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UNSTABLE MODULE PRESENTATIONS FOR THE
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Abstract
There is much we still do not know about projective spaces.

We describe here how the mod two cohomology of each real
projective space is built as an unstable module over the Steen-
rod algebra A, or equivalently, over K, the algebra of inherently
unstable mod two “lower operations” originally introduced by
Steenrod. In particular, to produce the cohomology of projec-
tive space of each dimension we consider the well-known mini-
mal set of unstable module generators and construct a minimal
set of unstable relations. Three new perspectives we blend for
this purpose are:
• to focus solely on the two-power Steenrod squares that

generate A to understand the A-action in a process we
call “shoveling ones”,

• to describe every element in a canonical way from a par-
ticular unstable generator by composing operations from
the algebra K,

• to shift attention when studying an unstable A-module
to considering and analyzing it directly as an equivalent
K-module.

1. Introduction

Much of the structure of the real projective spaces RP (m) and their limit RP (∞) is
captured in their mod two cohomologies, which are unstable algebras over the Steen-
rod algebra A. As algebras their structure could hardly be simpler:H∗RP (∞) ∼= F2 [t]
with deg (t) = 1, and the inclusions RP (m) ⊂ RP (∞) induce quotients H∗RP (m) ∼=
F2 [t] /

(
tm+1

)
. As unstable algebras over A, their structure is uniquely determined by

the basic properties of unstable A-algebras, namely the unstable dimension condition,
the Cartan formula, and the topological consequence that Sq0 acts as the identity [8].
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From these it is obvious that the action is given by

Sqk(tn) =
(
n

k

)
tn+k, (1)

where A is generated as an algebra by the Steenrod squares {Sqk | k > 0}, which
are subject to the Adem relations [8]. However, the structure of these cohomology
algebras as unstable A-modules is nonetheless very elaborate. For instance, we can
ask what are minimal sets of A-generators and A-relations, an important question
for applications.

We will describe such minimal unstable presentations for the cohomology of all
these projective spaces in the category of unstable A-modules. First we describe min-
imal A-presentations for H∗RP (∞) and its natural A-filtration pieces FsH∗RP (∞).
Our A-presentation for H∗RP (∞) is in [6, Theorem 6.5], but the proofs there are
circuitous and rely on methods that are ill-suited to our primary goal here of min-
imally presenting the cohomologies H∗RP (m) of the finite projective spaces from
the presentations of FsH∗RP (∞)). We thus propose a new perspective, taking three
distinctive and atypical points of view on unstable modules, and we provide proofs
of all our results from this perspective.

As an initial indication of our results, we state now a form of our minimal presen-
tation of H∗RP (∞), which will emerge from the detailed theorems that follow.

Recall first that there is a filtration Fs = FsH
∗RP (∞), for s = 0, 1, . . . ,∞, of

A-submodules given by the F2-subspace Fs = F2 {tr | α(r) 6 s}, where α(r) is the
number of ones in the binary expansion of the nonnegative integer r. That these
vector subspaces are A-closed is clear from the action formula above.

Minimal presentation for FsH∗RP (∞) (see Theorem 3.1 and remark below). For
0 6 s 6 ∞, a minimal presentation of FsH∗RP (∞) as an unstable module is given
by generators

x2j−1, for j an integer with 0 6 j 6 s (degree of x2j−1 is 2j − 1),

and relations

Sq2
k

x2j−1 = Sq2
j−1

Sq2
k

x2j−1−1, for 0 6 j 6 s and 0 6 k 6 j − 2.

To prove this and our minimal presentations for the finite projective spaces, we
develop the following three points of view.

1. Shoveling ones. Our first point of view is to study the A-action entirely in
terms of the set of two-power Steenrod squares {Sq2i | i > 0} that minimally gener-
ates A. We do this partly because the cohomology of a projective space has at most
one nonzero element in each degree, and the two-power squares connect these in a
manner particularly easily viewed in terms of the binary expansions of their degrees;
so all calculations will reduce to simple relationships between binary expansions.
Additionally, we shall see that the minimal set of A-relations forming a projective
space is easily described using just these two-power squares, in a process we call
‘shoveling ones’, especially when combined with our second point of view.

2. Represent with K. Our second point of view appears at first sight to contradict
the first. It is to label and conceive of all elements in unstable modules primarily via
iteration of Steenrod’s original unstable “cup-i” squares on the A-generators of our
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module. We denote these operations by {Dj | j > 0}. They generate the Kudo-Araki-
May algebra K, with its own set of K-Adem relations [5]. The Dj are related to
Steenrod squares via Steenrod’s defining relationship Sqixm = Dm−ixm on a class
xm of degree m. The homology analogue to our point of view is already standard in
studying the homology of loop spaces [1, 2, 3, 4]. While the Sqi are stable operations
in that they are preserved by suspension, the Dj are not. We find that the form of
monomials using the unstable Dj is often much more useful than those in the stable
Sqi for describing elements and bases in unstable modules. For projective spaces the
Dj are particularly efficacious since we can relate their iterations well to the binary
expansions of degrees of elements. This allows us to choose a very useful canonical
representation for each element in terms of a particular monomial in the Dj on a
particular unstable module generator, which in turn enables us to analyze the global
module structure. To wit, we will prove (cf. [6, Theorems 6.1, 6.2])

A basis for H∗RP (∞) in terms of K (from Theorem 2.1). For s > 0, a basis for
FsH

∗RP (∞)/Fs−1H
∗RP (∞) in terms of admissibles from K on t2

s−1 is given by

{De0
0 · · ·Dei

2i−1 · · ·D
es−1

2s−1−1t
2s−1 | each ei > 0},

with corresponding degrees
∑s−1
i=0 2e0+···+ei+i having α-number s. (Notice that the ei

are simply the lengths of the blocks of consecutive zeros in the binary expansions of
degrees.)

The first two viewpoints are not contradictory: we use the Dj to represent ele-
ments for a basis, and the Sq2

i

to see how the module action connects them, with
both viewpoints closely tied together via binary expansions of degrees. Of course
to meld the two points of view effectively we must be comfortable working flexibly
and simultaneously with both the Sq2

i

and the Dj in whatever combination is most
judicious.

3. Study unstable A-modules as K-modules. This brings us to our third view-
point, which goes beyond the second, to view our unstable modules interchangeably
over the Steenrod algebra A or the Kudo-Araki-May algebra K. In particular, the
proof of the minimal presentation theorem above for FsH∗RP (∞) relies on shifting
to module analyses entirely over K.

We end the introduction with a statement of our main result on presentations for
finite projective spaces. To state it, we first note how to recast the A-relations of the
presentation of FsH∗RP (∞) in terms of the points of view just espoused.

Remark. By induction on j one sees that the set of relations

Sq2
k

x2j−1 = Sq2
j−1

Sq2
k

x2j−1−1, for 0 6 j 6 s and 0 6 k 6 j − 2,

is equivalent to the set

Sq2
k

x2j−1 = Sq2
j−1

Sq2
j−2 · · ·Sq2k

x2k+1−1, for 0 6 j 6 s and 0 6 k 6 j − 2,

and the latter is equal to the set

Sq2
k

x2j−1 = Dj−k
2k−1

x2k+1−1, for 0 6 j 6 s and 0 6 k 6 j − 2.
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Our main theorem of this paper is the following.

Minimal presentation for finite projective spaces (Theorem 4.2). Let 2s − 1 6
m 6 2s+1 − 2. Let α be the number of ones in the binary expansion of m+ 1, and
write the expansion as m+ 1 =

∑α−1
i=0 2e0+···+ei+i (each ei > 0). Also let β be the

number of leading ones in this expansion; in other words, if there is a nonzero ei,
then α− β is the largest index i for which ei is nonzero.

Then a minimal presentation for H∗RP (m) is given by generators

x2j−1 in degree 2j − 1, for 0 6 j 6 s,

and the three sets of relations

Sq2
k

x2j−1 = Dj−k
2k−1

x2k+1−1, for 0 6 j 6 s and 0 6 k 6 j − 2, (a)

0 = Dei−l
2i+r−1D

ei+1

2i+1+r−1 · · ·D
eα−1

2α−1+r−1x2α+r−1,

for 0 6 i 6 α− 1 and 0 6 l < ei, where r = e0 + · · ·+ ei−1 + l, and (b)

0 = Ds+1−k
2k−1

x2k+1−1, for s+ 1− β 6 k 6 s− 1. (c)

Remark. While the first relations are simply those we used to present FsH∗RP (∞)
above, it is not easy to get a sense for the second and third set of relations from
this formulaic description; they are best understood in terms of visualizing binary
expansions. In Section 4 where we prove the theorem, we first illustrate the theorem
with the special family wherem is of the form 2s+1 − 2 (in which case the second set of
relations is empty). Notice that the third set of relations for H∗RP (2s+1 − 2) consists
of the additional relations that would appear if we instead presented Fs+1H

∗RP (∞)
as above, and then set the unnecessary generator x2s+1−1 on the left side equal to
zero. This is why we write relations (b) and (c) with zero on the left.

Example. For m = 6, of form 2s+1 − 2 with s = 2, we have that H∗RP (6) is mini-
mally presented as an unstable A-module by generators x1 and x3 with the relation
Sq1x3 = D2

0x1 = Sq2Sq1x1 of the first kind, and relations 0 = D3
0x1 = Sq4Sq2Sq1x1

and 0 = D2
1x3 = Sq4Sq2x3 of the third kind.

Remark. In Section 4 we also discuss in the general case all the relations from the
point of view of binary expansions, the interplay between the second and third sets
of relations, and give another concrete example, for a more general m, in terms of
binary expansions. When thought of in terms of binary expansions, it is not difficult
to visualize how the main theorem follows from the minimal presentation theorem
above for FsH∗RP (∞).
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2. Two points of view

2.1. Two-power squares and shoveling ones
To flesh out our first point of view, given n > 0, with binary expansion n =∑
i=0 ai2

i (i.e., ai = 0 or 1), we will often write (a0 · · · ai · · · ) for n; in other words,
we may denote n simply by listing the digits of its binary expansion (enclosed in
parentheses), but in the reverse order from what is ordinary when writing numbers
in decimal form. The reader will soon see why reverse listing of the binary digits is
helpful to our work. Sometimes we need explicitly to indicate the exponent of the
power of two corresponding to a digit (also called its ‘place’ or ‘position’), so we may
write

(a0 · · · ai
i
· · · )

to indicate this. Note that an ellipsis may stand for any combination of digits. We
will write (· · · al ↔ ak · · · ) to mean that al = aj = ak for all l 6 j 6 k. Although
the nonzero elements of the cohomology of H∗RP (∞) ∼= F2 [t] are in one-to-one cor-
respondence with the binary expansions of their degrees, we wish to have explicit
corresponding labels for the elements themselves, so in degree n = (a0 · · · ai · · · ) we
write t (a0 · · · ai · · · ) for the element tn.

Now we can observe how two-power squares act in relation to binary expansions.
From equation (1), the action of Sq2

i

on an arbitrary element x = t (a0 · · · ai · · · ) is
clearly zero if ai = 0, while if ai = 1, the result is nonzero and can be written as
follows, since it is the unique nonzero element in degree

(a0 · · · ai · · · ) + (0 ↔ 01
i
).

Write

x = t(· · · 1
i
1 ↔ 10

j
· · · );

i.e., j is the first place above i with a zero digit. Then since

(· · · 1
i
1 ↔ 10

j
· · · ) + (0 ↔ 01

i
) = (· · · 0

i
0 ↔ 01

j
· · · ),

we have

Sq2
i

x = Sq2
i

t(· · · 1
i
1 ↔ 10

j
· · · ) = t(· · · 0

i
0 ↔ 01

j
· · · ).

Notice in sum, then, that the effect of applying Sq2
i

to the nonzero element in a
degree with digit 1 in place i is to replace that digit 1, along with any consecutively
above it, with zeros, and to convert the first zero encountered above place i into
a 1. We refer to this procedure on binary expansions as ‘shoveling ones’, since we
imagine pushing the 1 in place i rightwards into the first open (i.e., value 0) place j,
and sweeping away any consecutive intervening ones. We will call a shovel ‘simple’ if
there are no intervening ones (i.e., j = i+ 1), and ‘longer’ if j > i+ 1, so that some
ones are actually swept into oblivion by our shovel.

From this shoveling perspective we immediately notice several things (some already
well-known) intimately relating the A-action on projective spaces with α-number of
degrees. Indeed, since two-power squares generate A, and since shoveling obviously
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never increases α-number, the A-action respects the filtration FsH
∗RP (∞) by α-

number defined in the introduction. Notice too that a simple shovel leaves α-number
unchanged, while a longer shovel reduces it. Moreover, from this point of view it is
obvious that

{t2j−1 = t(1 ↔ 1
j−1

) | j > 0}

is the unique minimal set of A-generators of H∗RP (∞), since clearly none of these
elements is in the image of a shovel (which always produces a 0 to the left of a 1),
and any binary expansion is the image of simple shovels from the generator with
the same α-number, for instance by ‘simply’ shoveling ones rightward as needed into
their desired places, beginning at the right. And it is equally clear that these same
elements for j 6 s are the minimal set of generators of the filtration Fs. We shall call
the elements of this minimal set ‘minimal generators’.

2.2. Candidates for a minimal set of A-relations
In seeking necessary A-relations in a minimal presentation for FsH∗RP (∞), we

should clearly first consider, for a fixed minimal generator t2
j−1 with j 6 s, which

generators of lower filtration it may be related to and how. Since two-power squares
generate A, the first possibilities to consider are Sq2

k

(t2
j−1) for 0 6 k 6 j − 1. We

have, from above, the shovel

Sq2
k

(t2
j−1) = Sq2

k

t
(
1 ↔ 1

j−1

)
= t

(
1 ↔ 10

k
↔ 01

j

)
if k 6 j − 1.

While for k = j − 1 this equation involves a simple shovel, and yields no connec-
tion to lower filtration, for 0 6 k 6 j − 2 it involves longer shovels, and we have thus
discovered essential and independent connections between filtrations, so that rela-
tions corresponding to these, at a minimum, must be included in any presentation of
FsH

∗RP (∞). We shall show that precisely this family of relations minimally suffices
to present FsH∗RP (∞).

First we need to decide how each element on the right side in the above equalities
should best be represented via A-action on a minimal generator, in order to write
down a claimed abstract presentation. For this we need to flesh out our second point
of view, since there may be a multitude of ways to represent such an element via
module action on minimal generators.

2.3. Representing basis elements by iterating unstable operations Dj

from K
We will do more than just represent the particular elements of our candidate

relations above. We will represent every element of H∗RP (∞) as a preferred chosen
monomial in the Dj ’s applied to a preferred minimal A-generator.

We remind the reader that the unstable operations Dj compose very differently
from the Steenrod squares, and form their own algebra of operations K, the Kudo-
Araki-May algebra. Despite this algebra being extremely different from A, unstable
modules over K are in perfect correspondence with those over A. Let us recall [5]
just a few basic features of K, and how it will inform what we mean by an ‘unstable
module’.
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The bigraded algebra K is generated by elements Di ∈ K1,i, i = 0, 1, . . ., subject
to the (Adem) relations

DiDj =
∑

k

(
k − 1− j

2k − i− j

)
Di+2j−2kDk, (i > j).

The degree of elements in K satisfies the condition that multiplication be a map
Km,i ⊗Kn,j → Km+n,i+2mj . The identity element is 1 ∈ K0,0. A monomial DI =
Di1 · · ·Din is admissible provided the multi-index I = (i1, . . . , in) is nondecreasing,
and the admissibles form a basis for K. A graded K-module M∗ is one that satisfies the
requirement Km,i ⊗Mj →M2mj−i. It is unstable provided that each Di : Mi →Mi is
the identity and that Di(Mk) = 0 for i > k. Unstable modules over K and A always
correspond, via the relationship Sqixm = Dm−ixm on a class of degree m, so in the
sequel we shall refer simply to an unstable module without preference for either A or
K. Note too that D0xm = Sqmxm. In particular, this should permanently dispel any
misapprehension that might confuse D0 ∈ K1,0 with the identity element 1 ∈ K0,0.
For the cohomology of a space, the structure and correspondence extends further to
that of an unstable K-algebra, with its own Cartan formula, but we will not need
that here.

To advance our second point of view, we now assign our preferred representation to
each element in H∗RP (∞) (and thence in its filtrations Fj and quotients H∗RP (m))
as a single admissible monomial in K applied to a preferred minimal module generator.
It is clear from our shoveling discussion above that an arbitrary element may have a
myriad of representations via iterated operations on various possible minimal module
generators. We intend to single one out first by matching the α-number j of the
degree of our arbitrarily chosen element x with the minimal generator of the same
α-number, shunning all representations that reduce α. Even with the same α-number,
there will generally be numerous ways to choose and to order iteration of operations
that will carry our chosen generator t2

j−1 = t(1 ↔ 1) to the given x. Since the binary
expansions of these two degrees both have j ones, they differ by the placement of the
j blocks of zeros (some possibly empty) in the expansion of the degree of x, one to
the left of each of its j ones.

We will use these blocks to dictate a specific admissible in the D’s to produce x
from t2

j−1. First note that in H∗RP (∞) the criterion for whether Di(tn) is nonzero
is given by

(
n
i

)
, since

Di(tn) = Sqn−i(tn) =
(

n

n− i

)
t2n−i =

(
n

i

)
t2n−i.

Our plan is to express x from t2
j−1 not necessarily by iterating simple shovels (via

two-power squares), but more efficiently, by inserting a new needed zero in the degree
expansion with each operation, in a way that pushes the entire part of the degree
expansion to the right of the insertion point rightwards one position to accommodate
the new zero. And we insert the new zeros working from right to left. For the first
block of zeros this amounts to simple shoveling via two-power squares, since only
a single one is being shoveled, but after this block non-shovels will be used, since
multiple ones separated by zeros are being pushed rightwards. Nonetheless, we shall
now see that when all is expressed in terms of D’s, the process is quite transparent.
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The key is to observe how a single operation can insert a zero after (i.e., to the right
of in the reversed binary expansion) trailing ones (we call ones “trailing” if they are
at the left of the reversed binary expansion, representing the least significant digits),
thus shifting an entire initial part of the expansion rightwards one position. We claim
this will be accomplished by

D2k−1t(1 ↔ 1
k−1

· · · ) = t(1 ↔ 1
k−1

0 · · · ),

where the two ellipses represent the same string (shifted right by the operation
D2k−1). This holds because the resulting degree is clearly

2 · (1 ↔ 1
k−1

· · · )− (2k − 1) = (1 ↔ 1
k−1

0 · · · ),

and the result is nonzero because
((1 ↔ 1

k−1
· · · )

(1 ↔ 1
k−1

)

)
= 1.

Thus it is clear that for an arbitrary degree

(0 ↔ 0︸ ︷︷ ︸
e0

1 · · · 10 ↔ 0︸ ︷︷ ︸
ei

1 · · · 0 ↔ 0︸ ︷︷ ︸
ej−1

1) =
j−1∑

i=0

2e0+···+ei+i (2)

with α-number j (note some of the ei may be zero), iterations of the above nature on
t2

j−1, working from right to left through the blocks, lead to a particular admissible
monomial involving only D’s of the form D2k−1, for k < j, applied to t2

j−1, and that
the degrees and their elements are in one to one correspondence with such monomials
in K. For example, for j = 8,

t (0011000110110011) = D2
0D

3
3D15D

2
63t (11111111) .

(Notice here e0 = 2, e1 = 0, e2 = 3, etc., and that this correspondence is best con-
ceived using reverse binary digit representations.)

An analogous phenomenon in the context of finite H-spaces was already observed
and illustrated in [5, p. 1490f].

In general we now clearly have

Theorem 2.1 (A basis for H∗RP (∞) in terms of K). For j > 0, a basis for

FjH
∗RP (∞)/Fj−1H

∗RP (∞)

in terms of admissibles from K on t2
j−1 is given by

{De0
0 · · ·Dei

2i−1 · · ·D
ej−1

2j−1−1t
2j−1 | each ei > 0},

with corresponding degrees
∑j−1
i=0 2e0+···+ei+i as in displayed equation (2) above.
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This form of basis thus allows us to state specific module relations between the
minimal generators {t2j−1 | j > 0} in H∗RP (∞), based on the preliminary calcula-
tions above of candidates for a minimal set of module relations:

Sq2
k

(t2
j−1) = t(1 ↔ 10

k
↔ 01

j
) for k 6 j − 2.

Thus we have
Sq2

k

t2
j−1 = Dj−k

2k−1
t2

k+1−1 for k 6 j − 2.

3. Minimal module presentations for the filtrations of
H∗RP (∞)

From directly above, our theorem about FsH∗RP (∞) will be

Theorem 3.1 (Minimal presentation for FsH∗RP (∞)). For 0 6 s 6 ∞, a minimal
presentation of FsH∗RP (∞) as an unstable module is given by generators

x2j−1, for j an integer with 0 6 j 6 s (degree of x2j−1 is 2j − 1),

and relations

Sq2
k

x2j−1 = Dj−k
2k−1

x2k+1−1, for 0 6 j 6 s and 0 6 k 6 j − 2.

Remark. Already in the introduction we noted that these relations can be recast
solely in terms of the A-action. They are equal to the set

Sq2
k

x2j−1 = Sq2
j−1

Sq2
j−2 · · ·Sq2k

x2k+1−1 for 0 6 j 6 s and 0 6 k 6 j − 2,

and equivalent to the set

Sq2
k

x2j−1 = Sq2
j−1

Sq2
k

x2j−1−1 for 0 6 j 6 s and 0 6 k 6 j − 2.

In preparation for the proof of Theorem 3.1, notice that from above we already
have a basis in terms of K for the filtration quotients Fj/Fj−1 of H∗RP (∞). There-
fore, since our goal is to present FsH∗RP (∞) via generators and relations, we next
endeavor to identify abstract minimal K-presentations for these filtration quotients
Fj/Fj−1. These abstract presentations, when recast via A-presentations, will per-
fectly match the obvious filtered quotients of the presentation in the theorem, and
the rest will follow easily.

3.1. A third point of view: analyze as a K-module
We wish to prove (cf. [6, Theorems 6.1, 6.2]).

Theorem 3.2 (Filtration quotients presented as cyclic modules). For j > 0, the
filtered quotient FjH∗RP (∞)/Fj−1H

∗RP (∞) is A-isomorphic to the free unstable
cyclic module on a generator x2j−1 in degree 2j − 1, modulo the left ideal generated
by {Sq2k | k 6 j − 2}, which module we denote by M(j, 1) for consistency with [6].
The abstract cyclic module M(j, 1) thus has basis as described in Theorem 2.1, with
x2j−1 replacing t2

j−1. In particular, the abstract cyclic module is nonzero, and of
rank one, precisely in those degrees with α-number j.
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Our method of proof will go beyond just describing elements in these A-modules
via K-operations and a basis in terms of K. We will actually shift to viewing these
unstable A-modules equivalently as K-modules, since there is a special feature of the
product structure of K that we wish to exploit. The existence of this feature, inherent
to the algebraic structure of K as opposed to that of A, demonstrates why shifting
to the K-module view is important.

Notation. Let Fx2j−1
denote the free unstable module on x2j−1 in degree 2j − 1.

To prove Theorem 3.2, indeed to obtain a basis for

Fx2j−1
/A(Sq2

k | k 6 j − 2)x2j−1

written in terms of K, we will analyze it by shifting to view it as a K-module, for
which purpose we make two definitions.

Definition. Let Ij = A(Sq2
k | k 6 j − 2), a left ideal in A depending on j.

Definition. Let J = K (
Di | i is not of the form 2l − 1 for any l

)
, a left ideal in K

not depending on j.

Despite the fact that J does not depend on j, while Ij does, we can prove that

Theorem 3.3 (Shift presentation to K-module). For each j > 0, in Fx2j−1
the sub-

modules Ijx2j−1 and J x2j−1 are equal. Equivalently,

Fx2j−1
/A(Sq2

k | k 6 j − 2)x2j−1 = Fx2j−1
/K(Di | i 6= 2l − 1)x2j−1.

This converts the minimal A-presentation of this abstract module into a minimal
K-presentation.

Remark. To provide some motivation for why these very different looking quotients
might be the same, consider which Steenrod squares we expect to survive on the left
side. Certainly Sq2

j−1
x2j−1 survives, and we note it equals D2j−1−1x2j−1, which also

survives on the right. Those familiar with the Adem relations inA will also expect that
Sq2

j−1+2j−2
x2j−1 may survive on the left, and it equals the survivor D2j−2−1x2j−1

on the right. This pattern continues.

Proof. We show bicontainment for the generators of the two left ideals.
For k 6 j − 2, we consider the generator Sq2

k

of Ij . Notice that Sq2
k

x2j−1 =
D2j−2k−1x2j−1, and 2j − 2k − 1 is not of the form 2l − 1, so D2j−2k−1 is a generator
of J .

In the other direction, let r < 2j − 1 be not of the form 2l − 1 for any l, and consider
Drx2j−1 in Fx2j−1

/A(Sq2
k | k 6 j − 2)x2j−1 = M(j, 1). To show that Drx2j−1 = 0 ∈

M(j, 1), we will induct downwards on r. If 2j−1 − 1 < r < 2j − 1, then Drx2j−1 =
Sqmx2j−1 with 0 < m < 2j−1, which is zero from the defining relations of M(j, 1).
Continuing downwards, suppose that r < 2j−1 − 1. Then we can write r =

(
2j − 1

)−(
2ac+ 2b

)
, with c odd and 0 6 b < a 6 j − 1. We consider two cases:

Case 1. Let (2j − 1)− 2ac 6= 2l − 1, for any l. A calculation with the K Adem
relations, combined with the unstable condition and the inductive hypothesis, yields

Dr+2a+1cD(2j−1)−2acx2j−1 = DrD2j−1x2j−1 = Drx2j−1.

Since (2j − 1)− 2ac > r, inductively we have Drx2j−1 = 0.
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Case 2. Let (2j − 1)− 2ac = 2l − 1 for some l. It follows that l = a and that c =
2j−a − 1. Again using the Adem relations in K, combined with the unstable condition,
the inductive hypothesis, and the assumption that r is not of the form 2l − 1 for any
l, we get

0 = D2j+1−2a−3·2b−1D2a+2b−1x2j−1 = DrD2j−1x2j−1 = Drx2j−1.

Now we recall a remarkable feature of the left ideal J in K, for which we know no
analog in A.

Theorem 3.4 (Quasi-two-sided ideal in K; no apparent A analog). The left ideal J
is quasi-two-sided in K, i.e.,

{admissible Di1 · · ·Dir · · ·Diq | at least one Dir is in J (i.e., ir 6= 2l − 1)}
is contained in J .

In other words, any admissible in K with a generator of J anywhere in its product
can be written in terms of elements with generators of J on the right.

This property of K was proven from the K-Adem relations in Theorem 2.9 of [7].
The preceding two theorems now come together with Theorem 2.1 to prove The-

orem 3.2.

Proof of Theorem 3.2. First note that {Sq2k | k 6 j − 2} acts trivially on t2
j−1 ∈

Fj/Fj−1, since Fj/Fj−1 is zero in the target degrees. Thus there is a (unique) A-
map ψj : M(j, 1) → Fj/Fj−1 with ψj (x2j−1) = t2

j−1. From Theorems 2.1 and 3.3,
we have a module epimorphism

Fx2j−1
/K(Di | i 6= 2l − 1)x2j−1 = Fx2j−1

/A(Sq2
k | k 6 j − 2)x2j−1

= M(j, 1)
ψj→ Fj/Fj−1

= F2{De0
0 · · ·Dei

2i−1 · · ·D
ej−1

2j−1−1t
2j−1 | ei > 0}.

Moreover, from Theorem 3.4, every admissible in K (assumed ending in Dr with
r < 2j − 1 for unstable nontriviality and nonredundancy on a class in degree 2j − 1),
other than those appearing in the basis for Fj/Fj−1, actually produces zero on x2j−1.
So the map is an isomorphism.

From the proof of the theorem we also have

Corollary. For j > 0, all admissibles in K (assumed ending in Dr with r < 2j − 1
for unstable nontriviality and nonredundancy on a class in degree 2j − 1), other than
those shown in the basis above, are zero on both the fundamental class t2

j−1 in the
cyclic module FjH∗RP (∞)/Fj−1H

∗RP (∞) and the fundamental class x2j−1 in the
abstract cyclic module M(j, 1).

We end this section by proving the minimal presentations for FsH∗RP (∞).

Proof of Theorem 3.1. First we create notation for the claimed module presentation,
and observe that desired maps exist between the presentation and the filtrations in
H∗RP (∞).
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Let Ns (s > 0) denote the free unstable module on the set

x2j−1, for 0 6 j 6 s (degree of x2j−1 is 2j − 1),

subject to the relations

Sq2
k

x2j−1 = Dj−k
2k−1

x2k+1−1, for 0 6 j 6 s, 0 6 k 6 j − 2.

We verified earlier that the images of these relations are satisfied in Fs, so there
are epimorphisms of unstable modules ϕs : Ns → Fs with ϕs (x2j−1) = t2

j−1 for all
0 6 j 6 s, such that the diagram

ϕs−1 : Ns−1 −−−−→ Fs−1y
y

ϕs : Ns −−−−→ Fs

commutes, where Ns−1 → Ns is the obvious map between these presentations.
Inductively assume that ϕs−1 is an isomorphism. It follows from the diagram that

Ns−1 → Ns is monic. We shall prove that ϕs is an isomorphism by showing that the
induced map Ns/Ns−1 → Fs/Fs−1 is an isomorphism. Clearly an unstable presenta-
tion for Ns/Ns−1 consists of the single generator x2s−1 and relations Sq2

k

x2s−1 = 0,
for 0 6 k 6 s− 2, yielding M(s, 1). So the induced map is an isomorphism by Theo-
rem 3.2.

Minimality of the set of relations is clear from looking at filtration quotients, since
the Sq2

k

minimally generate A.

4. Minimal module presentations of H∗RP (m)

With Theorem 3.1 in hand we can turn to minimal A-module presentations for the
finite projective spaces. We illustrate first with a special case, presenting H∗RP (m)
for the particular values m of the form 2s+1 − 2.

Proposition 4.1 (Presentation for a special family of finite projective spaces). A
minimal presentation of H∗RP (2s+1 − 2) as an unstable A-module is given by gen-
erators

x2j−1 in degree 2j − 1, for 0 6 j 6 s,

and relations

Sq2
k

x2j−1 = Dj−k
2k−1

x2k+1−1, for 0 6 j 6 s and 0 6 k 6 j − 2,

and

0 = Ds+1−k
2k−1

x2k+1−1, for 0 6 k 6 s− 1.

Proof. Clearly H∗RP (2s+1 − 2) is the quotient of Fs = FsH
∗RP (∞) obtained by

killing all tr in Fs with r > 2s+1 − 1. So the generators and relations from Theorem 3.1
for Fs must all necessarily appear, since they lie in degrees lower than 2s+1 − 1. It
is not immediately clear what minimal set of A-relations should then additionally
be imposed in Fs to achieve triviality in degrees above 2s+1 − 1 (in degree 2s+1 − 1,
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Fs is zero). We consider the least such degrees nonzero in Fs with given numbers of
trailing ones, namely

(0 ↔ 0 1
s+1

)

· · ·
(1 ↔ 10

k
↔ 0 1

s+1
)

· · ·
(1 ↔ 1 0

s−1
0 1
s+1

).

It is clear that each of these degrees holds a necessary relation, being the lowest degree
above 2s+1 − 1 with its number of trailing ones, and thus unreachable from any others
by shoveling. But clearly also any element of Fs in any degree above 2s+1 − 1 can
be reached from one of these by shoveling, i.e. (using Theorem 2.1), from the set
of elements of the form Ds+1−k

2k−1
x2k+1−1 in Fs. This is precisely the second set of

relations.

A minimal presentation of H∗RP (m) for arbitrary m is more complicated. It will
need new relations accounting for the deviation of m below the nearest higher number
of the form 2s+1 − 2, but will still utilize a subset of the second set of relations used
above to present H∗RP (2s+1 − 2).

Theorem 4.2 (Minimal presentation for finite projective spaces). Let 2s − 1 6 m 6
2s+1 − 2. Let α be the number of ones in the binary expansion of m+ 1, and write
the expansion as m+ 1 =

∑α−1
i=0 2e0+···+ei+i (each ei > 0). Also let β be the number

of leading ones in this expansion; in other words, if there is a nonzero ei, then α− β
is the largest index i for which ei is nonzero.

Then a minimal presentation for H∗RP (m) is given by generators

x2j−1 in degree 2j − 1, for 0 6 j 6 s,

and the three sets of relations

Sq2
k

x2j−1 = Dj−k
2k−1

x2k+1−1, for 0 6 j 6 s and 0 6 k 6 j − 2, (a)

0 = Dei−l
2i+r−1D

ei+1

2i+1+r−1 · · ·D
eα−1

2α−1+r−1x2α+r−1,

for 0 6 i 6 α− 1 and 0 6 l < ei, where r = e0 + · · ·+ ei−1 + l, and (b)

0 = Ds+1−k
2k−1

x2k+1−1, for s+ 1− β 6 k 6 s− 1. (c)

Remark. These relations may be demystified by observing, as will be explained in
the proof, that the second set of relations consists of elements in degrees obtained by
beginning with degree m+ 1, then successively replacing zeros in its binary expansion
by ones, starting from the left, until only one zero remains, so as to stay inside Fs.
And the third set then continues above the next power of two in all the lowest degrees
with more trailing ones than the second set, but stopping with two zeros, again to
stay inside Fs. The proof spells this out in detail.
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Example. If m+ 1 = (1010011100111) , the second set of relations lies in the degrees
(1110011100111), (1111011100111), (1111111100111), and (1111111110111), and the
third set adds more trailing ones in degrees (11111111110001) and (11111111111001)
above the next power of two.

Remark. The first and third sets of relations arise from the status of H∗RP (m) as
the quotient of H∗RP (2s+1 − 2), which latter was minimally presented in Proposi-
tion 4.1. The second set of relations in the general theorem truncates the cohomology
down further from H∗RP (2s+1 − 2) to H∗RP (m), and the minimal third set of rela-
tions is only a subset of the second set in Proposition 4.1, since the addition of the
second set of relations for general m makes some of the second set of relations for
H∗RP (2s+1 − 2) from Proposition 4.1 redundant for minimally presentingH∗RP (m),
based on how many trailing ones can appear in the second set for H∗RP (m).

The extreme case m = 2s+1 − 2 corresponds precisely to β = s+ 1, in which case
all the ei are zero, there are no relations in the second set, and the third set is the full
set from Proposition 4.1. At the other extreme, if β = 1, then the third set is empty;
this corresponds to the first half of each degree range for m.

Proof of Theorem 4.2. Initially we impose the first set of relations in the theorem.
From Theorem 3.1, the resulting quotient provides a minimal presentation for the
filtration Fs ofH∗RP (∞). Hence we may now use the formulas for the unstable action
in H∗RP (∞), in particular we may shovel ones. And furthermore, in degrees less than
2s+1, this initial quotient, isomorphic to Fs, is also isomorphic to H∗RP (2s+1 − 2).

The remaining two sets of relations are to minimally ensure that the final result is
zero in all degrees greater than or equal to m+ 1. Note that the third set of relations
in the theorem lies in degrees at least 2s+1, as seen in the proof of Proposition 4.1.
Thus we proceed first with relations in the range 2s − 1 6 m 6 2s+1 − 2 within
which m lies, and in which range the presentation so far agrees with both Fs and
H∗RP (2s+1 − 2), having a single element in each degree.

Consider the expansion

m+ 1 =
α−1∑

i=0

2e0+···+ei+i = (0 ↔ 0︸ ︷︷ ︸
e0

1 · · · 10 ↔ 0︸ ︷︷ ︸
ei

1 · · · 10 ↔ 0︸ ︷︷ ︸
eα−1

1),

with α-many ones. We need only identify sequentially by degree which elements need
to be killed in this range to produce H∗RP (m), simultaneously tracking which ele-
ments will be zero in the developing quotient as we inductively impose relations in
lower degrees. This will all be determined by how the A-action, generated by shov-
eling, does or does not connect one degree to another in Fs. Then we can write the
explicit relations to kill these in terms of our canonical basis in terms of K for all
elements of Fs.

Note first that ifm = 2s+1 − 2, thenm+ 1 = 2s+1 − 1 is already outside our range,
so no relations in this range will be needed. However, if m < 2s+1 − 2, then after
killing the element in degreem+ 1 itself, it is clear that the list of additional necessary
and sufficient relations in this range must be in those degrees obtained from the
binary expansion of m+ 1 by successively replacing its zeros by ones, from left to
right. This is because any given element in the range is clearly in the A-image of
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the element in this list with degree closest below the given element. Moreover, none
of the elements of increasing degree in this list can be reached from each other by
shoveling, since their degrees’ reversed binary expansions begin with ever increasing
numbers of trailing ones. Finally, note that this list stops when there is a single zero
remaining, namely the rightmost zero in the original expansion. Otherwise the degree
would become 2s+1 − 1, outside the range. Using the correspondence of Theorem 2.1
between degrees and a basis in terms of K for H∗RP (∞), these relations are precisely
those in the second set in the theorem. Note that in the degree of each relation, r
represents the number of zeros in the expansion of the degree m+ 1 being replaced
by ones. Note too that some of the ei may be zero, reflecting consecutive ones in the
expansion of m+ 1, producing corresponding empty factors in the basis descriptions
in terms of K, except for the leading factor, for which the exponent ei − l is always
positive.

Finally we consider what relations are still needed above degree 2s+1 − 1 in order
to ensure that the quotient is zero there. Clearly this will be some subset of the set
of relations added in this range for H∗RP (2s+1 − 2) in Proposition 4.1. The final
relation we just added in the second set of relations has the largest number of trailing
ones in its binary expansion. Recalling the definition of β in the theorem, this final
relation in the second set is in degree

(1 ↔ 1 0
s−β

1 ↔ 1
s
).

Clearly any element of Fs in higher degree than this, and with no more trailing ones,
can be reached by shoveling from the element in this degree. So it remains only to deal
with elements in degrees with more trailing ones, for which we consider the elements
in degrees

(1 ↔ 1 0
s−β+1

↔ 0 1
s+1

)

· · ·
(1 ↔ 10

k
↔ 0 1

s+1
)

· · ·
(1 ↔ 1 0

s−1
0 1
s+1

)

in Fs. These are precisely the lowest degrees above 2s+1 − 1 in Fs with more trailing
ones, so they are all necessary relations. (Note that this is also correct for the case
when there are no type two relations, i.e., when m = 2s+1 − 2, β = s+ 1, and the
relations above include all possible numbers of trailing ones, as necessary.) But they
are also sufficient, since clearly any element of Fs in any degree above 2s+1 − 1 with
as many trailing ones as one of these can be reached from one of these by shoveling. So
again using the correspondence of Theorem 2.1, we set the elements in these degrees
to zero to write the third set of relations in the theorem.
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