppose J an X-small set of trivial cofibrations satisfying the conditions of 2.3.
To give another such X-small set of trivial cofibrations with cofibrant domains, it
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suffices to show that any commutative square

K

²²

// M

²²
L // N

in which [K //L ] ∈ I and [M //N ] ∈ J can be factored as a a commutative diagram

K

²²

// M ′

²²

// M

²²
L // N ′ // N,

in which M ′ is cofibrant and [M ′ //N ′ ] ∈W ∩ cof I. To construct this factorization,
factor the morphism K //M as a cofibration K //M ′ followed by a weak equivalence
M ′ //M . Then factor the morphism L tK M ′ //N as a cofibration L tK M ′ //N ′

followed by a weak equivalence N ′ //N . Then the composite M ′ //N ′ is a trivial
cofibration providing the desired factorization.

Corollary 2.8. A left proper X-combinatorial model X-category C is X-tractable if
and only if the X-small set J of generating trivial cofibrations can be chosen with
cofibrant domains.

Proof. Let I be an X-small set of generating cofibrations. For every element
[i : K //L ] ∈ I, let K ′ //K be a cofibrant replacement of K, and factor the compos-
ite K ′ //L into a cofibration i′ : K ′ //L′ followed by a trivial fibration L′ //L . Let
I ′ be the resulting X-small set of morphisms i′, all of which have cofibrant domains.
We claim that I ′′ := I ′ ∪ J is also a set of generating cofibrations for C.

Note that inj I ′′ ⊂ injJ = fibC. Since a fibration of C has the right lifting prop-
erty with respect to i if and only if it has the right lifting property with respect to
i′ [9, Proposition 13.2.1], it follows that inj I = inj I ′. One now applies Smith’s theo-
rem 2.2 to the set I ′ with the set of weak equivalences of C, and the model structure
guaranteed by Smith’s theorem coincides with that of C.

2.9. We do not know a single example of a left proper combinatorial model X-category
that is not also tractable, but at the same time we are unable to prove that left
properness guarantees that the generating cofibrations can be chosen to have cofi-
brant domains. Such a guarantee seems not at all implausible, however: let I ′ be the
resulting X-small set of morphisms described in the proof of the corollary above. By
adding suitable maps to I ′, it may be possible to construct an X-small set I ′′ of
generating cofibrations with cofibrant domains. As in the proof above, a fibration of
C has the right lifting property with respect to i if and only if it has the right lifting
property with respect to i′, so it would follow that inj I = inj I ′′, if only one could
show that inj I ′′ contained only fibrations of C. Unfortunately, we have not managed
to find a way to add enough cofibrations to ensure this.
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2.10. Suppose C an X-combinatorial model X-category and D a locally X-present-
able category equipped with an adjunction

F : C //Doo :U.

We now discuss circumstances under which the model structure on C may be lifted
to D.

Definition 2.11.

(2.11.1) A morphism f : X //Y of D is said to be a projective weak equivalence
(respectively, a projective fibration, a projective trivial fibration) if
Uf : UX //UY is a weak equivalence (resp., fibration, trivial fibration).

(2.11.2) A morphism f : X //Y of D is said to be a projective cofibration if it satisfies
the left lifting property with respect to any projective trivial fibration; f is
said to be a projective trivial cofibration if it is, in addition, a projective
weak equivalence.

(2.11.3) If the projective weak equivalences, projective cofibrations, and projective
fibrations define a model structure on D, then one calls this model structure
the projective model structure.

Lemma 2.12. Suppose that in D, transfinite compositions and pushouts of projective
trivial cofibrations of D are projective weak equivalences. Then the projective model
structure on D exists; it is X-combinatorial, and it is X-tractable if C is. Furthermore
the adjunction (F,U) is a Quillen adjunction.

Proof. The full accessible inverse image of an accessibly embedded accessible full
subcategory is again an accessibly embedded accessible full subcategory; hence the
projective weak equivalences are an accessibly embedded accessible subcategory of
D(1). Choose now an X-small set I of C (respectively, Cc) of generating cofibrations.

One now applies the recognition lemma 2.2 to the set W of projective weak equiv-
alences and the X-small set FI. It is clear that inj I ⊂W , and by assumption it
follows that W ∩ cof I is closed under pushouts and transfinite compositions. One
now verifies easily that the fibrations are the projective ones and that the adjunction
(F,U) is a Quillen adjunction.

Since F is left Quillen, the set FI has cofibrant domains if I does.

Application I: Model structures on diagram categories
Suppose X a universe, K an X-small category, and C an X-combinatorial (respec-

tively, X-tractable) model X-category. The category C(K) of C-valued presheaves on
K has two X-combinatorial (resp. X-tractable) model structures, to which we now
turn.

Definition 2.13. A morphism X //Y of C-valued presheaves on K is a projec-
tive weak equivalence or projective fibration if, for any object k of K, the morphism
Xk

//Yk is a weak equivalence or fibration of C.

Theorem 2.14. The category C(K) of C-valued presheaves on K admits an
X-combinatorial (resp., X-tractable) model structure — the projective model struc-
ture C(K)proj — in which the weak equivalences and fibrations are the projective weak
equivalences and fibrations.
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Proof. Consider the functor e : ObjK //K , which induces an adjunction

e! : C(ObjK) //C(K)oo : e?.

The condition of 2.12 follows from the observation that e? preserves all colimits.

Definition 2.15. A morphism X //Y of C-valued presheaves on K is an injective
weak equivalence or injective cofibration if, for any object k of K, the morphism
Xk

//Yk is a weak equivalence or cofibration of C.

Theorem 2.16. The category C(K) of C-valued presheaves on K admits an
X-combinatorial model structure — the injective model structure C(K)inj — in which
the weak equivalences and cofibrations are the injective weak equivalences and cofibra-
tions.

Proof. Suppose κ an X-small regular cardinal such that K is κ-small, C is locally
κ-presentable, and a set of generating cofibrations IC for C can be chosen from
Cκ (resp., from Cκ ∩Cλ); without loss of generality, we may assume that IC is
the X-small set of all cofibrations in Cκ (resp., in Cκ ∩Cλ). Denote by IC(K) the
set of injective cofibrations between κ-presentable objects of C(K) (resp., between
κ-presentable objects of C(K) that are in addition objectwise cofibrant). This set
contains a generating set of cofibrations for the projective model structure, so it
follows that inj IC(K) ⊂W .

The claim is now that any injective cofibration can be written as a retract of
transfinite composition of pushouts of elements of IC(K). This point follows from a
cardinality argument, which proceeds almost exactly as for sSet-functors from an
sSet-category to a simplicial model category. For this cardinality argument we refer
to [14, A.2.8.2, A.3.3.3, and A.3.3.15-17] of J. Lurie, whose proofs and exposition we
are unable to improve upon.

Since colimits are formed objectwise, it follows that the injective trivial cofibrations
are closed under pushouts and transfinite composition.

Proposition 2.17. The identity functor is a Quillen equivalence

C(K)proj
//C(K)injoo .

Proof. Projective cofibrations are injective cofibrations, and projective and injective
weak equivalences are the same.

Proposition 2.18. If C is left or right proper, then so are C(K)proj and C(K)inj.

Proof. Pullbacks and pushouts are defined objectwise; hence it suffices to note that in
both model structures, weak equivalences are defined objectwise, and any cofibration
or fibration is in particular an objectwise cofibration or fibration.

Proposition 2.19. A functor f : K //L induces Quillen adjunctions

f! : C(K)proj
//C(L)projoo : f? and f? : C(L)inj

//C(K)injoo : f?,

which are of course equivalences of categories if f is an equivalence of categories.

Proof. Clearly f? preserves objectwise weak equivalences, objectwise cofibrations,
and objectwise fibrations.
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Application II: Model structures on section categories
Left and right Quillen presheaves are diagrams of model categories. Here we give

model structures on their categories of sections, analogous to the injective and pro-
jective model structures on diagram categories above.

2.20. Suppose here X a universe.

Definition 2.21. Suppose K an X-small category.

(2.21.1) A left (respectively, right) Quillen presheaf on K is a functor3

F : Kop //CatY

for some universe Y with X ∈ Y such that for every k ∈ ObjK, the cate-
gory Fk is a model X-category, and for every morphism f : ` //k of K, the
induced functor f? : Fk //F` is left (resp., right) Quillen.

(2.21.2) A left or right Quillen presheaf F onK is said to be X-combinatorial (respec-
tively, X-tractable, left proper, right proper, . . . ) if for every k ∈ ObjK, the
model X-category Fk is so.

(2.21.3) A left (respectively, right) morphism Θ: F //G of left (resp., right) Quillen
presheaves is a pseudomorphism of functors Kop //CatY such that for any
k ∈ ObjK, the functor Θk : Fk //Gk is left (resp., right) Quillen.

(2.21.4) A left (respectively, right) section X of a left (resp., right) Quillen presheaf
F is a tuple (X,φ) = ((Xk)k∈ObjK , (φf )f∈ObjK(1)) comprised of an object
X = (Xk)k∈ObjK of

∏
k∈ObjK Fk and a morphism φf : f?X`

//Xk (resp.,
φf : Xk

//f?X` ), one for each morphism [f : ` //k ] ∈ K, such that for any
composable pair

[m
g //`

f //k ] ∈ K,
one has the commutative triangle

g?X`
φg

##FF
FF

FF
F

(f ◦ g)?Xk

g?φf
88qqqqqqqq

φf◦g
// Xm

(resp., Xm

φg ##FF
FF

FF
F

φf◦g // (f ◦ g)?Xk

g?X`

g?φf

88qqqqqqqq

).

(2.21.5) A morphism of left (respectively, right) sections r : (X,φ) //(Y, ψ) is a mor-
phism r : X //Y of

∏
k∈ObjK Fk such that the diagram

f?Xk

φf

²²

f?rk // f?Yk

ψf

²²
X` r`

// Y`

3In practice, of course, one is usually presented with a pseudofunctor, rather than a functor. Well-
known rectification results allow one to replace such a pseudofunctor with a pseudoequivalent functor,
and all the model structures can be lifted along this pseudoequivalence.
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in F` (resp., the diagram

Xk

φf

²²

rk // Yk

ψf

²²
f?X`

f?r`

// f?Y`

in Fk) commutes for any morphism f : ` //k of K. These morphisms clearly
compose, to give a category SectL F (resp., SectR F) of left (resp., right)
sections of F.

2.22. The category SectLF (respectively, SectR F) is a model for the lax (resp., colax)
limit of the diagram F of categories. Observe that for any left Quillen presheaf F,
there is a corresponding right Quillen presheaf F⊥, and dually, for any right Quillen
presheaf G, there is a corresponding left Quillen presheaf ⊥G. The section categories
of these Quillen presheaves are related by isomorphisms of categories

SectL(F) ∼= SectR(F⊥) and SectR(G) ∼= SectL(⊥G).

Lemma 2.23. A left (respectively, right) morphism Θ: F //G of left (resp., right)
Quillen presheaves on an X-small category K induces a left adjoint

Θ! : SectLF // SectLG

(resp., a right adjoint
Θ? : SectL F // SectLG).

Proof. If Θ is a left morphism of left Quillen presheaves, then define Θ! by the formula

Θ!(X,φ) := ((ΘkXk)k∈ObjK , ((Θφf ) ◦ θf )f∈Obj(K1))

for any left section (X,φ) = ((Xk)k∈ObjK , (φf )f∈Obj(K1)), in which the morphism

θf : f?ΘkXk
//Θ`f

?Xk

is the structural isomorphism of the pseudomorphism Θ.
Its right adjoint

Θ? : SectLG // SectLF

is defined by the formula

Θ?(Y, ψ) := ((HkYk)k∈ObjK , (ηf )f∈Obj(K1))

for any left section (Y, ψ) = ((Yk)k∈ObjK , (ψf )f∈Obj(K1)), in which the morphism

ηf : f?HkYk //H`f
?Yk

is the morphism adjoint to the composite

Θ`f
?HkYk

θf //f?ΘkHkYk
f?c //f?Hk ,

where c : ΘkHkYk //Yk is the counit of the adjunction (Θk,Hk).
The corresponding statement for right morphisms follows by duality.
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2.24. The previous lemma suggests that the most natural model structure on the
category of left (respectively, right) sections of a left (resp., right) Quillen presheaf
F is an injective (resp., projective) one, in which the weak equivalences and cofi-
brations (resp., fibrations) are defined objectwise. This idea is borne out by the
observation that these model categories can be thought of as good models for the
(∞, 1)-categorical lax limit (resp., (∞, 1)-categorical colax limit) of F.

Lemma 2.25. If F is a left (respectively, right) X-combinatorial Quillen presheaf
on an X-small category K, then the category SectLF (resp., SectR F) is locally
X-presentable.

Proof. It is a simple matter to verify that SectLF and SectR F are complete and
cocomplete. The category of left sections is the lax limit of F, and the category
of right sections is a colax limit of F; so the result follows from the fact that the 2-
category of X-accessible categories is closed under arbitrary X-small weighted bilimits
in which all functors are accessible [15, Theorem 5.1.6].

Lemma 2.26. Suppose a : L //K a functor of X-small categories. If F is a left
(respectively, right) X-combinatorial Quillen presheaf on an X-small category L, then
there is a string (a!, a

?, a?) of adjoints

a!, a? : SectL(F ◦ a) //
// SectLFoo : a? (resp., a!, a? : SectR(F ◦ a) //

// SectR Foo : a?).

Proof. If F is a left Quillen presheaf, then the functor

a? : SectL(F ◦ a) // SectL F

is simply given by the formula

a?(X,φ) := ((Xa(k))k∈ObjK , (φa(f))f∈ObjK(1)).

Since this functor commutes with all limits and colimits, the existence of its left and
right adjoints follows from the usual adjoint functor theorems.

Definition 2.27. Suppose K an X-small category, F a right Quillen presheaf on K.
A morphism X //Y of right sections of F is a projective weak equivalence or projective
fibration if, for any object k of K, the morphism Xk

//Yk is a weak equivalence or
fibration of Fk.

Theorem 2.28. The category SectR F of right sections of an X-combinatorial right
Quillen presheaf F (respectively, of an X-tractable right Quillen presheaf F) on an
X-small category K has an X-combinatorial (resp., X-tractable) model structure —
the projective model structure SectRproj F — in which the weak equivalences and fibra-
tions are the projective weak equivalences and fibrations.

Proof. Consider the functor e : ObjK //K , which induces an adjunction

e! :
∏
k∈ObjK Fk // SectR Foo : e?.

The condition of 2.12 follows from the observation that e? preserves all colimits.

Definition 2.29. Suppose K an X-small category, F a left Quillen presheaf on K.
A morphism X //Y of left sections of F is an injective weak equivalence or injective
cofibration if, for any object k of K, the morphism Xk

//Yk is a weak equivalence or
cofibration of Fk.
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Theorem 2.30. The category SectLF of left sections of an X-combinatorial (respec-
tively, X-tractable) left Quillen presheaf F on an X-small category K has an
X-combinatorial (resp., X-tractable) model structure — the injective model struc-
ture SectLinj F — in which the weak equivalences and cofibrations are the injective
weak equivalences and cofibrations.

Proof. Suppose κ an X-small regular cardinal such that K is κ-small, each Fk is
locally κ-presentable, and a set of generating cofibrations IFk

for each Fk can be
chosen from Fk,κ (resp., from Fk,κ ∩ Fk,c); without loss of generality, we may assume
that IFk

is the X-small set of all cofibrations in Fk,κ (resp., in Fk,κ ∩ Fk,c). Denote
by ISectL F the set of injective cofibrations between κ-presentable objects of SectLF
(resp., between κ-presentable objects of SectL F that are in addition objectwise cofi-
brant). This set contains a generating set of cofibrations for the projective model
structure, so it follows that inj ISectL F ⊂W .

The argument given for the existence of the injective model structure on presheaf
categories applies almost verbatim here to demonstrate that any injective cofibration
can be written as a retract of transfinite composition of pushouts of elements of
ISectL F.

Since colimits are formed objectwise, it follows that the injective trivial cofibrations
are closed under pushouts and transfinite composition.

Proposition 2.31. Suppose K an X-small category, F an X-combinatorial left (re-
spectively, right) Quillen presheaf on K. If each Fk is left or right proper, then so is
SectLinj F (resp., SectRproj F).

Proof. Pullbacks and pushouts are defined objectwise; hence it suffices to note that in
both model structures, weak equivalences are defined objectwise, and any cofibration
or fibration is in particular an objectwise cofibration or fibration.

Proposition 2.32. A left (resp., right) morphism Θ: F //G of X-combinatorial
left (resp., right) Quillen presheaves on an X-small category K induces a Quillen
adjunction

Θ! : SectLinj F
// SectLinj Goo : Θ? (resp.,Θ? : SectRproj G

// SectRproj Foo : Θ?),

which is a Quillen equivalence if each Θk is a Quillen equivalence.

Proof. Clearly Θ! (resp., Θ?) preserves objectwise weak equivalences and objectwise
cofibrations (resp., fibrations).

2.33. Note that the model categories constructed in this subsection are strictly more
general than those of the previous subsection. Indeed, if K is an X-small category
and C is a model X-category, then the presheaf category C(K) is equivalent to the
section category of the constant presheaf of categories on K at C. This presheaf is
both a left and right Quillen presheaf, so one reconstructs the injective and projective
model structures, respectively.
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3. Reedy model structures

Inverse, direct, and Reedy categories
Suppose E a structured homotopical category. Then if A is a Reedy category,

the category E(A) of presheaves Aop //E is also a structured homotopical category.
If C a left (respectively, right) E-model category, the category C(A) of presheaves
Aop //C has a Reedy left (resp., right) E(A)-model structure. We begin by reviewing
some definitions and results analogous to [10, §5.1]. The proofs of the results below
are similar to the proofs of the classical results for model categories, save only that
one must periodically insert the phrases “with cofibrant domain” (resp., “with fibrant
codomain”). We will therefore leave the proofs as an exercise.4

3.1. Suppose X a universe, E a structured homotopical X-category, C a left (respec-
tively, right) model X-category.

Definition 3.2. Suppose A an X-small category, λ an X-small ordinal.

(3.2.1) For any X-small category A, a functor d : A //λ is called a linear extension
of A if it reflects identities, that is, if a morphism f of A is an identity if and
only if d(f) is.

(3.2.2) An X-small category A is said to be a direct category if there exists a linear
extension d : A //λ .

(3.2.3) An X-small category A is said to be an inverse category if Aop is a direct
category.

Suppose now C any X-complete and X-cocomplete X-category.

(3.2.4) Suppose A an X-small inverse category, α an object of A.

(3.2.4.1) The latching category at α is the full subcategory ∂(Aop/α) of the
category (Aop/α) consisting of the nonidentity morphisms β //α .
There are two forgetful functors:

Fα : (Aop/α) //Aop and ∂Fα : ∂(Aop/α) //Aop .

(3.2.4.2) The latching functor Lα for C is the composite functor

C(A)
∂F?

α // C(∂(α/A)) colim // C ,

and the image of a diagram X : A //C is called the latching object
LαX of X at α.

(3.2.5) Suppose A an X-small direct category, α and object of A.

(3.2.5.1) The matching category at α is the opposite category ∂(α/Aop) :=
(∂(A/α))op of the latching category at α for Aop. There are two
forgetful functors:

Fα : (α/Aop) //Aop and ∂Fα : ∂(α/Aop) //Aop .

4Alternatively, see [19, Propositions 2.6 and 2.7], where the case of left model categories is addressed.
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(3.2.5.2) The matching functor Mα for C is the composite functor

C(A) ∂Fα,?
// C(∂(A/α)) lim // C ,

and the image of a diagram X : A //C is called the matching object
MαX of X at α.

Proposition 3.3.

(3.3.1) For any X-small inverse category A, the functor category E(A) has its pro-
jective structured homotopical structure, in which the weak equivalences and
fibrations are defined objectwise, and a morphism X //Y is a cofibration if
and only if for any object α of A, the induced morphism

Xα qLαX LαY //Yα

is so.
(3.3.2) For any X-small direct category A, the functor category E(A) has its injective

structured homotopical structure, in which the weak equivalences and cofibra-
tions are defined objectwise, and a morphism X //Y is a fibration if and
only if for any object α of A, the induced morphism

Xα
//MαX ×MαY Yα

is so.

Theorem 3.4.

(3.4.1) For any X-small inverse category A, the projective structured homotopical
structure on the functor category C(A) is a left (resp., right) E(A)-model
structure.

(3.4.2) For any X-small direct category A, the injective structured homotopical struc-
ture on the functor category C(A) is a left (resp., right) E(A)-model structure.

Proof. This is [10, Theorem 5.1.3], mutatis mutandis.

Proposition 3.5.

(3.5.1) For any X-small inverse category A, a morphism X //Y with E(A)-cofibrant
domain X (resp., a morphism X //Y ) of the functor category C(A) is a
trivial cofibration in the projective left (resp., right) model structure if and
only if for any object α of A, the induced morphism

Xα qLαX LαY //Yα

is so.
(3.5.2) For any X-small direct category A, a morphism X //Y (resp., a morphism

X //Y with E(A)-fibrant codomain Y ) of the functor category C(A) is a
trivial fibration in the injective left (resp., right) model structure if and only
if for any object α of A, the induced morphism

Xα
//MαX ×MαY Yα

is so.
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Proof. This is [10, Theorem 5.1.3], mutatis mutandis.

Proposition 3.6. Suppose f : A //B a functor of X-small categories.
(3.6.1) If A and B are inverse categories, then the adjunction

f! : C(A) //C(B)oo : f?

is a Quillen adjunction between the projective left (resp., right) model cate-
gories.

(3.6.2) If A and B are direct categories, then the adjunction

f? : C(B) //C(A)oo : f?

is a Quillen adjunction between the injective left (resp., right) model cate-
gories.

Proof. The functor f? preserves any properties that are defined objectwise.

Definition 3.7. An X-small Reedy category consists of the following data:
(3.7.A) an X-small category A,
(3.7.B) two lluf subcategories A→ and A← of A, and
(3.7.C) a unique factorization of every morphism into a morphism of A← followed

by a morphism of A→.
These data are subject to the following condition: there exist an ordinal λ and two
linear extensions A→ //λ and (A←)op //λ such that the diagram

A→

%%LLL
LLL

L

ObjA

77ooooooo

''OOOOOO λ

(A←)op

99ssssss

commutes. Write i→ (respectively, i←) for the inclusion A→ //A (resp., for the inclu-
sion A← //A).

3.8. In other words, a Reedy category consists of a category with a degree function on
its objects, so that any morphism can be factored in a functorial fashion as a morphism
that decreases the degree followed by a morphism that increases the degree.

Lemma 3.9. If A is an X-small Reedy category, then Aop is as well, with (Aop)→ :=
(A←)op and (Aop)← := (A→)op.

Proof. The unique factorization for A will work for Aop.

Lemma 3.10. Suppose A an X-small Reedy category, C an arbitrary category, and
A //C a fully faithful functor.
(3.10.1) For any object γ of C, the slice category (A/γ) is a Reedy category, wherein

(A/γ)→ (respectively, (A/γ)←) is the lluf subcategory consisting of those
morphisms mapping to A→ (resp., to A←) under the obvious forgetful func-
tor (A/γ) //A .



274 CLARK BARWICK

(3.10.2) For any object γ of C, the slice category (γ/A) is a Reedy category, wherein
(γ/A)→ (respectively, (γ/A)←) is the lluf subcategory consisting of those
morphisms mapping to A→ (resp., to A←) under the obvious forgetful func-
tor (γ/A) //A .

Proof. By the previous lemma, it suffices to show that (A/γ) is a Reedy category. It
is clear that the composites (A/γ)→ //A→ //λ and (A/γ)←,op //A←,op //λ
are linear extensions. The unique factorization for A gives a unique factorization for
(A/γ).

Lemma 3.11. Suppose A an X-small Reedy category. Then the diagram category
E(A) has its Reedy structured homotopical structure, in which a morphism φ : X //Y
is a weak equivalence, cofibration, or fibration if and only if both i→,?φ in E(A→) and
i←,?φ in E(A←) are so.

Theorem 3.12. Suppose A an X-small Reedy category. Then the diagram category
C(A) has its Reedy left (resp., right) E(A)-model structure, in which a morphism
φ : X //Y is a weak equivalence, cofibration, or fibration if and only if both i→,?φ in
C(A→) and i←,?φ in C(A←) are so.

Proof. This is [16, Theorem A], [10, Theorem 5.2.5], and [9, Theorems 15.3.4 and
15.3.15], mutatis mutandis.

3.13. Note in particular that the weak equivalences are the objectwise weak equiva-
lences.

Lemma 3.14. The Reedy model structure is functorial in the left (resp., right) model
category; that is, suppose A an X-small Reedy category, C and D left (resp., right)
model X-categories, and F : C //D a left Quillen functor. Then the induced functor
C(A) //D(A) — which will also be denoted F — is left Quillen as well.

Proof. Since F is a left adjoint, it commutes with all latching functors.

Theorem 3.15 (Hirschhorn, [9, Theorem 15.5.2]). The category A×A has a nat-
ural Reedy category structure, for which the Reedy structured homotopical structure
on E(A×A) and C(A×A) coincides with the “Reedy-Reedy” model structure on
E(A)(A) and E(A)(A).

Left and right fibrations of Reedy categories
We now address the question of the functoriality of the Reedy model structure

in the Reedy category. For simplicity let us restrict attention to the case of a model
category M. That is, we will describe the circumstances under which a functor A //B
induces a Quillen adjunction between M(A) and M(B).

Definition 3.16. Suppose A and B X-small Reedy categories.
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(3.16.1) A morphism f : A //B is a strictly commutative diagram of functors

A→

²²

// B→

²²
A // B

A←

OO

// B←.

OO

(3.16.2) A morphism f : A //B is a left fibration if for any model X-category M,
the adjunction

f? : M(B) //M(A)oo : f?

is a Quillen adjunction. If B = ?, then one says that A is left fibrant.
(3.16.3) A morphism f : A //B is a right fibration if for any model X-category M,

the adjunction
f! : M(A) //M(B)oo : f?

is a Quillen adjunction. If B = ?, then one says that A is right fibrant.

3.17. A Reedy model category is thus left (respectively, right) fibrant if and only
if it has fibrant (resp., cofibrant) constants in the sense of Hirschhorn [9, Defini-
tion 15.10.1]. The notion of a left or right fibration is merely a relative version of
Hirschhorn’s concepts.

The Reedy model structure lives between the injective model structure and pro-
jective model structure on M(A), if they exist. That is, the identity functor induces
a right Quillen functor in the direction M(A)Reedy

//M(A)proj and a left Quillen
functor in the direction M(A)Reedy

//M(A)inj . If A is direct (respectively, inverse),
then the former (resp., latter) of these is an isomorphism of model categories. If A
is left fibrant (respectively, right fibrant), then the fact that the constant functor is
right (resp., left) Quillen is an indication that the Reedy model structure is closer to
the projective (resp., injective) model structure.

Lemma 3.18. If A and B are X-small direct (respectively, inverse) categories, any
morphism f : A //B is a left (resp., right) fibration.

Proof. Immediate from 3.6.

Lemma 3.19. For any X-small Reedy categories A and B, a morphism f : A //B
is a left fibration if and only if the functor fop : Aop //Bop is a right fibration.

Proof. This follows from 3.9.

Lemma 3.20. For any X-small Reedy categories A and B, a morphism f : A //B is
a left (respectively, right) fibration if and only if the functor f← : A← //B← (resp.,
the functor f→ : A→ //B→ ) is so.

Proof. By the previous lemma, it suffices to prove the statement for left fibrations.
Since Reedy cofibrations and fibrations are defined by restriction to the direct and
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inverse subcategories, it follows that f is a left fibration if and only if f→ and f←

are left fibrations. But f→ is automatically a left fibration by 3.18.

Lemma 3.21. For any X-small Reedy categories A and B, a morphism f : A //B
is a left (respectively, right) fibration if and only if for any object β of B, the Reedy
category (f/β) (resp., (β/f)) is left (resp., right) fibrant.

Proof. It suffices to prove the statement for right fibrations, and by the previous
lemma, it suffices to assume that A and B are direct categories. Now f is a right fibra-
tion if and only if, for any model category M and any (trivial) cofibration φ : X //Y
of M(A), the induced morphism f!φ : f!X //f!Y is a (trivial) cofibration of M(B).
But (trivial) cofibrations are defined objectwise; hence this is in turn equivalent to
the assertion that for any model category M, any (trivial) cofibration φ : X //Y of
M(A), and any object β of B, the morphism

f!φβ : (f!X)β = colimα∈(fop/β)Xα // colimα∈(fop/β) Yα = (f!Y )β

is a (trivial) cofibration of M. This is precisely the statement that the adjunction

colim: M(β/f) //Moo : const

is a Quillen adjunction, i.e., that (β/f) is right fibrant.

Theorem 3.22. For any X-small Reedy categories A and B, a morphism f : A //B
is a left (respectively, right) fibration if and only if for any object α of A and any
morphism f(α) //β (resp., β //f(α)) of B, the nerve of the category ∂(α/(f←/β))
(resp., of the category ∂((β/f→)/α)) is either empty or connected.

Proof. This now follows from the previous lemma and Hirschhorn’s necessary and
sufficient condition for a Reedy category to have (co)fibrant constants [9, Proposition
15.10.2(1) and Corollary 15.10.5].

Corollary 3.23. Suppose A an X-small Reedy category, C an arbitrary category
with all finite products (respectively, finite coproducts), A //C a fully faithful func-
tor. Suppose that for any object γ of C, the Reedy category (A/γ) (resp., (γ/A)) is
left (resp., right) fibrant. Then for any morphism γ //γ′ of C, the forgetful functor
(A/γ) //(A/γ′) (resp., (γ′/A) //(γ/A)) is a left (resp., right) fibration.

Proof. Again it suffices to prove the assertion for left fibrations. Using the character-
ization of the theorem, one sees that the forgetful functor (A/γ) //(A/γ′) is a left
fibration if and only if for any object α of (A/γ′), the Reedy category (A/(α× γ′))
is left fibrant.

Lemmata of inheritance
Let us now reiterate some familiar but nevertheless useful facts on the subject of

the Reedy model structure. In particular, it inherits many good formal properties of
M (3.24, 3.33, 3.36, and 3.37).

Suppose A an X-small Reedy category, E a structured homotopical X-category,
C a left (respectively, right) E-model X-category.
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Lemma 3.24. If C is left E-proper or right proper (resp., left proper or right E-
proper), then the Reedy left (resp., right) E(A)-model category C(A) is left E(A)-
proper or right proper (resp., left proper or right E(A)-proper).

Proof. This follows immediately from the observation that the Reedy weak equiv-
alences, cofibrations, and fibrations are in particular objectwise weak equivalences,
cofibrations, and fibrations.

3.25. The Reedy model structure on C(A) is frequently compatible with a natural
symmetric monoidal structure, which arises from the use of objects yC(α) that rep-
resent evaluation at an object α of A. The category C(A) of C-valued presheaves Y
on A comprise the representable SetX(A)-valued presheaves on C, whose value on
an object X of C is the presheaf that assigns to any object α of A the morphisms in
C(A) from a presheaf y(α)�X to Y . Extending this correspondence to all presheaves
on A in the usual fashion, one arrives at a fundamental adjunction of two variables
(3.28) on C(A) with C over SetX(A).

Notation 3.26. Suppose X an object of C, and Y : Aop //C a presheaf.
(3.26.1) Write morC(A),�(−, Y ) for the right Kan extension a?Y of Y along the

opposite a : Aop //SetX(A)op of the Yoneda embedding.
(3.26.2) The copower functor

SetX // C
S

Â // S ·X
induces the functor −�C(A) X : SetX(A) //C(A).

(3.26.3) The object X corepresents a functor C //SetX and thus induces a functor
MorsC(A),�(X,−) : C(A) //SetX(A).

Lemma 3.27. For any presheaf K : Aop //SetX and any presheaf Y : Aop //C ,
there is an isomorphism

morC(A),�(K,Y ) ∼=
∫

α∈A
mor(Kα, Yα).

Proof. This is the usual end formula for right Kan extensions.

Lemma 3.28. The triple (�C(A),morC(A),�,MorsC(A),�) is an adjunction of two
variables: for any presheaf K : Aop //SetX , any object X of C, and any presheaf
Y : Aop //C , there are natural isomorphisms

MorC(X,morC(A),�(K,Y )) ∼= MorC(A)(K �C(A) X,Y )
∼= MorSetX(A)(K,MorsC(A),�(X,Y )).

Proof. This follows from the relevant universal properties.

Notation 3.29. Write y : A //SetX(A) for the Yoneda embedding.

Corollary 3.30. Suppose Y : Aop //C a presheaf; then for any object α of A, there
is a natural isomorphism

Yα ∼= morC(A),�(y(α), Y ).
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Corollary 3.31. Suppose Y : Aop //C a presheaf; then for any object α of A, there
is a presheaf ∂y(α) : Aop //C and a natural isomorphism

MαY ∼= morC(A),�(∂y(α), Y ).

Proof. Set

∂y(α) := colimα′∈(α/A←) y(α′).

Then one shows easily that morC(A),�(∂y(α), Y ) is the desired limit.

Notation 3.32. For any set K of morphisms of C, write

Λ2K := {(y(α)�X) t∂y(α)�X (∂y(α)� Y ) //y(α)� Y | α ∈ A, [X //Y ] ∈ K}.

Lemma 3.33. For any X-small Reedy category A, the Reedy left (resp., right) E(A)-
model category C(A) is X-combinatorial if C is.

Proof. Since C is X-combinatorial, it is possible to choose X-small sets of generating
cofibrations and generating trivial cofibrations IC and JC such that the domains and
codomains of IC (respectively, of JC) are small with respect to IC (resp., to JC);
then Λ2IC and Λ2JC are X-small sets of generating cofibrations and generating
trivial cofibrations of the Reedy model structure on C(A) [9, Theorem 15.6.27]. Local
presentability is inherited by functor categories; hence C(A) is X-combinatorial.

Lemma 3.34. For any X-small Reedy category A, the Reedy model category C(A)
is X-tractable if C is.

Proof. We claim that if X //Y is a cofibration with cofibrant source in C, then
(y(α)�X) t∂y(α)�X (∂y(α)� Y ) is cofibrant. Suppose that T //S is an objectwise
trivial fibration. Then by adjunction, a morphism y(α)�X //S has a lifting if and
only if the diagram

Tα

²²
X // Sα

has a lifting. It follows from the cofibrancy of X and [9, Proposition 15.3.11] that
y(α)�X is cofibrant in the Reedy model structure on C(A). It is easy to see by a
similar argument that ∂y(α)�X //∂y(α)� Y is a cofibration, so

y(α)�X //(y(α)�X) t∂y(α)�X (∂y(α)� Y )

is a cofibration, whence follows the claim, and thus the lemma.

Reedy diagrams in a symmetric monoidal model category
Suppose now A an X-small Reedy category and (M,⊗M,MorMM) a symmetric

monoidal model X-category.
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Notation 3.35. Suppose X and Y objects of M(A) and Z an object of M. Set

MorMM(A)(X,Y ) :=
∫

α∈Aop
MorM(Xα, Yα),

(Z ⊗M
M(A) X)α := Z ⊗M Xα,

morMM(A)(Z, Y )α := MorM(Z, Yα),

for any object α of A. This gives M(A) the structure of an M-category.

Lemma 3.36. With the M-structure of 3.35, the Reedy model category M(A) is an
M-model category.

Proof. To verify the pushout-product axiom, suppose f : Z //Z ′ a cofibration of M,
and i : X //Y a cofibration of M(A); then for any object α of A, the morphism

((Z ⊗ Y ) tZ⊗X (Z ′ ⊗X))α tMα((Z⊗Y )tZ⊗X(Z′⊗X)) Mα(Z ′ ⊗ Y )

²²
(Z ′ ⊗ Y )α

is isomorphic to the morphism

(Z ⊗ Yα) tZ⊗(XαtMαXMαY ) (Z ′ ⊗ (Xα tMαX MαY ) //Z ′ ⊗ Yα ,

which, by the pushout-product axiom for M, is a cofibration that is trivial if either
f or i is.

Corollary 3.37. If, in addition, M is a model V-category for some symmetric mo-
noidal model X-category V, then M(A) is also.

Lemma 3.38. There is a functor yM : A //M(A) such that for any object α of A
and any Y : Aop //M , there is a canonical isomorphism

MorM(A)(yM(α), Y ) ∼= Yα.

Moreover, if the unit 1M for the symmetric monoidal structure on M is cofibrant,
then for every such object α, yM(α) is cofibrant.

Proof. Set yM(α) := y(α)� 1M. The first part of the result now follows from the
enriched Yoneda lemma.

Corollary 3.39. If F : M //N is a left Quillen functor of symmetric monoidal
model X-categories such that F (1M) ∼= 1N,5 then F (yM(α)) ∼= yN(α) for every object
α of A.

Corollary 3.40. For any object α of A, there is a simplicial object ∂yM(α) of M —
which is cofibrant if 1M is — such that for any Y : Aop //M , there is a canonical
isomorphism

MorM(A)(∂yM(α), Y ) ∼= MαY.

5Note that one need not assume that F itself is symmetric monoidal.
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3.41. The exterior tensor product M(A)×M(A) //M(A×A) is part of a Quillen
adjunction of two variables. In order to see this, we quote the following result of
Hirschhorn.

Notation 3.42. Denote by

�M(A) : M(A)×M(A) // M(A×A)

Mor�,M(A) : M(A)op ×M(A×A) // M(A)

mor�,M(A) : M(A)op ×M(A×A) // M(A)

the functors defined by the formulæ

(X �M(A) Y )(α,α′) := Xα ⊗M Yα′ , (3.42.1)

Mor�,M(A)(Y, F )α := MorMM(A×A)((yM(α)�M(A) Y ), F ), (3.42.2)

mor�,M(A)(X,F )α := MorMM(A×A)((X �M(A) yM(α)), F ), (3.42.3)

for any objects X and Y of M(A), any F : Aop ×Aop //M , and any objects α, α′ of
A.

Proposition 3.43. The triple (�,Mor�,M(A),mor�,M(A)) is an adjunction of two
variables from M(A)×M(A) to M(A×A).

Proof. This is an easy consequence of the Fubini theorem for ends and the repre-
sentability properties of yM(α).

Lemma 3.44. For any pair of objects α and β of A, there is a canonical isomorphism

yM(α)� yM(β) ∼= yM(α, β)

in the category M(A×A).

Proof. This follows from the observation that for any X-small sets S and T , there is
a canonical isomorphism

(S · 1)⊗ (T · 1) ∼= (S × T ) · 1
in M.

Corollary 3.45. For any object α of A and any F : Aop ×Aop //M , there is a
canonical isomorphism

Mor�,M(A)(y(α), F ) ∼= F (α,−)

in M(A).

Corollary 3.46. For any object β of A, any object X of M(A), and any functor
F : Aop ×Aop //M , there is a canonical isomorphism

Mor�,M(A)(X,F )β ∼= MorMM(A)(X,F (−, β))

in M.
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Corollary 3.47. For any object β of A, any object X of M(A), and any functor
F : Aop ×Aop //M , there is a canonical isomorphism

Mβ Mor�,M(A)(X,F ) ∼= MorMM(A)(X,M
(−,β)F )

in M.

Proposition 3.48. The adjunction of two variables (�,Mor�,M(A),mor�,M(A)) is a
Quillen adjunction of two variables.

Proof. Now suppose i : X //Y a cofibration of M(A), and suppose p : F //G a
(trivial) fibration of M(A). Now by 3.15, for any object β of A, p induces a (trivial)
fibration

F (−, β) //M (−,β)(p)

of M(A), where

M (−,β)(p) := M (−,β)F ×M(−,β)G G(−, β).

Since M(A) is a model M-category, it follows that the induced morphism

MorM(A)(Y, F (−, β)

²²
(MorM(A)(Y,M

(−,β)(p))×MorM(A)(X,M
(−,β)(p)) MorM(A)(X,F (−, β))

is a fibration of M, which is trivial if either i or p is. But this morphism is isomorphic
to the morphism Uβ //MβU ×MβV Vβ , wherein

U := Mor�,M(A)(Y, F );
V := Mor�,M(A)(X,F )×Mor�,M(A)(X,G) Mor�,M(A)(Y,G).

Hence U //V is a fibration of M(A), which is trivial if i or p is.

Proposition 3.49. Suppose

F : M(A×A) //M(A)oo :U

a Quillen adjunction. Then the triple (⊗M(A),F ,MorM(A),F ,morM(A),F ), defined by
the formulæ

X ⊗M(A),F Y := F (X �M(A) Y ), (3.49.1)
MorM(A),F (Y, Z) := Mor�,M(A)(Y,UZ), (3.49.2)

morM(A),F (X,Z)α := mor�,M(A)(X,UZ), (3.49.3)

for any objects X, Y , and Y of M(A), is a Quillen adjunction of two variables from
M(A)×M(A) to M(A).

Proof. Suppose i : U //V and j : X //Y cofibrations of M(A). Then i2M(A),F j =
F (i2�,M(A)j), which is a cofibration that is trivial if either i or j is.
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Corollary 3.50. Suppose A monoidal, with a structure

◦ : A×A //A

that defines a right fibration of Reedy categories. Then the Day convolution product

⊗M(A),◦ := ◦!(−�M(A) −)

is part of a Quillen adjunction of two variables on M(A).

Theorem 3.51. If A is left fibrant and the morphisms of A← are epimorphisms, then
the diagonal symmetric monoidal structure given by

(X ⊗M(A)
M(A) Y )α := Xα ⊗ Yα, (3.51.1)

MorM(A)
M(A)(X,Y )α := MorMM(A)(yM(α)⊗M(A)

M(A) X,Y ), (3.51.2)

for any objects X and Y of M(A) and an object α of A, gives M(A) the structure of
a symmetric monoidal model category.

Proof. The unit axiom follows from the fact that the constant functor is symmetric
monoidal and preserves cofibrant objects and equivalences.

It now suffices to show that the diagonal functor ∆: A //A×A is a left fibration.
This is equivalent to showing, for any objects α, β, γ of A, and any pair of morphisms
α //β and α //γ of A←, that the nerve of the category ∂(α/(∆←/(β, γ))) is either
empty or connected. Since A is left fibrant, the nerve of the category ∂(α/A←) is
either empty or connected. Hence if

(δ, δ)

$$JJJ
J

(α, α)

::tttt
//

$$JJJ
J

(β, γ)

(ε, ε)

::uuuu

is a commutative diagram of A← ×A←, then there exists a zig-zag of morphisms
of A← ×A← connecting (δ, δ) to (ε, ε) under (α, α). To see that these morphisms
are morphisms over (β, γ) as well, we can, without loss of generality, suppose that
there is a morphism (δ, δ) //(ε, ε) of ((α, α)/(A← ×A←)). Hence the left half and
the exterior square of the diagram

(δ, δ)

²²

$$JJJ
J

(α, α)

::tttt

$$JJJ
J

(β, γ)

(ε, ε)

::uuuu

commute. But since (α, α) //(ε, ε) is an epimorphism, it follows that the left half of
this diagram commutes as well.

Example 3.52. For any X-small simplicial set or category K, the category M(∆/K)
is symmetric monoidal with the diagonal symmetric monoidal structure.
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Mapping spaces and resolutions
After briefly reviewing the hammock localization, we show how the Mor-spaces

therein can be computed using cosimplicial and simplicial resolutions. The standard
references on the hammock localization are the triple of papers [5], [6], and [7] of
W. G. Dwyer and D. Kan. A more modern treatment can be found in [8].

3.53. Suppose X a universe, (C, wC) a Y-small homotopical X-category.

Definition 3.54. Let O denote the category of totally ordered finite sets, and let
F denote the category of finite sets; denote by | − | : O //F the obvious forgetful
functor. Consider the set |1| = {0, 1}, and define the category T of types as the slice
category (O/|1|).
3.55. Thus a type (p, s) consists of a totally ordered finite set p = [0 //1 // · · · //p ]
∈ O with a choice of a partition, given by a map s : |p| // |1| in F, and a morphism
of types is a morphism in O that respects the partition.

Lemma 3.56. The category T is monoidal under the obvious concatenation product
◦.
Definition 3.57. Suppose (p, s) a type.
(3.57.1) Define a category Zp,s whose objects are the natural numbers −1, 0, 1, . . . , p,

and whose morphisms are freely generated by the morphisms between con-
secutive numbers:

MorZp,s(a− 1, a) :=

{
∅ if s(a) = 0;
{fa} if s(a) = 1,

and

MorZp,s(a, a− 1) :=

{
{fa} if s(a) = 0;
∅ if s(a) = 1.

Hence fa is always the unique morphism between a− 1 and a, and it goes
down if s(a) = 0, and up if s(a) = 1.

(3.57.2) For any type (p, s), the category Zp,s contains two lluf subcategories Lp,s

and Rp,s whose morphisms are the morphisms of Zp,s to the left or to the
right, respectively; i.e., the morphisms are given by

MorLp,s(a, b) :=

{
∅ if a < b;
MorZp,s(a, b) if a > b,

and

MorRp,s(a, b) :=

{
MorZp,s(a, b) if a 6 b;
∅ if a > b.

Lemma 3.58. There is a canonical isomorphism of categories

Z(p,s)◦(p′,s′) ∼= Z(p,s) ∨ Z(p′,s′),

where the object p ∈ Z(p,s) is identified with −1 ∈ Z(p′,s′).
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3.59. Observe that we do not attach to a morphism of types a functor between the
corresponding categories. Functors out of the Zp,s will actually be covariant in the
type (p, s).

Definition 3.60.

(3.60.1) Suppose X and Y objects of C. A restricted zig-zag from X to Y of type
(p, s) is a functor A : Zp,s

//C such that X = A(−1), Y = A(p), and the
composite functor Lp,s

//C factors through the inclusion wC //C .
(3.60.2) A morphism of restricted zig-zags from X to Y of type (p, s) is simply

a morphism of functors all of whose components are in wC, and whose
components at −1 and p are the identities on X and Y , respectively. Hence
we have the category wMorp,sC (X,Y ) of restricted zig-zags from X to Y of
type (p, s).

(3.60.3) One has the obvious composition

wMorp,sC (X,Y )× wMorp
′,s′

C (Y, Z) //wMor(p,s)◦(p
′,s′)

C (X,Z)

given by concatenation.
(3.60.4) A morphism

t : (p, s) //(p′, s′)

of types gives rise to a functor

t! : wMorp,sC (X,Y ) //wMorp
′,s′

C (X,Y )

that sends a restricted zig-zag A of type (p, s) to a restricted zig-zag t!A
of type (p′, s′), where the morphism t!A(fa′) is the composite of all the
morphisms A(fa) such that t(a) = a′ (where of course this is taken to be the
identity if there are no such morphisms).

(3.60.5) This is compatible with composition and hence defines a functor

wMor(−)
C (X,Y ) : T //CatY .

(3.60.6) The hammock localization of (C, wC) is the sSetY-category LH(C, wC)
whose objects are exactly those of C, with

MorLH(C,wC)(X,Y ) = colim(p,s)∈T ν•(wMorp,sC (X,Y ))

for any objects X and Y . The composition is given by the concatenation.

Notation 3.61. Write RMor(C,wC) for the simplicial mapping space functor

(wC−1C)op × wC−1C // Ho sSetY

(X,Y ) Â // MorL(C,wC)(X,Y );

the subscripts may be omitted when the context is sufficiently clear.

3.62. Suppose now that C is a left or right model or model category. In this case,
one can compute RMorC(X,Y ) without using the entire colimit over types. To this
end,
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(3.62.A) let pL := 3 and sL : |3| // |1| be the map (0, 1, 2, 3) Â //(0, 1, 0, 1);
(3.62.B) let pR := 3 and sR : |3| // |1| be the map (0, 1, 2, 3) Â //(1, 0, 1, 0); and
(3.62.C) let pM := 2 and sM : |2| // |1| be the map (0, 1, 2) Â //(0, 1, 0).
Now one can consider the full subcategories

(3.62.D) wMorLC(X,Y ) ⊂ wMor(pL,sL)
C (X,Y ), comprised of functors ZpL,sL

//C in
which f0 and f3 are trivial fibrations, and f2 is a trivial cofibration;

(3.62.E) wMorRC(X,Y ) ⊂ wMor(pR,sR)
C (X,Y ), comprised of functors ZpR,sR

//C in
which f0 and f3 are trivial cofibrations, and f1 is a trivial fibration;

(3.62.F) wMorMC (X,Y ) ⊂ wMor(pM ,sM )
C (X,Y )) consisting of functors ZpM ,sM

//C
in which f0 is a trivial fibration, and f2 is a trivial cofibration.

Another strategy is to use cosimplicial and simplicial resolutions, as in the following
definition.

Definition 3.63. A functor Γ• : C //(cC)c (respectively, a functor Λ• : C //(sC)f )
is a cosimplicial (resp., simplicial) resolution functor if there is a chain of objectwise
weak equivalences const• //r const• Γ•oo (resp., of objectwise weak equivalences
Λ• q const• //oo const• ), where the functor const• (resp., const•) assigns to any
object X of C the constant cosimplicial (resp., simplicial) object at X.

Scholium 3.64 (Dwyer-Kan). Suppose C a left model, right model, or model cate-
gory, and let D = L, R, or M , accordingly. Suppose QC : C //Cc a cofibrant replace-
ment functor, RC : C //Cf a fibrant replacement functor, Γ•C : C //(cC)c a cosim-
plicial resolution functor, and ΛC,• : C //(sC)f a simplicial resolution functor; then
there are natural weak equivalences of the simplicial sets

MorC(Γ•CX,RCY )

**TTTTTTTTTTTT
MorC(QCX,ΛC,•Y )

ttiiiiiiiiiiii

diag MorC(Γ•CX,ΛC,•Y )

hocolim(p,q)∈∆op×∆op MorM(ΓpCX,ΛC,qY )

OO

²²
ν•wMorDC(X,Y )

²²
MorLHC(X,Y ).

Corollary 3.65. If C is a left or right model category, then for any objects X and Y
of C, the simplicial set RMorC(X,Y ) is homotopically X-small; that is, it has the
homotopy type of an X-small simplicial set.

Corollary 3.66 ([9, 17.7.7]). The following are equivalent for a morphism A //B
of a right or left model category C.
(3.66.1) The morphism A //B is a weak equivalence.
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(3.66.2) For any fibrant object Z of C, the induced morphism

RMorC(B,Z) // RMorC(A,Z)

is an isomorphism of Ho sSetX.
(3.66.3) For any cofibrant object X of M, the induced morphism

RMorC(X,A) // RMorC(X,B)

is an isomorphism of Ho sSetX.

4. (Enriched) left Bousfield localization

Definition and existence of left Bousfield localizations
Here we review some highlights from the general theory of left Bousfield localiza-

tion. Since the published references do not include a proof of the existence theorem
of J. Smith, I include it solely for convenience of reference, with the caveat that the
result should in no way be construed as mine.

4.1. Suppose X a universe, M a model X-category.

Definition 4.2. Suppose H a set of homotopy classes of morphisms of M.
(4.2.1) A left Bousfield localization of M with respect to H is a model X-category

LHM, equipped with a left Quillen functor M //LHM that is initial among
left Quillen functors F : M //N to model X-categories N with the property
that for any f representing a class in H, LF (f) is an isomorphism of HoN.

(4.2.2) An object Z of M is H-local if for any morphism A //B representing an
element of H, the morphism

RMorM(B,Z) // RMorM(A,Z)

is an isomorphism of Ho sSetX.
(4.2.3) A morphism A //B of M is an H-local equivalence if for any H-local object

Z, the morphism

RMorM(B,Z) // RMorM(A,Z)

is an isomorphism of Ho sSetX.

Lemma 4.3. When it exists, the left Bousfield localization of M with respect to H is
unique up to a unique isomorphism of model X-categories.

Proof. Initial objects are essentially unique.

4.4. Left Bousfield localizations of left proper, X-combinatorial model X-categories
with respect to X-small sets of homotopy classes of morphisms are guaranteed to
exist, as we shall now demonstrate. For the remainder of this section, suppose H a
set of homotopy classes of morphisms of M. The characterization and existence of
left Bousfield localizations are the central objectives of the next few results. It is a
familiar fact that if a model structure exists on M with the same cofibrations whose
weak equivalences are the H-local weak equivalences, then this is the left Bousfield



LEFT AND RIGHT BOUSFIELD LOCALIZATIONS 287

localization. The central point is thus to determine the existence of such a model
structure. Smith’s existence theorem 4.7 hinges on the recognition principle 2.2 and
the following pair of technical lemmata.

Lemma 4.5. If M is X-combinatorial, and H is X-small, then the set of H-local
objects of M comprise an accessibly embedded, accessible subcategory of M(1).

Proof. Choose an accessible fibrant replacement functor rM for M, a functorial cosim-
plicial resolution functor Γ•M : M //(cM)c , and an X-small set S of representatives
for all and only the homotopy classes of H. Then the functor

M //sSetX(1)
Z Â //

∐
f∈S f

?
Γ•M,rM

(Z)

is accessible, where

f?Γ•M,rM(Z) : MorM(Γ•MY, rMZ) // MorM(Γ•MX, rMZ)

is the morphism of simplicial sets induced by f : X //Y . Since the full subcategory of
sSetX(1) comprised of weak equivalences is accessibly embedded and accessible, the
full subcategory of H-local objects is also accessibly embedded and accessible.

Lemma 4.6. If M is X-combinatorial, and H is X-small, then the set of H-local
equivalences of M comprise an accessibly embedded, accessible subcategory of M1.

Proof. This follows from the previous lemma and the fact that for sufficiently large
regular X-small cardinals κ, the H-local equivalences of M are closed under κ-filtered
colimits. To show the latter point, choose κ so that κ-filtered colimits are homotopy
colimits. Then for any H-local object Z, a colimit colimA // colimB of a κ-filtered
diagram of H-local equivalences is a weak equivalence because the morphism

RMorM(colimB,Z) // RMorM(colimA,Z)

is a homotopy limit of weak equivalences in sSetX, hence a weak equivalence.

Theorem 4.7 (Smith, [18]). If M is left proper and X-combinatorial, and H is an
X-small set of homotopy classes of morphisms of M, the left Bousfield localization
LHM of M along any set representing H exists and satisfies the following conditions.
(4.7.1) The model category LHM is left proper and X-combinatorial.
(4.7.2) As a category, LHM is simply M.
(4.7.3) The cofibrations of LHM are exactly those of M.
(4.7.4) The fibrant objects of LHM are the fibrant H-local objects Z of M.
(4.7.5) The weak equivalences of LHM are the H-local equivalences.

Proof. The aim is to guarantee that a cofibrantly generated model structure on M
exists satisfying conditions (4.7.3)–(4.7.5) using 2.2. The combinatoriality is then
automatic, and the universal property and the left properness are then verified in [9,
Theorem 3.3.19 and Proposition 3.4.4].

Fix an X-small set IM of generating cofibrations of M, and let wLHM denote
the set of the weak equivalences described in (4.7.5). By 4.6, we can now apply 2.2:
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observe that since IM-injectives are trivial fibrations of M, they are in particular
weak equivalences of M, and hence are among the elements of wLHM.

It thus remains only to show that pushouts and transfinite compositions of mor-
phisms of cof M ∩ wLHM are H-local weak equivalences. Suppose first that K //L
a cofibration in wLHM, and suppose

K

²²

// L

²²
K ′ // L′

a pushout diagram in M. Note that by the left properness of M, this pushout is in
fact a homotopy pushout; thus the statement that K ′ //L′ is an element of wLHM
is equivalent to the assertion that, for any H-local object Z, the diagram

RMorM(K ′, Z)

²²

// RMorM(K ′, Z)

²²
RMorM(L,Z) // RMorM(K,Z)

is a homotopy pullback diagram in sSet, and this follows immediately from the fact
that RMorM(L,Z) // RMorM(K,Z) is a weak equivalence. Since κ-filtered colimits
are homotopy colimits for κ sufficiently large, it follows that a transfinite composition
of elements of cof M ∩ wLHM is an morphism of wLHM.

Definition 4.8. If M is left proper and X-combinatorial, and if H is an X-small
set of homotopy classes of morphisms of M, then an object X of the left Bousfield
localization LHM is quasifibrant if some fibrant replacement rMX of X in M is
fibrant in LHM.

4.9. Note that this terminology is ambiguous. A better terminology would include a
reference to both M and H — e.g., “(M,H)-quasifibrant” — but this seems tiresome.

Lemma 4.10. If M is left proper and X-combinatorial, and H is an X-small set of
homotopy classes of morphisms of M, then an object X of the left Bousfield localiza-
tion LHM is quasifibrant if and only if it is H-local.

Proof. H-locality is closed under weak equivalences in M; hence if X is quasifibrant
it is surely H-local, and the fibrant replacement in M of an H-local object is H-
local.

4.11. As a rule, one has essentially no control in a left Bousfield localization over
the generating trivial cofibrations. The following proposition (originally — with a
different proof — due to M. Hovey) is one of the very few results on the trivial
cofibrations of left Bousfield localizations; it is critical for the forthcoming existence
theorem 4.46 for enriched left Bousfield localizations.

Proposition 4.12 (Hovey, [11, Proposition 4.3]). Suppose that M is left proper and
X-combinatorial, and suppose that H is X-small. Then the left Bousfield localization
LHM is X-tractable if M is.

Proof. Immediate from 2.7.
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4.13. Finally, it seems that if M is only a left model category, then LHM exists
as a left M-model category. Such a result has the advantage that it eliminates the
dependence of the existence theorem on the left properness of M. I will not explore
this point further here, since it would take me too far afield, and since left properness
is frequently satisfied in practice; however, it seems likely that Smith’s theorem can
be adapted for this purpose.

The failure of right properness
Left Bousfield localizations inherit left properness, but in general they destroy right

properness. This is because there is very little control over the fibrations.
Nevertheless, there are often full subcategories that can be regarded as right proper,

and this form of right properness is inherited by the quasifibrant objects contained in
these subcategories in the left Bousfield localization. In this case, there exist functorial
factorizations of morphisms of these quasifibrant objects through quasifibrant objects,
so homotopy pullbacks of these quasifibrant objects can be computed effectively. This
also provides a nice recognition principle for fibrations of LHM with a quasifibrant
codomain that lies in such a subcategory.

One can think of this subsection as an enlargement of Reedy’s observation that
homotopy pullbacks of fibrant objects can be computed by replacing on only one
side, or, alternatively, one can think of this subsection as a collection of techniques
for coping with the fact that many important combinatorial model categories are
simply not right proper.

There are, of course, dual conditions and results to many of those of this section,
but they are not discussed here, essentially because left properness is a relatively
common condition in practice.

4.14. Suppose X a universe, M a model X-category.

Definition 4.15.

(4.15.1) If E is any full subcategory of M, an E-placement functor is a pair (rE , εE)
consisting of a functor rE : M //E along with an objectwise weak equiva-
lence εE from the identity functor to the composite ιE ◦ rE , where
ιE : E //M denotes the inclusion.

(4.15.2) A full subcategory E of M is said to be stable under trivial fibrations if
for any object X of E and any trivial fibration Y //X , the object Y is an
object of E as well.

(4.15.3) A full subcategory E of M is said to be admissibly left exact if E contains any
admissible pullback in E — i.e., if E contains the pullback of any morphism
of E along any fibration of E; more generally, E is said to be partially left
exact if E contains the pullback of any weak equivalence of E along any
fibration of E.

(4.15.4) A partially left exact full subcategory E is said to be right proper if in E
admissible pullbacks of weak equivalences are weak equivalences.

(4.15.5) Suppose E a partially left exact full subcategory; then a pair (F, η) consisting
of a functor F : E //M with an objectwise weak equivalence η from the
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inclusion functor ιE to F is said to be exceptional on E if F preserves
admissible pullback diagrams.

Lemma 4.16. Suppose E and E′ partially (respectively, admissibly) left exact full
subcategories of M and (F, η) an exceptional pair on E. Then the full subcategory
F−1(E′) of E consisting of those objects X of E such that FX is an object of E′

is partially (resp., admissibly) left exact. Moreover, if E′ is right proper, then so is
F−1(E′).

Proof. Refer to the diagram

F (Y ′) //

²²

FY

²²

Y ′ //

²²

ddIIII
Y

²²

<<yyyy

X ′ //

zzuuu
u

X

""EE
EE

F (X ′) // FX.

If the interior square is an admissible pullback diagram in E, then the outer square
is so in M. If X ′ //X is a weak equivalence, then so is F (X ′) //FX , and if
F (Y ′) //FY is a weak equivalence, then so is Y ′ //Y .

Lemma 4.17. The full subcategory Mf of fibrant objects is admissibly left exact and
right proper.

Proof. This is Reedy’s observation, [16, Theorem B] or [9, Proposition 13.1.2].

Corollary 4.18. A partially left exact full subcategory E of M is right proper if there
exists an exceptional fibrant replacement functor on E.

Corollary 4.19. The model category sSet of simplicial sets is right proper.

Proof. Kan’s Ex∞ is an exceptional fibrant replacement functor.

Lemma 4.20. Suppose E a right proper, partially left exact full subcategory of M
with Mf ⊂ E. Then there exists a functorial factorization of any morphism in E
into a weak equivalence of E followed by a fibration of E. If, in addition, E is stable
under trivial fibrations, then there is a functorial factorization of every morphism of
E into a trivial cofibration of E followed by a fibration of E.

Proof. Choose a functorial factorization of every morphism into a trivial cofibration
followed by a fibration; this gives in particular a functorial fibrant replacement r.
Suppose X //Y a morphism of E; applying the chosen functorial factorization to
the vertical morphism on the right in the diagram

X //

²²

rX

²²
Y // rY,

yields rX //Z //rY . Pulling back the resulting fibration Z //rY along Y //rY
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produces a diagram

X //

²²

rX

²²
Y ×rY Z //

²²

Z

²²
Y // rY,

in which Y ×rY Z //Y is a fibration of E, and Y ×rY Z //Z — and therefore also
X //Y ×rY Z — is a weak equivalence of E. If E is stable under trivial fibrations,
then applying the chosen factorization to the morphism X //Y ×rY Z provides the
desired factorization of the second half of the statement.

Corollary 4.21. If E is a right proper, admissibly left exact full subcategory of M
with Mf ⊂ E, then admissible pullbacks in E are homotopy pullbacks.

4.22. Suppose for the remainder of this section that the model category M is left
proper and X-combinatorial, that H is X-small, and that E is a right proper, admis-
sibly left exact full subcategory of M with Mf ⊂ E. Write locE(H) for the full subcat-
egory of E consisting of H-local objects, viewed as a full subcategory of the Bousfield
localization LHM; observe that (LHM)f ⊂ locE(H). The objective is to show that
locE(H) is right proper and admissibly left exact, whence the effective computability
of homotopy pullbacks of H-local objects of E.

Lemma 4.23. The subcategory locE(H) is a right proper partially left exact full sub-
category of LHM, and if E is stable under trivial fibrations, then so is locE(H).

Proof. Weak equivalences in LHM between H-local objects are weak equivalences of
M, and the trivial fibrations of LHM are exactly those of M.

Lemma 4.24. If E is stable under trivial fibrations, then locE(H) admits a functo-
rial factorization, within locE(H), of every morphism into a trivial cofibration of M
followed by a fibration of LHM.

Proof. Applying 4.20, there is a functorial factorization of every morphism into a triv-
ial cofibration of locE(H) followed by a fibration of locE(H). But a trivial cofibration
in LHM between H-local objects is a trivial cofibration in M as well.

Corollary 4.25. If E is stable under trivial fibrations, then a morphism of locE(H)
is a fibration in LHM if and only if it is a fibration of M.

Proof. One implication is obvious; the other follows from the retract argument.

Proposition 4.26. The subcategory locE(H) is a right proper, admissibly left exact
full subcategory of LHM with (LHM)f ⊂ locE(H).
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Proof. Suppose Y //X a fibration of locE(H), and suppose X ′ //X a morphism of
locE(H). To show that the pullback

Y ′ //

²²

Y

²²
X ′ // X

exists in locE(H), it suffices by factorization (4.20) to suppose that X ′ //X is a fibra-
tion as well. But then the pullback Y ′ is a homotopy pullback, and since RMor(A,−)
commutes with homotopy pullbacks, Y ′ is also H-local.

Corollary 4.27. Admissible pullbacks of locE(H) are homotopy pullbacks.

Corollary 4.28. If M is right proper, then the quasifibrant objects form a right
proper, admissibly left exact full subcategory loc(H) of LHM.

4.29. Lastly, we now turn to a recognition principle for fibrations in LHM with
codomains in E or locE(H).

Proposition 4.30. Suppose p : Y //X a fibration of M. For any fibrant replacement
p′ : Y ′ //X ′ of p in LHM (i.e., a morphism p′ between fibrant objects with a weak
equivalence p //p′ in LHM(1)) consider the diagram

Y //

p
²²

Y ′

p′
²²

X // X ′.

(4.30.1)

(4.30.2) If X ∈ E, then p is a fibration of LHM if there exists a fibrant replacement
p′ : Y ′ //X ′ of p such that (4.30.1) is a homotopy pullback square in M.

(4.30.3) If X ∈ locE(H), then p is a fibration of LHM if and only if for any fibrant
replacement p′ : Y ′ //X ′ , the square (4.30.1) is a homotopy pullback square
in M.

Proof. To prove the first assertion, factor p′ as a weak equivalence Y ′ //Y ′′ of LHM
followed by a fibration Y ′′ //X ′ of LHM; the weak equivalence Y ′ //Y ′′ is even
a weak equivalence of M since it is a weak equivalence of local objects. Also factor
X //X ′ as a weak equivalence X //X ′′ in E followed by a fibration X ′′ //X in E.
Pulling back Y ′′ //X ′ , we have the commutative diagram

Y

²² !!CC
CC

CC
// Y ′

²²
Z

²²

// Z ′′

²²

// Y ′′

²²
X // X ′′ // X ′.

Since X ′′, X ′, and Y ′′ are all objects of E, Z ′′ is an object of E as well, and it follows
from the right properness of E that the weak equivalence X //X ′′ is pulled back to a
weak equivalence Z //Z ′′ of M. The statement that (4.30.1) is a homotopy pullback
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is equivalent to the assertion that the morphism Y //Z ′′ is a weak equivalence of
M. It now follows that the morphism Y //Z is a weak equivalence of M. Factor
this map into a trivial cofibration Y //Z ′ of LHM followed by a fibration Z ′ //Z
of LHM; it follows that Y //Z ′ is in fact a trivial cofibration of M, and the retract
argument thus completes proof.

The proof of the second statement begins similarly; factor p′ as before, and now
factor the morphism X //X ′ as a weak equivalence X //X ′′ in locE(H) followed by
a fibration X ′′ //X in locE(H) (which is in addition a weak equivalence in LHM).
Again pull back the fibration Y ′′ //X ′ :

Y

²² !!CC
CC

CC
// Y ′

²²
Z

²²

// Z ′′

²²

// Y ′′

²²
X // X ′′ // X ′.

Now it follows from the right properness of locE(H) that the morphism Z ′′ //Y ′′

is a weak equivalence of LHM, and it follows from the right properness of E that
Z //Z ′′ is a weak equivalence of M. It thus follows that the morphism Y //Z is a
weak equivalence of LHM, and since Z //X and p : Y //X are each fibrations of
LHM, it follows [9, Proposition 3.3.5] that Y //Z is a weak equivalence of M; hence
the composite morphism Y //Z ′′ is a weak equivalence of M, so that (4.30.1) is a
homotopy pullback.

Application I: Presentations of combinatorial model categories
A presentation of a model X-category is a Quillen equivalence with a left Bousfield

localization of a category of simplicial presheaves on an X-small category. A beautiful
result of D. Dugger indicates that presentations exist for all combinatorial model
categories. Hence any tractable model category can (up to Quillen equivalence) be
given a representation in terms of generators and relations. We recall Dugger’s results
here.

Definition 4.31. An X-presentation (K,H,F ) of a model X-category M consists
of an X-small category K, an X-small set H of homotopy classes of morphisms of
sSetX(K), and a left Quillen equivalence F : LHsSetX(K)proj

//M .

Theorem 4.32 (Dugger, [4, Theorem 1.1]). Every X-combinatorial model X-cat-
egory has an X-presentation.

Corollary 4.33. An X-combinatorial model X-category has an X-small set of homo-
topy generators.

Proof. By the theorem it is enough to show this for the projective model category of
simplicial presheaves on an X-small category C; in this case, the images under the
Yoneda embedding of the objects of C provide such a set.
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Application II: Homotopy images
As a quirky demonstration of the usefulness of left Bousfield localizations, we offer

the factorization result 4.35.

Definition 4.34. Suppose f : X //Y a morphism of a model X-category M.

(4.34.1) The morphism f is said to be a homotopy monomorphism if the natural
morphism X //X ×hY X is an isomorphism of HoM.

(4.34.2) Dually, the morphism f is said to be a homotopy epimorphism if the natural
morphism Y th,X Y //Y is an isomorphism of HoM.

(4.34.3) The homotopy image of f is a factorization of f into a cofibration X //f(X)
followed by a homotopy monomorphism f(X) //Y such that for any other
such factorization X //X ′ //Y , there exists a unique morphism f(X) //X ′

in HoM.

Theorem 4.35. Suppose M left proper and X-combinatorial; if Y is a fibrant object
of M, any morphism f : X //Y has a homotopy image.

Proof. Let G be an X-small set of cofibrant homotopy generators for M. Write G/Y
for the disjoint union of the sets MorHoM(R, Y ) over R ∈ G. Now write

∇G/Y := {g t g //g | g ∈ G/Y },
an X-small set. The M-model category L∇G/Y

(M/Y ) then exists.
It now suffices to show that the fibrant objects of the model category L∇G/Y

(M/Y )
are precisely the fibrations X ′ //Y that are also homotopy monomorphisms, for if
so, the homotopy image of a morphism f : X //Y is simply a fibrant replacement for
f in L∇G/Y

(M/Y ).
Observe that the fibrant objects are precisely those fibrations X ′ //Y such that

the natural morphism
RMor(M/Y )(Z,X ′) //?

is a homotopy monomorphism of M for any cofibrant object Z of M/Y . Equivalently,
a fibration X ′ //Y is fibrant in L∇G/Y

(M/Y ) if and only if, for any object Z, the
natural morphism

RMorM(Z,X ′) // RMorM(Z, Y )

is a homotopy monomorphism, whence the desired characterization of weak equiva-
lences.

Application III: Homotopy limits of right Quillen presheaves
The category of right sections of a right Quillen presheaf F with its projective

model structure is to be thought of as the (∞, 1)-categorical colax limit of F. The
(∞, 1)-categorical limit — or homotopy limit — of F is a left Bousfield localization
of the category of right sections.

4.36. Suppose X a universe. Suppose K and X-small category, and suppose F an
X-combinatorial right Quillen presheaf on K.
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Definition 4.37. A right section (X,φ) of F is said to be homotopy cartesian if for
any morphism f : ` //k of K, the morphism

φhf : X`
//Rf?Xk

is an isomorphism of HoF`.

Theorem 4.38. There exists an X-combinatorial model structure on the category
SectR F — the homotopy limit structure SectRholim F — satisfying the following con-
ditions.

(4.38.1 The cofibrations are exactly the projective cofibrations.

(4.38.2 The fibrant objects are the projective fibrant right sections that are homotopy
cartesian.

(4.38.3 The weak equivalences between fibrant objects are precisely the objectwise weak
equivalences.

Proof. For every k ∈ ObjK, let Gk be an X-small set of cofibrant homotopy gener-
ators of Fk. For each object k of K, there is a Quillen adjunction

Dk : Fk
// SectR Foo :Ek

where Ek(X,φ) = Xk; one verifies that for any object A of F`,

EkD`A ∼=
∐

f : `→k
f!A.

Hence for every f : ` //k and any object A of F`, there is a canonical morphism
f!A //EkD`A , and, by adjunction, a canonical morphism rf,A : Dk(f!A) //D`A .

Now define the X-small set

H := {rf,A : Dk(f!A) //D`A | [f : ` //k ] ∈ K,A ∈ G`}.
The claim is that LH SectRproj F is the model category of the theorem.

To verify this claim, it suffices to check that the fibrant objects are as described.
Indeed, a right section X is fibrant if and only if it is fibrant in SectRproj F, and, for
any morphism f : ` //k of K and any A ∈ G`,

RMorSectR
proj F

(LD`A,X) // RMorSectR
proj F

(LDkLf!A,X) ,

or equivalently

RMorFk
(A,RE`X) // RMorFk

(A,Rf?REkX) (4.38.4)

is an isomorphism of Ho sSetX. Since the elements of G` generate F` by homotopy
colimits, it follows immediately that (4.38.4) is an isomorphism of Ho sSetX for any
object A of F`, whence it follows that X is homotopy cartesian, as desired.

Example 4.39. Denote by N the category whose objects are nonnegative integers,
in which there is a unique morphism m //n if and only if m 6 n. Consider the right
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Quillen presheaf
Ω: Nop //CatY

n Â //(?/sSetX)
[n 6 m] Â //Ωm−n,

where of course Ωm−n := Mor(?/sSet)((S
1)∧(m−n),−). One verifies easily that the

model category SectRholim Ω is simply the usual Bousfield-Friedlander model category
of spectra.

4.40. Note that the results of this section say nothing about the homotopy limits of
left Quillen presheaves. As an (∞, 1)-category, such a homotopy limit should be a
coreflexive sub-(∞, 1)-category of the (∞, 1)-categorical lax limit; hence it is more
properly modeled as a right Bousfield localization. This is a somewhat more delicate
issue, which is addressed in 5.25.

The enriched left Bousfield localization
Here we define enriched Bousfield localizations, and we prove an existence theorem.

4.41. Suppose X a universe, V a symmetric monoidal model X-category, and C a
model V-category.

Definition 4.42. Suppose H a set of homotopy classes of morphisms of C. A left
Bousfield localization of C with respect to H enriched over V is a model V-category
L(H/V)C, equipped with a left Quillen V-functor C //L(H/V)C that is initial among
left Quillen V-functors F : C //D to model V-categories D such that for any f
representing a class in H, Ff is a weak equivalence in D.

Lemma 4.43. When it exists, an enriched left Bousfield localization is unique up to
a unique V-isomorphism of model V-categories under C.

Proof. Initial objects are essentially unique.

4.44. Suppose, for the remainder of this section, H a set of homotopy classes of
morphisms of C.

Definition 4.45.

(4.45.1) An object Z of C is (H/V)-local if for any morphism A //B representing
an element of H, the morphism

RMorC(B,Z) // RMorC(A,Z)

is an isomorphism of HoV.
(4.45.2) A morphism A //B of C is an (H/V)-local equivalence if for any fibrant

(H/V)-local object Z, the morphism

RMorC(B,Z) // RMorC(A,Z)

is an isomorphism of HoV.

Theorem 4.46. Suppose that following conditions are satisfied.



LEFT AND RIGHT BOUSFIELD LOCALIZATIONS 297

(4.46.A) The model V-category C is left proper and X-tractable.

(4.46.B) The set H is X-small.

(4.46.C) The model X-category V is X-tractable.

Then the enriched left Bousfield localization L(H/V)C exists, and satisfies the follow-
ing conditions.

(4.46.1) The model category L(H/V)C is left proper and X-tractable.

(4.46.2) As a V-category, L(H/V)C is simply C.

(4.46.3) The cofibrations of L(H/V)C are exactly those of C.

(4.46.4) The fibrant object of L(H/V)C are those fibrant (H/V)-local objects Z of C.

(4.46.5) The weak equivalences of L(H/V)C are the (H/V)-local equivalences.

Proof. Let S be an X-small set of cofibrations between cofibrant objects representing
all and only the homotopy classes of H. Choose a generating set of cofibrations I for
V with cofibrant domains. Set

L(H/V)C := LI2SC,

the left Bousfield localization of C by I2S (4.7). By [9, Proposition 17.4.16], an
object Z that is fibrant in C is (I2S)-local if and only if for any X //Y in I and
any A //B in S, the diagram

RMorV(Y,MorC(B,Z))

²²

// RMorV(X,MorC(B,Z))

²²
RMorV(Y,MorC(A,Z)) // RMorV(X,MorC(A,Z))

is a homotopy pullback. Thus Z is (I2S)-local if and only if for any morphism
A //B of S, the induced morphism MorC(B,Z) // MorC(A,Z) is homotopy right
orthogonal [9, Definition 17.8.1] to every element of I. By [9, Theorem 17.8.18], this
is equivalent to the condition that MorC(B,Z) // MorC(A,Z) is a weak equivalence
in V. Thus the fibrant objects of L(H/V)C are exactly those fibrant objects Z of C
such that the morphism RMorC(B,Z) // RMorC(A,Z) is a weak equivalence in V
for every A //B representing an element of H.

The inheritance of left properness and the X-combinatoriality follows from the
general theory of left Bousfield localizations (4.7).

The cofibrations are unchanged; hence the the unit axiom (1.27.4.42) holds, and
the pushout-product i2f of a cofibration i : X //Y of V with a cofibration f : A //B
of C is a cofibration of C that is trivial if i is. To show that L(H/V)C is a model
V-category, it thus suffices to show that if f is a trivial cofibration of L(H/V)C, then
i2f is a weak equivalence. By 1.30, it suffices to verify this for f an element of a
generating set of trivial cofibrations of L(H/V)C. By 4.12, L(H/V)C has an X-small
set of generating trivial cofibrations with cofibrant domains; so let J denote such a
set, and let f ∈ J . Now by adjunction, one verifies that i2f is a weak equivalence if,



298 CLARK BARWICK

for any fibrant object Z of L(H/V)C, the diagram

RMorV(Y,MorC(B,Z))

²²

// RMorV(X,MorC(B,Z))

²²
RMorV(Y,MorC(A,Z)) // RMorV(X,MorC(A,Z))

is a homotopy pullback. Since both of the vertical morphisms are weak equivalences,
the desired result follows.

The right Quillen functor L(H/V)C //C induces a fully faithful (HoV)-functor

HoL(H/V)C // HoC .

The characterization of weak equivalences now follows from 1.37.
Now suppose D a model V-category and F : C //D a left Quillen V-functor such

that for any f ∈ S, Ff is a weak equivalence. Then Ff is a trivial cofibration of D,
and for any i ∈ I, the morphism F (i2f) = i2Ff is also a trivial cofibration. Hence
any such F factors uniquely through C //L(H/V)C by the universal property enjoyed
by ordinary left Bousfield localizations. This completes the proof.

Proposition 4.47. Suppose that C, V, and H together satisfy each of the conditions
(4.46.A) through (4.46.C), and, in addition, each of the following conditions.
(4.47.A) The tuple (C,⊗C

C,MorCC) is a symmetric monoidal model category.
(4.47.B) There exists a set (not necessarily X-small) G of cofibrant homotopy gen-

erators of C, with the property that for any element A ∈ G and any fibrant
(H/V)-local object B of C, MorCC(A,B) is (H/V)-local.

Then the the symmetric monoidal structure of C endows the enriched Bousfield local-
ization L(H/V)C with the structure of a symmetric monoidal X-tractable model X-
category.

Proof. Since the cofibrations are unchanged, I is an X-small set of generating cofi-
brations for L(H/V)C with cofibrant domains. It suffices to verify that for any trivial
cofibration i : X //Y of L(H/V)C and any element f : A //B of I, the pushout-
product i2C

Cf is a weak equivalence. By [9, Proposition 17.4.16], this holds in turn
if, for any fibrant object Z of L(H/V)C, the diagram

RMorC(Y,MorCC(B,Z))

²²

// RMorC(X,MorCC(B,Z))

²²
RMorC(Y,MorCC(A,Z)) // RMorC(X,MorCC(A,Z))

is a homotopy pullback of V. The horizontal morphisms are weak equivalences if
the objects MorC(A,Z) and MorC(B,Z) are (H/V)-local. This follows from the
observation that A and B are homotopy colimits of objects of G, and that (H/V)-
locality is preserved under homotopy limits.

Application IV: Local model structures
As a final application, we describe the local model structures on categories of

presheaves valued in a symmetric monoidal model category.
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4.48. Suppose X a universe, suppose (C, τ) an X-small site, and suppose V an X-
tractable symmetric monoidal model category with cofibrant unit 1V.

Notation 4.49. Write y : C //SetX(C) for the usual Yoneda embedding, and write
yV : C //V(C) for the V-enriched Yoneda embedding, defined by copowers:

yVX := yX · 1V : Y Â // MorC(Y,X) · 1V .

Proposition 4.50. The category V(C), with either its injective or projective model
structure, is a V-model category.

Proof. Suppose i : K //L a (trivial) cofibration of V; then for any objectwise (triv-
ial) cofibration (respectively, any objectwise (trivial) fibration) f : X //Y of V(C),
the morphism i2f (resp., mor2(i, f)) is an objectwise (trivial) cofibration (resp., an
objectwise (trivial) fibration).

Proposition 4.51. The injective model category V(C)inj is symmetric monoidal.

Proof. Since both cofibrations and weak equivalences are defined objectwise, the
pushout-product axiom is immediate.

Proposition 4.52. The projective model category V(C)proj is symmetric monoidal
if and only if there exists a set I of generating cofibrations and a set J of gen-
erating trivial cofibrations for V satisfying the following condition: for any element
[X //Y ] ∈ I (respectively, any element [X //Y ] ∈ J), and any objects K,L ∈ ObjC,
the morphism

(MorC(−,K)×MorC(−, L)) ·X //(MorC(−,K)×MorC(−, L)) · Y
is a cofibration (resp., trivial cofibration) of V(C).

Proof. Clearly if the projective model structure is symmetric monoidal, any cofi-
bration (resp., trivial cofibration) must satisfy the condition demanded of I (resp.,
J).

Conversely, suppose I and J have been chosen to meet this condition. Then set

IV(ObjC) :=
⋃

K∈ObjC


I ×

∏

L6=K
id∅


 ;

JV(ObjC) :=
⋃

K∈ObjC


J ×

∏

L6=K
id∅


 .

Thus IV(ObjC) (resp., JV(ObjC)) is a set of generating cofibrations (resp., trivial
cofibrations) for V(ObjC), and thus

IV(C) := e!IV(ObjC) (resp., JV(C) := e!JV(ObjC))

is a set of generating cofibrations (resp., trivial cofibrations) for V(C)proj. One now
easily verifies that the set IV(C) (resp., JV(C)) is the set

IV(C) = {MorC(−,K) ·X // MorC(−,K) · Y | K ∈ ObjC, [X //Y ] ∈ I};
JV(C) = {MorC(−,K) ·X // MorC(−,K) · Y | K ∈ ObjC, [X //Y ] ∈ J}.

One thus verifies that the condition of the proposition is precisely the statement
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that for any element [i : S //T ] ∈ IV(C) (resp., any morphism [S //T ] ∈ JV(C)) and
any object L ∈ ObjC, the morphism S ⊗ yV(L) //T ⊗ yV(L) is a cofibration (resp.,
trivial cofibration), whence it follows from the pushout-product axiom for the V
enrichment of V(C)proj that for any fibration p : V //U , the morphism

Mor2(i, p) : MorV(C)(T, V ) // MorV(C)(S, V )×MorV(C)(S,U) MorV(C)(T,U)

is a fibration (resp., trivial fibration) that is trivial if p is.

Corollary 4.53. If C has all products, then V(C)proj is a symmetric monoidal model
category.

Definition 4.54. An V-valued presheaf F : Cop //V is said to satisfy τ -descent if
for any τ -covering sieve [R //yX ] ∈ τ(X), the morphism

FX // holimY ∈(C/R)op FY

is an isomorphism of HoV. In this case, F will be called a V-valued sheaf.

4.55. It should be noted that the V-valued sheaves do not satisfy hyperdescent in
general; the condition above is only the requirement that a V-valued sheaf satisfy so-
called Čech descent. Ensuring that the V-valued sheaves satisfy descent with respect
to all τ -hypercoverings usually requires a further localization, which we leave for inter-
ested readers to formulate in general. In the case of simplicial presheaves, this further
localization is simply the hypercompletion, and in the case of spectral presheaves it
is the spectral hypercompletion.

Theorem 4.56. There exist two X-tractable V-model structures on the V-category
V(C) — the τ -local projective model structure V(C, τ)proj and (respectively) the
τ -local injective model structure V(C, τ)inj — satisfying the following conditions.
(4.56.1) The cofibrations are exactly the projective (resp., injective) cofibrations.
(4.56.2) The fibrant objects are the projective (resp., injective) fibrant sheaves.
(4.56.3) The weak equivalences between fibrant objects are precisely the objectwise

weak equivalences.

Proof. Set
H := {R · 1V

//yVX | [R //yX ] ∈ τ(X)}.
Then set

V(C, τ)proj := L(H/V)V(C)proj;
V(C, τ)inj := L(H/V)V(C)inj.

It now suffices to show that the fibrant objects are as described, and it suffices
to do this for the τ -local projective model category V(C, τ)proj. For any τ -covering
sieve [R //yX ] ∈ τ(X), write R ∼= colimY ∈(C/R) yY ; one verifies easily that the cor-
responding colimit R · 1V

∼= colimY ∈(C/R) yVY is a homotopy colimit. Thus a fibrant
object of V(C, τ)proj is an objectwise fibrant V-valued presheaf F such that

FX ' RMorVV(C)proj
(yVX,F ) // RMorVV(C)proj

(R · 1V, F ) ' holimY ∈(C/R)op FY

for any τ -covering sieve [R //yX ] ∈ τ(X).
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Proposition 4.57. Suppose π : (C, τ) //(D, υ) a morphism of sites (hence a functor
π−1 : D //C ). Then there is a Quillen adjunction

π? = (π−1)! : V(D, υ)proj
//V(C, τ)projoo : (π−1)? = π?.

Theorem 4.58. The local injective model category V(C, τ)inj is symmetric monoidal,
and if the projective model category V(C)proj is symmetric monoidal, then so is
V(C, τ)proj.

Proof. The proofs of the statements are identical, since by 4.47, it suffices to show
that there exists a set G of cofibrant homotopy generators of V such that for any
element Z ∈ G, any object W ∈ C, and any local injective fibrant object Y ∈ V(C),
the presheaf MorV(C)(Z ⊗ yVW,Y ) satisfies τ -descent.

To verify this, suppose X an object of C, and suppose [R //yX ] ∈ τ(X); then one
verifies easily that the morphism

colim
U∈(C/R)op

1V · (yW × yU) //1V · (yW × yX)

is a weak equivalence between cofibrant objects. Hence

Z ⊗V
V(C) colim

U∈(C/R)op
1V · (yW × yU) //Z ⊗V

V(C) (1V · (yW × yX)) ,

and therefore

MorVV(C)((Z ⊗V
V(C) yVW )⊗ yVX,Y )

²²
holim

U∈(C/R)op
MorVV(C)((Z ⊗V

V(C) yVW )⊗ yVU, Y )

are weak equivalences of V, whence the desired descent statement.

5. The dreaded right Bousfield localization

The right Bousfield localization of a model category M relative to a set of objects
K is ordinarily defined as a model category RKM equipped with a right Quillen
functor M //RKM satisfying a universal property dual to that of left Bousfield
localizations.

Existence theorem
Suppose X a universe, M an X-cofibrantly generated model category, and K an

X-small set of objects of M. Hirschhorn’s existence theorem for right Bousfield local-
izations [9, Theorem 5.1.1] only works when M is right proper. The key point is that
if i : A //B is a K-colocal cofibration and p : Y //X is a K-colocal trivial fibration,
then it is necessary to show that for any diagram

A

²²

// Y

²²
B // X,

there exists a lift B //Y . It turns out that this is easy to verify in case X (and hence
also Y ) is fibrant in M. If M is right proper, this is sufficient: i has the left lifting
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property with respect to p if and only if it has the left lifting property with respect
to a replacement fibration p′ : Y ′ //X ′ of p with Y ′ and X ′ fibrant [9, Propositions
5.2.5 and 13.2.1].

This leads one to the following observation: if one only seeks the left lifting prop-
erty of K-colocal cofibrations with respect to K-colocal trivial fibrations with fibrant
codomain, then the right properness of M is unnecessary here.

Likewise, the small object argument immediately provides factorizations into cofi-
brations followed by trivial fibrations when the codomain is fibrant. It is the existence
of such factorizations for any morphism that requires right properness [9, Proposition
5.3.5].

Upon inspection of the standard proofs of the existence of RM for M right proper,
one can confirm that these are the only places where right properness is used. Hence
RKM exists as a right M-model category, even if M is not right proper.

Thus, a simple modification of the traditional proof shows that RKM exists as
a right M-model category for any X-cofibrantly generated model category M (or
in fact for any model X-category M satisfying Christensen and Isaksen’s weaker
condition [3, Hypothesis 2.4]), and that, as a right M-model category, RKM is
X-cofibrantly generated as well.6 Here we give a complete proof of the existence
of RKC as an X-tractable right C-model category for any X-tractable right model
category C.

5.1. Suppose C an X-tractable right model X-category, and K a set of isomorphism
classes of objects of HoC.

Definition 5.2.

(5.2.1) If H is a set of homotopy classes of morphisms of C, a right Bousfield local-
ization of C with respect to H is a right C-model X-category C //RHC that
is initial among right model X-categories D equipped with a right Quillen
functor F : C //D with the property that for any f representing a class in
H, RF (f) is an isomorphism of HoN.

(5.2.2) A morphism A //B is a K-colocal equivalence if for any representative X of
an element of K, the morphism

RMorC(X,A) // RMorC(X,B)

is an isomorphism of Ho sSetX.
(5.2.3) An object Z of M is K-colocal if for any K-colocal equivalence A //B , the

morphism
RMorM(Z,A) // RMorM(Z,B)

is an isomorphism of Ho sSetX.
(5.2.4) A right Bousfield localization of C with respect to K is nothing more than a

right Bousfield localization of C with respect to the set of K-colocal equiva-
lences.

6If RKM happens to be a model category, it does not seem to follow that RKM will be cofibrantly
generated as a model category, unless some very strong conditions on M are satisfied, e.g., that
every object of M be fibrant.



LEFT AND RIGHT BOUSFIELD LOCALIZATIONS 303

Proposition 5.3. A right Bousfield localization RKC is essentially unique if it exists.

Proof. Initial objects are essentially unique.

5.4. Suppose now that the set K is X-small.

Notation 5.5. Suppose I and J are generating X-small sets of cofibrations and triv-
ial cofibrations, respectively, each with cofibrant domains. For every element A ∈ K,
choose a cosimplicial resolution Λ•CA //A , and set

IRKC := J ∪ {Lp(Λ•CA) //ΛpA | p ∈ ∆, A ∈ K}.

Proposition 5.6. The category C is a structured homotopical category RKC with
the following definitions.

(5.6.1) A cofibration of RKC is defined to be a cofibration X //Y of C such that
there exists a weak equivalence Y //Y ′ of C such that the composite X //Y ′

is a retract of an element of cell IRKC.

(5.6.2) A fibration of RKC is nothing more than a fibration of C.

(5.6.3) A weak equivalence of RKC is a K-colocal equivalence.

Moreover the identity functor RKC //C preserves cofibrations, where as the identity
functor C //RKC preserves weak equivalences.

Proof. The relevant properties of the weak equivalences and fibrations are straight-
forward. It remains only to show that the given set of cofibrations is closed under
compositions, retracts, and pushouts along arbitrary morphisms.

We first claim that in order for a cofibration X //Y of C to be a cofibration of
RKC, it is necessary and sufficient that there exist a trivial cofibration Y //Y ′′ of C
such that the composite X //Y ′′ is a retract of an element of cell IRKC. Sufficiency
is clear. To verify necessity, suppose Y //Y ′ a weak equivalence of C such that the
composite X //Y ′ is a retract of an element of cell IRKC. Now factor Y //Y ′ in C
as a trivial cofibration followed by a trivial fibration; it now follows from the retract
argument that the composite X //Y ′′ is a retract of an element of cell IRKC.

We first demonstrate that the cofibrations of RKC are closed under composition.
Indeed, suppose X //Y and Y //Z cofibrations of C, and suppose Y //Y ′ and
Z //Z ′ trivial cofibrations such that the composites X //Y ′ and Y //Z ′ are retracts
of elements of cell IRKC. Now form the pushout of Y //Z and Z //Z ′ along Y //Y ′ :

X

!!CCCCC
// Y

²²

// Z

²²

// Z ′

²²
Y ′ // W // W ′.

The morphism X //Y ′ is a retract of an element of cell IRKC, as is the composite
Y ′ //W ′ ; hence so is their composite.

Now I show that the cofibrations of RKC are closed under retracts. For this,
suppose that X ′ //Y ′ is a cofibration of RKC, and suppose X //Y is a retract
thereof:
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X

²²

// X ′

²²

// X

²²
Y // Y ′ // Y.

Now suppose Y ′ //Z ′ a trivial cofibration of C such that the composite X ′ //Z ′ is a
retract of an element of cell IRKC. By factoring the morphism Z ′ //? as an element of
cellJ followed by an element of inj J if necessary, one may assume that Z ′ is fibrant.
Hence one may choose an endomorphism Z ′ //Z ′ such that the diagram

X ′

²²

// X

²²

// X ′

²²
Y ′

²²

// Y // Y ′

²²
Z ′ // Z ′

commutes. Now set Z := Y tY ′ Z ′; the chosen morphism Z ′ //Z ′ induces a mor-
phism Z //Z ′ such that the following diagram commutes:

X

²²

// X ′

²²

// X

²²
Y

²²

// Y ′

²²

// Y

²²
Z // Z ′ // Z.

Now form the pushout Z ′′ := Y ′ tY Z; one has a commutative diagram

X

²²

// X ′

²²

// X

²²
Y

²²

// Y ′

²²

// Y

²²
Z // Z ′′ //

²²

Z

Z ′ // Z

in which the bottom three squares are pushouts, whence the composite Z //Z ′ //Z
is the identity on Z. Thus X //Z is a retract of an element of cell IRKC. Since Y //Z
is a trivial cofibration of C, we are done.

Finally, we show that the cofibrations of RKC are closed under pushouts. For this,
suppose X //Y a cofibration of RKC, and suppose X //X ′ an arbitrary morphism.
There exists a trivial cofibration Y //Y ′ of C such that the composite X //Y ′ is a
retract of an element of cell IRKC. Now form the pushout

X

²²

// Y

²²

// Y ′

²²
X ′ // Y ′′ // Y ′′′.
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Now Y ′′ //Y ′′′ is a trivial cofibration of C, and X ′ //Y ′′′ is a retract of an element
of cell IRKC.

5.7. Note the rough similarity between the definition of the cofibrations given here
and the a priori stronger description given by Hirschhorn [9, Proposition 5.3.6],
namely, that a morphism is a cofibration just in case it is a retract of an element
X //Y of cell I such that there exists a weak equivalence Y //Z such that the com-
posite X //Z is an element of cell IRKC. The two are in fact equivalent when C is a
model category; this is the content of the following lemma.

If C is not a model category, there seems to be a genuine difference between the
two conditions, but, unfortunately, the distinction seems to be fairly subtle, and we
do not have an enlightening example that exhibits it. In any case it is certainly the
weaker of these that is needed here.

Lemma 5.8. Suppose C an X-tractable model category; then a morphism of C is a
cofibration of RKC if and only if it is a retract of an element X //Y of cell I such
that there exists a weak equivalence Y //Z of C such that the composite X //Z is
an element of cell IRKC.

Proof. That such a retract is a cofibration of RKC is obvious. This is of course true
regardless of whether C is a model category.

In the other direction, suppose f : X //Y a cofibration for which there is a weak
equivalence e : Y //Z of C such that the composite g : X //Z is a retract of an
element of cell IRKC. The claim is that f can be written as a retract of an element
X //Y ′ of cell I for which there exists a weak equivalence Y ′ //Z such that the
composite e′ ◦ f ′ = g. Indeed, simply factor f , by the small object argument, as an
element f ′ : X //Y ′ of cell I followed by an element p : Y ′ //Y of inj I, and set
e′ = e ◦ p. Then since C is a model category, p is a trivial fibration.7 The retract
argument thus implies the claim.

Lemma 5.9. A morphism Y ′ //Y whose codomain Y is fibrant is a trivial fibration
in RKC if and only if it is an element of inj IRKC.

Proof. Of course Y ′ //Y is an element of inj J if and only if it is a fibration of C
— and, equivalently, of RKC. In this circumstance, for any element A ∈ K, the mor-
phism RMorC(A, Y ′) // RMorC(A, Y ) is a fibration of sSetX, and by [9, Proposi-
tion 16.4.5], will be an equivalence if and only if the morphism Y ′ //Y is an element
of inj IRKC.

Lemma 5.10. There is a functorial factorization of every morphism X //Y of C
with fibrant codomain Y into a cofibration X //Y ′ of RKC followed by a trivial
fibration Y ′ //Y of RKC.

Proof. The usual construction via the small object argument provides a factorization
of every morphism X //Y (irrespective of the fibrancy of Y ) into an element X //Y ′

of cell IRKC followed by an element Y ′ //Y of inj IRKC. Now X //Y ′ is clearly a
cofibration, and, by the previous lemma, Y ′ //Y is a trivial fibration of RKC.

7If C were not a model category, this would follow only if Y were E-fibrant.
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Lemma 5.11. Cofibrations of RKC satisfy the left lifting property with respect to
every trivial fibration of RKC with fibrant codomain.

Proof. That this is true of any element of IRKC is already contained in 5.9. It thus
follows for any retract of elements of cell IRKC.

Now suppose X //Y a cofibration of C and e : Y //Y ′ a weak equivalence of C
such that the composite X //Y ′ is a retract of elements of cell IRKC. Suppose W a
fibrant object, Z //W a trivial fibration of RKC, and the following a commutative
diagram:

X

²²

// Z

²²
Y

e
²²

// W

Y ′.

To prove the lemma, it will now suffice to show that there exists a lift Y //Z . For
this, note that in the right model category (X/C), W is fibrant and Y //Y ′ is a weak
equivalence; hence there is a homotopy lift Y ′ //W in (X/C). Since this homotopy
lift is chosen in the slice category, it follows that there is a commutative diagram

X

²²

// Z

²²²²
Y ′ // W.

Hence there is a lift ` : Y ′ //Z , and the composite ` ◦ e : Y //Z is thus a homotopy
lift of the diagram

Z

²² ²²
Y // W

in (X/C). Since Y is cofibrant, the homotopy lifting property of the fibration Z //W
implies that a strict lift of the diagram, homotopic to ` ◦ e, exists in (X/C).

Lemma 5.12. The trivial cofibrations of RKC are exactly those of C.

Proof. If f : K //L is a trivial cofibration of C, then it is a weak equivalence of C, a
retract of an element of cell I, and a retract of an element of cell J . It follows that f
is a weak equivalence of RKC and a retract of an element of cell IRKC as well; thus
f is a trivial cofibration of RKC.

Conversely, suppose f : K //L a trivial cofibration of RKC, and let i : L //L′ be
a trivial cofibration in C with L′ fibrant. Factor the composite morphism f ′ := i ◦ f
as a trivial cofibration j : K //K ′ of C followed by a fibration p : K ′ //L′ of C:

K

j

²²

f //
f ′

""DDDDDDD L

i
²²

K ′ p
// L′.
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Since f ′ is a weak equivalence of RKC, so is p. Now f ′ is a trivial cofibration of RKC
and by the previous result has the left lifting property with respect to p. The retract
argument now implies that f ′ is a retract of p and is thus a trivial cofibration of C.
Since f ′ = i ◦ f , and both f ′ and i are weak equivalences of C, it follows that f is a
weak equivalence of C as well. Since f was a fortiori a cofibration of C, the converse
is verified.

Proposition 5.13. The structured homotopical category RKC is an X-tractable right
C-model category. If in addition C is a right proper model X-category, then RKC is
a right proper model category (not necessarily X-tractable).

Proof. The factorization axioms are 5.10 and the corresponding factorization in C,
coupled with 5.12. Likewise, the lifting properties are 5.11 and the corresponding
property in C, coupled with 5.12.

The structured homotopical structure is by 5.8 the one provided by Hirschhorn in
case C is right proper.

Proposition 5.14. The left Quillen identity functor U : RKC //C induces a core-
flexive fully faithful functor of X-categories — and thus also of (Ho sSetX)-categories
— LU : HoRKC // HoC . The derived right adjoint RF : C // HoRKC is essen-
tially surjective.

Proof. Write F : C //RKC for the right adjoint of U . It suffices to show that the unit
X //(RF )(LU)X of the derived adjunction is an isomorphism of HoRKC. But this
is clear, as the fibrant replacement in C of any object of RKC is a fibrant replacement
in RKC.

Corollary 5.15. A morphism A //B of C is a K-colocal weak equivalence if and
only if the induced morphism (RF )A //(RF )B is an isomorphism of HoRKC.

Proposition 5.16. A cofibrant-fibrant object X of C is cofibrant as an object of RKC
if and only if it is K-colocal.

Proof. Since a K-colocal weak equivalence A //B is weak equivalence of RKC, it
follows that if X is cofibrant in RKC, the morphism

RMorC(X,A) ' RMorRKC(X,A) // RMorC(X,B) ' RMorRKC(X,B)

is an isomorphism of Ho sSetX.
On the other hand, if X is K-colocal, it suffices, since by assumption X is fibrant in

RKC, to show that the morphism ∅ //X has the left lifting property with respect to
all trivial fibrations A //B of RKC with fibrant codomain B. Since X is K-colocal,
the map

MorHoC(X,A) // MorHoC(X,B)

is a bijection, whence the desired lifting property.

Corollary 5.17. An object X of C is K-colocal if and only if the counit of the derived
adjunction (LU)(RF )X //X is an isomorphism of HoC.

Corollary 5.18. A weak equivalence of RKC between K-colocal objects is a weak
equivalence of C.
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Theorem 5.19. The right C-model category RKC is a right Bousfield localization
of C with respect to K.

Proof. The proof that the right C-model structure described here has the universal
property required of a right Bousfield localization is well known, and is [9, Proposition
3.3.18].

Corollary 5.20. A cofibrant-fibrant object of C is K-colocal if and only if it can be
written as a homotopy colimit (in C) of a diagram of representatives of elements of
K.

Proof. The proof is in fact identical to the one given by Hirschhorn [9, §5.5]. For any
object A of C, the functor

RMorC(−, A) : HoCop // Ho(sSetX)

turns homotopy colimits into homotopy limits; hence any homotopy colimit of K-
colocal objects is again K-colocal. On the other hand, one verifies easily that any
IRKC-cell complex can be written as a homotopy colimit of objects of K.

Example 5.21. Consider the model category (?/sSetX) of pointed X-small simpli-
cial sets. Let S1 := ∆1/∂∆1, the usual simplicial circle, pointed at its unique vertex;
let Sn := (S1)∧n be the n-sphere, again pointed at its unique vertex.

Then RSn(?/sSetX) is a model X-category (since (?/sSetX) is in fact right
proper), in which a morphism X //Y is a weak equivalence if and only if the
induced map on n-fold loop spaces RΩnX //RΩnY is an isomorphism in Ho sSetX.
Equivalently, a morphism X //Y of pointed simplicial sets is a weak equivalence of
RSn(?/sSetX) if and only if the induced homomorphism πkX //πkY is an isomor-
phism for any k > n. This model category can be regarded as complementary to the
n-truncated model structure 5.28.

As observed by Hirschhorn [9, 5.2.7], one can easily construct a fibration
f : S //∂∆n+1 , in which S is in effect a subdivision of ∂∆n+1 (hence of the same
homotopy type), and the homomorphism πnf is multiplication by 2. Hence f is not a
weak equivalence in RSn(?/sSetX), but it nevertheless has the right lifting property
with respect to the sets J(?/sSetX) and {A ∧ ∂∆p

+
//A ∧∆p

+ | p ∈ ∆, A ∈ K}.
Thus the set IRSn (?/sSetX) is not a set of generating cofibrations for the model

category RSn(?/sSetX), though it nevertheless is a set of generating cofibrations for
the underlying right model category.

Using a related example, one may show that right Bousfield localizations of right
proper tractable model categories need not be combinatorial model categories, even
though they are, quite naturally, tractable right model categories.

Theorem 5.22. Suppose now C an X-tractable model category, and suppose D ⊂ C
any full subcategory of C satisfying the following properties.
(5.22.1) The subcategory D is accessible and accessibly embedded.
(5.22.2) The subcategory D is closed under weak equivalences.
(5.22.3) The subcategory D is closed under homotopy colimits in C.
Then there exists an X-tractable right Bousfield localization RKC of C such that the
K-colocal objects are precisely the objects of D.
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Proof. For some regular, X-small cardinal λ, one has the following: (1) C is
λ-accessible; (2) λ-filtered colimits in C are homotopy colimits; and (3) D is a
λ-accessibly embedded λ-accessible subcategory of SectL(F).

Now let K be the X-small set of homotopy cartesian, λ-presentable objects of
D. Any homotopy cartesian left section of D can be written as a λ-filtered colimit
of objects of K, and this λ-filtered colimit is a homotopy colimit, so the proof is
complete.

Application I: The homotopy limit of left Quillen presheaves
In 4.38 we constructed a model category that plays the role of the homotopy

limit of a right Quillen presheaf, which we constructed by taking a left Bousfield
localization of a projective model structure. It is perhaps unfortunate that a similar
model structure does not exist for left Quillen presheaves; however, one can define a
right model structure on the category of left sections of a left Quillen presheaf that
plays the role of the homotopy limit as a right Bousfield localization of an injective
model structure.

5.23. Suppose X a universe. Suppose K and X-small category, and suppose F an
X-tractable left Quillen presheaf on K.

Definition 5.24. A left section (X,φ) of F is said to be homotopy cartesian if for
any morphism f : ` //k of K, the morphism

φhf : Lf?Xk
//X`

is an isomorphism of HoF`.

Theorem 5.25. There exists an X-tractable right model structure on the category
SectLF — the homotopy limit structure SectLholim F — satisfying the following con-
ditions.
(5.25.1) The fibrations are exactly the injective fibrations.
(5.25.2) The cofibrant objects are the injective cofibrant left sections that are homo-

topy cartesian.
(5.25.3) The weak equivalences between cofibrant objects are precisely the objectwise

weak equivalences.

Proof. 8 We wish to apply 5.22. For this, it suffices to show that the full subcategory
of homotopy cartesian left sections of F is accessible and accessibly embedded.

So suppose q an accessible fibrant replacement functor, and observe that the func-
tor

F : SectL(F) //
∏

[f : `→k]∈ν1K F`(1)
(X,φ) Â // (f?Xk → X`)f

is accessible. Since ∏

[f : `→k]∈ν1K
wF` ⊂

∏

[f : `→k]∈ν1K
F`(1)

is an accessibly embedded accessible subcategory, its inverse image under F ◦ q is as

8I am indebted to the referee for leading me to find this proof.



310 CLARK BARWICK

well. But this is exactly the full subcategory of homotopy cartesian left sections of F,
so the proof is complete.

Application II: Postnikov towers for simplicial model categories
Any fibrant simplicial set X has a Postnikov tower

· · · // X〈n〉 // X〈n− 1〉 // · · · // X〈1〉 // X〈0〉 ,
in which each X〈n〉 is an n-type, and the morphism f : X〈n〉 //X〈n− 1〉 induces an
isomorphism

πj(X〈n〉, x) //πj(X〈n− 1〉, f(x))

for any point x of X. An analogous construction can be made in any tractable, left
proper, simplicial model category. For a fully ∞-categorical variant of this construc-
tion, see [14, §5.5.6].

5.26. Suppose X a universe, M an X-tractable, left proper, simplicial model
X-category.

Definition 5.27. For any integer n > −1, an object X of M is n-truncated if for
any object Z of M, the simplicial set RMorM(Z,X) is an n-type; the object X is
truncated if and only if it is n-truncated for some n.

Proposition 5.28. For any integer n > −1, there exists an X-tractable, left proper,
simplicial model structure on the category M — the n-truncated model structure
M6n — satisfying the following conditions.
(5.28.1) The cofibrations of M6n are precisely the cofibrations of M.
(5.28.2) The fibrant objects of M6n are precisely the fibrant, n-truncated objects of

M.
(5.28.3) The weak equivalences between the fibrant objects are precisely the weak

equivalences of M.

Proof. Let G be an X-small set of cofibrant homotopy generators of M. Then one
verifies easily that the n-truncated model structure is the left Bousfield localization
LH(n)M with respect to the set

H(n) := {Sj ⊗X //X | X ∈ G,n < j}.
Corollary 5.29. For any integers m > n > −1, the identity functor on M induces a
left Bousfield localization M6m //M6n .

5.30. For any integers m > n > −1, the full subcategory of HoM comprised of n-
truncated objects is a reflexive subcategory. The left adjoint to the inclusion is the
left derived functor of the identity M6m //M6n , which will be denoted

τ6n : HoM6m // HoM6n .

This functor is the n-truncation functor.

Proposition 5.31. There exists an X-tractable right model structure on the presheaf
category M(N) — the Postnikov model structure M(N)Post — satisfying the follow-
ing conditions.
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(5.31.1) The fibrations of M(N)Post are those morphisms Y //X such that the
induced morphism Y (0) //X(0) is a fibration, and for any integers m >
n > 0, the morphism

X(m) //X(n)×Y (n) Y (m)

is a fibration of the model category M6m.
(5.31.2) In particular, the fibrant objects are those sequences

· · · // Y (n) // Y (n− 1) // · · · // Y (1) // Y (0)

such that the following conditions hold.
(5.31.2.1) The object Y (0) is fibrant in M.
(5.31.2.2) For any n > 0, the object Y (n) is n-truncated.
(5.31.2.3) For any integers m > n > 0, the morphism Y (m) //Y (n) is a

fibration of M.
(5.31.3) The cofibrant objects are those sequences

· · · // X(n) // X(n− 1) // · · · // X(1) // X(0)

satisfying the following conditions.
(5.31.3.1) For any integer n > 0, the object X(n) is cofibrant.
(5.31.3.2) For any pair of integers m,n such that m > n > 0, the morphism

X(m) //X(n) exhibits X(n) as the n-truncation of X(m); that
is, the natural morphism

τ6nX(m) //X(n)

of HoM6n is an isomorphism.
(5.31.4) The weak equivalences between the cofibrant and fibrant objects are precisely

the objectwise weak equivalences.

Proof. The desired right model structure is the holim right model structure of the
category of left sections of the left Quillen presheaf

M6• : Nop //CatY
n Â //M6n

.

The properties listed above are formal consequences of this definition, save the char-
acterization of the fibrant objects. By definition, the fibrant objects of SectLinj(M6•)
are those sequences

· · · // Y (n) // Y (n− 1) // · · · // Y (1) // Y (0)

such that Y (0) is fibrant in M60, and for any integers m > n > 0, the morphism
Y (m) //Y (n) is a fibration of M6n. Thus the condition given above is necessary
for Y to be fibrant; since a fibration of M whose domain and codomain are fibrant
in M6n is a fibration in M6n, it follows that the condition given above suffices as
well.

5.32. The towers constructed here do indeed coincide with Postnikov towers of spaces.
Indeed, suppose M = sSetX. Then an object X of M is an n-type if and only if it
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is n-truncated in the sense above. For any integers m > n > 0, the n-truncation of a
space X is the essentially unique n-type τ6nX for which

[τ6nX,Y ] ∼= [X,Y ]

for any n-type Y . A sequence

· · · // X(n) // X(n− 1) // · · · // X(1) // X(0)

is cofibrant and fibrant if and only if the following conditions hold.
(5.32.1) The space X(0) is a Kan complex.
(5.32.2) Each space X(n) is n-truncated.
(5.32.3) For any integersm > n > 0, the morphism X(m) //X(n) is a Kan fibration.
(5.32.4) For any integers m > n > 0, the morphism X(m) //X(n) exhibits X(n) as

the n-truncation of X(m).
In the category of spaces, every object is the homotopy limit of its Postnikov tower;
the analogous question can now be asked in any X-tractable, left proper, simplicial
model category.

5.33. Observe that the Quillen adjunctions

id : M //M6noo : id

fit together to give rise to a single Quillen functor

id : M(N)inj
//SectLinj(M6•)oo : id.

This can now be composed with the adjunction (const, lim) to give a Quillen pair

const : M //SectLinj(M6•)oo : lim.

Lemma 5.34. The left Quillen functor

const : M // SectLinj(M6•)

factors (uniquely) through a left Quillen functor

P : M //M(N)Post .

Proof. It suffices to observe that for any cofibrant object X of M, the object

constX := [ · · · X X · · · X X ]

is cofibrant in M(N)Post.

Definition 5.35.

(5.35.1) The Postnikov tower of an object X of M is a cofibrant and fibrant model
for

P (X) := [ · · · X X · · · X X ]

in M(N)Post; it will be denoted

· · · // X〈n〉 // X〈n− 1〉 // · · · // X〈1〉 // X〈0〉 .
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(5.35.2) One says that a morphism X //Y of M is ∞-connective if it induces an
equivalence P (X) //P (Y ) in M(N)Post.

(5.35.3) One says that M is hypercomplete if every object is the homotopy limit of
its Postnikov tower, i.e., if the composite

HoM
LP // HoM(N)Post

holim // HoM

is isomorphic (via the unit) to the identity functor on HoM.

Proposition 5.36. There exists a hypercompletion M //M∧ of M, which is the ini-
tial object in the category of left Quillen functors M //P under which ∞-connective
morphisms are sent to weak equivalences.

Proof. Simply define M∧ as the left Bousfield localization of M with respect to the
set { limRP (X) //X | X ∈ G}, where G is an X-small set of cofibrant and fibrant
homotopy generators of M, and R is a fibrant replacement functor.

Proposition 5.37. The following conditions are equivalent.

(5.37.1) The model category M is hypercomplete.

(5.37.2) The hypercompletion functor M //M∧ is a Quillen equivalence.

(5.37.3) Every ∞-connective morphism of M is a weak equivalence.

Proof. It is readily apparent that (5.37.1) and (5.37.2) are equivalent conditions.
If M is hypercomplete, then every ∞-connected morphism of M is a homotopy

limit of weak equivalences; hence (5.37.1) implies (5.37.3). Conversely, one sees that
the morphism X // limn∈NX〈n〉 is automatically ∞-connected, so in fact (5.37.1)
and (5.37.3) are equivalent conditions.

This completes the proof.

5.38. It is now an elementary exercise to show that the model category SX is itself
hypercomplete. This is false, however, for the local projective (or the local injective)
model category of presheaves of spaces on a site constructed in 4.56.

Application III: Postnikov and coPostnikov towers for spectral model cat-
egories

Spectral model categories are model categories enriched in the symmetric monoidal
model category of symmetric spectra. Just as it is possible to construct Postnikov
towers on certain simplicial model categories, it is likewise possible to construct both
Postnikov and coPostnikov towers on certain spectral model categories; however, these
towers are constructed relative to a choice of t-structure on the homotopy category.

Notation 5.39. Suppose X a universe. Write SpΣ
X for the stable symmetric monoidal

model category of symmetric spectra in pointed X-small simplicial sets with the flat
stable model structure [12, 17]. For any integer j and any symmetric spectrum E,
write πjE for the j-th stable homotopy group of a fibrant replacement of E in SpΣ

X.



314 CLARK BARWICK

5.40. Suppose M an X-tractable, proper SpΣ
X-model category. Suppose also that M

has a zero object 0 in the SpΣ
X-enriched sense. That is, for any object X of M,

MorM(0, X) ∼= 0 ∼= MorM(X, 0).

Suppose further that M is stable in the sense that the suspension functor

Σ: HoM // HoM
X

Â //0 th,X 0

is an equivalence of categories, with quasi-inverse

Ω: HoM // HoM
X

Â //0×hX 0

Finally, suppose τ = (Ho6nM,Ho>nM, τ6n, τ>n) a t-structure on the homotopy cat-
egory HoM. (Observe that here we employ homological indexing.)

Proposition 5.41. For any integer n, there exists an X-tractable, left proper, SpΣ
X-

enriched model structure on the category M — the n-truncated model structure M6n
— satisfying the following conditions.

(5.41.1) The cofibrations of M6n are precisely the cofibrations of M.

(5.41.2) The fibrant objects of M6n are precisely the fibrant objects of M that model
objects of Ho6nM.

(5.41.3) The weak equivalences between the fibrant objects are precisely the weak
equivalences of M.

(5.41.4) The natural functor Ho6nM // HoM6n is an equivalence of full subcate-
gories of HoM.

Proof. Let G be an X-small set of cofibrant homotopy generators of M, and let τ>0G
be a set of cofibrant models for the truncations of elements of G to Ho>0 M. One
verifies that the n-truncated model structure is the enriched left Bousfield localization
L(H(n)/SpΣ

X)M with respect to the set

H(n) := {Sj ⊗X //X | X ∈ τ>0G,n < j}.
Corollary 5.42. For any integers m > n, the identity functor on M induces a left
Bousfield localization M6m //M6n .

5.43. Observe that since Ho6nM // HoM6n is an equivalence of full subcategories
of HoM, it follows that the left derived functor of the identity functor M //M6n is
equivalent to the truncation functor τ6n given by the t-structure.

Proposition 5.44. For any integer n, there exists an X-tractable, right model struc-
ture on the category M — the n-cotruncated model structure M>n — satisfying the
following conditions.

(5.44.1) The fibrations of M>n are precisely the fibrations of M.

(5.44.2) The cofibrant objects of M>n are precisely the cofibrant objects of M that
model objects of Ho>nM.
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(5.44.3) The weak equivalences between the cofibrant objects are precisely the weak
equivalences of M.

(5.44.4) The natural functor Ho>nM // HoM>n is an equivalence of full subcate-
gories of HoM.

Proof. Let G be an X-small set of cofibrant homotopy generators of M, and let τ>nG
be a set of cofibrant models for the truncations of elements of G to Ho>nM. The n-
cotruncated model structure is the right Bousfield localization Rτ>nGM with respect
to the set τ>nG.

Corollary 5.45. For any integers m 6 n, the identity functor on M induces a right
Bousfield localization M>m //M>n .

5.46. As above, observe that since Ho>nM // HoM>n is an equivalence of full sub-
categories of HoM, it follows that the right derived functor of the identity functor
M //M>n corresponds via this equivalence to the cotruncation functor τ>n given
by the t-structure.

5.47. Suppose M = SpΣ
X itself with its standard t-structure, in which Ho60 SpΣ

X is
the full subcategory of HoSpΣ

X comprised of those homotopy type of spectra E such
that for any integer j > 0, πjE = 0, and Ho>0 SpΣ

X is the full subcategory of HoSpΣ
X

comprised of those homotopy type of spectra E such that for any integer j < 0,
πjE = 0. Then SpΣ

X,>0 is a right model category of connective spectra, and the right
derived functor

τ>0 : HoSpΣ
X

// HoSpΣ
X,>0

is the formation of the connective cover.

Notation 5.48. Denote by Z the category whose objects are integers, in which there
is a unique morphism m //n if and only if m 6 n.

Proposition 5.49. There exists an X-tractable, right model structure on the presheaf
category M(Z) — the stable Postnikov model structure M(Z)Ω−∞ Post — satisfying
the following conditions.
(5.49.1) The fibrations of M(Z)Ω−∞ Post are those morphisms Y //X such that for

any integers m > n, the morphism

X(m) //X(n)×Y (n) Y (m)

is a fibration of the model category M6m.
(5.49.2) In particular, the fibrant objects are those sequences

· · · // Y (n) // · · · // Y (1) // Y (0) // Y (−1) // · · ·
such that the following conditions hold.
(5.49.2.1) For any integer n, the object Y (n) is a fibrant representative of

an isomorphism class in Ho6nM.
(5.49.2.2) For any integers m > n, the morphism Y (m) //Y (n) is a fibra-

tion of M.
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(5.49.3) The cofibrant objects are those sequences

· · · // X(n) // · · · // X(1) // X(0) // X(−1) // · · ·
satisfying the following conditions.

(5.49.3.1) For any integer n, the object X(n) is cofibrant.
(5.49.3.2) For any integers m > n, the morphism X(m) //X(n) exhibits

X(n) as the n-truncation of X(m); i.e., the natural morphism

τ6nX(m) //X(n)

of HoM6n is an isomorphism.

(5.49.4) The weak equivalences between the cofibrant and fibrant objects are precisely
the objectwise weak equivalences.

Proof. As in 5.31, the stable Postnikov right model structure is the holim model
structure on the category of left sections of the left Quillen presheaf

M6• : Zop //CatY
n

Â //M6n
.

Definition 5.50. We will hereafter refer to the model category M as right viable
if, for every integer n, the cotruncated right model category M>n is a left proper,
X-tractable model category.

Proposition 5.51. Suppose that M is right viable. Then there exists a left proper,
X-tractable model structure on the presheaf category M(Z) — the stable coPostnikov
model structure M(Z)Ω∞ Post — satisfying the following conditions.

(5.51.1) The cofibrations of M(Z)Ω∞ Post are those morphisms Y //X such that for
any integers m 6 n, the morphism

X(m) tX(n) Y (n) //Y (m)

is a cofibration of the model category M>m.

(5.51.2) In particular, the cofibrant objects are those sequences

· · · // X(n) // · · · // X(1) // X(0) // X(−1) // · · ·
such that the following conditions hold.

(5.51.2.1) For any integer n, the object X(n) is a cofibrant representative
of an isomorphism class in Ho>nM.

(5.51.2.2) For any integers m 6 n, the morphism X(n) //X(m) is a cofi-
bration of M.

(5.51.3) The fibrant objects are those sequences

· · · // Y (n) // · · · // Y (1) // Y (0) // Y (−1) // · · ·
satisfying the following conditions.

(5.51.3.1) For any integer n, the object Y (n) is cofibrant.
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(5.51.3.2) For any integers m 6 n, the morphism Y (n) //Y (m) exhibits
X(n) as the n-cotruncation of Y (m); i.e., the natural morphism

Y (n) //τ>nY (m)

of HoM>n is an isomorphism.
(5.51.4) The weak equivalences between the cofibrant and fibrant objects are precisely

the objectwise weak equivalences.

Proof. The stable coPostnikov structure is the holim model structure on the category
of right sections of the right Quillen presheaf

M>• : Z //CatY
n Â //M>n

.

5.52. Suppose that M is right viable. Observe that the Quillen adjunctions

id : M //M6noo : id and id: M>n
//Moo : id

fit together to give rise to Quillen functors

id : M(Z)inj
//SectLinj(M6•)oo : id and id: SectRproj(M>•)

//M(Z)projoo : id.

These adjunctions can now be composed with the adjunction (const, lim) and the
adjunction (colim, const) to give a Quillen pair

const : M //SectLinj(M6•)oo : lim and colim: SectRproj(M>•)
//Moo : const.

Lemma 5.53. The left (respectively, right) Quillen functor

const : M // SectLinj(M6•) (resp., const : M // SectRproj(M>•))

factors (uniquely) through a left (resp., right) Quillen functor

P : M //M(Z)Ω−∞ Post (resp.,Q : M //M(Z)Ω∞ Post ).

(Here we assume for the parenthetical case that M is right viable.)

Proof. For any cofibrant object X of M, the object

constX := [ · · · X X X · · · ]
is cofibrant in M(Z)Ω−∞ Post, and for any fibrant object X of M, the object constX
is fibrant in M(Z)Ω∞ Post.

Definition 5.54.

(5.54.1) The stable Postnikov tower of an object X in M is a cofibrant and fibrant
model for constX in M(Z)Ω−∞ Post; it will be denoted

· · · // X〈n〉 // · · · // X〈1〉 // X〈0〉 // X〈−1〉 // · · · .
(5.54.2) Dually, suppose that M is right viable. Then the stable coPostnikov tower

of an object X in M is a cofibrant and fibrant model for the object constX
in the model category M(Z)Ω∞ Post; it will be denoted

· · · // X〈n〉 // · · · // X〈1〉 // X〈0〉 // X〈−1〉 // · · · .
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(5.54.3) One says that a morphism X //Y of M is ∞-connective if it induces an
equivalence constX // constY in M(Z)Ω−∞ Post.

(5.54.4) If M is right viable, one says that a morphism X //Y of M is −∞-
connective if it induces an equivalence constX // constY in M(Z)Ω∞ Post.

(5.54.5) One says that M is stably hypercomplete if every object is the homotopy
limit of its stable Postnikov tower, i.e., if the composite

HoM LP // HoM(Z)Ω−∞ Post
holim // HoM

is isomorphic (via the unit) to the identity functor on HoM.
(5.54.6) Dually, one says that M is stably cohypercomplete if it is right viable, and

every object is the homotopy colimit of its stable coPostnikov tower, i.e., if
the composite

HoM
RQ // HoM(Z)Ω∞ Post

hocolim // HoM

is isomorphic (via the unit) to the identity functor on HoM.

Proposition 5.55. There exists a stable hypercompletion M //M∧ of M, which is
the initial object in the category of left Quillen (SpΣ

X)-functors M //N under which
∞-connective morphisms are sent to weak equivalences.

Proof. Define M∧ as the enriched left Bousfield localization of M with respect to
the set { limRP (X) //X | X ∈ G}, where G is an X-small set of cofibrant homotopy
generators of M, and R is a fibrant replacement functor.

Proposition 5.56. Dually, if M is right viable, then there exists a stable cohyper-
completion M //M∨ of M, which is the initial object in the category of right Quillen
(SpΣ

X)-functors M //N under which −∞-connective morphisms are sent to weak
equivalences.

Proof. Define M∨ as the right Bousfield localization of M with respect to the set
{colimZ | Z ∈ G′}, where G′ is an X-small set of cofibrant homotopy generators of
M(Z)Ω∞ Post.

5.57. As in the previous section, one has the following pair of results. The proofs are
left to the reader.

Proposition 5.58. The following conditions are equivalent.
(5.58.1) The model category M is stably hypercomplete.
(5.58.2) The stable hypercompletion functor M //M∧ is a Quillen equivalence.
(5.58.3) Every ∞-connective morphism of M is a weak equivalence.

Proposition 5.59. Suppose M is right viable. Then the following conditions are
equivalent.
(5.59.1) The model category M is stably cohypercomplete.
(5.59.2) The stable cohypercompletion functor M //M∨ is a Quillen equivalence.
(5.59.3) Every −∞-connective morphism of M is a weak equivalence.
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5.60. It is now an elementary exercise to show that the model category SpΣ
X is both

stably hypercomplete and stably cohypercomplete. This is false, however, for the local
projective model category of presheaves of spectra on a site constructed in 4.56.

5.61. The underlying∞-category of the stable hypercompletion M∧ can be described
as the homotopy limit of the diagram of ∞-categories

· · · τ6n // M6n
τ6n−1// · · · τ61 // M61

τ60 // M60

τ6−1 // M6−1

τ6−2 // · · · .
Similarly, the underlying ∞-category of the stable cohypercompletion M∨ can be
described as the homotopy limit of the diagram of ∞-categories

· · · M>n
τ>n+1oo · · ·τ>noo M>1

τ>2oo M>0

τ>1oo M>−1

τ>0oo · · · .τ>−1oo

This point of view is explored in [13, §7], where stable hypercompleteness is called
“left completeness” and stable cohypercompleteness is called “right completeness.”
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